/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/bessel/i1f.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::bessel::j0f::j1f_rsqrt; |
30 | | use crate::common::f_fmla; |
31 | | use crate::exponents::core_expf; |
32 | | use crate::polyeval::{f_estrin_polyeval7, f_estrin_polyeval9, f_polyeval10}; |
33 | | |
34 | | /// Modified Bessel of the first kind of order 1 |
35 | | /// |
36 | | /// Max ULP 0.5 |
37 | 0 | pub fn f_i1f(x: f32) -> f32 { |
38 | 0 | let ux = x.to_bits().wrapping_shl(1); |
39 | 0 | if ux >= 0xffu32 << 24 || ux == 0 { |
40 | | // |x| == 0, |x| == inf, |x| == NaN |
41 | 0 | if ux == 0 { |
42 | | // |x| == 0 |
43 | 0 | return 0.; |
44 | 0 | } |
45 | 0 | if x.is_infinite() { |
46 | 0 | return if x.is_sign_positive() { |
47 | 0 | f32::INFINITY |
48 | | } else { |
49 | 0 | f32::NEG_INFINITY |
50 | | }; |
51 | 0 | } |
52 | 0 | return x + f32::NAN; // x == NaN |
53 | 0 | } |
54 | | |
55 | 0 | let xb = x.to_bits() & 0x7fff_ffff; |
56 | | |
57 | 0 | if xb > 0x42b7d001 { |
58 | | // x > 91.906261 |
59 | 0 | return if x.is_sign_negative() { |
60 | 0 | f32::NEG_INFINITY |
61 | | } else { |
62 | 0 | f32::INFINITY |
63 | | }; |
64 | 0 | } |
65 | | |
66 | | static SIGN: [f64; 2] = [1., -1.]; |
67 | | |
68 | 0 | let sign_scale = SIGN[x.is_sign_negative() as usize]; |
69 | | |
70 | 0 | if xb <= 0x40f80000u32 { |
71 | | // |x| <= 7.75 |
72 | 0 | if xb <= 0x34000000u32 { |
73 | | // |x| <= f32::EPSILON |
74 | | // taylor series for I1(x) ~ x/2 + O(x^3) |
75 | 0 | return x * 0.5; |
76 | 0 | } |
77 | 0 | return i1f_small(f32::from_bits(xb), sign_scale) as f32; |
78 | 0 | } |
79 | | |
80 | 0 | i1f_asympt(f32::from_bits(xb), sign_scale) |
81 | 0 | } |
82 | | |
83 | | /** |
84 | | Computes |
85 | | I1(x) = x/2 * (1 + 1 * (x/2)^2 + (x/2)^4 * P((x/2)^2)) |
86 | | |
87 | | Generated by Woflram Mathematica: |
88 | | |
89 | | ```text |
90 | | <<FunctionApproximations` |
91 | | ClearAll["Global`*"] |
92 | | f[x_]:=(BesselI[1,x]*2/x-1-1/2(x/2)^2)/(x/2)^4 |
93 | | g[z_]:=f[2 Sqrt[z]] |
94 | | {err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,7.75},6,6},WorkingPrecision->60] |
95 | | poly=Numerator[approx][[1]]; |
96 | | coeffs=CoefficientList[poly,z]; |
97 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
98 | | poly=Denominator[approx][[1]]; |
99 | | coeffs=CoefficientList[poly,z]; |
100 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
101 | | ``` |
102 | | **/ |
103 | | #[inline] |
104 | 0 | fn i1f_small(x: f32, sign_scale: f64) -> f64 { |
105 | 0 | let dx = x as f64; |
106 | 0 | let x_over_two = dx * 0.5; |
107 | 0 | let x_over_two_sqr = x_over_two * x_over_two; |
108 | 0 | let x_over_two_p4 = x_over_two_sqr * x_over_two_sqr; |
109 | | |
110 | 0 | let p_num = f_estrin_polyeval7( |
111 | 0 | x_over_two_sqr, |
112 | 0 | f64::from_bits(0x3fb5555555555555), |
113 | 0 | f64::from_bits(0x3f706cdccca396c4), |
114 | 0 | f64::from_bits(0x3f23f9e12bdbba92), |
115 | 0 | f64::from_bits(0x3ec8e39208e926b2), |
116 | 0 | f64::from_bits(0x3e62e53b433c42ff), |
117 | 0 | f64::from_bits(0x3def7cb16d10fb46), |
118 | 0 | f64::from_bits(0x3d6747cd73d9d783), |
119 | | ); |
120 | 0 | let p_den = f_estrin_polyeval7( |
121 | 0 | x_over_two_sqr, |
122 | 0 | f64::from_bits(0x3ff0000000000000), |
123 | 0 | f64::from_bits(0xbfa2075f77b54885), |
124 | 0 | f64::from_bits(0x3f438c6d797c29f5), |
125 | 0 | f64::from_bits(0xbeda57e2a258c6da), |
126 | 0 | f64::from_bits(0x3e677e777c569432), |
127 | 0 | f64::from_bits(0xbdea9212a96babc1), |
128 | 0 | f64::from_bits(0x3d5e183186d5d782), |
129 | | ); |
130 | 0 | let p = p_num / p_den; |
131 | | |
132 | 0 | let p1 = f_fmla(0.5, x_over_two_sqr, 1.); |
133 | 0 | let p2 = f_fmla(x_over_two_p4, p, p1); |
134 | 0 | p2 * x_over_two * sign_scale |
135 | 0 | } |
136 | | |
137 | | /** |
138 | | Asymptotic expansion for I1. |
139 | | |
140 | | Computes: |
141 | | sqrt(x) * exp(-x) * I1(x) = Pn(1/x)/Qn(1/x) |
142 | | hence: |
143 | | I1(x) = Pn(1/x)/Qm(1/x)*exp(x)/sqrt(x) |
144 | | |
145 | | Generated by Wolfram Mathematica: |
146 | | ```text |
147 | | <<FunctionApproximations` |
148 | | ClearAll["Global`*"] |
149 | | f[x_]:=Sqrt[x] Exp[-x] BesselI[1,x] |
150 | | g[z_]:=f[1/z] |
151 | | {err, approx,err1}=MiniMaxApproximation[g[z],{z,{1/91.9,1/7.75},9,8},WorkingPrecision->60] |
152 | | poly=Numerator[approx]; |
153 | | coeffs=CoefficientList[poly,z]; |
154 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
155 | | poly=Denominator[approx]; |
156 | | coeffs=CoefficientList[poly,z]; |
157 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
158 | | ``` |
159 | | **/ |
160 | | #[inline] |
161 | 0 | fn i1f_asympt(x: f32, sign_scale: f64) -> f32 { |
162 | 0 | let dx = x as f64; |
163 | 0 | let recip = 1. / dx; |
164 | 0 | let p_num = f_polyeval10( |
165 | 0 | recip, |
166 | 0 | f64::from_bits(0x3fd9884533d43711), |
167 | 0 | f64::from_bits(0xc0309c047537243a), |
168 | 0 | f64::from_bits(0x4073bdb14a29bf68), |
169 | 0 | f64::from_bits(0xc0aaf9eca14d15af), |
170 | 0 | f64::from_bits(0x40d6c629318a9e42), |
171 | 0 | f64::from_bits(0xc0f7bee33088a4b0), |
172 | 0 | f64::from_bits(0x410d018cef093ee2), |
173 | 0 | f64::from_bits(0xc111f32b325d3fe4), |
174 | 0 | f64::from_bits(0x4100dddad80e0b42), |
175 | 0 | f64::from_bits(0xc0c96006c91a00e2), |
176 | | ); |
177 | 0 | let p_den = f_estrin_polyeval9( |
178 | 0 | recip, |
179 | 0 | f64::from_bits(0x3ff0000000000000), |
180 | 0 | f64::from_bits(0xc044a11d10bae889), |
181 | 0 | f64::from_bits(0x408843069497d993), |
182 | 0 | f64::from_bits(0xc0c058710de4b9b9), |
183 | 0 | f64::from_bits(0x40eb0d97f71420ae), |
184 | 0 | f64::from_bits(0xc10b55d181ef9ea1), |
185 | 0 | f64::from_bits(0x411f9413e1932a48), |
186 | 0 | f64::from_bits(0xc1213bff5bc7d2d6), |
187 | 0 | f64::from_bits(0x4105c53e92d9b9c0), |
188 | | ); |
189 | 0 | let z = p_num / p_den; |
190 | 0 | let e = core_expf(x); |
191 | 0 | let r_sqrt = j1f_rsqrt(dx); |
192 | 0 | (z * r_sqrt * e * sign_scale) as f32 |
193 | 0 | } |
194 | | |
195 | | #[cfg(test)] |
196 | | mod tests { |
197 | | use super::*; |
198 | | |
199 | | #[test] |
200 | | fn test_i1f() { |
201 | | assert!(f_i1f(f32::NAN).is_nan()); |
202 | | assert!(f_i1f(f32::INFINITY).is_infinite()); |
203 | | assert!(f_i1f(f32::NEG_INFINITY).is_infinite()); |
204 | | assert_eq!(f_i1f(0.), 0.); |
205 | | assert_eq!(f_i1f(1.), 0.5651591); |
206 | | assert_eq!(f_i1f(-1.), -0.5651591); |
207 | | assert_eq!(f_i1f(9.), 1030.9147); |
208 | | assert_eq!(f_i1f(-9.), -1030.9147); |
209 | | } |
210 | | } |