Coverage Report

Created: 2026-01-10 07:01

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/bessel/j0f.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::bessel::j0f_coeffs::{J0_ZEROS, J0_ZEROS_VALUE, J0F_COEFFS};
30
use crate::bessel::trigo_bessel::cos_small;
31
use crate::double_double::DoubleDouble;
32
use crate::polyeval::{f_polyeval9, f_polyeval10, f_polyeval12, f_polyeval14};
33
use crate::rounding::CpuCeil;
34
use crate::sincos_reduce::rem2pif_any;
35
36
/// Bessel of the first kind of order 0
37
///
38
/// Max ulp 0.5
39
0
pub fn f_j0f(x: f32) -> f32 {
40
0
    let ux = x.to_bits().wrapping_shl(1);
41
0
    if ux >= 0xffu32 << 24 || ux <= 0x6800_0000u32 {
42
        // |x| == 0, |x| == inf, |x| == NaN, |x| <= f32::EPSILON
43
0
        if ux == 0 {
44
            // |x| == 0
45
0
            return f64::from_bits(0x3ff0000000000000) as f32;
46
0
        }
47
0
        if x.is_infinite() {
48
0
            return 0.;
49
0
        }
50
51
0
        if ux <= 0x6800_0000u32 {
52
            // |x| < f32::EPSILON
53
            // taylor series for J0(x) ~ 1 - x^2/4 + O(x^4)
54
            #[cfg(any(
55
                all(
56
                    any(target_arch = "x86", target_arch = "x86_64"),
57
                    target_feature = "fma"
58
                ),
59
                target_arch = "aarch64"
60
            ))]
61
            {
62
                use crate::common::f_fmlaf;
63
                return f_fmlaf(x, -x * 0.25, 1.);
64
            }
65
            #[cfg(not(any(
66
                all(
67
                    any(target_arch = "x86", target_arch = "x86_64"),
68
                    target_feature = "fma"
69
                ),
70
                target_arch = "aarch64"
71
            )))]
72
            {
73
                use crate::common::f_fmla;
74
0
                let dx = x as f64;
75
0
                return f_fmla(dx, -dx * 0.25, 1.) as f32;
76
            }
77
0
        }
78
79
0
        return x + f32::NAN; // x == NaN
80
0
    }
81
82
0
    let x_abs = x.to_bits() & 0x7fff_ffff;
83
84
0
    if x_abs <= 0x4295999au32 {
85
        // |x| <= 74.8
86
0
        if x_abs <= 0x3e800000u32 {
87
            // |x| <= 0.25
88
0
            return j0f_maclaurin_series(x);
89
0
        }
90
91
0
        if x_abs == 0x401a42e8u32 {
92
0
            return f32::from_bits(0xbb3b2f69u32);
93
0
        }
94
95
0
        return small_argument_path(x);
96
0
    }
97
98
    // Exceptions
99
0
    if x_abs == 0x65ce46e4 {
100
0
        return f32::from_bits(0x1eed85c4);
101
0
    } else if x_abs == 0x7e3dcda0 {
102
0
        return f32::from_bits(0x92b81111);
103
0
    } else if x_abs == 0x76d84625 {
104
0
        return f32::from_bits(0x95d7a68b);
105
0
    } else if x_abs == 0x6bf68a7b {
106
0
        return f32::from_bits(0x1dc70a09);
107
0
    } else if x_abs == 0x7842c820 {
108
0
        return f32::from_bits(0x17ebf13e);
109
0
    } else if x_abs == 0x4ba332e9 {
110
0
        return f32::from_bits(0x27250206);
111
0
    }
112
113
0
    j0f_asympt(f32::from_bits(x_abs))
114
0
}
115
116
/**
117
Generated by SageMath:
118
```python
119
# Maclaurin series for j0
120
def print_expansion_at_0_f():
121
    print(f"pub(crate) const J0_MACLAURIN_SERIES: [u64; 9] = [")
122
    from mpmath import mp, j0, taylor
123
    mp.prec = 60
124
    poly = taylor(lambda val: j0(val), 0, 18)
125
    z = 0
126
    for i in range(0, 18, 2):
127
        print(f"{double_to_hex(poly[i])},")
128
    print("];")
129
130
    print(f"poly {poly}")
131
132
print_expansion_at_0_f()
133
```
134
**/
135
#[inline]
136
0
fn j0f_maclaurin_series(x: f32) -> f32 {
137
    pub(crate) const C: [u64; 9] = [
138
        0x3ff0000000000000,
139
        0xbfd0000000000000,
140
        0x3f90000000000000,
141
        0xbf3c71c71c71c71c,
142
        0x3edc71c71c71c71c,
143
        0xbe723456789abcdf,
144
        0x3e002e85c0898b71,
145
        0xbd8522a43f65486a,
146
        0x3d0522a43f65486a,
147
    ];
148
0
    let dx = x as f64;
149
0
    f_polyeval9(
150
0
        dx * dx,
151
0
        f64::from_bits(C[0]),
152
0
        f64::from_bits(C[1]),
153
0
        f64::from_bits(C[2]),
154
0
        f64::from_bits(C[3]),
155
0
        f64::from_bits(C[4]),
156
0
        f64::from_bits(C[5]),
157
0
        f64::from_bits(C[6]),
158
0
        f64::from_bits(C[7]),
159
0
        f64::from_bits(C[8]),
160
0
    ) as f32
161
0
}
162
163
/// This method on small range searches for nearest zero or extremum.
164
/// Then picks stored series expansion at the point end evaluates the poly at the point.
165
#[inline]
166
0
fn small_argument_path(x: f32) -> f32 {
167
0
    let x_abs = f32::from_bits(x.to_bits() & 0x7fff_ffff) as f64;
168
169
    // let avg_step = 74.6145 / 47.0;
170
    // let inv_step = 1.0 / avg_step;
171
172
    const INV_STEP: f64 = 0.6299043751549631;
173
174
0
    let fx = x_abs * INV_STEP;
175
    const J0_ZEROS_COUNT: f64 = (J0_ZEROS.len() - 1) as f64;
176
0
    let idx0 = unsafe { fx.min(J0_ZEROS_COUNT).to_int_unchecked::<usize>() };
177
0
    let idx1 = unsafe {
178
0
        fx.cpu_ceil()
179
0
            .min(J0_ZEROS_COUNT)
180
0
            .to_int_unchecked::<usize>()
181
    };
182
183
0
    let found_zero0 = DoubleDouble::from_bit_pair(J0_ZEROS[idx0]);
184
0
    let found_zero1 = DoubleDouble::from_bit_pair(J0_ZEROS[idx1]);
185
186
0
    let dist0 = (found_zero0.hi - x_abs).abs();
187
0
    let dist1 = (found_zero1.hi - x_abs).abs();
188
189
0
    let (found_zero, idx, dist) = if dist0 < dist1 {
190
0
        (found_zero0, idx0, dist0)
191
    } else {
192
0
        (found_zero1, idx1, dist1)
193
    };
194
195
0
    if idx == 0 {
196
0
        return j0f_maclaurin_series(x);
197
0
    }
198
199
    // We hit exact zero, value, better to return it directly
200
0
    if dist == 0. {
201
0
        return f64::from_bits(J0_ZEROS_VALUE[idx]) as f32;
202
0
    }
203
204
0
    let c = &J0F_COEFFS[idx - 1];
205
206
0
    let r = (x_abs - found_zero.hi) - found_zero.lo;
207
208
0
    let p = f_polyeval14(
209
0
        r,
210
0
        f64::from_bits(c[0]),
211
0
        f64::from_bits(c[1]),
212
0
        f64::from_bits(c[2]),
213
0
        f64::from_bits(c[3]),
214
0
        f64::from_bits(c[4]),
215
0
        f64::from_bits(c[5]),
216
0
        f64::from_bits(c[6]),
217
0
        f64::from_bits(c[7]),
218
0
        f64::from_bits(c[8]),
219
0
        f64::from_bits(c[9]),
220
0
        f64::from_bits(c[10]),
221
0
        f64::from_bits(c[11]),
222
0
        f64::from_bits(c[12]),
223
0
        f64::from_bits(c[13]),
224
    );
225
226
0
    p as f32
227
0
}
228
229
#[inline]
230
0
pub(crate) fn j1f_rsqrt(x: f64) -> f64 {
231
0
    (1. / x) * x.sqrt()
232
0
}
233
234
/*
235
   Evaluates:
236
   J1 = sqrt(2/(PI*x)) * beta(x) * cos(x - PI/4 - alpha(x))
237
*/
238
#[inline]
239
0
fn j0f_asympt(x: f32) -> f32 {
240
0
    let dx = x as f64;
241
242
0
    let alpha = j0f_asympt_alpha(dx);
243
0
    let beta = j0f_asympt_beta(dx);
244
245
0
    let angle = rem2pif_any(x);
246
247
    const SQRT_2_OVER_PI: f64 = f64::from_bits(0x3fe9884533d43651);
248
    const MPI_OVER_4: f64 = f64::from_bits(0xbfe921fb54442d18);
249
250
0
    let x0pi34 = MPI_OVER_4 - alpha;
251
0
    let r0 = angle + x0pi34;
252
253
0
    let m_cos = cos_small(r0);
254
255
0
    let z0 = beta * m_cos;
256
0
    let scale = SQRT_2_OVER_PI * j1f_rsqrt(dx);
257
258
0
    (scale * z0) as f32
259
0
}
260
261
/**
262
Note expansion generation below: this is negative series expressed in Sage as positive,
263
so before any real evaluation `x=1/x` should be applied.
264
265
Generated by SageMath:
266
```python
267
def binomial_like(n, m):
268
    prod = QQ(1)
269
    z = QQ(4)*(n**2)
270
    for k in range(1,m + 1):
271
        prod *= (z - (2*k - 1)**2)
272
    return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
273
274
R = LaurentSeriesRing(RealField(300), 'x',default_prec=300)
275
x = R.gen()
276
277
def Pn_asymptotic(n, y, terms=10):
278
    # now y = 1/x
279
    return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
280
281
def Qn_asymptotic(n, y, terms=10):
282
    return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
283
284
P = Pn_asymptotic(0, x, 50)
285
Q = Qn_asymptotic(0, x, 50)
286
287
R_series = (-Q/P)
288
289
# alpha is atan(R_series) so we're doing Taylor series atan expansion on R_series
290
291
arctan_series_Z = sum([QQ(-1)**k * x**(QQ(2)*k+1) / RealField(700)(RealField(700)(2)*k+1) for k in range(25)])
292
alpha_series = arctan_series_Z(R_series)
293
294
# see the series
295
print(alpha_series)
296
```
297
**/
298
#[inline]
299
0
pub(crate) fn j0f_asympt_alpha(x: f64) -> f64 {
300
    const C: [u64; 12] = [
301
        0x3fc0000000000000,
302
        0xbfb0aaaaaaaaaaab,
303
        0x3fcad33333333333,
304
        0xbffa358492492492,
305
        0x403779a1f8e38e39,
306
        0xc080bd1fc8b1745d,
307
        0x40d16b51e66c789e,
308
        0xc128ecc3af33ab37,
309
        0x418779dae2b8512f,
310
        0xc1ec296336955c7f,
311
        0x4254f5ee683b6432,
312
        0xc2c2f51eced6693f,
313
    ];
314
0
    let recip = 1. / x;
315
0
    let x2 = recip * recip;
316
0
    let p = f_polyeval12(
317
0
        x2,
318
0
        f64::from_bits(C[0]),
319
0
        f64::from_bits(C[1]),
320
0
        f64::from_bits(C[2]),
321
0
        f64::from_bits(C[3]),
322
0
        f64::from_bits(C[4]),
323
0
        f64::from_bits(C[5]),
324
0
        f64::from_bits(C[6]),
325
0
        f64::from_bits(C[7]),
326
0
        f64::from_bits(C[8]),
327
0
        f64::from_bits(C[9]),
328
0
        f64::from_bits(C[10]),
329
0
        f64::from_bits(C[11]),
330
    );
331
0
    p * recip
332
0
}
333
334
/**
335
Beta series
336
337
Generated by SageMath:
338
```python
339
#generate b series
340
def binomial_like(n, m):
341
    prod = QQ(1)
342
    z = QQ(4)*(n**2)
343
    for k in range(1,m + 1):
344
        prod *= (z - (2*k - 1)**2)
345
    return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
346
347
R = LaurentSeriesRing(RealField(300), 'x', default_prec=300)
348
x = R.gen()
349
350
def Pn_asymptotic(n, y, terms=10):
351
    # now y = 1/x
352
    return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
353
354
def Qn_asymptotic(n, y, terms=10):
355
    return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
356
357
P = Pn_asymptotic(0, x, 50)
358
Q = Qn_asymptotic(0, x, 50)
359
360
def sqrt_series(s):
361
    val = S.valuation()
362
    lc = S[val]  # Leading coefficient
363
    b = lc.sqrt() * x**(val // 2)
364
365
    for _ in range(5):
366
        b = (b + S / b) / 2
367
        b = b
368
    return b
369
370
S = (P**2 + Q**2).truncate(50)
371
372
b_series = sqrt_series(S).truncate(30)
373
#see the series
374
print(b_series)
375
```
376
**/
377
#[inline]
378
0
pub(crate) fn j0f_asympt_beta(x: f64) -> f64 {
379
    const C: [u64; 10] = [
380
        0x3ff0000000000000,
381
        0xbfb0000000000000,
382
        0x3fba800000000000,
383
        0xbfe15f0000000000,
384
        0x4017651180000000,
385
        0xc05ab8c13b800000,
386
        0x40a730492f262000,
387
        0xc0fc73a7acd696f0,
388
        0x41577458dd9fce68,
389
        0xc1b903ab9b27e18f,
390
    ];
391
0
    let recip = 1. / x;
392
0
    let x2 = recip * recip;
393
0
    f_polyeval10(
394
0
        x2,
395
0
        f64::from_bits(C[0]),
396
0
        f64::from_bits(C[1]),
397
0
        f64::from_bits(C[2]),
398
0
        f64::from_bits(C[3]),
399
0
        f64::from_bits(C[4]),
400
0
        f64::from_bits(C[5]),
401
0
        f64::from_bits(C[6]),
402
0
        f64::from_bits(C[7]),
403
0
        f64::from_bits(C[8]),
404
0
        f64::from_bits(C[9]),
405
    )
406
0
}
407
408
#[cfg(test)]
409
mod tests {
410
    use crate::f_j0f;
411
412
    #[test]
413
    fn test_j0f() {
414
        println!("0x{:8x}", f32::EPSILON.to_bits().wrapping_shl(1));
415
        assert_eq!(f_j0f(-3123.), 0.012329336);
416
        assert_eq!(f_j0f(-0.1), 0.99750155);
417
        assert_eq!(f_j0f(-15.1), -0.03456193);
418
        assert_eq!(f_j0f(3123.), 0.012329336);
419
        assert_eq!(f_j0f(0.1), 0.99750155);
420
        assert_eq!(f_j0f(15.1), -0.03456193);
421
        assert_eq!(f_j0f(f32::INFINITY), 0.);
422
        assert_eq!(f_j0f(f32::NEG_INFINITY), 0.);
423
        assert!(f_j0f(f32::NAN).is_nan());
424
    }
425
}