/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/logs/log2p1.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::bits::{biased_exponent_f64, get_exponent_f64, mantissa_f64}; |
30 | | use crate::common::{dd_fmla, dyad_fmla, f_fmla}; |
31 | | use crate::double_double::DoubleDouble; |
32 | | use crate::dyadic_float::{DyadicFloat128, DyadicSign}; |
33 | | use crate::logs::log2p1_dyadic_tables::{LOG2P1_F128_POLY, LOG2P1_INVERSE_2, LOG2P1_LOG_INV_2}; |
34 | | use crate::logs::log2p1_tables::{LOG2P1_EXACT, LOG2P1_INVERSE, LOG2P1_LOG_DD_INVERSE}; |
35 | | |
36 | | /* put in h+l a double-double approximation of log(z)-z for |
37 | | |z| < 0.03125, with absolute error bounded by 2^-67.14 |
38 | | (see analyze_p1a(-0.03125,0.03125) from log1p.sage) */ |
39 | | #[inline] |
40 | 0 | pub(crate) fn log_p_1a(z: f64) -> DoubleDouble { |
41 | 0 | let z2: DoubleDouble = if z.abs() >= f64::from_bits(0x3000000000000000) { |
42 | 0 | DoubleDouble::from_exact_mult(z, z) |
43 | | } else { |
44 | | // avoid spurious underflow |
45 | 0 | DoubleDouble::default() |
46 | | }; |
47 | 0 | let z4h = z2.hi * z2.hi; |
48 | | /* The following is a degree-11 polynomial generated by Sollya |
49 | | approximating log(1+x) for |x| < 0.03125, |
50 | | with absolute error < 2^-73.441 and relative error < 2^-67.088 |
51 | | (see file Pabs_a.sollya). |
52 | | The polynomial is P[0]*x + P[1]*x^2 + ... + P[10]*x^11. |
53 | | The algorithm assumes that the degree-1 coefficient P[0] is 1 |
54 | | and the degree-2 coefficient P[1] is -0.5. */ |
55 | | const PA: [u64; 11] = [ |
56 | | 0x3ff0000000000000, |
57 | | 0xbfe0000000000000, |
58 | | 0x3fd5555555555555, |
59 | | 0xbfcffffffffffe5f, |
60 | | 0x3fc999999999aa82, |
61 | | 0xbfc555555583a8c8, |
62 | | 0x3fc2492491c359e6, |
63 | | 0xbfbffffc728edeea, |
64 | | 0x3fbc71c961f34980, |
65 | | 0xbfb9a82ac77c05f4, |
66 | | 0x3fb74b40dd1707d3, |
67 | | ]; |
68 | 0 | let p910 = dd_fmla(f64::from_bits(PA[10]), z, f64::from_bits(PA[9])); |
69 | 0 | let p78 = dd_fmla(f64::from_bits(PA[8]), z, f64::from_bits(PA[7])); |
70 | 0 | let p56 = dd_fmla(f64::from_bits(PA[6]), z, f64::from_bits(PA[5])); |
71 | 0 | let p34 = dd_fmla(f64::from_bits(PA[4]), z, f64::from_bits(PA[3])); |
72 | 0 | let p710 = dd_fmla(p910, z2.hi, p78); |
73 | 0 | let p36 = dd_fmla(p56, z2.hi, p34); |
74 | 0 | let mut ph = dd_fmla(p710, z4h, p36); |
75 | 0 | ph = dd_fmla(ph, z, f64::from_bits(PA[2])); |
76 | 0 | ph *= z2.hi; |
77 | 0 | let mut p = DoubleDouble::from_exact_add(-0.5 * z2.hi, ph * z); |
78 | 0 | p.lo += -0.5 * z2.lo; |
79 | 0 | p |
80 | 0 | } |
81 | | |
82 | | /* put in h+l a double-double approximation of log(z)-z for |
83 | | |z| < 0.00212097167968735, with absolute error bounded by 2^-78.25 |
84 | | (see analyze_p1(-0.00212097167968735,0.00212097167968735) |
85 | | from accompanying file log1p.sage, which also yields |l| < 2^-69.99) */ |
86 | | #[inline] |
87 | 0 | fn p_1(z: f64) -> DoubleDouble { |
88 | | const P: [u64; 7] = [ |
89 | | 0x3ff0000000000000, |
90 | | 0xbfe0000000000000, |
91 | | 0x3fd5555555555550, |
92 | | 0xbfcfffffffff572d, |
93 | | 0x3fc999999a2d7868, |
94 | | 0xbfc5555c0d31b08e, |
95 | | 0x3fc2476b9058e396, |
96 | | ]; |
97 | 0 | let z2 = DoubleDouble::from_exact_mult(z, z); |
98 | 0 | let p56 = dd_fmla(f64::from_bits(P[6]), z, f64::from_bits(P[5])); |
99 | 0 | let p34 = dd_fmla(f64::from_bits(P[4]), z, f64::from_bits(P[3])); |
100 | 0 | let mut ph = dd_fmla(p56, z2.hi, p34); |
101 | | /* ph approximates P[3]+P[4]*z+P[5]*z^2+P[6]*z^3 */ |
102 | 0 | ph = dd_fmla(ph, z, f64::from_bits(P[2])); |
103 | | /* ph approximates P[2]+P[3]*z+P[4]*z^2+P[5]*z^3+P[6]*z^4 */ |
104 | 0 | ph *= z2.hi; |
105 | | /* ph approximates P[2]*z^2+P[3]*z^3+P[4]*z^4+P[5]*z^5+P[6]*z^6 */ |
106 | 0 | let mut p = DoubleDouble::from_exact_add(-0.5 * z2.hi, ph * z); |
107 | | |
108 | 0 | p.lo += -0.5 * z2.lo; |
109 | 0 | p |
110 | 0 | } |
111 | | |
112 | | #[inline] |
113 | 0 | pub(crate) fn log_fast(e: i32, v_u: u64) -> DoubleDouble { |
114 | 0 | let m: u64 = 0x10000000000000u64.wrapping_add(v_u & 0xfffffffffffff); |
115 | | /* x = m/2^52 */ |
116 | | /* if x > sqrt(2), we divide it by 2 to avoid cancellation */ |
117 | 0 | let c: i32 = if m >= 0x16a09e667f3bcd { 1 } else { 0 }; |
118 | 0 | let e = e.wrapping_add(c); /* now -1074 <= e <= 1024 */ |
119 | | static CY: [f64; 2] = [1.0, 0.5]; |
120 | | static CM: [u32; 2] = [43, 44]; |
121 | | |
122 | 0 | let i: i32 = (m >> CM[c as usize]) as i32; |
123 | 0 | let y = f64::from_bits(v_u) * CY[c as usize]; |
124 | | const OFFSET: i32 = 362; |
125 | 0 | let r = f64::from_bits(LOG2P1_INVERSE[(i - OFFSET) as usize]); |
126 | 0 | let log2_inv_dd = LOG2P1_LOG_DD_INVERSE[(i - OFFSET) as usize]; |
127 | 0 | let l1 = f64::from_bits(log2_inv_dd.1); |
128 | 0 | let l2 = f64::from_bits(log2_inv_dd.0); |
129 | 0 | let z = dd_fmla(r, y, -1.0); /* exact */ |
130 | | /* evaluate P(z), for |z| < 0.00212097167968735 */ |
131 | | |
132 | 0 | let p = p_1(z); |
133 | | |
134 | | /* Add e*log(2) to (h,l), where -1074 <= e <= 1023, thus e has at most |
135 | | 11 bits. log2_h is an integer multiple of 2^-42, so that e*log2_h |
136 | | is exact. */ |
137 | | const LOG2_H: f64 = f64::from_bits(0x3fe62e42fefa3800); |
138 | | const LOG2_L: f64 = f64::from_bits(0x3d2ef35793c76730); |
139 | | |
140 | 0 | let ee = e as f64; |
141 | 0 | let mut vl = DoubleDouble::from_exact_add(f_fmla(ee, LOG2_H, l1), z); |
142 | 0 | vl.lo = p.hi + (vl.lo + (l2 + p.lo)); |
143 | | |
144 | 0 | vl.lo = dd_fmla(ee, LOG2_L, vl.lo); |
145 | | |
146 | 0 | vl |
147 | 0 | } |
148 | | |
149 | | const INV_LOG2_DD: DoubleDouble = DoubleDouble::new( |
150 | | f64::from_bits(0x3c7777d0ffda0d24), |
151 | | f64::from_bits(0x3ff71547652b82fe), |
152 | | ); |
153 | | |
154 | 0 | fn log2p1_accurate_small(x: f64) -> f64 { |
155 | | static P_ACC: [u64; 24] = [ |
156 | | 0x3ff71547652b82fe, |
157 | | 0x3c7777d0ffda0d24, |
158 | | 0xbfe71547652b82fe, |
159 | | 0xbc6777d0ffd9ddb8, |
160 | | 0x3fdec709dc3a03fd, |
161 | | 0x3c7d27f055481523, |
162 | | 0xbfd71547652b82fe, |
163 | | 0xbc5777d1456a14c4, |
164 | | 0x3fd2776c50ef9bfe, |
165 | | 0x3c7e4b2a04f81513, |
166 | | 0xbfcec709dc3a03fd, |
167 | | 0xbc6d2072e751087a, |
168 | | 0x3fca61762a7aded9, |
169 | | 0x3c5f90f4895378ac, |
170 | | 0xbfc71547652b8301, |
171 | | 0x3fc484b13d7c02ae, |
172 | | 0xbfc2776c50ef7591, |
173 | | 0x3fc0c9a84993cabb, |
174 | | 0xbfbec709de7b1612, |
175 | | 0x3fbc68f56ba73fd1, |
176 | | 0xbfba616c83da87e7, |
177 | | 0x3fb89f3042097218, |
178 | | 0xbfb72b376930a3fa, |
179 | | 0x3fb5d0211d5ab530, |
180 | | ]; |
181 | | |
182 | | /* for degree 11 or more, ulp(c[d]*x^d) < 2^-105.5*|log2p1(x)| |
183 | | where c[d] is the degree-d coefficient of Pacc, thus we can compute |
184 | | with a double only */ |
185 | | |
186 | 0 | let mut h = dd_fmla(f64::from_bits(P_ACC[23]), x, f64::from_bits(P_ACC[22])); // degree 16 |
187 | 0 | for i in (11..=15).rev() { |
188 | 0 | h = dd_fmla(h, x, f64::from_bits(P_ACC[(i + 6) as usize])); // degree i |
189 | 0 | } |
190 | 0 | let mut l = 0.; |
191 | 0 | for i in (8..=10).rev() { |
192 | 0 | let mut p = DoubleDouble::quick_f64_mult(x, DoubleDouble::new(l, h)); |
193 | 0 | l = p.lo; |
194 | 0 | p = DoubleDouble::from_exact_add(f64::from_bits(P_ACC[(i + 6) as usize]), p.hi); |
195 | 0 | h = p.hi; |
196 | 0 | l += p.lo; |
197 | 0 | } |
198 | 0 | for i in (1..=7).rev() { |
199 | 0 | let mut p = DoubleDouble::quick_f64_mult(x, DoubleDouble::new(l, h)); |
200 | 0 | l = p.lo; |
201 | 0 | p = DoubleDouble::from_exact_add(f64::from_bits(P_ACC[(2 * i - 2) as usize]), p.hi); |
202 | 0 | h = p.hi; |
203 | 0 | l += p.lo + f64::from_bits(P_ACC[(2 * i - 1) as usize]); |
204 | 0 | } |
205 | 0 | let pz = DoubleDouble::quick_f64_mult(x, DoubleDouble::new(l, h)); |
206 | 0 | pz.to_f64() |
207 | 0 | } |
208 | | |
209 | | /* deal with |x| < 2^-900, then log2p1(x) ~ x/log(2) */ |
210 | | #[cold] |
211 | 0 | fn log2p1_accurate_tiny(x: f64) -> f64 { |
212 | | // exceptional values |
213 | 0 | if x.abs() == f64::from_bits(0x0002c316a14459d8) { |
214 | 0 | return if x > 0. { |
215 | 0 | dd_fmla( |
216 | 0 | f64::from_bits(0x1a70000000000000), |
217 | 0 | f64::from_bits(0x1a70000000000000), |
218 | 0 | f64::from_bits(0x0003fc1ce8b1583f), |
219 | | ) |
220 | | } else { |
221 | 0 | dd_fmla( |
222 | 0 | f64::from_bits(0x9a70000000000000), |
223 | 0 | f64::from_bits(0x1a70000000000000), |
224 | 0 | f64::from_bits(0x8003fc1ce8b1583f), |
225 | | ) |
226 | | }; |
227 | 0 | } |
228 | | |
229 | | /* first scale x to avoid truncation of l in the underflow region */ |
230 | 0 | let sx = x * f64::from_bits(0x4690000000000000); |
231 | 0 | let mut zh = DoubleDouble::quick_f64_mult(sx, INV_LOG2_DD); |
232 | | |
233 | 0 | let res = zh.to_f64() * f64::from_bits(0x3950000000000000); // expected result |
234 | 0 | zh.lo += dd_fmla(-res, f64::from_bits(0x4690000000000000), zh.hi); |
235 | | // the correction to apply to res is l*2^-106 |
236 | | /* For all rounding modes, we have underflow |
237 | | for |x| <= 0x1.62e42fefa39eep-1023 */ |
238 | 0 | dyad_fmla(zh.lo, f64::from_bits(0x3950000000000000), res) |
239 | 0 | } |
240 | | |
241 | | /* Given x > -1, put in (h,l) a double-double approximation of log2(1+x), |
242 | | and return a bound err on the maximal absolute error so that: |
243 | | |h + l - log2(1+x)| < err. |
244 | | We have x = m*2^e with 1 <= m < 2 (m = v.f) and -1074 <= e <= 1023. |
245 | | This routine is adapted from cr_log1p_fast. |
246 | | */ |
247 | | #[inline] |
248 | 0 | fn log2p1_fast(x: f64, e: i32) -> (DoubleDouble, f64) { |
249 | 0 | if e < -5 |
250 | | /* e <= -6 thus |x| < 2^-5 */ |
251 | | { |
252 | 0 | if e <= -969 { |
253 | | /* then |x| might be as small as 2^-969, thus h=x/log(2) might in the |
254 | | binade [2^-969,2^-968), with ulp(h) = 2^-1021, and if |l| < ulp(h), |
255 | | then l.ulp() might be smaller than 2^-1074. We defer that case to |
256 | | the accurate path. */ |
257 | | // *h = *l = 0; |
258 | | // return 1; |
259 | 0 | let ax = x.abs(); |
260 | 0 | let result = if ax < f64::from_bits(0x3960000000000000) { |
261 | 0 | log2p1_accurate_tiny(x) |
262 | | } else { |
263 | 0 | log2p1_accurate_small(x) |
264 | | }; |
265 | 0 | return (DoubleDouble::new(0.0, result), 0.0); |
266 | 0 | } |
267 | 0 | let mut p = log_p_1a(x); |
268 | 0 | let p_lo = p.lo; |
269 | 0 | p = DoubleDouble::from_exact_add(x, p.hi); |
270 | 0 | p.lo += p_lo; |
271 | 0 | p = DoubleDouble::quick_mult(p, INV_LOG2_DD); |
272 | 0 | return (p, f64::from_bits(0x3c1d400000000000) * p.hi); /* 2^-61.13 < 0x1.d4p-62 */ |
273 | 0 | } |
274 | | |
275 | | /* (xh,xl) <- 1+x */ |
276 | 0 | let zx = DoubleDouble::from_full_exact_add(1.0, x); |
277 | 0 | let mut v_u = zx.hi.to_bits(); |
278 | 0 | let e = ((v_u >> 52) as i32).wrapping_sub(0x3ff); |
279 | 0 | v_u = (0x3ffu64 << 52) | (v_u & 0xfffffffffffff); |
280 | 0 | let mut p = log_fast(e, v_u); |
281 | | |
282 | | /* log(xh+xl) = log(xh) + log(1+xl/xh) */ |
283 | 0 | let c = if zx.hi <= f64::from_bits(0x7fd0000000000000) || zx.lo.abs() >= 4.0 { |
284 | 0 | zx.lo / zx.hi |
285 | | } else { |
286 | 0 | 0. |
287 | | }; // avoid spurious underflow |
288 | | |
289 | | /* Since |xl| < ulp(xh), we have |xl| < 2^-52 |xh|, |
290 | | thus |c| < 2^-52, and since |log(1+x)-x| < x^2 for |x| < 0.5, |
291 | | we have |log(1+c)-c)| < c^2 < 2^-104. */ |
292 | 0 | p.lo += c; |
293 | | |
294 | | /* now multiply h+l by 1/log(2) */ |
295 | 0 | p = DoubleDouble::quick_mult(p, INV_LOG2_DD); |
296 | | |
297 | 0 | (p, f64::from_bits(0x3bb2300000000000)) /* 2^-67.82 < 0x1.23p-68 */ |
298 | 0 | } |
299 | | |
300 | 0 | fn log_dyadic_taylor_poly(x: DyadicFloat128) -> DyadicFloat128 { |
301 | 0 | let mut r = LOG2P1_F128_POLY[12]; |
302 | 0 | for i in (0..12).rev() { |
303 | 0 | r = x * r + LOG2P1_F128_POLY[i]; |
304 | 0 | } |
305 | 0 | r * x |
306 | 0 | } |
307 | | |
308 | 0 | pub(crate) fn log2_dyadic(d: DyadicFloat128, x: f64) -> DyadicFloat128 { |
309 | 0 | let biased_exp = biased_exponent_f64(x); |
310 | 0 | let e = get_exponent_f64(x); |
311 | 0 | let base_mant = mantissa_f64(x); |
312 | 0 | let mant = base_mant + if biased_exp != 0 { 1u64 << 52 } else { 0 }; |
313 | 0 | let lead = mant.leading_zeros(); |
314 | | |
315 | 0 | let kk = e - (if lead > 11 { lead - 12 } else { 0 }) as i64; |
316 | 0 | let mut fe: i16 = kk as i16; |
317 | | |
318 | 0 | let adjusted_mant = mant << lead; |
319 | | |
320 | | // Find the lookup index |
321 | 0 | let mut i: i16 = (adjusted_mant >> 55) as i16; |
322 | | |
323 | 0 | if adjusted_mant > 0xb504f333f9de6484 { |
324 | 0 | fe = fe.wrapping_add(1); |
325 | 0 | i >>= 1; |
326 | 0 | } |
327 | | |
328 | 0 | let mut x = d; |
329 | | |
330 | 0 | x.exponent = x.exponent.wrapping_sub(fe); |
331 | 0 | let inverse_2 = LOG2P1_INVERSE_2[(i - 128) as usize]; |
332 | 0 | let mut z = x * inverse_2; |
333 | | |
334 | | const F128_MINUS_ONE: DyadicFloat128 = DyadicFloat128 { |
335 | | sign: DyadicSign::Neg, |
336 | | exponent: -127, |
337 | | mantissa: 0x8000_0000_0000_0000_0000_0000_0000_0000_u128, |
338 | | }; |
339 | | |
340 | 0 | z = z + F128_MINUS_ONE; |
341 | | |
342 | | const LOG2: DyadicFloat128 = DyadicFloat128 { |
343 | | sign: DyadicSign::Pos, |
344 | | exponent: -128, |
345 | | mantissa: 0xb172_17f7_d1cf_79ab_c9e3_b398_03f2_f6af_u128, |
346 | | }; |
347 | | |
348 | | // E·log(2) |
349 | 0 | let r = LOG2.mul_int64(fe as i64); |
350 | | |
351 | 0 | let mut p = log_dyadic_taylor_poly(z); |
352 | 0 | p = LOG2P1_LOG_INV_2[(i - 128) as usize] + p; |
353 | 0 | p + r |
354 | 0 | } |
355 | | |
356 | | #[cold] |
357 | 0 | fn log2p1_accurate(x: f64) -> f64 { |
358 | 0 | let ax = x.abs(); |
359 | | |
360 | 0 | if ax < f64::from_bits(0x3fa0000000000000) { |
361 | 0 | return if ax < f64::from_bits(0x3960000000000000) { |
362 | 0 | log2p1_accurate_tiny(x) |
363 | | } else { |
364 | 0 | log2p1_accurate_small(x) |
365 | | }; |
366 | 0 | } |
367 | 0 | let dx = if x > 1.0 { |
368 | 0 | DoubleDouble::from_exact_add(x, 1.0) |
369 | | } else { |
370 | 0 | DoubleDouble::from_exact_add(1.0, x) |
371 | | }; |
372 | | /* log2p1(x) is exact when 1+x = 2^e, thus when 2^e-1 is exactly |
373 | | representable. This can only occur when xl=0 here. */ |
374 | 0 | let mut t: u64 = x.to_bits(); |
375 | 0 | if dx.lo == 0. { |
376 | | /* check if xh is a power of two */ |
377 | 0 | t = dx.hi.to_bits(); |
378 | 0 | if (t.wrapping_shl(12)) == 0 { |
379 | 0 | let e = ((t >> 52) as i32).wrapping_sub(0x3ff); |
380 | 0 | return e as f64; |
381 | 0 | } |
382 | 0 | } |
383 | | /* if x=2^e, the accurate path will fail for directed roundings */ |
384 | 0 | if (t.wrapping_shl(12)) == 0 { |
385 | 0 | let e: i32 = ((t >> 52) as i32).wrapping_sub(0x3ff); // x = 2^e |
386 | | |
387 | | /* for e >= 49, log2p1(x) rounds to e for rounding to nearest; |
388 | | for e >= 48, log2p1(x) rounds to e for rounding toward zero; |
389 | | for e >= 48, log2p1(x) rounds to nextabove(e) for rounding up; |
390 | | for e >= 48, log2p1(x) rounds to e for rounding down. */ |
391 | 0 | if e >= 49 { |
392 | 0 | return e as f64 + f64::from_bits(0x3cf0000000000000); // 0x1p-48 = 1/2 ulp(49) |
393 | 0 | } |
394 | 0 | } |
395 | 0 | let x_d = DyadicFloat128::new_from_f64(dx.hi); |
396 | 0 | let mut y = log2_dyadic(x_d, dx.hi); |
397 | 0 | let mut c = DyadicFloat128::from_div_f64(dx.lo, dx.hi); |
398 | 0 | let mut bx = c * c; |
399 | | /* multiply X by -1/2 */ |
400 | 0 | bx.exponent -= 1; |
401 | 0 | bx.sign = DyadicSign::Neg; |
402 | | /* C <- C - C^2/2 */ |
403 | 0 | c = c + bx; |
404 | | /* |C-log(1+xl/xh)| ~ 2e-64 */ |
405 | 0 | y = y + c; |
406 | | const LOG2_INV: DyadicFloat128 = DyadicFloat128 { |
407 | | sign: DyadicSign::Pos, |
408 | | exponent: -115, |
409 | | mantissa: 0xb8aa_3b29_5c17_f0bb_be87_fed0_691d_3e89_u128, |
410 | | }; |
411 | 0 | y = y * LOG2_INV; |
412 | 0 | y.exponent -= 12; |
413 | 0 | y.fast_as_f64() |
414 | 0 | } |
415 | | |
416 | | /// Computes log2(x+1) |
417 | | /// |
418 | | /// Max ULP 0.5 |
419 | 0 | pub fn f_log2p1(x: f64) -> f64 { |
420 | 0 | let x_u = x.to_bits(); |
421 | 0 | let e = (((x_u >> 52) & 0x7ff) as i32).wrapping_sub(0x3ff); |
422 | 0 | if e == 0x400 || x == 0. || x <= -1.0 { |
423 | | /* case NaN/Inf, +/-0 or x <= -1 */ |
424 | 0 | if e == 0x400 && x.to_bits() != 0xfffu64 << 52 { |
425 | | /* NaN or + Inf*/ |
426 | 0 | return x + x; |
427 | 0 | } |
428 | 0 | if x <= -1.0 |
429 | | /* we use the fact that NaN < -1 is false */ |
430 | | { |
431 | | /* log2p(x<-1) is NaN, log2p(-1) is -Inf and raises DivByZero */ |
432 | 0 | return if x < -1.0 { |
433 | 0 | f64::NAN |
434 | | } else { |
435 | | // x=-1 |
436 | 0 | f64::NEG_INFINITY |
437 | | }; |
438 | 0 | } |
439 | 0 | return x + x; /* +/-0 */ |
440 | 0 | } |
441 | | |
442 | | /* now x > -1 */ |
443 | | |
444 | | /* check x=2^n-1 for 0 <= n <= 53, where log2p1(x) is exact, |
445 | | and we shouldn't raise the inexact flag */ |
446 | 0 | if 0 <= e && e <= 52 { |
447 | | /* T[e]=2^(e+1)-1, i.e., the unique value of the form 2^n-1 |
448 | | in the interval [2^e, 2^(e+1)). */ |
449 | 0 | if x == f64::from_bits(LOG2P1_EXACT[e as usize]) { |
450 | 0 | return (e + 1) as f64; |
451 | 0 | } |
452 | 0 | } |
453 | | |
454 | | /* For x=2^k-1, -53 <= k <= -1, log2p1(x) = k is also exact. */ |
455 | 0 | if e == -1 && x < 0. { |
456 | | // -1 < x <= -1/2 |
457 | 0 | let w = (1.0 + x).to_bits(); // 1+x is exact |
458 | 0 | if w.wrapping_shl(12) == 0 { |
459 | | // 1+x = 2^k |
460 | 0 | let k: i32 = ((w >> 52) as i32).wrapping_sub(0x3ff); |
461 | 0 | return k as f64; |
462 | 0 | } |
463 | 0 | } |
464 | | |
465 | | /* now x = m*2^e with 1 <= m < 2 (m = v.f) and -1074 <= e <= 1023 */ |
466 | 0 | let (p, err) = log2p1_fast(x, e); |
467 | 0 | let left = p.hi + (p.lo - err); |
468 | 0 | let right = p.hi + (p.lo + err); |
469 | 0 | if left == right { |
470 | 0 | return left; |
471 | 0 | } |
472 | 0 | log2p1_accurate(x) |
473 | 0 | } |
474 | | |
475 | | #[cfg(test)] |
476 | | mod tests { |
477 | | use super::*; |
478 | | #[test] |
479 | | fn test_log2p1() { |
480 | | assert_eq!(f_log2p1(0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008344095884546873), |
481 | | 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000012037985753337781); |
482 | | assert_eq!(f_log2p1(0.00006669877554532304), 0.00009622278377734607); |
483 | | assert_eq!(f_log2p1(1.00006669877554532304), 1.0000481121941047); |
484 | | assert_eq!(f_log2p1(-0.90006669877554532304), -3.322890675865049); |
485 | | } |
486 | | } |