/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/sec.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::common::f_fmla; |
30 | | use crate::double_double::DoubleDouble; |
31 | | use crate::sin::{get_sin_k_rational, range_reduction_small, sincos_eval}; |
32 | | use crate::sin_table::SIN_K_PI_OVER_128; |
33 | | use crate::sincos_dyadic::{range_reduction_small_f128, sincos_eval_dyadic}; |
34 | | use crate::sincos_reduce::LargeArgumentReduction; |
35 | | |
36 | | #[cold] |
37 | 0 | fn sec_accurate(x: f64, argument_reduction: &mut LargeArgumentReduction, x_e: u64, k: u64) -> f64 { |
38 | | const EXP_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
39 | 0 | let u_f128 = if x_e < EXP_BIAS + 16 { |
40 | 0 | range_reduction_small_f128(x) |
41 | | } else { |
42 | 0 | argument_reduction.accurate() |
43 | | }; |
44 | | |
45 | 0 | let sin_cos = sincos_eval_dyadic(&u_f128); |
46 | | |
47 | | // -sin(k * pi/128) = sin((k + 128) * pi/128) |
48 | | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
49 | 0 | let msin_k_f128 = get_sin_k_rational(k.wrapping_add(128)); |
50 | 0 | let cos_k_f128 = get_sin_k_rational(k.wrapping_add(64)); |
51 | | |
52 | | // cos(x) = cos((k * pi/128 + u) |
53 | | // = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128) |
54 | 0 | let r = (cos_k_f128 * sin_cos.v_cos) + (msin_k_f128 * sin_cos.v_sin); |
55 | 0 | r.reciprocal().fast_as_f64() |
56 | 0 | } |
57 | | |
58 | | /// Secant for double precision |
59 | | /// |
60 | | /// ULP 0.5 |
61 | 0 | pub fn f_sec(x: f64) -> f64 { |
62 | 0 | let x_e = (x.to_bits() >> 52) & 0x7ff; |
63 | | const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
64 | | |
65 | | let y: DoubleDouble; |
66 | | let k; |
67 | | |
68 | 0 | let mut argument_reduction = LargeArgumentReduction::default(); |
69 | | |
70 | 0 | if x_e < E_BIAS + 16 { |
71 | | // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA) |
72 | 0 | if x_e < E_BIAS - 7 { |
73 | | // |x| < 2^-7 |
74 | 0 | if x_e < E_BIAS - 27 { |
75 | | // |x| < 2^-27 |
76 | 0 | if x == 0.0 { |
77 | | // Signed zeros. |
78 | 0 | return 1.0; |
79 | 0 | } |
80 | | // taylor series for sec(x) ~ 1 + x^2/2 + O(x^4) |
81 | 0 | return f_fmla(x, x * 0.5, 1.); |
82 | 0 | } |
83 | 0 | k = 0; |
84 | 0 | y = DoubleDouble::new(0.0, x); |
85 | 0 | } else { |
86 | 0 | // Small range reduction. |
87 | 0 | (y, k) = range_reduction_small(x); |
88 | 0 | } |
89 | | } else { |
90 | | // Inf or NaN |
91 | 0 | if x_e > 2 * E_BIAS { |
92 | | // sec(+-Inf) = NaN |
93 | 0 | return x + f64::NAN; |
94 | 0 | } |
95 | | |
96 | | // Large range reduction. |
97 | 0 | (k, y) = argument_reduction.reduce(x); |
98 | | } |
99 | 0 | let r_sincos = sincos_eval(y); |
100 | | |
101 | | // Fast look up version, but needs 256-entry table. |
102 | | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
103 | 0 | let sk = SIN_K_PI_OVER_128[(k.wrapping_add(128) & 255) as usize]; |
104 | 0 | let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; |
105 | 0 | let msin_k = DoubleDouble::from_bit_pair(sk); |
106 | 0 | let cos_k = DoubleDouble::from_bit_pair(ck); |
107 | | |
108 | 0 | let cos_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, cos_k); |
109 | 0 | let cos_k_msin_y = DoubleDouble::quick_mult(r_sincos.v_sin, msin_k); |
110 | | |
111 | | // cos_k_cos_y is always >> cos_k_msin_y |
112 | 0 | let mut rr = DoubleDouble::from_exact_add(cos_k_cos_y.hi, cos_k_msin_y.hi); |
113 | 0 | rr.lo += cos_k_cos_y.lo + cos_k_msin_y.lo; |
114 | | |
115 | 0 | rr = DoubleDouble::from_exact_add(rr.hi, rr.lo); |
116 | 0 | rr = rr.recip(); |
117 | | |
118 | 0 | let rlp = rr.lo + r_sincos.err; |
119 | 0 | let rlm = rr.lo - r_sincos.err; |
120 | | |
121 | 0 | let r_upper = rr.hi + rlp; // (rr.lo + ERR); |
122 | 0 | let r_lower = rr.hi + rlm; // (rr.lo - ERR); |
123 | | |
124 | | // Ziv's accuracy test |
125 | 0 | if r_upper == r_lower { |
126 | 0 | return rr.to_f64(); |
127 | 0 | } |
128 | | |
129 | 0 | sec_accurate(x, &mut argument_reduction, x_e, k) |
130 | 0 | } |
131 | | |
132 | | #[cfg(test)] |
133 | | mod tests { |
134 | | use super::*; |
135 | | |
136 | | #[test] |
137 | | fn test_sec() { |
138 | | assert_eq!(f_sec(-175432.), 1.461049620895326); |
139 | | assert_eq!(f_sec(175432.), 1.461049620895326); |
140 | | assert_eq!(f_sec(-10.), -1.1917935066878957); |
141 | | assert_eq!(f_sec(10.), -1.1917935066878957); |
142 | | assert_eq!(f_sec(5.), 3.5253200858160882); |
143 | | assert_eq!(f_sec(-5.), 3.5253200858160882); |
144 | | assert_eq!(f_sec(0.), 1.0); |
145 | | assert!(f_sec(f64::NAN).is_nan()); |
146 | | assert!(f_sec(f64::INFINITY).is_nan()); |
147 | | assert!(f_sec(f64::NEG_INFINITY).is_nan()); |
148 | | } |
149 | | } |