Coverage Report

Created: 2026-01-10 07:01

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/sec.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::common::f_fmla;
30
use crate::double_double::DoubleDouble;
31
use crate::sin::{get_sin_k_rational, range_reduction_small, sincos_eval};
32
use crate::sin_table::SIN_K_PI_OVER_128;
33
use crate::sincos_dyadic::{range_reduction_small_f128, sincos_eval_dyadic};
34
use crate::sincos_reduce::LargeArgumentReduction;
35
36
#[cold]
37
0
fn sec_accurate(x: f64, argument_reduction: &mut LargeArgumentReduction, x_e: u64, k: u64) -> f64 {
38
    const EXP_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
39
0
    let u_f128 = if x_e < EXP_BIAS + 16 {
40
0
        range_reduction_small_f128(x)
41
    } else {
42
0
        argument_reduction.accurate()
43
    };
44
45
0
    let sin_cos = sincos_eval_dyadic(&u_f128);
46
47
    // -sin(k * pi/128) = sin((k + 128) * pi/128)
48
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
49
0
    let msin_k_f128 = get_sin_k_rational(k.wrapping_add(128));
50
0
    let cos_k_f128 = get_sin_k_rational(k.wrapping_add(64));
51
52
    // cos(x) = cos((k * pi/128 + u)
53
    //        = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128)
54
0
    let r = (cos_k_f128 * sin_cos.v_cos) + (msin_k_f128 * sin_cos.v_sin);
55
0
    r.reciprocal().fast_as_f64()
56
0
}
57
58
/// Secant for double precision
59
///
60
/// ULP 0.5
61
0
pub fn f_sec(x: f64) -> f64 {
62
0
    let x_e = (x.to_bits() >> 52) & 0x7ff;
63
    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
64
65
    let y: DoubleDouble;
66
    let k;
67
68
0
    let mut argument_reduction = LargeArgumentReduction::default();
69
70
0
    if x_e < E_BIAS + 16 {
71
        // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA)
72
0
        if x_e < E_BIAS - 7 {
73
            // |x| < 2^-7
74
0
            if x_e < E_BIAS - 27 {
75
                // |x| < 2^-27
76
0
                if x == 0.0 {
77
                    // Signed zeros.
78
0
                    return 1.0;
79
0
                }
80
                // taylor series for sec(x) ~ 1 + x^2/2 + O(x^4)
81
0
                return f_fmla(x, x * 0.5, 1.);
82
0
            }
83
0
            k = 0;
84
0
            y = DoubleDouble::new(0.0, x);
85
0
        } else {
86
0
            // Small range reduction.
87
0
            (y, k) = range_reduction_small(x);
88
0
        }
89
    } else {
90
        // Inf or NaN
91
0
        if x_e > 2 * E_BIAS {
92
            // sec(+-Inf) = NaN
93
0
            return x + f64::NAN;
94
0
        }
95
96
        // Large range reduction.
97
0
        (k, y) = argument_reduction.reduce(x);
98
    }
99
0
    let r_sincos = sincos_eval(y);
100
101
    // Fast look up version, but needs 256-entry table.
102
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
103
0
    let sk = SIN_K_PI_OVER_128[(k.wrapping_add(128) & 255) as usize];
104
0
    let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize];
105
0
    let msin_k = DoubleDouble::from_bit_pair(sk);
106
0
    let cos_k = DoubleDouble::from_bit_pair(ck);
107
108
0
    let cos_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, cos_k);
109
0
    let cos_k_msin_y = DoubleDouble::quick_mult(r_sincos.v_sin, msin_k);
110
111
    // cos_k_cos_y is always >> cos_k_msin_y
112
0
    let mut rr = DoubleDouble::from_exact_add(cos_k_cos_y.hi, cos_k_msin_y.hi);
113
0
    rr.lo += cos_k_cos_y.lo + cos_k_msin_y.lo;
114
115
0
    rr = DoubleDouble::from_exact_add(rr.hi, rr.lo);
116
0
    rr = rr.recip();
117
118
0
    let rlp = rr.lo + r_sincos.err;
119
0
    let rlm = rr.lo - r_sincos.err;
120
121
0
    let r_upper = rr.hi + rlp; // (rr.lo + ERR);
122
0
    let r_lower = rr.hi + rlm; // (rr.lo - ERR);
123
124
    // Ziv's accuracy test
125
0
    if r_upper == r_lower {
126
0
        return rr.to_f64();
127
0
    }
128
129
0
    sec_accurate(x, &mut argument_reduction, x_e, k)
130
0
}
131
132
#[cfg(test)]
133
mod tests {
134
    use super::*;
135
136
    #[test]
137
    fn test_sec() {
138
        assert_eq!(f_sec(-175432.), 1.461049620895326);
139
        assert_eq!(f_sec(175432.), 1.461049620895326);
140
        assert_eq!(f_sec(-10.), -1.1917935066878957);
141
        assert_eq!(f_sec(10.), -1.1917935066878957);
142
        assert_eq!(f_sec(5.), 3.5253200858160882);
143
        assert_eq!(f_sec(-5.), 3.5253200858160882);
144
        assert_eq!(f_sec(0.), 1.0);
145
        assert!(f_sec(f64::NAN).is_nan());
146
        assert!(f_sec(f64::INFINITY).is_nan());
147
        assert!(f_sec(f64::NEG_INFINITY).is_nan());
148
    }
149
}