/src/image/src/codecs/jpeg/encoder.rs
Line | Count | Source |
1 | | #![allow(clippy::too_many_arguments)] |
2 | | use std::io::Write; |
3 | | use std::{error, fmt}; |
4 | | |
5 | | use crate::error::{ |
6 | | EncodingError, ImageError, ImageFormatHint, ImageResult, UnsupportedError, UnsupportedErrorKind, |
7 | | }; |
8 | | use crate::{ColorType, DynamicImage, ExtendedColorType, ImageEncoder, ImageFormat}; |
9 | | |
10 | | use jpeg_encoder::Encoder; |
11 | | |
12 | | /// Represents a unit in which the density of an image is measured |
13 | | #[derive(Clone, Copy, Debug, Eq, PartialEq)] |
14 | | pub enum PixelDensityUnit { |
15 | | /// Represents the absence of a unit, the values indicate only a |
16 | | /// [pixel aspect ratio](https://en.wikipedia.org/wiki/Pixel_aspect_ratio) |
17 | | PixelAspectRatio, |
18 | | |
19 | | /// Pixels per inch (2.54 cm) |
20 | | Inches, |
21 | | |
22 | | /// Pixels per centimeter |
23 | | Centimeters, |
24 | | } |
25 | | |
26 | | /// Controls the resolution of the color information. |
27 | | /// |
28 | | /// Human eye is much less sensitive to the detail of color than brightness. |
29 | | /// JPEG can exploit this to significantly reduce the file size by storing color information |
30 | | /// (Cb and Cr channels) in a lower resolution than brightness (Y channel) without visual quality loss. |
31 | | /// |
32 | | /// See the documentation on each variant for details. |
33 | | #[derive(Clone, Copy, Debug, Eq, PartialEq)] |
34 | | #[non_exhaustive] |
35 | | pub enum ChromaSubsampling { |
36 | | /// **4:4:4** Color information is encoded in full resolution. Results in larger file size. |
37 | | /// |
38 | | /// Recommended when the image has small brightly colored elements, e.g. artwork or screenshots. |
39 | | S444, |
40 | | /// **4:2:2** The resolution of color information is reduced by a factor of 2 in the horizontal direction. |
41 | | S422, |
42 | | /// **4:2:0** The resolution of color information is reduced by a factor of 2 both horizontally and vertically. |
43 | | /// |
44 | | /// Results in a smaller file size. Well suited for photographs where it incurs no visial quality loss. |
45 | | S420, |
46 | | } |
47 | | |
48 | | impl ChromaSubsampling { |
49 | 0 | fn to_encoder_repr(self) -> jpeg_encoder::SamplingFactor { |
50 | 0 | match self { |
51 | 0 | ChromaSubsampling::S444 => jpeg_encoder::SamplingFactor::R_4_4_4, |
52 | 0 | ChromaSubsampling::S422 => jpeg_encoder::SamplingFactor::R_4_2_2, |
53 | 0 | ChromaSubsampling::S420 => jpeg_encoder::SamplingFactor::R_4_2_0, |
54 | | } |
55 | 0 | } |
56 | | } |
57 | | |
58 | | /// Represents the pixel density of an image |
59 | | /// |
60 | | /// For example, a 300 DPI image is represented by: |
61 | | /// |
62 | | /// ```rust |
63 | | /// use image::codecs::jpeg::*; |
64 | | /// let hdpi = PixelDensity::dpi(300); |
65 | | /// assert_eq!(hdpi, PixelDensity {density: (300,300), unit: PixelDensityUnit::Inches}) |
66 | | /// ``` |
67 | | #[derive(Clone, Copy, Debug, Eq, PartialEq)] |
68 | | pub struct PixelDensity { |
69 | | /// A couple of values for (Xdensity, Ydensity) |
70 | | pub density: (u16, u16), |
71 | | /// The unit in which the density is measured |
72 | | pub unit: PixelDensityUnit, |
73 | | } |
74 | | |
75 | | impl PixelDensity { |
76 | | /// Creates the most common pixel density type: |
77 | | /// the horizontal and the vertical density are equal, |
78 | | /// and measured in pixels per inch. |
79 | | #[must_use] |
80 | 0 | pub fn dpi(density: u16) -> Self { |
81 | 0 | PixelDensity { |
82 | 0 | density: (density, density), |
83 | 0 | unit: PixelDensityUnit::Inches, |
84 | 0 | } |
85 | 0 | } |
86 | | |
87 | | /// Converts pixel density to the representation used by jpeg-encoder crate |
88 | 0 | fn to_encoder_repr(self) -> jpeg_encoder::Density { |
89 | 0 | match self.unit { |
90 | 0 | PixelDensityUnit::PixelAspectRatio => jpeg_encoder::Density::None, // TODO: https://github.com/vstroebel/jpeg-encoder/issues/21 |
91 | 0 | PixelDensityUnit::Inches => jpeg_encoder::Density::Inch { |
92 | 0 | x: self.density.0, |
93 | 0 | y: self.density.1, |
94 | 0 | }, |
95 | 0 | PixelDensityUnit::Centimeters => jpeg_encoder::Density::Centimeter { |
96 | 0 | x: self.density.0, |
97 | 0 | y: self.density.1, |
98 | 0 | }, |
99 | | } |
100 | 0 | } |
101 | | } |
102 | | |
103 | | impl Default for PixelDensity { |
104 | | /// Returns a pixel density with a pixel aspect ratio of 1 |
105 | 0 | fn default() -> Self { |
106 | 0 | PixelDensity { |
107 | 0 | density: (1, 1), |
108 | 0 | unit: PixelDensityUnit::PixelAspectRatio, |
109 | 0 | } |
110 | 0 | } |
111 | | } |
112 | | |
113 | | /// Errors that can occur when encoding a JPEG image |
114 | | #[derive(Debug, Copy, Clone)] |
115 | | enum EncoderError { |
116 | | /// JPEG does not support this size |
117 | | InvalidSize(u32, u32), |
118 | | } |
119 | | |
120 | | impl fmt::Display for EncoderError { |
121 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
122 | 0 | match self { |
123 | 0 | EncoderError::InvalidSize(w, h) => f.write_fmt(format_args!( |
124 | 0 | "Invalid image size ({w} x {h}) to encode as JPEG: \ |
125 | 0 | width and height must be >= 1 and <= 65535" |
126 | | )), |
127 | | } |
128 | 0 | } |
129 | | } |
130 | | |
131 | | impl From<EncoderError> for ImageError { |
132 | 0 | fn from(e: EncoderError) -> ImageError { |
133 | 0 | ImageError::Encoding(EncodingError::new(ImageFormat::Jpeg.into(), e)) |
134 | 0 | } |
135 | | } |
136 | | |
137 | | impl error::Error for EncoderError {} |
138 | | |
139 | | /// The representation of a JPEG encoder |
140 | | pub struct JpegEncoder<W: Write> { |
141 | | encoder: Encoder<W>, |
142 | | } |
143 | | |
144 | | impl<W: Write> JpegEncoder<W> { |
145 | | /// Create a new encoder that writes its output to ```w``` |
146 | 0 | pub fn new(w: W) -> JpegEncoder<W> { |
147 | 0 | JpegEncoder::new_with_quality(w, 75) |
148 | 0 | } Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_>>::new Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>>>::new |
149 | | |
150 | | /// Create a new encoder that writes its output to ```w```, and has |
151 | | /// the quality parameter ```quality``` with a value in the range 1-100 |
152 | | /// where 1 is the worst and 100 is the best. |
153 | | /// |
154 | | /// By default quality settings 90 or above use [chroma subsampling](ChromaSubsampling) |
155 | | /// mode [4:4:4](ChromaSubsampling::S444), while quality below 90 subsampling mode |
156 | | /// [4:2:0](ChromaSubsampling::S420). |
157 | | /// This can be overridden using [Self::set_chroma_subsampling]. |
158 | 0 | pub fn new_with_quality(w: W, quality: u8) -> JpegEncoder<W> { |
159 | 0 | JpegEncoder { |
160 | 0 | encoder: Encoder::new(w, quality), |
161 | 0 | } |
162 | 0 | } Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_>>::new_with_quality Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>>>::new_with_quality |
163 | | |
164 | | /// Sets the chroma subsampling mode. See [ChromaSubsampling] for details. |
165 | 0 | pub fn set_chroma_subsampling(&mut self, sampling: ChromaSubsampling) { |
166 | 0 | self.encoder.set_sampling_factor(sampling.to_encoder_repr()); |
167 | 0 | } |
168 | | |
169 | | /// Spend extra time optimizing Huffman tables. Slightly reduces file size at the cost of encoding speed. |
170 | | /// |
171 | | /// Defaults to **false**. |
172 | 0 | pub fn set_optimize_huffman_tables(&mut self, optimize: bool) { |
173 | 0 | self.encoder.set_optimized_huffman_tables(optimize); |
174 | 0 | } |
175 | | |
176 | | /// Set the pixel density of the images the encoder will encode. |
177 | | /// If this method is not called, then a default pixel aspect ratio of 1x1 will be applied, |
178 | | /// and no DPI information will be stored in the image. |
179 | 0 | pub fn set_pixel_density(&mut self, pixel_density: PixelDensity) { |
180 | 0 | self.encoder.set_density(pixel_density.to_encoder_repr()); |
181 | 0 | } |
182 | | |
183 | | /// Encodes the image stored in the raw byte buffer ```image``` |
184 | | /// that has dimensions ```width``` and ```height``` |
185 | | /// and ```ColorType``` ```c``` |
186 | | /// |
187 | | /// # Panics |
188 | | /// |
189 | | /// Panics if `width * height * color_type.bytes_per_pixel() != image.len()`. |
190 | | #[track_caller] |
191 | 0 | fn encode( |
192 | 0 | self, |
193 | 0 | image: &[u8], |
194 | 0 | width: u32, |
195 | 0 | height: u32, |
196 | 0 | color_type: ExtendedColorType, |
197 | 0 | ) -> ImageResult<()> { |
198 | 0 | let expected_buffer_len = color_type.buffer_size(width, height); |
199 | 0 | assert_eq!( |
200 | | expected_buffer_len, |
201 | 0 | image.len() as u64, |
202 | 0 | "Invalid buffer length: expected {expected_buffer_len} got {} for {width}x{height} image", |
203 | 0 | image.len(), |
204 | | ); |
205 | | |
206 | 0 | let (width, height) = match (u16::try_from(width), u16::try_from(height)) { |
207 | 0 | (Ok(w @ 1..), Ok(h @ 1..)) => (w, h), |
208 | 0 | _ => return Err(EncoderError::InvalidSize(width, height).into()), |
209 | | }; |
210 | | |
211 | 0 | let encode_jpeg = |color: jpeg_encoder::ColorType| { |
212 | 0 | self.encoder |
213 | 0 | .encode(image, width, height, color) |
214 | 0 | .map_err(|err| { |
215 | 0 | ImageError::Encoding(EncodingError::new( |
216 | 0 | ImageFormatHint::Exact(ImageFormat::Jpeg), |
217 | 0 | err, |
218 | 0 | )) |
219 | 0 | }) Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_>>::encode::{closure#0}::{closure#0}Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>>>::encode::{closure#0}::{closure#0} |
220 | 0 | }; Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_>>::encode::{closure#0}Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>>>::encode::{closure#0} |
221 | | |
222 | 0 | match color_type { |
223 | | ExtendedColorType::L8 => { |
224 | 0 | let color = jpeg_encoder::ColorType::Luma; |
225 | 0 | encode_jpeg(color) |
226 | | } |
227 | | ExtendedColorType::Rgb8 => { |
228 | 0 | let color = jpeg_encoder::ColorType::Rgb; |
229 | 0 | encode_jpeg(color) |
230 | | } |
231 | 0 | _ => Err(ImageError::Unsupported( |
232 | 0 | UnsupportedError::from_format_and_kind( |
233 | 0 | ImageFormat::Jpeg.into(), |
234 | 0 | UnsupportedErrorKind::Color(color_type), |
235 | 0 | ), |
236 | 0 | )), |
237 | | } |
238 | 0 | } Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_>>::encode Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>>>::encode |
239 | | } |
240 | | |
241 | | // E x i f \0 \0 |
242 | | /// The header for an EXIF APP1 segment |
243 | | const EXIF_HEADER: [u8; 6] = [0x45, 0x78, 0x69, 0x66, 0x00, 0x00]; |
244 | | const APP1: u8 = 1; |
245 | | |
246 | | impl<W: Write> ImageEncoder for JpegEncoder<W> { |
247 | | #[track_caller] |
248 | 0 | fn write_image( |
249 | 0 | self, |
250 | 0 | buf: &[u8], |
251 | 0 | width: u32, |
252 | 0 | height: u32, |
253 | 0 | color_type: ExtendedColorType, |
254 | 0 | ) -> ImageResult<()> { |
255 | 0 | self.encode(buf, width, height, color_type) |
256 | 0 | } Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_> as image::io::encoder::ImageEncoder>::write_image Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>> as image::io::encoder::ImageEncoder>::write_image |
257 | | |
258 | 0 | fn set_icc_profile(&mut self, icc_profile: Vec<u8>) -> Result<(), UnsupportedError> { |
259 | 0 | self.encoder.add_icc_profile(&icc_profile).map_err(|_| { |
260 | 0 | UnsupportedError::from_format_and_kind( |
261 | 0 | ImageFormat::Jpeg.into(), |
262 | 0 | UnsupportedErrorKind::GenericFeature("ICC chunk too large".to_string()), |
263 | | ) |
264 | 0 | }) Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_> as image::io::encoder::ImageEncoder>::set_icc_profile::{closure#0}Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>> as image::io::encoder::ImageEncoder>::set_icc_profile::{closure#0} |
265 | 0 | } Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_> as image::io::encoder::ImageEncoder>::set_icc_profile Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>> as image::io::encoder::ImageEncoder>::set_icc_profile |
266 | | |
267 | 0 | fn set_exif_metadata(&mut self, exif: Vec<u8>) -> Result<(), UnsupportedError> { |
268 | 0 | let mut formatted = EXIF_HEADER.to_vec(); |
269 | 0 | formatted.extend_from_slice(&exif); |
270 | 0 | self.encoder |
271 | 0 | .add_app_segment(APP1, &formatted) |
272 | 0 | .map_err(|_| { |
273 | 0 | UnsupportedError::from_format_and_kind( |
274 | 0 | ImageFormat::Jpeg.into(), |
275 | 0 | UnsupportedErrorKind::GenericFeature("Exif chunk too large".to_string()), |
276 | | ) |
277 | 0 | })?; Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_> as image::io::encoder::ImageEncoder>::set_exif_metadata::{closure#0}Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>> as image::io::encoder::ImageEncoder>::set_exif_metadata::{closure#0} |
278 | 0 | Ok(()) |
279 | 0 | } Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_> as image::io::encoder::ImageEncoder>::set_exif_metadata Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>> as image::io::encoder::ImageEncoder>::set_exif_metadata |
280 | | |
281 | 0 | fn make_compatible_img( |
282 | 0 | &self, |
283 | 0 | _: crate::io::encoder::MethodSealedToImage, |
284 | 0 | img: &DynamicImage, |
285 | 0 | ) -> Option<DynamicImage> { |
286 | | use ColorType::*; |
287 | 0 | match img.color() { |
288 | 0 | L8 | Rgb8 => None, |
289 | 0 | La8 | L16 | La16 => Some(img.to_luma8().into()), |
290 | 0 | Rgba8 | Rgb16 | Rgb32F | Rgba16 | Rgba32F => Some(img.to_rgb8().into()), |
291 | | } |
292 | 0 | } Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<_> as image::io::encoder::ImageEncoder>::make_compatible_img Unexecuted instantiation: <image::codecs::jpeg::encoder::JpegEncoder<&mut std::io::cursor::Cursor<alloc::vec::Vec<u8>>> as image::io::encoder::ImageEncoder>::make_compatible_img |
293 | | } |
294 | | |
295 | | #[cfg(test)] |
296 | | mod tests { |
297 | | use std::io::Cursor; |
298 | | |
299 | | #[cfg(feature = "benchmarks")] |
300 | | extern crate test; |
301 | | #[cfg(feature = "benchmarks")] |
302 | | use test::Bencher; |
303 | | |
304 | | use crate::{ColorType, DynamicImage, ExtendedColorType, ImageEncoder, ImageError}; |
305 | | use crate::{ImageDecoder as _, ImageFormat}; |
306 | | |
307 | | use super::super::{JpegDecoder, JpegEncoder}; |
308 | | |
309 | | fn decode(encoded: &[u8]) -> Vec<u8> { |
310 | | let decoder = JpegDecoder::new(Cursor::new(encoded)).expect("Could not decode image"); |
311 | | |
312 | | let mut decoded = vec![0; decoder.total_bytes() as usize]; |
313 | | decoder |
314 | | .read_image(&mut decoded) |
315 | | .expect("Could not decode image"); |
316 | | decoded |
317 | | } |
318 | | |
319 | | #[test] |
320 | | fn roundtrip_sanity_check() { |
321 | | // create a 1x1 8-bit image buffer containing a single red pixel |
322 | | let img = [255u8, 0, 0]; |
323 | | |
324 | | // encode it into a memory buffer |
325 | | let mut encoded_img = Vec::new(); |
326 | | { |
327 | | let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100); |
328 | | encoder |
329 | | .write_image(&img, 1, 1, ExtendedColorType::Rgb8) |
330 | | .expect("Could not encode image"); |
331 | | } |
332 | | |
333 | | // decode it from the memory buffer |
334 | | { |
335 | | let decoded = decode(&encoded_img); |
336 | | // note that, even with the encode quality set to 100, we do not get the same image |
337 | | // back. Therefore, we're going to assert that it's at least red-ish: |
338 | | assert_eq!(3, decoded.len()); |
339 | | assert!(decoded[0] > 0x80); |
340 | | assert!(decoded[1] < 0x80); |
341 | | assert!(decoded[2] < 0x80); |
342 | | } |
343 | | } |
344 | | |
345 | | #[test] |
346 | | fn grayscale_roundtrip_sanity_check() { |
347 | | // create a 2x2 8-bit image buffer containing a white diagonal |
348 | | let img = [255u8, 0, 0, 255]; |
349 | | |
350 | | // encode it into a memory buffer |
351 | | let mut encoded_img = Vec::new(); |
352 | | { |
353 | | let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100); |
354 | | encoder |
355 | | .write_image(&img[..], 2, 2, ExtendedColorType::L8) |
356 | | .expect("Could not encode image"); |
357 | | } |
358 | | |
359 | | // decode it from the memory buffer |
360 | | { |
361 | | let decoded = decode(&encoded_img); |
362 | | // note that, even with the encode quality set to 100, we do not get the same image |
363 | | // back. Therefore, we're going to assert that the diagonal is at least white-ish: |
364 | | assert_eq!(4, decoded.len()); |
365 | | assert!(decoded[0] > 0x80); |
366 | | assert!(decoded[1] < 0x80); |
367 | | assert!(decoded[2] < 0x80); |
368 | | assert!(decoded[3] > 0x80); |
369 | | } |
370 | | } |
371 | | |
372 | | #[test] |
373 | | fn roundtrip_exif_icc() { |
374 | | // create a 2x2 8-bit image buffer containing a white diagonal |
375 | | let img = [255u8, 0, 0, 255]; |
376 | | |
377 | | let exif = vec![1, 2, 3]; |
378 | | let icc = vec![4, 5, 6]; |
379 | | |
380 | | // encode it into a memory buffer |
381 | | let mut encoded_img = Vec::new(); |
382 | | { |
383 | | let mut encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100); |
384 | | |
385 | | encoder.set_exif_metadata(exif.clone()).unwrap(); |
386 | | encoder.set_icc_profile(icc.clone()).unwrap(); |
387 | | |
388 | | encoder |
389 | | .write_image(&img[..], 2, 2, ExtendedColorType::L8) |
390 | | .expect("Could not encode image"); |
391 | | } |
392 | | |
393 | | let mut decoder = |
394 | | JpegDecoder::new(Cursor::new(encoded_img)).expect("Could not decode image"); |
395 | | let decoded_exif = decoder |
396 | | .exif_metadata() |
397 | | .expect("Error decoding Exif") |
398 | | .expect("Exif is empty"); |
399 | | assert_eq!(exif, decoded_exif); |
400 | | let decoded_icc = decoder |
401 | | .icc_profile() |
402 | | .expect("Error decoding ICC") |
403 | | .expect("ICC is empty"); |
404 | | assert_eq!(icc, decoded_icc); |
405 | | } |
406 | | |
407 | | #[test] |
408 | | fn test_image_too_large() { |
409 | | // JPEG cannot encode images larger than 65,535×65,535 |
410 | | // create a 65,536×1 8-bit black image buffer |
411 | | let img = [0; 65_536]; |
412 | | // Try to encode an image that is too large |
413 | | let mut encoded = Vec::new(); |
414 | | let encoder = JpegEncoder::new_with_quality(&mut encoded, 100); |
415 | | let result = encoder.write_image(&img, 65_536, 1, ExtendedColorType::L8); |
416 | | match result { |
417 | | Err(ImageError::Encoding(_)) => (), |
418 | | other => { |
419 | | panic!( |
420 | | "Encoding an image that is too large should return an EncodingError \ |
421 | | it returned {other:?} instead" |
422 | | ) |
423 | | } |
424 | | } |
425 | | } |
426 | | |
427 | | #[test] |
428 | | fn check_color_types() { |
429 | | const ALL: &[ColorType] = &[ |
430 | | ColorType::L8, |
431 | | ColorType::L16, |
432 | | ColorType::La8, |
433 | | ColorType::Rgb8, |
434 | | ColorType::Rgba8, |
435 | | ColorType::La16, |
436 | | ColorType::Rgb16, |
437 | | ColorType::Rgba16, |
438 | | ColorType::Rgb32F, |
439 | | ColorType::Rgba32F, |
440 | | ]; |
441 | | |
442 | | for color in ALL { |
443 | | let image = DynamicImage::new(1, 1, *color); |
444 | | |
445 | | image |
446 | | .write_to(&mut Cursor::new(vec![]), ImageFormat::Jpeg) |
447 | | .expect("supported or converted"); |
448 | | } |
449 | | } |
450 | | |
451 | | #[cfg(feature = "benchmarks")] |
452 | | #[bench] |
453 | | fn bench_jpeg_encoder_new(b: &mut Bencher) { |
454 | | b.iter(|| { |
455 | | let mut y = vec![]; |
456 | | let _x = JpegEncoder::new(&mut y); |
457 | | }); |
458 | | } |
459 | | } |