/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/logs/log10p1.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::common::*; |
30 | | use crate::double_double::DoubleDouble; |
31 | | use crate::dyadic_float::{DyadicFloat128, DyadicSign}; |
32 | | use crate::logs::log2p1::{log_fast, log_p_1a, log2_dyadic}; |
33 | | use crate::logs::log10p1_tables::{LOG10P1_EXACT_INT_S_TABLE, LOG10P1_EXACT_INT_TABLE}; |
34 | | |
35 | | const INV_LOG10_DD: DoubleDouble = DoubleDouble::new( |
36 | | f64::from_bits(0x3c695355baaafad3), |
37 | | f64::from_bits(0x3fdbcb7b1526e50e), |
38 | | ); |
39 | | |
40 | | /* deal with |x| < 2^-900, then log10p1(x) ~ x/log(10) */ |
41 | | #[cold] |
42 | 0 | fn log10p1_accurate_tiny(x: f64) -> f64 { |
43 | | /* first scale x to avoid truncation of l in the underflow region */ |
44 | 0 | let sx = x * f64::from_bits(0x4690000000000000); |
45 | 0 | let mut px = DoubleDouble::quick_f64_mult(sx, INV_LOG10_DD); |
46 | | |
47 | 0 | let res = px.to_f64() * f64::from_bits(0x3950000000000000); // expected result |
48 | 0 | px.lo += dd_fmla(-res, f64::from_bits(0x4690000000000000), px.hi); |
49 | | // the correction to apply to res is l*2^-106 |
50 | | /* For RNDN, we have underflow for |x| <= 0x1.26bb1bbb55515p-1021, |
51 | | and for rounding away, for |x| < 0x1.26bb1bbb55515p-1021. */ |
52 | | |
53 | 0 | dyad_fmla(px.lo, f64::from_bits(0x3950000000000000), res) |
54 | 0 | } |
55 | | |
56 | 0 | fn log10p1_accurate_small(x: f64) -> f64 { |
57 | | /* the following is a degree-17 polynomial approximating log10p1(x) for |
58 | | |x| <= 2^-5 with relative error < 2^-105.067*/ |
59 | | |
60 | | static P_ACC: [u64; 25] = [ |
61 | | 0x3fdbcb7b1526e50e, |
62 | | 0x3c695355baaafad4, |
63 | | 0xbfcbcb7b1526e50e, |
64 | | 0xbc595355baaae078, |
65 | | 0x3fc287a7636f435f, |
66 | | 0xbc59c871838f83ac, |
67 | | 0xbfbbcb7b1526e50e, |
68 | | 0xbc495355e23285f2, |
69 | | 0x3fb63c62775250d8, |
70 | | 0x3c4442abd5831422, |
71 | | 0xbfb287a7636f435f, |
72 | | 0x3c49d116f225c4e4, |
73 | | 0x3fafc3fa615105c7, |
74 | | 0x3c24e1d7b4790510, |
75 | | 0xbfabcb7b1526e512, |
76 | | 0x3c49f884199ab0ce, |
77 | | 0x3fa8b4df2f3f0486, |
78 | | 0xbfa63c6277522391, |
79 | | 0x3fa436e526a79e5c, |
80 | | 0xbfa287a764c5a762, |
81 | | 0x3fa11ac1e784daec, |
82 | | 0xbf9fc3eedc920817, |
83 | | 0x3f9da5cac3522edb, |
84 | | 0xbf9be5ca1f9a97cd, |
85 | | 0x3f9a44b64ca06e9b, |
86 | | ]; |
87 | | |
88 | | /* for degree 11 or more, ulp(c[d]*x^d) < 2^-105.7*|log10p1(x)| |
89 | | where c[d] is the degree-d coefficient of Pacc, thus we can compute |
90 | | with a double only, and even with degree 10 (this does not increase |
91 | | the number of exceptional cases) */ |
92 | | |
93 | 0 | let mut h = dd_fmla(f64::from_bits(P_ACC[24]), x, f64::from_bits(P_ACC[23])); // degree 16 |
94 | 0 | for i in (10..=15).rev() { |
95 | 0 | h = dd_fmla(h, x, f64::from_bits(P_ACC[(i + 7) as usize])); // degree i |
96 | 0 | } |
97 | | |
98 | | // degree 9 |
99 | 0 | let px = DoubleDouble::from_exact_mult(x, h); |
100 | 0 | let hl = DoubleDouble::from_exact_add(f64::from_bits(P_ACC[9 + 7]), px.hi); |
101 | 0 | h = hl.hi; |
102 | 0 | let mut l = px.lo + hl.lo; |
103 | | |
104 | 0 | for i in (1..=8).rev() { |
105 | 0 | let mut p = DoubleDouble::quick_f64_mult(x, DoubleDouble::new(l, h)); |
106 | 0 | l = p.lo; |
107 | 0 | p = DoubleDouble::from_exact_add(f64::from_bits(P_ACC[(2 * i - 2) as usize]), p.hi); |
108 | 0 | h = p.hi; |
109 | 0 | l += p.lo + f64::from_bits(P_ACC[(2 * i - 1) as usize]); |
110 | 0 | } |
111 | 0 | let pz = DoubleDouble::quick_f64_mult(x, DoubleDouble::new(l, h)); |
112 | 0 | pz.to_f64() |
113 | 0 | } |
114 | | |
115 | | #[cold] |
116 | 0 | fn log10p1_accurate(x: f64) -> f64 { |
117 | 0 | let ax = x.abs(); |
118 | | |
119 | 0 | if ax < f64::from_bits(0x3fa0000000000000) { |
120 | 0 | return if ax < f64::from_bits(0x07b0000000000000) { |
121 | 0 | log10p1_accurate_tiny(x) |
122 | | } else { |
123 | 0 | log10p1_accurate_small(x) |
124 | | }; |
125 | 0 | } |
126 | 0 | let dx = if x > 1.0 { |
127 | 0 | DoubleDouble::from_exact_add(x, 1.0) |
128 | | } else { |
129 | 0 | DoubleDouble::from_exact_add(1.0, x) |
130 | | }; |
131 | 0 | let x_d = DyadicFloat128::new_from_f64(dx.hi); |
132 | 0 | let mut y = log2_dyadic(x_d, dx.hi); |
133 | 0 | let mut c = DyadicFloat128::from_div_f64(dx.lo, dx.hi); |
134 | 0 | let mut bx = c * c; |
135 | | /* multiply X by -1/2 */ |
136 | 0 | bx.exponent -= 1; |
137 | 0 | bx.sign = DyadicSign::Neg; |
138 | | /* C <- C - C^2/2 */ |
139 | 0 | c = c + bx; |
140 | | /* |C-log(1+xl/xh)| ~ 2e-64 */ |
141 | 0 | y = y + c; |
142 | | |
143 | | // Sage Math: |
144 | | // from sage.all import * |
145 | | // |
146 | | // def format_hex2(value): |
147 | | // l = hex(value)[2:] |
148 | | // n = 4 |
149 | | // x = [l[i:i + n] for i in range(0, len(l), n)] |
150 | | // return "0x" + "_".join(x) + "_u128" |
151 | | // (s, m, e) = (RealField(128)(1)/RealField(128)(10)).log().sign_mantissa_exponent(); |
152 | | // print(format_hex2(m)); |
153 | | const LOG10_INV: DyadicFloat128 = DyadicFloat128 { |
154 | | sign: DyadicSign::Pos, |
155 | | exponent: -129, |
156 | | mantissa: 0xde5b_d8a9_3728_7195_355b_aaaf_ad33_dc32_u128, |
157 | | }; |
158 | 0 | y = y * LOG10_INV; |
159 | 0 | y.fast_as_f64() |
160 | 0 | } |
161 | | |
162 | | #[inline] |
163 | 0 | fn log10p1_fast(x: f64, e: i32) -> (DoubleDouble, f64) { |
164 | 0 | if e < -5 |
165 | | /* e <= -6 thus |x| < 2^-5 */ |
166 | | { |
167 | 0 | if e <= -968 { |
168 | | /* then |x| might be as small as 2^-968, thus h=x/log(10) might in the |
169 | | binade [2^-970,2^-969), with ulp(h) = 2^-1022, and if |l| < ulp(h), |
170 | | then l.ulp() might be smaller than 2^-1074. We defer that case to |
171 | | the accurate path. */ |
172 | 0 | let ax = x.abs(); |
173 | 0 | let result = if ax < f64::from_bits(0x07b0000000000000) { |
174 | 0 | log10p1_accurate_tiny(x) |
175 | | } else { |
176 | 0 | log10p1_accurate_small(x) |
177 | | }; |
178 | 0 | return (DoubleDouble::new(0.0, result), 0.0); |
179 | 0 | } |
180 | 0 | let mut p = log_p_1a(x); |
181 | 0 | let p_lo = p.lo; |
182 | 0 | p = DoubleDouble::from_exact_add(x, p.hi); |
183 | 0 | p.lo += p_lo; |
184 | 0 | p = DoubleDouble::quick_mult(p, INV_LOG10_DD); |
185 | 0 | return (p, f64::from_bits(0x3c1d400000000000) * p.hi); /* 2^-61.13 < 0x1.d4p-62 */ |
186 | 0 | } |
187 | | |
188 | | /* (xh,xl) <- 1+x */ |
189 | 0 | let zx = DoubleDouble::from_full_exact_add(x, 1.0); |
190 | | |
191 | 0 | let mut v_u = zx.hi.to_bits(); |
192 | 0 | let e = ((v_u >> 52) as i32).wrapping_sub(0x3ff); |
193 | 0 | v_u = (0x3ffu64 << 52) | (v_u & 0xfffffffffffff); |
194 | 0 | let mut p = log_fast(e, v_u); |
195 | | |
196 | | /* log(xh+xl) = log(xh) + log(1+xl/xh) */ |
197 | 0 | let c = if zx.hi <= f64::from_bits(0x7fd0000000000000) || zx.lo.abs() >= 4.0 { |
198 | 0 | zx.lo / zx.hi |
199 | | } else { |
200 | 0 | 0. |
201 | | }; // avoid spurious underflow |
202 | | |
203 | | /* Since |xl| < ulp(xh), we have |xl| < 2^-52 |xh|, |
204 | | thus |c| < 2^-52, and since |log(1+x)-x| < x^2 for |x| < 0.5, |
205 | | we have |log(1+c)-c)| < c^2 < 2^-104. */ |
206 | 0 | p.lo += c; |
207 | | |
208 | | /* now multiply h+l by 1/log(2) */ |
209 | 0 | p = DoubleDouble::quick_mult(p, INV_LOG10_DD); |
210 | 0 | (p, f64::from_bits(0x3bb0a00000000000)) /* 2^-67.92 < 0x1.0ap-68 */ |
211 | 0 | } |
212 | | |
213 | | /// Computes log10(x+1) |
214 | | /// |
215 | | /// Max ULP 0.5 |
216 | 0 | pub fn f_log10p1(x: f64) -> f64 { |
217 | 0 | let x_u = x.to_bits(); |
218 | 0 | let e = (((x_u >> 52) & 0x7ff) as i32).wrapping_sub(0x3ff); |
219 | 0 | if e == 0x400 || x == 0. || x <= -1.0 { |
220 | | /* case NaN/Inf, +/-0 or x <= -1 */ |
221 | 0 | if e == 0x400 && x.to_bits() != 0xfffu64 << 52 { |
222 | | /* NaN or + Inf*/ |
223 | 0 | return x + x; |
224 | 0 | } |
225 | 0 | if x <= -1.0 |
226 | | /* we use the fact that NaN < -1 is false */ |
227 | | { |
228 | | /* log2p(x<-1) is NaN, log2p(-1) is -Inf and raises DivByZero */ |
229 | 0 | return if x < -1.0 { |
230 | 0 | f64::NAN |
231 | | } else { |
232 | | // x=-1 |
233 | 0 | f64::NEG_INFINITY |
234 | | }; |
235 | 0 | } |
236 | 0 | return x + x; /* +/-0 */ |
237 | 0 | } |
238 | | |
239 | | /* check x=10^n-1 for 1 <= n <= 15, where log10p1(x) is exact, |
240 | | and we shouldn't raise the inexact flag */ |
241 | 0 | if 3 <= e && e <= 49 && x == f64::from_bits(LOG10P1_EXACT_INT_TABLE[e as usize]) { |
242 | 0 | return LOG10P1_EXACT_INT_S_TABLE[e as usize] as f64; |
243 | 0 | } |
244 | | |
245 | | /* now x = m*2^e with 1 <= m < 2 (m = v.f) and -1074 <= e <= 1023 */ |
246 | 0 | let (p, err) = log10p1_fast(x, e); |
247 | 0 | let left = p.hi + (p.lo - err); |
248 | 0 | let right = p.hi + (p.lo + err); |
249 | 0 | if left == right { |
250 | 0 | return left; |
251 | 0 | } |
252 | | |
253 | 0 | log10p1_accurate(x) |
254 | 0 | } |
255 | | |
256 | | #[cfg(test)] |
257 | | mod tests { |
258 | | use super::*; |
259 | | |
260 | | #[test] |
261 | | fn test_log10p1() { |
262 | | assert_eq!(f_log10p1(0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013904929147106097), |
263 | | 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006038833999843867 ); |
264 | | assert!(f_log10p1(-2.0).is_nan()); |
265 | | assert_eq!(f_log10p1(9.0), 1.0); |
266 | | assert_eq!(f_log10p1(2.0), 0.47712125471966244); |
267 | | assert_eq!(f_log10p1(-0.5), -0.3010299956639812); |
268 | | } |
269 | | } |