1"""
2=============
3Masked Arrays
4=============
5
6Arrays sometimes contain invalid or missing data. When doing operations
7on such arrays, we wish to suppress invalid values, which is the purpose masked
8arrays fulfill (an example of typical use is given below).
9
10For example, examine the following array:
11
12>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])
13
14When we try to calculate the mean of the data, the result is undetermined:
15
16>>> np.mean(x)
17nan
18
19The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
20any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter
21masked arrays:
22
23>>> m = np.ma.masked_array(x, np.isnan(x))
24>>> m
25masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
26 mask = [False False False True False False False True],
27 fill_value=1e+20)
28
29Here, we construct a masked array that suppress all ``NaN`` values. We
30may now proceed to calculate the mean of the other values:
31
32>>> np.mean(m)
332.6666666666666665
34
35.. [1] Not-a-Number, a floating point value that is the result of an
36 invalid operation.
37
38.. moduleauthor:: Pierre Gerard-Marchant
39.. moduleauthor:: Jarrod Millman
40
41"""
42from . import core
43from .core import *
44
45from . import extras
46from .extras import *
47
48__all__ = ['core', 'extras']
49__all__ += core.__all__
50__all__ += extras.__all__
51
52from numpy._pytesttester import PytestTester
53test = PytestTester(__name__)
54del PytestTester