Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.10/site-packages/numpy/lib/_ufunclike_impl.py: 33%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

30 statements  

1""" 

2Module of functions that are like ufuncs in acting on arrays and optionally 

3storing results in an output array. 

4 

5""" 

6__all__ = ['fix', 'isneginf', 'isposinf'] 

7 

8import numpy._core.numeric as nx 

9from numpy._core.overrides import array_function_dispatch 

10 

11 

12def _dispatcher(x, out=None): 

13 return (x, out) 

14 

15 

16@array_function_dispatch(_dispatcher, verify=False, module='numpy') 

17def fix(x, out=None): 

18 """ 

19 Round to nearest integer towards zero. 

20 

21 Round an array of floats element-wise to nearest integer towards zero. 

22 The rounded values have the same data-type as the input. 

23 

24 Parameters 

25 ---------- 

26 x : array_like 

27 An array to be rounded 

28 out : ndarray, optional 

29 A location into which the result is stored. If provided, it must have 

30 a shape that the input broadcasts to. If not provided or None, a 

31 freshly-allocated array is returned. 

32 

33 Returns 

34 ------- 

35 out : ndarray of floats 

36 An array with the same dimensions and data-type as the input. 

37 If second argument is not supplied then a new array is returned 

38 with the rounded values. 

39 

40 If a second argument is supplied the result is stored there. 

41 The return value ``out`` is then a reference to that array. 

42 

43 See Also 

44 -------- 

45 rint, trunc, floor, ceil 

46 around : Round to given number of decimals 

47 

48 Examples 

49 -------- 

50 >>> import numpy as np 

51 >>> np.fix(3.14) 

52 3.0 

53 >>> np.fix(3) 

54 3 

55 >>> np.fix([2.1, 2.9, -2.1, -2.9]) 

56 array([ 2., 2., -2., -2.]) 

57 

58 """ 

59 # promote back to an array if flattened 

60 res = nx.asanyarray(nx.ceil(x, out=out)) 

61 res = nx.floor(x, out=res, where=nx.greater_equal(x, 0)) 

62 

63 # when no out argument is passed and no subclasses are involved, flatten 

64 # scalars 

65 if out is None and type(res) is nx.ndarray: 

66 res = res[()] 

67 return res 

68 

69 

70@array_function_dispatch(_dispatcher, verify=False, module='numpy') 

71def isposinf(x, out=None): 

72 """ 

73 Test element-wise for positive infinity, return result as bool array. 

74 

75 Parameters 

76 ---------- 

77 x : array_like 

78 The input array. 

79 out : array_like, optional 

80 A location into which the result is stored. If provided, it must have a 

81 shape that the input broadcasts to. If not provided or None, a 

82 freshly-allocated boolean array is returned. 

83 

84 Returns 

85 ------- 

86 out : ndarray 

87 A boolean array with the same dimensions as the input. 

88 If second argument is not supplied then a boolean array is returned 

89 with values True where the corresponding element of the input is 

90 positive infinity and values False where the element of the input is 

91 not positive infinity. 

92 

93 If a second argument is supplied the result is stored there. If the 

94 type of that array is a numeric type the result is represented as zeros 

95 and ones, if the type is boolean then as False and True. 

96 The return value `out` is then a reference to that array. 

97 

98 See Also 

99 -------- 

100 isinf, isneginf, isfinite, isnan 

101 

102 Notes 

103 ----- 

104 NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic 

105 (IEEE 754). 

106 

107 Errors result if the second argument is also supplied when x is a scalar 

108 input, if first and second arguments have different shapes, or if the 

109 first argument has complex values 

110 

111 Examples 

112 -------- 

113 >>> import numpy as np 

114 >>> np.isposinf(np.inf) 

115 True 

116 >>> np.isposinf(-np.inf) 

117 False 

118 >>> np.isposinf([-np.inf, 0., np.inf]) 

119 array([False, False, True]) 

120 

121 >>> x = np.array([-np.inf, 0., np.inf]) 

122 >>> y = np.array([2, 2, 2]) 

123 >>> np.isposinf(x, y) 

124 array([0, 0, 1]) 

125 >>> y 

126 array([0, 0, 1]) 

127 

128 """ 

129 is_inf = nx.isinf(x) 

130 try: 

131 signbit = ~nx.signbit(x) 

132 except TypeError as e: 

133 dtype = nx.asanyarray(x).dtype 

134 raise TypeError(f'This operation is not supported for {dtype} values ' 

135 'because it would be ambiguous.') from e 

136 else: 

137 return nx.logical_and(is_inf, signbit, out) 

138 

139 

140@array_function_dispatch(_dispatcher, verify=False, module='numpy') 

141def isneginf(x, out=None): 

142 """ 

143 Test element-wise for negative infinity, return result as bool array. 

144 

145 Parameters 

146 ---------- 

147 x : array_like 

148 The input array. 

149 out : array_like, optional 

150 A location into which the result is stored. If provided, it must have a 

151 shape that the input broadcasts to. If not provided or None, a 

152 freshly-allocated boolean array is returned. 

153 

154 Returns 

155 ------- 

156 out : ndarray 

157 A boolean array with the same dimensions as the input. 

158 If second argument is not supplied then a numpy boolean array is 

159 returned with values True where the corresponding element of the 

160 input is negative infinity and values False where the element of 

161 the input is not negative infinity. 

162 

163 If a second argument is supplied the result is stored there. If the 

164 type of that array is a numeric type the result is represented as 

165 zeros and ones, if the type is boolean then as False and True. The 

166 return value `out` is then a reference to that array. 

167 

168 See Also 

169 -------- 

170 isinf, isposinf, isnan, isfinite 

171 

172 Notes 

173 ----- 

174 NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic 

175 (IEEE 754). 

176 

177 Errors result if the second argument is also supplied when x is a scalar 

178 input, if first and second arguments have different shapes, or if the 

179 first argument has complex values. 

180 

181 Examples 

182 -------- 

183 >>> import numpy as np 

184 >>> np.isneginf(-np.inf) 

185 True 

186 >>> np.isneginf(np.inf) 

187 False 

188 >>> np.isneginf([-np.inf, 0., np.inf]) 

189 array([ True, False, False]) 

190 

191 >>> x = np.array([-np.inf, 0., np.inf]) 

192 >>> y = np.array([2, 2, 2]) 

193 >>> np.isneginf(x, y) 

194 array([1, 0, 0]) 

195 >>> y 

196 array([1, 0, 0]) 

197 

198 """ 

199 is_inf = nx.isinf(x) 

200 try: 

201 signbit = nx.signbit(x) 

202 except TypeError as e: 

203 dtype = nx.asanyarray(x).dtype 

204 raise TypeError(f'This operation is not supported for {dtype} values ' 

205 'because it would be ambiguous.') from e 

206 else: 

207 return nx.logical_and(is_inf, signbit, out)