Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.10/site-packages/numpy/_core/_methods.py: 26%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

145 statements  

1""" 

2Array methods which are called by both the C-code for the method 

3and the Python code for the NumPy-namespace function 

4 

5""" 

6import os 

7import pickle 

8import warnings 

9from contextlib import nullcontext 

10 

11import numpy as np 

12from numpy._core import multiarray as mu 

13from numpy._core import umath as um 

14from numpy._core.multiarray import asanyarray 

15from numpy._core import numerictypes as nt 

16from numpy._core import _exceptions 

17from numpy._globals import _NoValue 

18 

19# save those O(100) nanoseconds! 

20bool_dt = mu.dtype("bool") 

21umr_maximum = um.maximum.reduce 

22umr_minimum = um.minimum.reduce 

23umr_sum = um.add.reduce 

24umr_prod = um.multiply.reduce 

25umr_bitwise_count = um.bitwise_count 

26umr_any = um.logical_or.reduce 

27umr_all = um.logical_and.reduce 

28 

29# Complex types to -> (2,)float view for fast-path computation in _var() 

30_complex_to_float = { 

31 nt.dtype(nt.csingle) : nt.dtype(nt.single), 

32 nt.dtype(nt.cdouble) : nt.dtype(nt.double), 

33} 

34# Special case for windows: ensure double takes precedence 

35if nt.dtype(nt.longdouble) != nt.dtype(nt.double): 

36 _complex_to_float.update({ 

37 nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble), 

38 }) 

39 

40# avoid keyword arguments to speed up parsing, saves about 15%-20% for very 

41# small reductions 

42def _amax(a, axis=None, out=None, keepdims=False, 

43 initial=_NoValue, where=True): 

44 return umr_maximum(a, axis, None, out, keepdims, initial, where) 

45 

46def _amin(a, axis=None, out=None, keepdims=False, 

47 initial=_NoValue, where=True): 

48 return umr_minimum(a, axis, None, out, keepdims, initial, where) 

49 

50def _sum(a, axis=None, dtype=None, out=None, keepdims=False, 

51 initial=_NoValue, where=True): 

52 return umr_sum(a, axis, dtype, out, keepdims, initial, where) 

53 

54def _prod(a, axis=None, dtype=None, out=None, keepdims=False, 

55 initial=_NoValue, where=True): 

56 return umr_prod(a, axis, dtype, out, keepdims, initial, where) 

57 

58def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True): 

59 # By default, return a boolean for any and all 

60 if dtype is None: 

61 dtype = bool_dt 

62 # Parsing keyword arguments is currently fairly slow, so avoid it for now 

63 if where is True: 

64 return umr_any(a, axis, dtype, out, keepdims) 

65 return umr_any(a, axis, dtype, out, keepdims, where=where) 

66 

67def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True): 

68 # By default, return a boolean for any and all 

69 if dtype is None: 

70 dtype = bool_dt 

71 # Parsing keyword arguments is currently fairly slow, so avoid it for now 

72 if where is True: 

73 return umr_all(a, axis, dtype, out, keepdims) 

74 return umr_all(a, axis, dtype, out, keepdims, where=where) 

75 

76def _count_reduce_items(arr, axis, keepdims=False, where=True): 

77 # fast-path for the default case 

78 if where is True: 

79 # no boolean mask given, calculate items according to axis 

80 if axis is None: 

81 axis = tuple(range(arr.ndim)) 

82 elif not isinstance(axis, tuple): 

83 axis = (axis,) 

84 items = 1 

85 for ax in axis: 

86 items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)] 

87 items = nt.intp(items) 

88 else: 

89 # TODO: Optimize case when `where` is broadcast along a non-reduction 

90 # axis and full sum is more excessive than needed. 

91 

92 # guarded to protect circular imports 

93 from numpy.lib._stride_tricks_impl import broadcast_to 

94 # count True values in (potentially broadcasted) boolean mask 

95 items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None, 

96 keepdims) 

97 return items 

98 

99def _clip(a, min=None, max=None, out=None, **kwargs): 

100 if a.dtype.kind in "iu": 

101 # If min/max is a Python integer, deal with out-of-bound values here. 

102 # (This enforces NEP 50 rules as no value based promotion is done.) 

103 if type(min) is int and min <= np.iinfo(a.dtype).min: 

104 min = None 

105 if type(max) is int and max >= np.iinfo(a.dtype).max: 

106 max = None 

107 

108 if min is None and max is None: 

109 # return identity 

110 return um.positive(a, out=out, **kwargs) 

111 elif min is None: 

112 return um.minimum(a, max, out=out, **kwargs) 

113 elif max is None: 

114 return um.maximum(a, min, out=out, **kwargs) 

115 else: 

116 return um.clip(a, min, max, out=out, **kwargs) 

117 

118def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True): 

119 arr = asanyarray(a) 

120 

121 is_float16_result = False 

122 

123 rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where) 

124 if rcount == 0 if where is True else umr_any(rcount == 0, axis=None): 

125 warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2) 

126 

127 # Cast bool, unsigned int, and int to float64 by default 

128 if dtype is None: 

129 if issubclass(arr.dtype.type, (nt.integer, nt.bool)): 

130 dtype = mu.dtype('f8') 

131 elif issubclass(arr.dtype.type, nt.float16): 

132 dtype = mu.dtype('f4') 

133 is_float16_result = True 

134 

135 ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) 

136 if isinstance(ret, mu.ndarray): 

137 ret = um.true_divide( 

138 ret, rcount, out=ret, casting='unsafe', subok=False) 

139 if is_float16_result and out is None: 

140 ret = arr.dtype.type(ret) 

141 elif hasattr(ret, 'dtype'): 

142 if is_float16_result: 

143 ret = arr.dtype.type(ret / rcount) 

144 else: 

145 ret = ret.dtype.type(ret / rcount) 

146 else: 

147 ret = ret / rcount 

148 

149 return ret 

150 

151def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, 

152 where=True, mean=None): 

153 arr = asanyarray(a) 

154 

155 rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where) 

156 # Make this warning show up on top. 

157 if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None): 

158 warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, 

159 stacklevel=2) 

160 

161 # Cast bool, unsigned int, and int to float64 by default 

162 if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool)): 

163 dtype = mu.dtype('f8') 

164 

165 if mean is not None: 

166 arrmean = mean 

167 else: 

168 # Compute the mean. 

169 # Note that if dtype is not of inexact type then arraymean will 

170 # not be either. 

171 arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where) 

172 # The shape of rcount has to match arrmean to not change the shape of 

173 # out in broadcasting. Otherwise, it cannot be stored back to arrmean. 

174 if rcount.ndim == 0: 

175 # fast-path for default case when where is True 

176 div = rcount 

177 else: 

178 # matching rcount to arrmean when where is specified as array 

179 div = rcount.reshape(arrmean.shape) 

180 if isinstance(arrmean, mu.ndarray): 

181 arrmean = um.true_divide(arrmean, div, out=arrmean, 

182 casting='unsafe', subok=False) 

183 elif hasattr(arrmean, "dtype"): 

184 arrmean = arrmean.dtype.type(arrmean / rcount) 

185 else: 

186 arrmean = arrmean / rcount 

187 

188 # Compute sum of squared deviations from mean 

189 # Note that x may not be inexact and that we need it to be an array, 

190 # not a scalar. 

191 x = asanyarray(arr - arrmean) 

192 

193 if issubclass(arr.dtype.type, (nt.floating, nt.integer)): 

194 x = um.multiply(x, x, out=x) 

195 # Fast-paths for built-in complex types 

196 elif x.dtype in _complex_to_float: 

197 xv = x.view(dtype=(_complex_to_float[x.dtype], (2,))) 

198 um.multiply(xv, xv, out=xv) 

199 x = um.add(xv[..., 0], xv[..., 1], out=x.real).real 

200 # Most general case; includes handling object arrays containing imaginary 

201 # numbers and complex types with non-native byteorder 

202 else: 

203 x = um.multiply(x, um.conjugate(x), out=x).real 

204 

205 ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where) 

206 

207 # Compute degrees of freedom and make sure it is not negative. 

208 rcount = um.maximum(rcount - ddof, 0) 

209 

210 # divide by degrees of freedom 

211 if isinstance(ret, mu.ndarray): 

212 ret = um.true_divide( 

213 ret, rcount, out=ret, casting='unsafe', subok=False) 

214 elif hasattr(ret, 'dtype'): 

215 ret = ret.dtype.type(ret / rcount) 

216 else: 

217 ret = ret / rcount 

218 

219 return ret 

220 

221def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, 

222 where=True, mean=None): 

223 ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, 

224 keepdims=keepdims, where=where, mean=mean) 

225 

226 if isinstance(ret, mu.ndarray): 

227 ret = um.sqrt(ret, out=ret) 

228 elif hasattr(ret, 'dtype'): 

229 ret = ret.dtype.type(um.sqrt(ret)) 

230 else: 

231 ret = um.sqrt(ret) 

232 

233 return ret 

234 

235def _ptp(a, axis=None, out=None, keepdims=False): 

236 return um.subtract( 

237 umr_maximum(a, axis, None, out, keepdims), 

238 umr_minimum(a, axis, None, None, keepdims), 

239 out 

240 ) 

241 

242def _dump(self, file, protocol=2): 

243 if hasattr(file, 'write'): 

244 ctx = nullcontext(file) 

245 else: 

246 ctx = open(os.fspath(file), "wb") 

247 with ctx as f: 

248 pickle.dump(self, f, protocol=protocol) 

249 

250def _dumps(self, protocol=2): 

251 return pickle.dumps(self, protocol=protocol) 

252 

253def _bitwise_count(a, out=None, *, where=True, casting='same_kind', 

254 order='K', dtype=None, subok=True): 

255 return umr_bitwise_count(a, out, where=where, casting=casting, 

256 order=order, dtype=dtype, subok=subok)