Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.10/site-packages/numpy/_core/memmap.py: 18%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1from contextlib import nullcontext
2import operator
3import numpy as np
4from .._utils import set_module
5from .numeric import uint8, ndarray, dtype
7__all__ = ['memmap']
9dtypedescr = dtype
10valid_filemodes = ["r", "c", "r+", "w+"]
11writeable_filemodes = ["r+", "w+"]
13mode_equivalents = {
14 "readonly":"r",
15 "copyonwrite":"c",
16 "readwrite":"r+",
17 "write":"w+"
18 }
21@set_module('numpy')
22class memmap(ndarray):
23 """Create a memory-map to an array stored in a *binary* file on disk.
25 Memory-mapped files are used for accessing small segments of large files
26 on disk, without reading the entire file into memory. NumPy's
27 memmap's are array-like objects. This differs from Python's ``mmap``
28 module, which uses file-like objects.
30 This subclass of ndarray has some unpleasant interactions with
31 some operations, because it doesn't quite fit properly as a subclass.
32 An alternative to using this subclass is to create the ``mmap``
33 object yourself, then create an ndarray with ndarray.__new__ directly,
34 passing the object created in its 'buffer=' parameter.
36 This class may at some point be turned into a factory function
37 which returns a view into an mmap buffer.
39 Flush the memmap instance to write the changes to the file. Currently there
40 is no API to close the underlying ``mmap``. It is tricky to ensure the
41 resource is actually closed, since it may be shared between different
42 memmap instances.
45 Parameters
46 ----------
47 filename : str, file-like object, or pathlib.Path instance
48 The file name or file object to be used as the array data buffer.
49 dtype : data-type, optional
50 The data-type used to interpret the file contents.
51 Default is `uint8`.
52 mode : {'r+', 'r', 'w+', 'c'}, optional
53 The file is opened in this mode:
55 +------+-------------------------------------------------------------+
56 | 'r' | Open existing file for reading only. |
57 +------+-------------------------------------------------------------+
58 | 'r+' | Open existing file for reading and writing. |
59 +------+-------------------------------------------------------------+
60 | 'w+' | Create or overwrite existing file for reading and writing. |
61 | | If ``mode == 'w+'`` then `shape` must also be specified. |
62 +------+-------------------------------------------------------------+
63 | 'c' | Copy-on-write: assignments affect data in memory, but |
64 | | changes are not saved to disk. The file on disk is |
65 | | read-only. |
66 +------+-------------------------------------------------------------+
68 Default is 'r+'.
69 offset : int, optional
70 In the file, array data starts at this offset. Since `offset` is
71 measured in bytes, it should normally be a multiple of the byte-size
72 of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of
73 file are valid; The file will be extended to accommodate the
74 additional data. By default, ``memmap`` will start at the beginning of
75 the file, even if ``filename`` is a file pointer ``fp`` and
76 ``fp.tell() != 0``.
77 shape : int or sequence of ints, optional
78 The desired shape of the array. If ``mode == 'r'`` and the number
79 of remaining bytes after `offset` is not a multiple of the byte-size
80 of `dtype`, you must specify `shape`. By default, the returned array
81 will be 1-D with the number of elements determined by file size
82 and data-type.
84 .. versionchanged:: 2.0
85 The shape parameter can now be any integer sequence type, previously
86 types were limited to tuple and int.
88 order : {'C', 'F'}, optional
89 Specify the order of the ndarray memory layout:
90 :term:`row-major`, C-style or :term:`column-major`,
91 Fortran-style. This only has an effect if the shape is
92 greater than 1-D. The default order is 'C'.
94 Attributes
95 ----------
96 filename : str or pathlib.Path instance
97 Path to the mapped file.
98 offset : int
99 Offset position in the file.
100 mode : str
101 File mode.
103 Methods
104 -------
105 flush
106 Flush any changes in memory to file on disk.
107 When you delete a memmap object, flush is called first to write
108 changes to disk.
111 See also
112 --------
113 lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
115 Notes
116 -----
117 The memmap object can be used anywhere an ndarray is accepted.
118 Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
119 ``True``.
121 Memory-mapped files cannot be larger than 2GB on 32-bit systems.
123 When a memmap causes a file to be created or extended beyond its
124 current size in the filesystem, the contents of the new part are
125 unspecified. On systems with POSIX filesystem semantics, the extended
126 part will be filled with zero bytes.
128 Examples
129 --------
130 >>> import numpy as np
131 >>> data = np.arange(12, dtype='float32')
132 >>> data.resize((3,4))
134 This example uses a temporary file so that doctest doesn't write
135 files to your directory. You would use a 'normal' filename.
137 >>> from tempfile import mkdtemp
138 >>> import os.path as path
139 >>> filename = path.join(mkdtemp(), 'newfile.dat')
141 Create a memmap with dtype and shape that matches our data:
143 >>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
144 >>> fp
145 memmap([[0., 0., 0., 0.],
146 [0., 0., 0., 0.],
147 [0., 0., 0., 0.]], dtype=float32)
149 Write data to memmap array:
151 >>> fp[:] = data[:]
152 >>> fp
153 memmap([[ 0., 1., 2., 3.],
154 [ 4., 5., 6., 7.],
155 [ 8., 9., 10., 11.]], dtype=float32)
157 >>> fp.filename == path.abspath(filename)
158 True
160 Flushes memory changes to disk in order to read them back
162 >>> fp.flush()
164 Load the memmap and verify data was stored:
166 >>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
167 >>> newfp
168 memmap([[ 0., 1., 2., 3.],
169 [ 4., 5., 6., 7.],
170 [ 8., 9., 10., 11.]], dtype=float32)
172 Read-only memmap:
174 >>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
175 >>> fpr.flags.writeable
176 False
178 Copy-on-write memmap:
180 >>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
181 >>> fpc.flags.writeable
182 True
184 It's possible to assign to copy-on-write array, but values are only
185 written into the memory copy of the array, and not written to disk:
187 >>> fpc
188 memmap([[ 0., 1., 2., 3.],
189 [ 4., 5., 6., 7.],
190 [ 8., 9., 10., 11.]], dtype=float32)
191 >>> fpc[0,:] = 0
192 >>> fpc
193 memmap([[ 0., 0., 0., 0.],
194 [ 4., 5., 6., 7.],
195 [ 8., 9., 10., 11.]], dtype=float32)
197 File on disk is unchanged:
199 >>> fpr
200 memmap([[ 0., 1., 2., 3.],
201 [ 4., 5., 6., 7.],
202 [ 8., 9., 10., 11.]], dtype=float32)
204 Offset into a memmap:
206 >>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
207 >>> fpo
208 memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
210 """
212 __array_priority__ = -100.0
214 def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
215 shape=None, order='C'):
216 # Import here to minimize 'import numpy' overhead
217 import mmap
218 import os.path
219 try:
220 mode = mode_equivalents[mode]
221 except KeyError as e:
222 if mode not in valid_filemodes:
223 raise ValueError(
224 "mode must be one of {!r} (got {!r})"
225 .format(valid_filemodes + list(mode_equivalents.keys()), mode)
226 ) from None
228 if mode == 'w+' and shape is None:
229 raise ValueError("shape must be given if mode == 'w+'")
231 if hasattr(filename, 'read'):
232 f_ctx = nullcontext(filename)
233 else:
234 f_ctx = open(
235 os.fspath(filename),
236 ('r' if mode == 'c' else mode)+'b'
237 )
239 with f_ctx as fid:
240 fid.seek(0, 2)
241 flen = fid.tell()
242 descr = dtypedescr(dtype)
243 _dbytes = descr.itemsize
245 if shape is None:
246 bytes = flen - offset
247 if bytes % _dbytes:
248 raise ValueError("Size of available data is not a "
249 "multiple of the data-type size.")
250 size = bytes // _dbytes
251 shape = (size,)
252 else:
253 if type(shape) not in (tuple, list):
254 try:
255 shape = [operator.index(shape)]
256 except TypeError:
257 pass
258 shape = tuple(shape)
259 size = np.intp(1) # avoid default choice of np.int_, which might overflow
260 for k in shape:
261 size *= k
263 bytes = int(offset + size*_dbytes)
265 if mode in ('w+', 'r+'):
266 # gh-27723
267 # if bytes == 0, we write out 1 byte to allow empty memmap.
268 bytes = max(bytes, 1)
269 if flen < bytes:
270 fid.seek(bytes - 1, 0)
271 fid.write(b'\0')
272 fid.flush()
274 if mode == 'c':
275 acc = mmap.ACCESS_COPY
276 elif mode == 'r':
277 acc = mmap.ACCESS_READ
278 else:
279 acc = mmap.ACCESS_WRITE
281 start = offset - offset % mmap.ALLOCATIONGRANULARITY
282 bytes -= start
283 # bytes == 0 is problematic as in mmap length=0 maps the full file.
284 # See PR gh-27723 for a more detailed explanation.
285 if bytes == 0 and start > 0:
286 bytes += mmap.ALLOCATIONGRANULARITY
287 start -= mmap.ALLOCATIONGRANULARITY
288 array_offset = offset - start
289 mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
291 self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
292 offset=array_offset, order=order)
293 self._mmap = mm
294 self.offset = offset
295 self.mode = mode
297 if isinstance(filename, os.PathLike):
298 # special case - if we were constructed with a pathlib.path,
299 # then filename is a path object, not a string
300 self.filename = filename.resolve()
301 elif hasattr(fid, "name") and isinstance(fid.name, str):
302 # py3 returns int for TemporaryFile().name
303 self.filename = os.path.abspath(fid.name)
304 # same as memmap copies (e.g. memmap + 1)
305 else:
306 self.filename = None
308 return self
310 def __array_finalize__(self, obj):
311 if hasattr(obj, '_mmap') and np.may_share_memory(self, obj):
312 self._mmap = obj._mmap
313 self.filename = obj.filename
314 self.offset = obj.offset
315 self.mode = obj.mode
316 else:
317 self._mmap = None
318 self.filename = None
319 self.offset = None
320 self.mode = None
322 def flush(self):
323 """
324 Write any changes in the array to the file on disk.
326 For further information, see `memmap`.
328 Parameters
329 ----------
330 None
332 See Also
333 --------
334 memmap
336 """
337 if self.base is not None and hasattr(self.base, 'flush'):
338 self.base.flush()
340 def __array_wrap__(self, arr, context=None, return_scalar=False):
341 arr = super().__array_wrap__(arr, context)
343 # Return a memmap if a memmap was given as the output of the
344 # ufunc. Leave the arr class unchanged if self is not a memmap
345 # to keep original memmap subclasses behavior
346 if self is arr or type(self) is not memmap:
347 return arr
349 # Return scalar instead of 0d memmap, e.g. for np.sum with
350 # axis=None (note that subclasses will not reach here)
351 if return_scalar:
352 return arr[()]
354 # Return ndarray otherwise
355 return arr.view(np.ndarray)
357 def __getitem__(self, index):
358 res = super().__getitem__(index)
359 if type(res) is memmap and res._mmap is None:
360 return res.view(type=ndarray)
361 return res