Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.10/site-packages/numpy/linalg/__init__.py: 100%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

7 statements  

1""" 

2``numpy.linalg`` 

3================ 

4 

5The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient 

6low level implementations of standard linear algebra algorithms. Those 

7libraries may be provided by NumPy itself using C versions of a subset of their 

8reference implementations but, when possible, highly optimized libraries that 

9take advantage of specialized processor functionality are preferred. Examples 

10of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries 

11are multithreaded and processor dependent, environmental variables and external 

12packages such as threadpoolctl may be needed to control the number of threads 

13or specify the processor architecture. 

14 

15- OpenBLAS: https://www.openblas.net/ 

16- threadpoolctl: https://github.com/joblib/threadpoolctl 

17 

18Please note that the most-used linear algebra functions in NumPy are present in 

19the main ``numpy`` namespace rather than in ``numpy.linalg``. There are: 

20``dot``, ``vdot``, ``inner``, ``outer``, ``matmul``, ``tensordot``, ``einsum``, 

21``einsum_path`` and ``kron``. 

22 

23Functions present in numpy.linalg are listed below. 

24 

25 

26Matrix and vector products 

27-------------------------- 

28 

29 cross 

30 multi_dot 

31 matrix_power 

32 tensordot 

33 matmul 

34 

35Decompositions 

36-------------- 

37 

38 cholesky 

39 outer 

40 qr 

41 svd 

42 svdvals 

43 

44Matrix eigenvalues 

45------------------ 

46 

47 eig 

48 eigh 

49 eigvals 

50 eigvalsh 

51 

52Norms and other numbers 

53----------------------- 

54 

55 norm 

56 matrix_norm 

57 vector_norm 

58 cond 

59 det 

60 matrix_rank 

61 slogdet 

62 trace (Array API compatible) 

63 

64Solving equations and inverting matrices 

65---------------------------------------- 

66 

67 solve 

68 tensorsolve 

69 lstsq 

70 inv 

71 pinv 

72 tensorinv 

73 

74Other matrix operations 

75----------------------- 

76 

77 diagonal (Array API compatible) 

78 matrix_transpose (Array API compatible) 

79 

80Exceptions 

81---------- 

82 

83 LinAlgError 

84 

85""" 

86# To get sub-modules 

87from . import linalg # deprecated in NumPy 2.0 

88from . import _linalg 

89from ._linalg import * 

90 

91__all__ = _linalg.__all__.copy() 

92 

93from numpy._pytesttester import PytestTester 

94test = PytestTester(__name__) 

95del PytestTester