/src/imagemagick/MagickCore/morphology.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
3 | | % % |
4 | | % % |
5 | | % % |
6 | | % M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y % |
7 | | % MM MM O O R R P P H H O O L O O G Y Y % |
8 | | % M M M O O RRRR PPPP HHHHH O O L O O G GGG Y % |
9 | | % M M O O R R P H H O O L O O G G Y % |
10 | | % M M OOO R R P H H OOO LLLLL OOO GGG Y % |
11 | | % % |
12 | | % % |
13 | | % MagickCore Morphology Methods % |
14 | | % % |
15 | | % Software Design % |
16 | | % Anthony Thyssen % |
17 | | % January 2010 % |
18 | | % % |
19 | | % % |
20 | | % Copyright @ 1999 ImageMagick Studio LLC, a non-profit organization % |
21 | | % dedicated to making software imaging solutions freely available. % |
22 | | % % |
23 | | % You may not use this file except in compliance with the License. You may % |
24 | | % obtain a copy of the License at % |
25 | | % % |
26 | | % https://imagemagick.org/script/license.php % |
27 | | % % |
28 | | % Unless required by applicable law or agreed to in writing, software % |
29 | | % distributed under the License is distributed on an "AS IS" BASIS, % |
30 | | % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
31 | | % See the License for the specific language governing permissions and % |
32 | | % limitations under the License. % |
33 | | % % |
34 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
35 | | % |
36 | | % Morphology is the application of various kernels, of any size or shape, to an |
37 | | % image in various ways (typically binary, but not always). |
38 | | % |
39 | | % Convolution (weighted sum or average) is just one specific type of |
40 | | % morphology. Just one that is very common for image blurring and sharpening |
41 | | % effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring. |
42 | | % |
43 | | % This module provides not only a general morphology function, and the ability |
44 | | % to apply more advanced or iterative morphologies, but also functions for the |
45 | | % generation of many different types of kernel arrays from user supplied |
46 | | % arguments. Prehaps even the generation of a kernel from a small image. |
47 | | */ |
48 | | |
49 | | /* |
50 | | Include declarations. |
51 | | */ |
52 | | #include "MagickCore/studio.h" |
53 | | #include "MagickCore/artifact.h" |
54 | | #include "MagickCore/cache-view.h" |
55 | | #include "MagickCore/channel.h" |
56 | | #include "MagickCore/color-private.h" |
57 | | #include "MagickCore/enhance.h" |
58 | | #include "MagickCore/exception.h" |
59 | | #include "MagickCore/exception-private.h" |
60 | | #include "MagickCore/gem.h" |
61 | | #include "MagickCore/gem-private.h" |
62 | | #include "MagickCore/image.h" |
63 | | #include "MagickCore/image-private.h" |
64 | | #include "MagickCore/linked-list.h" |
65 | | #include "MagickCore/list.h" |
66 | | #include "MagickCore/magick.h" |
67 | | #include "MagickCore/memory_.h" |
68 | | #include "MagickCore/memory-private.h" |
69 | | #include "MagickCore/monitor-private.h" |
70 | | #include "MagickCore/morphology.h" |
71 | | #include "MagickCore/morphology-private.h" |
72 | | #include "MagickCore/option.h" |
73 | | #include "MagickCore/pixel-accessor.h" |
74 | | #include "MagickCore/prepress.h" |
75 | | #include "MagickCore/quantize.h" |
76 | | #include "MagickCore/resource_.h" |
77 | | #include "MagickCore/registry.h" |
78 | | #include "MagickCore/semaphore.h" |
79 | | #include "MagickCore/splay-tree.h" |
80 | | #include "MagickCore/statistic.h" |
81 | | #include "MagickCore/string_.h" |
82 | | #include "MagickCore/string-private.h" |
83 | | #include "MagickCore/thread-private.h" |
84 | | #include "MagickCore/token.h" |
85 | | #include "MagickCore/utility.h" |
86 | | #include "MagickCore/utility-private.h" |
87 | | |
88 | | /* |
89 | | Other global definitions used by module. |
90 | | */ |
91 | 0 | #define Minimize(assign,value) assign=MagickMin(assign,value) |
92 | 0 | #define Maximize(assign,value) assign=MagickMax(assign,value) |
93 | | |
94 | | /* Integer Factorial Function - for a Binomial kernel */ |
95 | | #if 1 |
96 | | static inline size_t fact(size_t n) |
97 | 0 | { |
98 | 0 | size_t f,l; |
99 | 0 | for(f=1, l=2; l <= n; f=f*l, l++); |
100 | 0 | return(f); |
101 | 0 | } |
102 | | #elif 1 /* glibc floating point alternatives */ |
103 | | #define fact(n) ((size_t)tgamma((double)n+1)) |
104 | | #else |
105 | | #define fact(n) ((size_t)lgamma((double)n+1)) |
106 | | #endif |
107 | | |
108 | | |
109 | | /* Currently these are only internal to this module */ |
110 | | static void |
111 | | CalcKernelMetaData(KernelInfo *), |
112 | | ExpandMirrorKernelInfo(KernelInfo *), |
113 | | ExpandRotateKernelInfo(KernelInfo *, const double), |
114 | | RotateKernelInfo(KernelInfo *, double); |
115 | | |
116 | | |
117 | | /* Quick function to find last kernel in a kernel list */ |
118 | | static inline KernelInfo *LastKernelInfo(KernelInfo *kernel) |
119 | 0 | { |
120 | 0 | while (kernel->next != (KernelInfo *) NULL) |
121 | 0 | kernel=kernel->next; |
122 | 0 | return(kernel); |
123 | 0 | } |
124 | | |
125 | | /* |
126 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
127 | | % % |
128 | | % % |
129 | | % % |
130 | | % A c q u i r e K e r n e l I n f o % |
131 | | % % |
132 | | % % |
133 | | % % |
134 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
135 | | % |
136 | | % AcquireKernelInfo() takes the given string (generally supplied by the |
137 | | % user) and converts it into a Morphology/Convolution Kernel. This allows |
138 | | % users to specify a kernel from a number of pre-defined kernels, or to fully |
139 | | % specify their own kernel for a specific Convolution or Morphology |
140 | | % Operation. |
141 | | % |
142 | | % The kernel so generated can be any rectangular array of floating point |
143 | | % values (doubles) with the 'control point' or 'pixel being affected' |
144 | | % anywhere within that array of values. |
145 | | % |
146 | | % Previously IM was restricted to a square of odd size using the exact |
147 | | % center as origin, this is no longer the case, and any rectangular kernel |
148 | | % with any value being declared the origin. This in turn allows the use of |
149 | | % highly asymmetrical kernels. |
150 | | % |
151 | | % The floating point values in the kernel can also include a special value |
152 | | % known as 'nan' or 'not a number' to indicate that this value is not part |
153 | | % of the kernel array. This allows you to shaped the kernel within its |
154 | | % rectangular area. That is 'nan' values provide a 'mask' for the kernel |
155 | | % shape. However at least one non-nan value must be provided for correct |
156 | | % working of a kernel. |
157 | | % |
158 | | % The returned kernel should be freed using the DestroyKernelInfo() when you |
159 | | % are finished with it. Do not free this memory yourself. |
160 | | % |
161 | | % Input kernel definition strings can consist of any of three types. |
162 | | % |
163 | | % "name:args[[@><]" |
164 | | % Select from one of the built in kernels, using the name and |
165 | | % geometry arguments supplied. See AcquireKernelBuiltIn() |
166 | | % |
167 | | % "WxH[+X+Y][@><]:num, num, num ..." |
168 | | % a kernel of size W by H, with W*H floating point numbers following. |
169 | | % the 'center' can be optionally be defined at +X+Y (such that +0+0 |
170 | | % is top left corner). If not defined the pixel in the center, for |
171 | | % odd sizes, or to the immediate top or left of center for even sizes |
172 | | % is automatically selected. |
173 | | % |
174 | | % "num, num, num, num, ..." |
175 | | % list of floating point numbers defining an 'old style' odd sized |
176 | | % square kernel. At least 9 values should be provided for a 3x3 |
177 | | % square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. |
178 | | % Values can be space or comma separated. This is not recommended. |
179 | | % |
180 | | % You can define a 'list of kernels' which can be used by some morphology |
181 | | % operators A list is defined as a semi-colon separated list kernels. |
182 | | % |
183 | | % " kernel ; kernel ; kernel ; " |
184 | | % |
185 | | % Any extra ';' characters, at start, end or between kernel definitions are |
186 | | % simply ignored. |
187 | | % |
188 | | % The special flags will expand a single kernel, into a list of rotated |
189 | | % kernels. A '@' flag will expand a 3x3 kernel into a list of 45-degree |
190 | | % cyclic rotations, while a '>' will generate a list of 90-degree rotations. |
191 | | % The '<' also expands using 90-degree rotates, but giving a 180-degree |
192 | | % reflected kernel before the +/- 90-degree rotations, which can be important |
193 | | % for Thinning operations. |
194 | | % |
195 | | % Note that 'name' kernels will start with an alphabetic character while the |
196 | | % new kernel specification has a ':' character in its specification string. |
197 | | % If neither is the case, it is assumed an old style of a simple list of |
198 | | % numbers generating a odd-sized square kernel has been given. |
199 | | % |
200 | | % The format of the AcquireKernel method is: |
201 | | % |
202 | | % KernelInfo *AcquireKernelInfo(const char *kernel_string) |
203 | | % |
204 | | % A description of each parameter follows: |
205 | | % |
206 | | % o kernel_string: the Morphology/Convolution kernel wanted. |
207 | | % |
208 | | */ |
209 | | |
210 | | /* This was separated so that it could be used as a separate |
211 | | ** array input handling function, such as for -color-matrix |
212 | | */ |
213 | | static KernelInfo *ParseKernelArray(const char *kernel_string) |
214 | 0 | { |
215 | 0 | KernelInfo |
216 | 0 | *kernel; |
217 | |
|
218 | 0 | char |
219 | 0 | token[MagickPathExtent]; |
220 | |
|
221 | 0 | const char |
222 | 0 | *p, |
223 | 0 | *end; |
224 | |
|
225 | 0 | ssize_t |
226 | 0 | i; |
227 | |
|
228 | 0 | double |
229 | 0 | nan = sqrt(-1.0); /* Special Value : Not A Number */ |
230 | |
|
231 | 0 | MagickStatusType |
232 | 0 | flags; |
233 | |
|
234 | 0 | GeometryInfo |
235 | 0 | args; |
236 | |
|
237 | 0 | kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
238 | 0 | if (kernel == (KernelInfo *) NULL) |
239 | 0 | return(kernel); |
240 | 0 | (void) memset(kernel,0,sizeof(*kernel)); |
241 | 0 | kernel->minimum = kernel->maximum = kernel->angle = 0.0; |
242 | 0 | kernel->negative_range = kernel->positive_range = 0.0; |
243 | 0 | kernel->type = UserDefinedKernel; |
244 | 0 | kernel->next = (KernelInfo *) NULL; |
245 | 0 | kernel->signature=MagickCoreSignature; |
246 | 0 | if (kernel_string == (const char *) NULL) |
247 | 0 | return(kernel); |
248 | | |
249 | | /* find end of this specific kernel definition string */ |
250 | 0 | end = strchr(kernel_string, ';'); |
251 | 0 | if ( end == (char *) NULL ) |
252 | 0 | end = strchr(kernel_string, '\0'); |
253 | | |
254 | | /* clear flags - for Expanding kernel lists through rotations */ |
255 | 0 | flags = NoValue; |
256 | | |
257 | | /* Has a ':' in argument - New user kernel specification |
258 | | FUTURE: this split on ':' could be done by StringToken() |
259 | | */ |
260 | 0 | p = strchr(kernel_string, ':'); |
261 | 0 | if ( p != (char *) NULL && p < end) |
262 | 0 | { |
263 | | /* ParseGeometry() needs the geometry separated! -- Arrgghh */ |
264 | 0 | (void) memcpy(token, kernel_string, (size_t) (p-kernel_string)); |
265 | 0 | token[p-kernel_string] = '\0'; |
266 | 0 | SetGeometryInfo(&args); |
267 | 0 | flags = ParseGeometry(token, &args); |
268 | | |
269 | | /* Size handling and checks of geometry settings */ |
270 | 0 | if ( (flags & WidthValue) == 0 ) /* if no width then */ |
271 | 0 | args.rho = args.sigma; /* then width = height */ |
272 | 0 | if ( args.rho < 1.0 ) /* if width too small */ |
273 | 0 | args.rho = 1.0; /* then width = 1 */ |
274 | 0 | if ( args.sigma < 1.0 ) /* if height too small */ |
275 | 0 | args.sigma = args.rho; /* then height = width */ |
276 | 0 | kernel->width = (size_t)args.rho; |
277 | 0 | kernel->height = (size_t)args.sigma; |
278 | | |
279 | | /* Offset Handling and Checks */ |
280 | 0 | if ( args.xi < 0.0 || args.psi < 0.0 ) |
281 | 0 | return(DestroyKernelInfo(kernel)); |
282 | 0 | kernel->x = ((flags & XValue)!=0) ? (ssize_t)args.xi |
283 | 0 | : (ssize_t) (kernel->width-1)/2; |
284 | 0 | kernel->y = ((flags & YValue)!=0) ? (ssize_t)args.psi |
285 | 0 | : (ssize_t) (kernel->height-1)/2; |
286 | 0 | if ( kernel->x >= (ssize_t) kernel->width || |
287 | 0 | kernel->y >= (ssize_t) kernel->height ) |
288 | 0 | return(DestroyKernelInfo(kernel)); |
289 | | |
290 | 0 | p++; /* advance beyond the ':' */ |
291 | 0 | } |
292 | 0 | else |
293 | 0 | { /* ELSE - Old old specification, forming odd-square kernel */ |
294 | | /* count up number of values given */ |
295 | 0 | p=(const char *) kernel_string; |
296 | 0 | while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
297 | 0 | p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
298 | 0 | for (i=0; p < end; i++) |
299 | 0 | { |
300 | 0 | (void) GetNextToken(p,&p,MagickPathExtent,token); |
301 | 0 | if (*token == ',') |
302 | 0 | (void) GetNextToken(p,&p,MagickPathExtent,token); |
303 | 0 | } |
304 | | /* set the size of the kernel - old sized square */ |
305 | 0 | kernel->width = kernel->height= (size_t) sqrt((double) i+1.0); |
306 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
307 | 0 | p=(const char *) kernel_string; |
308 | 0 | while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
309 | 0 | p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
310 | 0 | } |
311 | | |
312 | | /* Read in the kernel values from rest of input string argument */ |
313 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory( |
314 | 0 | kernel->width,kernel->height*sizeof(*kernel->values))); |
315 | 0 | if (kernel->values == (MagickRealType *) NULL) |
316 | 0 | return(DestroyKernelInfo(kernel)); |
317 | 0 | kernel->minimum=MagickMaximumValue; |
318 | 0 | kernel->maximum=(-MagickMaximumValue); |
319 | 0 | kernel->negative_range = kernel->positive_range = 0.0; |
320 | 0 | for (i=0; (i < (ssize_t) (kernel->width*kernel->height)) && (p < end); i++) |
321 | 0 | { |
322 | 0 | (void) GetNextToken(p,&p,MagickPathExtent,token); |
323 | 0 | if (*token == ',') |
324 | 0 | (void) GetNextToken(p,&p,MagickPathExtent,token); |
325 | 0 | if ( LocaleCompare("nan",token) == 0 |
326 | 0 | || LocaleCompare("-",token) == 0 ) { |
327 | 0 | kernel->values[i] = nan; /* this value is not part of neighbourhood */ |
328 | 0 | } |
329 | 0 | else { |
330 | 0 | kernel->values[i] = StringToDouble(token,(char **) NULL); |
331 | 0 | ( kernel->values[i] < 0) |
332 | 0 | ? ( kernel->negative_range += kernel->values[i] ) |
333 | 0 | : ( kernel->positive_range += kernel->values[i] ); |
334 | 0 | Minimize(kernel->minimum, kernel->values[i]); |
335 | 0 | Maximize(kernel->maximum, kernel->values[i]); |
336 | 0 | } |
337 | 0 | } |
338 | | |
339 | | /* sanity check -- no more values in kernel definition */ |
340 | 0 | (void) GetNextToken(p,&p,MagickPathExtent,token); |
341 | 0 | if ( *token != '\0' && *token != ';' && *token != '\'' ) |
342 | 0 | return(DestroyKernelInfo(kernel)); |
343 | | |
344 | | #if 0 |
345 | | /* this was the old method of handling a incomplete kernel */ |
346 | | if ( i < (ssize_t) (kernel->width*kernel->height) ) { |
347 | | Minimize(kernel->minimum, kernel->values[i]); |
348 | | Maximize(kernel->maximum, kernel->values[i]); |
349 | | for ( ; i < (ssize_t) (kernel->width*kernel->height); i++) |
350 | | kernel->values[i]=0.0; |
351 | | } |
352 | | #else |
353 | | /* Number of values for kernel was not enough - Report Error */ |
354 | 0 | if ( i < (ssize_t) (kernel->width*kernel->height) ) |
355 | 0 | return(DestroyKernelInfo(kernel)); |
356 | 0 | #endif |
357 | | |
358 | | /* check that we received at least one real (non-nan) value! */ |
359 | 0 | if (kernel->minimum == MagickMaximumValue) |
360 | 0 | return(DestroyKernelInfo(kernel)); |
361 | | |
362 | 0 | if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel size */ |
363 | 0 | ExpandRotateKernelInfo(kernel, 45.0); /* cyclic rotate 3x3 kernels */ |
364 | 0 | else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ |
365 | 0 | ExpandRotateKernelInfo(kernel, 90.0); /* 90 degree rotate of kernel */ |
366 | 0 | else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ |
367 | 0 | ExpandMirrorKernelInfo(kernel); /* 90 degree mirror rotate */ |
368 | |
|
369 | 0 | return(kernel); |
370 | 0 | } |
371 | | |
372 | | static KernelInfo *ParseKernelName(const char *kernel_string, |
373 | | ExceptionInfo *exception) |
374 | 0 | { |
375 | 0 | char |
376 | 0 | token[MagickPathExtent] = ""; |
377 | |
|
378 | 0 | const char |
379 | 0 | *p, |
380 | 0 | *end; |
381 | |
|
382 | 0 | GeometryInfo |
383 | 0 | args; |
384 | |
|
385 | 0 | KernelInfo |
386 | 0 | *kernel; |
387 | |
|
388 | 0 | MagickStatusType |
389 | 0 | flags; |
390 | |
|
391 | 0 | ssize_t |
392 | 0 | type; |
393 | | |
394 | | /* Parse special 'named' kernel */ |
395 | 0 | (void) GetNextToken(kernel_string,&p,MagickPathExtent,token); |
396 | 0 | type=ParseCommandOption(MagickKernelOptions,MagickFalse,token); |
397 | 0 | if ( type < 0 || type == UserDefinedKernel ) |
398 | 0 | return((KernelInfo *) NULL); /* not a valid named kernel */ |
399 | | |
400 | 0 | while (((isspace((int) ((unsigned char) *p)) != 0) || |
401 | 0 | (*p == ',') || (*p == ':' )) && (*p != '\0') && (*p != ';')) |
402 | 0 | p++; |
403 | |
|
404 | 0 | end = strchr(p, ';'); /* end of this kernel definition */ |
405 | 0 | if ( end == (char *) NULL ) |
406 | 0 | end = strchr(p, '\0'); |
407 | | |
408 | | /* ParseGeometry() needs the geometry separated! -- Arrgghh */ |
409 | 0 | (void) memcpy(token, p, (size_t) (end-p)); |
410 | 0 | token[end-p] = '\0'; |
411 | 0 | SetGeometryInfo(&args); |
412 | 0 | flags = ParseGeometry(token, &args); |
413 | |
|
414 | | #if 0 |
415 | | /* For Debugging Geometry Input */ |
416 | | (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", |
417 | | flags, args.rho, args.sigma, args.xi, args.psi ); |
418 | | #endif |
419 | | |
420 | | /* special handling of missing values in input string */ |
421 | 0 | switch( type ) { |
422 | | /* Shape Kernel Defaults */ |
423 | 0 | case UnityKernel: |
424 | 0 | if ( (flags & WidthValue) == 0 ) |
425 | 0 | args.rho = 1.0; /* Default scale = 1.0, zero is valid */ |
426 | 0 | break; |
427 | 0 | case SquareKernel: |
428 | 0 | case DiamondKernel: |
429 | 0 | case OctagonKernel: |
430 | 0 | case DiskKernel: |
431 | 0 | case PlusKernel: |
432 | 0 | case CrossKernel: |
433 | 0 | if ( (flags & HeightValue) == 0 ) |
434 | 0 | args.sigma = 1.0; /* Default scale = 1.0, zero is valid */ |
435 | 0 | break; |
436 | 0 | case RingKernel: |
437 | 0 | if ( (flags & XValue) == 0 ) |
438 | 0 | args.xi = 1.0; /* Default scale = 1.0, zero is valid */ |
439 | 0 | break; |
440 | 0 | case RectangleKernel: /* Rectangle - set size defaults */ |
441 | 0 | if ( (flags & WidthValue) == 0 ) /* if no width then */ |
442 | 0 | args.rho = args.sigma; /* then width = height */ |
443 | 0 | if ( args.rho < 1.0 ) /* if width too small */ |
444 | 0 | args.rho = 3; /* then width = 3 */ |
445 | 0 | if ( args.sigma < 1.0 ) /* if height too small */ |
446 | 0 | args.sigma = args.rho; /* then height = width */ |
447 | 0 | if ( (flags & XValue) == 0 ) /* center offset if not defined */ |
448 | 0 | args.xi = (double)(((ssize_t)args.rho-1)/2); |
449 | 0 | if ( (flags & YValue) == 0 ) |
450 | 0 | args.psi = (double)(((ssize_t)args.sigma-1)/2); |
451 | 0 | break; |
452 | | /* Distance Kernel Defaults */ |
453 | 0 | case ChebyshevKernel: |
454 | 0 | case ManhattanKernel: |
455 | 0 | case OctagonalKernel: |
456 | 0 | case EuclideanKernel: |
457 | 0 | if ( (flags & HeightValue) == 0 ) /* no distance scale */ |
458 | 0 | args.sigma = 100.0; /* default distance scaling */ |
459 | 0 | else if ( (flags & AspectValue ) != 0 ) /* '!' flag */ |
460 | 0 | args.sigma = (double) QuantumRange/(args.sigma+1); /* maximum pixel distance */ |
461 | 0 | else if ( (flags & PercentValue ) != 0 ) /* '%' flag */ |
462 | 0 | args.sigma *= (double) QuantumRange/100.0; /* percentage of color range */ |
463 | 0 | break; |
464 | 0 | default: |
465 | 0 | break; |
466 | 0 | } |
467 | | |
468 | 0 | kernel = AcquireKernelBuiltIn((KernelInfoType)type, &args, exception); |
469 | 0 | if ( kernel == (KernelInfo *) NULL ) |
470 | 0 | return(kernel); |
471 | | |
472 | | /* global expand to rotated kernel list - only for single kernels */ |
473 | 0 | if ( kernel->next == (KernelInfo *) NULL ) { |
474 | 0 | if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel args */ |
475 | 0 | ExpandRotateKernelInfo(kernel, 45.0); |
476 | 0 | else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ |
477 | 0 | ExpandRotateKernelInfo(kernel, 90.0); |
478 | 0 | else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ |
479 | 0 | ExpandMirrorKernelInfo(kernel); |
480 | 0 | } |
481 | |
|
482 | 0 | return(kernel); |
483 | 0 | } |
484 | | |
485 | | MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string, |
486 | | ExceptionInfo *exception) |
487 | 0 | { |
488 | 0 | KernelInfo |
489 | 0 | *kernel, |
490 | 0 | *new_kernel; |
491 | |
|
492 | 0 | char |
493 | 0 | *kernel_cache, |
494 | 0 | token[MagickPathExtent]; |
495 | |
|
496 | 0 | const char |
497 | 0 | *p; |
498 | |
|
499 | 0 | if (kernel_string == (const char *) NULL) |
500 | 0 | return(ParseKernelArray(kernel_string)); |
501 | 0 | p=kernel_string; |
502 | 0 | kernel_cache=(char *) NULL; |
503 | 0 | if (*kernel_string == '@') |
504 | 0 | { |
505 | 0 | kernel_cache=FileToString(kernel_string,~0UL,exception); |
506 | 0 | if (kernel_cache == (char *) NULL) |
507 | 0 | return((KernelInfo *) NULL); |
508 | 0 | p=(const char *) kernel_cache; |
509 | 0 | } |
510 | 0 | kernel=NULL; |
511 | 0 | while (GetNextToken(p,(const char **) NULL,MagickPathExtent,token), *token != '\0') |
512 | 0 | { |
513 | | /* ignore extra or multiple ';' kernel separators */ |
514 | 0 | if (*token != ';') |
515 | 0 | { |
516 | | /* tokens starting with alpha is a Named kernel */ |
517 | 0 | if (isalpha((int) ((unsigned char) *token)) != 0) |
518 | 0 | new_kernel=ParseKernelName(p,exception); |
519 | 0 | else /* otherwise a user defined kernel array */ |
520 | 0 | new_kernel=ParseKernelArray(p); |
521 | | |
522 | | /* Error handling -- this is not proper error handling! */ |
523 | 0 | if (new_kernel == (KernelInfo *) NULL) |
524 | 0 | { |
525 | 0 | if (kernel != (KernelInfo *) NULL) |
526 | 0 | kernel=DestroyKernelInfo(kernel); |
527 | 0 | return((KernelInfo *) NULL); |
528 | 0 | } |
529 | | |
530 | | /* initialise or append the kernel list */ |
531 | 0 | if (kernel == (KernelInfo *) NULL) |
532 | 0 | kernel=new_kernel; |
533 | 0 | else |
534 | 0 | LastKernelInfo(kernel)->next=new_kernel; |
535 | 0 | } |
536 | | |
537 | | /* look for the next kernel in list */ |
538 | 0 | p=strchr(p,';'); |
539 | 0 | if (p == (char *) NULL) |
540 | 0 | break; |
541 | 0 | p++; |
542 | 0 | } |
543 | 0 | if (kernel_cache != (char *) NULL) |
544 | 0 | kernel_cache=DestroyString(kernel_cache); |
545 | 0 | return(kernel); |
546 | 0 | } |
547 | | |
548 | | /* |
549 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
550 | | % % |
551 | | % % |
552 | | % % |
553 | | % A c q u i r e K e r n e l B u i l t I n % |
554 | | % % |
555 | | % % |
556 | | % % |
557 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
558 | | % |
559 | | % AcquireKernelBuiltIn() returned one of the 'named' built-in types of |
560 | | % kernels used for special purposes such as gaussian blurring, skeleton |
561 | | % pruning, and edge distance determination. |
562 | | % |
563 | | % They take a KernelType, and a set of geometry style arguments, which were |
564 | | % typically decoded from a user supplied string, or from a more complex |
565 | | % Morphology Method that was requested. |
566 | | % |
567 | | % The format of the AcquireKernelBuiltIn method is: |
568 | | % |
569 | | % KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
570 | | % const GeometryInfo args) |
571 | | % |
572 | | % A description of each parameter follows: |
573 | | % |
574 | | % o type: the pre-defined type of kernel wanted |
575 | | % |
576 | | % o args: arguments defining or modifying the kernel |
577 | | % |
578 | | % Convolution Kernels |
579 | | % |
580 | | % Unity |
581 | | % The a No-Op or Scaling single element kernel. |
582 | | % |
583 | | % Gaussian:{radius},{sigma} |
584 | | % Generate a two-dimensional gaussian kernel, as used by -gaussian. |
585 | | % The sigma for the curve is required. The resulting kernel is |
586 | | % normalized, |
587 | | % |
588 | | % If 'sigma' is zero, you get a single pixel on a field of zeros. |
589 | | % |
590 | | % NOTE: that the 'radius' is optional, but if provided can limit (clip) |
591 | | % the final size of the resulting kernel to a square 2*radius+1 in size. |
592 | | % The radius should be at least 2 times that of the sigma value, or |
593 | | % sever clipping and aliasing may result. If not given or set to 0 the |
594 | | % radius will be determined so as to produce the best minimal error |
595 | | % result, which is usually much larger than is normally needed. |
596 | | % |
597 | | % LoG:{radius},{sigma} |
598 | | % "Laplacian of a Gaussian" or "Mexican Hat" Kernel. |
599 | | % The supposed ideal edge detection, zero-summing kernel. |
600 | | % |
601 | | % An alternative to this kernel is to use a "DoG" with a sigma ratio of |
602 | | % approx 1.6 (according to wikipedia). |
603 | | % |
604 | | % DoG:{radius},{sigma1},{sigma2} |
605 | | % "Difference of Gaussians" Kernel. |
606 | | % As "Gaussian" but with a gaussian produced by 'sigma2' subtracted |
607 | | % from the gaussian produced by 'sigma1'. Typically sigma2 > sigma1. |
608 | | % The result is a zero-summing kernel. |
609 | | % |
610 | | % Blur:{radius},{sigma}[,{angle}] |
611 | | % Generates a 1 dimensional or linear gaussian blur, at the angle given |
612 | | % (current restricted to orthogonal angles). If a 'radius' is given the |
613 | | % kernel is clipped to a width of 2*radius+1. Kernel can be rotated |
614 | | % by a 90 degree angle. |
615 | | % |
616 | | % If 'sigma' is zero, you get a single pixel on a field of zeros. |
617 | | % |
618 | | % Note that two convolutions with two "Blur" kernels perpendicular to |
619 | | % each other, is equivalent to a far larger "Gaussian" kernel with the |
620 | | % same sigma value, However it is much faster to apply. This is how the |
621 | | % "-blur" operator actually works. |
622 | | % |
623 | | % Comet:{width},{sigma},{angle} |
624 | | % Blur in one direction only, much like how a bright object leaves |
625 | | % a comet like trail. The Kernel is actually half a gaussian curve, |
626 | | % Adding two such blurs in opposite directions produces a Blur Kernel. |
627 | | % Angle can be rotated in multiples of 90 degrees. |
628 | | % |
629 | | % Note that the first argument is the width of the kernel and not the |
630 | | % radius of the kernel. |
631 | | % |
632 | | % Binomial:[{radius}] |
633 | | % Generate a discrete kernel using a 2 dimensional Pascal's Triangle |
634 | | % of values. Used for special forma of image filters. |
635 | | % |
636 | | % # Still to be implemented... |
637 | | % # |
638 | | % # Filter2D |
639 | | % # Filter1D |
640 | | % # Set kernel values using a resize filter, and given scale (sigma) |
641 | | % # Cylindrical or Linear. Is this possible with an image? |
642 | | % # |
643 | | % |
644 | | % Named Constant Convolution Kernels |
645 | | % |
646 | | % All these are unscaled, zero-summing kernels by default. As such for |
647 | | % non-HDRI version of ImageMagick some form of normalization, user scaling, |
648 | | % and biasing the results is recommended, to prevent the resulting image |
649 | | % being 'clipped'. |
650 | | % |
651 | | % The 3x3 kernels (most of these) can be circularly rotated in multiples of |
652 | | % 45 degrees to generate the 8 angled variants of each of the kernels. |
653 | | % |
654 | | % Laplacian:{type} |
655 | | % Discrete Laplacian Kernels, (without normalization) |
656 | | % Type 0 : 3x3 with center:8 surrounded by -1 (8 neighbourhood) |
657 | | % Type 1 : 3x3 with center:4 edge:-1 corner:0 (4 neighbourhood) |
658 | | % Type 2 : 3x3 with center:4 edge:1 corner:-2 |
659 | | % Type 3 : 3x3 with center:4 edge:-2 corner:1 |
660 | | % Type 5 : 5x5 laplacian |
661 | | % Type 7 : 7x7 laplacian |
662 | | % Type 15 : 5x5 LoG (sigma approx 1.4) |
663 | | % Type 19 : 9x9 LoG (sigma approx 1.4) |
664 | | % |
665 | | % Sobel:{angle} |
666 | | % Sobel 'Edge' convolution kernel (3x3) |
667 | | % | -1, 0, 1 | |
668 | | % | -2, 0,-2 | |
669 | | % | -1, 0, 1 | |
670 | | % |
671 | | % Roberts:{angle} |
672 | | % Roberts convolution kernel (3x3) |
673 | | % | 0, 0, 0 | |
674 | | % | -1, 1, 0 | |
675 | | % | 0, 0, 0 | |
676 | | % |
677 | | % Prewitt:{angle} |
678 | | % Prewitt Edge convolution kernel (3x3) |
679 | | % | -1, 0, 1 | |
680 | | % | -1, 0, 1 | |
681 | | % | -1, 0, 1 | |
682 | | % |
683 | | % Compass:{angle} |
684 | | % Prewitt's "Compass" convolution kernel (3x3) |
685 | | % | -1, 1, 1 | |
686 | | % | -1,-2, 1 | |
687 | | % | -1, 1, 1 | |
688 | | % |
689 | | % Kirsch:{angle} |
690 | | % Kirsch's "Compass" convolution kernel (3x3) |
691 | | % | -3,-3, 5 | |
692 | | % | -3, 0, 5 | |
693 | | % | -3,-3, 5 | |
694 | | % |
695 | | % FreiChen:{angle} |
696 | | % Frei-Chen Edge Detector is based on a kernel that is similar to |
697 | | % the Sobel Kernel, but is designed to be isotropic. That is it takes |
698 | | % into account the distance of the diagonal in the kernel. |
699 | | % |
700 | | % | 1, 0, -1 | |
701 | | % | sqrt(2), 0, -sqrt(2) | |
702 | | % | 1, 0, -1 | |
703 | | % |
704 | | % FreiChen:{type},{angle} |
705 | | % |
706 | | % Frei-Chen Pre-weighted kernels... |
707 | | % |
708 | | % Type 0: default un-normalized version shown above. |
709 | | % |
710 | | % Type 1: Orthogonal Kernel (same as type 11 below) |
711 | | % | 1, 0, -1 | |
712 | | % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
713 | | % | 1, 0, -1 | |
714 | | % |
715 | | % Type 2: Diagonal form of Kernel... |
716 | | % | 1, sqrt(2), 0 | |
717 | | % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
718 | | % | 0, -sqrt(2) -1 | |
719 | | % |
720 | | % However this kernel is als at the heart of the FreiChen Edge Detection |
721 | | % Process which uses a set of 9 specially weighted kernel. These 9 |
722 | | % kernels not be normalized, but directly applied to the image. The |
723 | | % results is then added together, to produce the intensity of an edge in |
724 | | % a specific direction. The square root of the pixel value can then be |
725 | | % taken as the cosine of the edge, and at least 2 such runs at 90 degrees |
726 | | % from each other, both the direction and the strength of the edge can be |
727 | | % determined. |
728 | | % |
729 | | % Type 10: All 9 of the following pre-weighted kernels... |
730 | | % |
731 | | % Type 11: | 1, 0, -1 | |
732 | | % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
733 | | % | 1, 0, -1 | |
734 | | % |
735 | | % Type 12: | 1, sqrt(2), 1 | |
736 | | % | 0, 0, 0 | / 2*sqrt(2) |
737 | | % | 1, sqrt(2), 1 | |
738 | | % |
739 | | % Type 13: | sqrt(2), -1, 0 | |
740 | | % | -1, 0, 1 | / 2*sqrt(2) |
741 | | % | 0, 1, -sqrt(2) | |
742 | | % |
743 | | % Type 14: | 0, 1, -sqrt(2) | |
744 | | % | -1, 0, 1 | / 2*sqrt(2) |
745 | | % | sqrt(2), -1, 0 | |
746 | | % |
747 | | % Type 15: | 0, -1, 0 | |
748 | | % | 1, 0, 1 | / 2 |
749 | | % | 0, -1, 0 | |
750 | | % |
751 | | % Type 16: | 1, 0, -1 | |
752 | | % | 0, 0, 0 | / 2 |
753 | | % | -1, 0, 1 | |
754 | | % |
755 | | % Type 17: | 1, -2, 1 | |
756 | | % | -2, 4, -2 | / 6 |
757 | | % | -1, -2, 1 | |
758 | | % |
759 | | % Type 18: | -2, 1, -2 | |
760 | | % | 1, 4, 1 | / 6 |
761 | | % | -2, 1, -2 | |
762 | | % |
763 | | % Type 19: | 1, 1, 1 | |
764 | | % | 1, 1, 1 | / 3 |
765 | | % | 1, 1, 1 | |
766 | | % |
767 | | % The first 4 are for edge detection, the next 4 are for line detection |
768 | | % and the last is to add a average component to the results. |
769 | | % |
770 | | % Using a special type of '-1' will return all 9 pre-weighted kernels |
771 | | % as a multi-kernel list, so that you can use them directly (without |
772 | | % normalization) with the special "-set option:morphology:compose Plus" |
773 | | % setting to apply the full FreiChen Edge Detection Technique. |
774 | | % |
775 | | % If 'type' is large it will be taken to be an actual rotation angle for |
776 | | % the default FreiChen (type 0) kernel. As such FreiChen:45 will look |
777 | | % like a Sobel:45 but with 'sqrt(2)' instead of '2' values. |
778 | | % |
779 | | % WARNING: The above was layed out as per |
780 | | % http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf |
781 | | % But rotated 90 degrees so direction is from left rather than the top. |
782 | | % I have yet to find any secondary confirmation of the above. The only |
783 | | % other source found was actual source code at |
784 | | % http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf |
785 | | % Neither paper defines the kernels in a way that looks logical or |
786 | | % correct when taken as a whole. |
787 | | % |
788 | | % Boolean Kernels |
789 | | % |
790 | | % Diamond:[{radius}[,{scale}]] |
791 | | % Generate a diamond shaped kernel with given radius to the points. |
792 | | % Kernel size will again be radius*2+1 square and defaults to radius 1, |
793 | | % generating a 3x3 kernel that is slightly larger than a square. |
794 | | % |
795 | | % Square:[{radius}[,{scale}]] |
796 | | % Generate a square shaped kernel of size radius*2+1, and defaulting |
797 | | % to a 3x3 (radius 1). |
798 | | % |
799 | | % Octagon:[{radius}[,{scale}]] |
800 | | % Generate octagonal shaped kernel of given radius and constant scale. |
801 | | % Default radius is 3 producing a 7x7 kernel. A radius of 1 will result |
802 | | % in "Diamond" kernel. |
803 | | % |
804 | | % Disk:[{radius}[,{scale}]] |
805 | | % Generate a binary disk, thresholded at the radius given, the radius |
806 | | % may be a float-point value. Final Kernel size is floor(radius)*2+1 |
807 | | % square. A radius of 5.3 is the default. |
808 | | % |
809 | | % NOTE: That a low radii Disk kernels produce the same results as |
810 | | % many of the previously defined kernels, but differ greatly at larger |
811 | | % radii. Here is a table of equivalences... |
812 | | % "Disk:1" => "Diamond", "Octagon:1", or "Cross:1" |
813 | | % "Disk:1.5" => "Square" |
814 | | % "Disk:2" => "Diamond:2" |
815 | | % "Disk:2.5" => "Octagon" |
816 | | % "Disk:2.9" => "Square:2" |
817 | | % "Disk:3.5" => "Octagon:3" |
818 | | % "Disk:4.5" => "Octagon:4" |
819 | | % "Disk:5.4" => "Octagon:5" |
820 | | % "Disk:6.4" => "Octagon:6" |
821 | | % All other Disk shapes are unique to this kernel, but because a "Disk" |
822 | | % is more circular when using a larger radius, using a larger radius is |
823 | | % preferred over iterating the morphological operation. |
824 | | % |
825 | | % Rectangle:{geometry} |
826 | | % Simply generate a rectangle of 1's with the size given. You can also |
827 | | % specify the location of the 'control point', otherwise the closest |
828 | | % pixel to the center of the rectangle is selected. |
829 | | % |
830 | | % Properly centered and odd sized rectangles work the best. |
831 | | % |
832 | | % Symbol Dilation Kernels |
833 | | % |
834 | | % These kernel is not a good general morphological kernel, but is used |
835 | | % more for highlighting and marking any single pixels in an image using, |
836 | | % a "Dilate" method as appropriate. |
837 | | % |
838 | | % For the same reasons iterating these kernels does not produce the |
839 | | % same result as using a larger radius for the symbol. |
840 | | % |
841 | | % Plus:[{radius}[,{scale}]] |
842 | | % Cross:[{radius}[,{scale}]] |
843 | | % Generate a kernel in the shape of a 'plus' or a 'cross' with |
844 | | % a each arm the length of the given radius (default 2). |
845 | | % |
846 | | % NOTE: "plus:1" is equivalent to a "Diamond" kernel. |
847 | | % |
848 | | % Ring:{radius1},{radius2}[,{scale}] |
849 | | % A ring of the values given that falls between the two radii. |
850 | | % Defaults to a ring of approximately 3 radius in a 7x7 kernel. |
851 | | % This is the 'edge' pixels of the default "Disk" kernel, |
852 | | % More specifically, "Ring" -> "Ring:2.5,3.5,1.0" |
853 | | % |
854 | | % Hit and Miss Kernels |
855 | | % |
856 | | % Peak:radius1,radius2 |
857 | | % Find any peak larger than the pixels the fall between the two radii. |
858 | | % The default ring of pixels is as per "Ring". |
859 | | % Edges |
860 | | % Find flat orthogonal edges of a binary shape |
861 | | % Corners |
862 | | % Find 90 degree corners of a binary shape |
863 | | % Diagonals:type |
864 | | % A special kernel to thin the 'outside' of diagonals |
865 | | % LineEnds:type |
866 | | % Find end points of lines (for pruning a skeleton) |
867 | | % Two types of lines ends (default to both) can be searched for |
868 | | % Type 0: All line ends |
869 | | % Type 1: single kernel for 4-connected line ends |
870 | | % Type 2: single kernel for simple line ends |
871 | | % LineJunctions |
872 | | % Find three line junctions (within a skeleton) |
873 | | % Type 0: all line junctions |
874 | | % Type 1: Y Junction kernel |
875 | | % Type 2: Diagonal T Junction kernel |
876 | | % Type 3: Orthogonal T Junction kernel |
877 | | % Type 4: Diagonal X Junction kernel |
878 | | % Type 5: Orthogonal + Junction kernel |
879 | | % Ridges:type |
880 | | % Find single pixel ridges or thin lines |
881 | | % Type 1: Fine single pixel thick lines and ridges |
882 | | % Type 2: Find two pixel thick lines and ridges |
883 | | % ConvexHull |
884 | | % Octagonal Thickening Kernel, to generate convex hulls of 45 degrees |
885 | | % Skeleton:type |
886 | | % Traditional skeleton generating kernels. |
887 | | % Type 1: Traditional Skeleton kernel (4 connected skeleton) |
888 | | % Type 2: HIPR2 Skeleton kernel (8 connected skeleton) |
889 | | % Type 3: Thinning skeleton based on a research paper by |
890 | | % Dan S. Bloomberg (Default Type) |
891 | | % ThinSE:type |
892 | | % A huge variety of Thinning Kernels designed to preserve connectivity. |
893 | | % many other kernel sets use these kernels as source definitions. |
894 | | % Type numbers are 41-49, 81-89, 481, and 482 which are based on |
895 | | % the super and sub notations used in the source research paper. |
896 | | % |
897 | | % Distance Measuring Kernels |
898 | | % |
899 | | % Different types of distance measuring methods, which are used with the |
900 | | % a 'Distance' morphology method for generating a gradient based on |
901 | | % distance from an edge of a binary shape, though there is a technique |
902 | | % for handling a anti-aliased shape. |
903 | | % |
904 | | % See the 'Distance' Morphological Method, for information of how it is |
905 | | % applied. |
906 | | % |
907 | | % Chebyshev:[{radius}][x{scale}[%!]] |
908 | | % Chebyshev Distance (also known as Tchebychev or Chessboard distance) |
909 | | % is a value of one to any neighbour, orthogonal or diagonal. One why |
910 | | % of thinking of it is the number of squares a 'King' or 'Queen' in |
911 | | % chess needs to traverse reach any other position on a chess board. |
912 | | % It results in a 'square' like distance function, but one where |
913 | | % diagonals are given a value that is closer than expected. |
914 | | % |
915 | | % Manhattan:[{radius}][x{scale}[%!]] |
916 | | % Manhattan Distance (also known as Rectilinear, City Block, or the Taxi |
917 | | % Cab distance metric), it is the distance needed when you can only |
918 | | % travel in horizontal or vertical directions only. It is the |
919 | | % distance a 'Rook' in chess would have to travel, and results in a |
920 | | % diamond like distances, where diagonals are further than expected. |
921 | | % |
922 | | % Octagonal:[{radius}][x{scale}[%!]] |
923 | | % An interleaving of Manhattan and Chebyshev metrics producing an |
924 | | % increasing octagonally shaped distance. Distances matches those of |
925 | | % the "Octagon" shaped kernel of the same radius. The minimum radius |
926 | | % and default is 2, producing a 5x5 kernel. |
927 | | % |
928 | | % Euclidean:[{radius}][x{scale}[%!]] |
929 | | % Euclidean distance is the 'direct' or 'as the crow flys' distance. |
930 | | % However by default the kernel size only has a radius of 1, which |
931 | | % limits the distance to 'Knight' like moves, with only orthogonal and |
932 | | % diagonal measurements being correct. As such for the default kernel |
933 | | % you will get octagonal like distance function. |
934 | | % |
935 | | % However using a larger radius such as "Euclidean:4" you will get a |
936 | | % much smoother distance gradient from the edge of the shape. Especially |
937 | | % if the image is pre-processed to include any anti-aliasing pixels. |
938 | | % Of course a larger kernel is slower to use, and not always needed. |
939 | | % |
940 | | % The first three Distance Measuring Kernels will only generate distances |
941 | | % of exact multiples of {scale} in binary images. As such you can use a |
942 | | % scale of 1 without loosing any information. However you also need some |
943 | | % scaling when handling non-binary anti-aliased shapes. |
944 | | % |
945 | | % The "Euclidean" Distance Kernel however does generate a non-integer |
946 | | % fractional results, and as such scaling is vital even for binary shapes. |
947 | | % |
948 | | */ |
949 | | |
950 | | MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
951 | | const GeometryInfo *args,ExceptionInfo *exception) |
952 | 0 | { |
953 | 0 | KernelInfo |
954 | 0 | *kernel; |
955 | |
|
956 | 0 | ssize_t |
957 | 0 | i; |
958 | |
|
959 | 0 | ssize_t |
960 | 0 | u, |
961 | 0 | v; |
962 | |
|
963 | 0 | double |
964 | 0 | nan = sqrt(-1.0); /* Special Value : Not A Number */ |
965 | | |
966 | | /* Generate a new empty kernel if needed */ |
967 | 0 | kernel=(KernelInfo *) NULL; |
968 | 0 | switch(type) { |
969 | 0 | case UndefinedKernel: /* These should not call this function */ |
970 | 0 | case UserDefinedKernel: |
971 | 0 | (void) ThrowMagickException(exception,GetMagickModule(),OptionWarning, |
972 | 0 | "InvalidOption","`%s'","Should not call this function"); |
973 | 0 | return((KernelInfo *) NULL); |
974 | 0 | case LaplacianKernel: /* Named Discrete Convolution Kernels */ |
975 | 0 | case SobelKernel: /* these are defined using other kernels */ |
976 | 0 | case RobertsKernel: |
977 | 0 | case PrewittKernel: |
978 | 0 | case CompassKernel: |
979 | 0 | case KirschKernel: |
980 | 0 | case FreiChenKernel: |
981 | 0 | case EdgesKernel: /* Hit and Miss kernels */ |
982 | 0 | case CornersKernel: |
983 | 0 | case DiagonalsKernel: |
984 | 0 | case LineEndsKernel: |
985 | 0 | case LineJunctionsKernel: |
986 | 0 | case RidgesKernel: |
987 | 0 | case ConvexHullKernel: |
988 | 0 | case SkeletonKernel: |
989 | 0 | case ThinSEKernel: |
990 | 0 | break; /* A pre-generated kernel is not needed */ |
991 | | #if 0 |
992 | | /* set to 1 to do a compile-time check that we haven't missed anything */ |
993 | | case UnityKernel: |
994 | | case GaussianKernel: |
995 | | case DoGKernel: |
996 | | case LoGKernel: |
997 | | case BlurKernel: |
998 | | case CometKernel: |
999 | | case BinomialKernel: |
1000 | | case DiamondKernel: |
1001 | | case SquareKernel: |
1002 | | case RectangleKernel: |
1003 | | case OctagonKernel: |
1004 | | case DiskKernel: |
1005 | | case PlusKernel: |
1006 | | case CrossKernel: |
1007 | | case RingKernel: |
1008 | | case PeaksKernel: |
1009 | | case ChebyshevKernel: |
1010 | | case ManhattanKernel: |
1011 | | case OctagonalKernel: |
1012 | | case EuclideanKernel: |
1013 | | #else |
1014 | 0 | default: |
1015 | 0 | #endif |
1016 | | /* Generate the base Kernel Structure */ |
1017 | 0 | kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
1018 | 0 | if (kernel == (KernelInfo *) NULL) |
1019 | 0 | return(kernel); |
1020 | 0 | (void) memset(kernel,0,sizeof(*kernel)); |
1021 | 0 | kernel->minimum = kernel->maximum = kernel->angle = 0.0; |
1022 | 0 | kernel->negative_range = kernel->positive_range = 0.0; |
1023 | 0 | kernel->type = type; |
1024 | 0 | kernel->next = (KernelInfo *) NULL; |
1025 | 0 | kernel->signature=MagickCoreSignature; |
1026 | 0 | break; |
1027 | 0 | } |
1028 | | |
1029 | 0 | switch(type) { |
1030 | | /* |
1031 | | Convolution Kernels |
1032 | | */ |
1033 | 0 | case UnityKernel: |
1034 | 0 | { |
1035 | 0 | kernel->height = kernel->width = (size_t) 1; |
1036 | 0 | kernel->x = kernel->y = (ssize_t) 0; |
1037 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1038 | 0 | AcquireAlignedMemory(1,sizeof(*kernel->values))); |
1039 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1040 | 0 | return(DestroyKernelInfo(kernel)); |
1041 | 0 | kernel->maximum = kernel->values[0] = args->rho; |
1042 | 0 | break; |
1043 | 0 | } |
1044 | 0 | break; |
1045 | 0 | case GaussianKernel: |
1046 | 0 | case DoGKernel: |
1047 | 0 | case LoGKernel: |
1048 | 0 | { double |
1049 | 0 | sigma = fabs(args->sigma), |
1050 | 0 | sigma2 = fabs(args->xi), |
1051 | 0 | A, B, R; |
1052 | |
|
1053 | 0 | if ( args->rho >= 1.0 ) |
1054 | 0 | kernel->width = (size_t)args->rho*2+1; |
1055 | 0 | else if ( (type != DoGKernel) || (sigma >= sigma2) ) |
1056 | 0 | kernel->width = GetOptimalKernelWidth2D(args->rho,sigma); |
1057 | 0 | else |
1058 | 0 | kernel->width = GetOptimalKernelWidth2D(args->rho,sigma2); |
1059 | 0 | kernel->height = kernel->width; |
1060 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1061 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1062 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1063 | 0 | sizeof(*kernel->values))); |
1064 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1065 | 0 | return(DestroyKernelInfo(kernel)); |
1066 | | |
1067 | | /* WARNING: The following generates a 'sampled gaussian' kernel. |
1068 | | * What we really want is a 'discrete gaussian' kernel. |
1069 | | * |
1070 | | * How to do this is I don't know, but appears to be basied on the |
1071 | | * Error Function 'erf()' (integral of a gaussian) |
1072 | | */ |
1073 | | |
1074 | 0 | if ( type == GaussianKernel || type == DoGKernel ) |
1075 | 0 | { /* Calculate a Gaussian, OR positive half of a DoG */ |
1076 | 0 | if ( sigma > MagickEpsilon ) |
1077 | 0 | { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
1078 | 0 | B = (double) (1.0/(Magick2PI*sigma*sigma)); |
1079 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1080 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1081 | 0 | kernel->values[i] = exp(-((double)(u*u+v*v))*A)*B; |
1082 | 0 | } |
1083 | 0 | else /* limiting case - a unity (normalized Dirac) kernel */ |
1084 | 0 | { (void) memset(kernel->values,0, (size_t) |
1085 | 0 | kernel->width*kernel->height*sizeof(*kernel->values)); |
1086 | 0 | kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width] = 1.0; |
1087 | 0 | } |
1088 | 0 | } |
1089 | |
|
1090 | 0 | if ( type == DoGKernel ) |
1091 | 0 | { /* Subtract a Negative Gaussian for "Difference of Gaussian" */ |
1092 | 0 | if ( sigma2 > MagickEpsilon ) |
1093 | 0 | { sigma = sigma2; /* simplify loop expressions */ |
1094 | 0 | A = 1.0/(2.0*sigma*sigma); |
1095 | 0 | B = (double) (1.0/(Magick2PI*sigma*sigma)); |
1096 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1097 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1098 | 0 | kernel->values[i] -= exp(-((double)(u*u+v*v))*A)*B; |
1099 | 0 | } |
1100 | 0 | else /* limiting case - a unity (normalized Dirac) kernel */ |
1101 | 0 | kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width] -= 1.0; |
1102 | 0 | } |
1103 | |
|
1104 | 0 | if ( type == LoGKernel ) |
1105 | 0 | { /* Calculate a Laplacian of a Gaussian - Or Mexican Hat */ |
1106 | 0 | if ( sigma > MagickEpsilon ) |
1107 | 0 | { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
1108 | 0 | B = (double) (1.0/(MagickPI*sigma*sigma*sigma*sigma)); |
1109 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1110 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1111 | 0 | { R = ((double)(u*u+v*v))*A; |
1112 | 0 | kernel->values[i] = (1-R)*exp(-R)*B; |
1113 | 0 | } |
1114 | 0 | } |
1115 | 0 | else /* special case - generate a unity kernel */ |
1116 | 0 | { (void) memset(kernel->values,0, (size_t) |
1117 | 0 | kernel->width*kernel->height*sizeof(*kernel->values)); |
1118 | 0 | kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width] = 1.0; |
1119 | 0 | } |
1120 | 0 | } |
1121 | | |
1122 | | /* Note the above kernels may have been 'clipped' by a user defined |
1123 | | ** radius, producing a smaller (darker) kernel. Also for very small |
1124 | | ** sigma's (> 0.1) the central value becomes larger than one, and thus |
1125 | | ** producing a very bright kernel. |
1126 | | ** |
1127 | | ** Normalization will still be needed. |
1128 | | */ |
1129 | | |
1130 | | /* Normalize the 2D Gaussian Kernel |
1131 | | ** |
1132 | | ** NB: a CorrelateNormalize performs a normal Normalize if |
1133 | | ** there are no negative values. |
1134 | | */ |
1135 | 0 | CalcKernelMetaData(kernel); /* the other kernel meta-data */ |
1136 | 0 | ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); |
1137 | |
|
1138 | 0 | break; |
1139 | 0 | } |
1140 | 0 | case BlurKernel: |
1141 | 0 | { double |
1142 | 0 | sigma = fabs(args->sigma), |
1143 | 0 | alpha, beta; |
1144 | |
|
1145 | 0 | if ( args->rho >= 1.0 ) |
1146 | 0 | kernel->width = (size_t)args->rho*2+1; |
1147 | 0 | else |
1148 | 0 | kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); |
1149 | 0 | kernel->height = 1; |
1150 | 0 | kernel->x = (ssize_t) (kernel->width-1)/2; |
1151 | 0 | kernel->y = 0; |
1152 | 0 | kernel->negative_range = kernel->positive_range = 0.0; |
1153 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1154 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1155 | 0 | sizeof(*kernel->values))); |
1156 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1157 | 0 | return(DestroyKernelInfo(kernel)); |
1158 | | |
1159 | 0 | #if 1 |
1160 | 0 | #define KernelRank 3 |
1161 | | /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix). |
1162 | | ** It generates a gaussian 3 times the width, and compresses it into |
1163 | | ** the expected range. This produces a closer normalization of the |
1164 | | ** resulting kernel, especially for very low sigma values. |
1165 | | ** As such while wierd it is prefered. |
1166 | | ** |
1167 | | ** I am told this method originally came from Photoshop. |
1168 | | ** |
1169 | | ** A properly normalized curve is generated (apart from edge clipping) |
1170 | | ** even though we later normalize the result (for edge clipping) |
1171 | | ** to allow the correct generation of a "Difference of Blurs". |
1172 | | */ |
1173 | | |
1174 | | /* initialize */ |
1175 | 0 | v = (ssize_t) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */ |
1176 | 0 | (void) memset(kernel->values,0, (size_t) |
1177 | 0 | kernel->width*kernel->height*sizeof(*kernel->values)); |
1178 | | /* Calculate a Positive 1D Gaussian */ |
1179 | 0 | if ( sigma > MagickEpsilon ) |
1180 | 0 | { sigma *= KernelRank; /* simplify loop expressions */ |
1181 | 0 | alpha = 1.0/(2.0*sigma*sigma); |
1182 | 0 | beta= (double) (1.0/(MagickSQ2PI*sigma )); |
1183 | 0 | for ( u=-v; u <= v; u++) { |
1184 | 0 | kernel->values[(u+v)/KernelRank] += |
1185 | 0 | exp(-((double)(u*u))*alpha)*beta; |
1186 | 0 | } |
1187 | 0 | } |
1188 | 0 | else /* special case - generate a unity kernel */ |
1189 | 0 | kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width] = 1.0; |
1190 | | #else |
1191 | | /* Direct calculation without curve averaging |
1192 | | This is equivalent to a KernelRank of 1 */ |
1193 | | |
1194 | | /* Calculate a Positive Gaussian */ |
1195 | | if ( sigma > MagickEpsilon ) |
1196 | | { alpha = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
1197 | | beta = 1.0/(MagickSQ2PI*sigma); |
1198 | | for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1199 | | kernel->values[i] = exp(-((double)(u*u))*alpha)*beta; |
1200 | | } |
1201 | | else /* special case - generate a unity kernel */ |
1202 | | { (void) memset(kernel->values,0, (size_t) |
1203 | | kernel->width*kernel->height*sizeof(*kernel->values)); |
1204 | | kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
1205 | | } |
1206 | | #endif |
1207 | | /* Note the above kernel may have been 'clipped' by a user defined |
1208 | | ** radius, producing a smaller (darker) kernel. Also for very small |
1209 | | ** sigma's (> 0.1) the central value becomes larger than one, as a |
1210 | | ** result of not generating a actual 'discrete' kernel, and thus |
1211 | | ** producing a very bright 'impulse'. |
1212 | | ** |
1213 | | ** Because of these two factors Normalization is required! |
1214 | | */ |
1215 | | |
1216 | | /* Normalize the 1D Gaussian Kernel |
1217 | | ** |
1218 | | ** NB: a CorrelateNormalize performs a normal Normalize if |
1219 | | ** there are no negative values. |
1220 | | */ |
1221 | 0 | CalcKernelMetaData(kernel); /* the other kernel meta-data */ |
1222 | 0 | ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); |
1223 | | |
1224 | | /* rotate the 1D kernel by given angle */ |
1225 | 0 | RotateKernelInfo(kernel, args->xi ); |
1226 | 0 | break; |
1227 | 0 | } |
1228 | 0 | case CometKernel: |
1229 | 0 | { double |
1230 | 0 | sigma = fabs(args->sigma), |
1231 | 0 | A; |
1232 | |
|
1233 | 0 | if ( args->rho < 1.0 ) |
1234 | 0 | kernel->width = (GetOptimalKernelWidth1D(args->rho,sigma)-1)/2+1; |
1235 | 0 | else |
1236 | 0 | kernel->width = (size_t)args->rho; |
1237 | 0 | kernel->x = kernel->y = 0; |
1238 | 0 | kernel->height = 1; |
1239 | 0 | kernel->negative_range = kernel->positive_range = 0.0; |
1240 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1241 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1242 | 0 | sizeof(*kernel->values))); |
1243 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1244 | 0 | return(DestroyKernelInfo(kernel)); |
1245 | | |
1246 | | /* A comet blur is half a 1D gaussian curve, so that the object is |
1247 | | ** blurred in one direction only. This may not be quite the right |
1248 | | ** curve to use so may change in the future. The function must be |
1249 | | ** normalised after generation, which also resolves any clipping. |
1250 | | ** |
1251 | | ** As we are normalizing and not subtracting gaussians, |
1252 | | ** there is no need for a divisor in the gaussian formula |
1253 | | ** |
1254 | | ** It is less complex |
1255 | | */ |
1256 | 0 | if ( sigma > MagickEpsilon ) |
1257 | 0 | { |
1258 | 0 | #if 1 |
1259 | 0 | #define KernelRank 3 |
1260 | 0 | v = (ssize_t) kernel->width*KernelRank; /* start/end points */ |
1261 | 0 | (void) memset(kernel->values,0, (size_t) |
1262 | 0 | kernel->width*sizeof(*kernel->values)); |
1263 | 0 | sigma *= KernelRank; /* simplify the loop expression */ |
1264 | 0 | A = 1.0/(2.0*sigma*sigma); |
1265 | | /* B = 1.0/(MagickSQ2PI*sigma); */ |
1266 | 0 | for ( u=0; u < v; u++) { |
1267 | 0 | kernel->values[u/KernelRank] += |
1268 | 0 | exp(-((double)(u*u))*A); |
1269 | | /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ |
1270 | 0 | } |
1271 | 0 | for (i=0; i < (ssize_t) kernel->width; i++) |
1272 | 0 | kernel->positive_range += kernel->values[i]; |
1273 | | #else |
1274 | | A = 1.0/(2.0*sigma*sigma); /* simplify the loop expression */ |
1275 | | /* B = 1.0/(MagickSQ2PI*sigma); */ |
1276 | | for ( i=0; i < (ssize_t) kernel->width; i++) |
1277 | | kernel->positive_range += |
1278 | | kernel->values[i] = exp(-((double)(i*i))*A); |
1279 | | /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ |
1280 | | #endif |
1281 | 0 | } |
1282 | 0 | else /* special case - generate a unity kernel */ |
1283 | 0 | { (void) memset(kernel->values,0, (size_t) |
1284 | 0 | kernel->width*kernel->height*sizeof(*kernel->values)); |
1285 | 0 | kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width] = 1.0; |
1286 | 0 | kernel->positive_range = 1.0; |
1287 | 0 | } |
1288 | |
|
1289 | 0 | kernel->minimum = 0.0; |
1290 | 0 | kernel->maximum = kernel->values[0]; |
1291 | 0 | kernel->negative_range = 0.0; |
1292 | |
|
1293 | 0 | ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ |
1294 | 0 | RotateKernelInfo(kernel, args->xi); /* Rotate by angle */ |
1295 | 0 | break; |
1296 | 0 | } |
1297 | 0 | case BinomialKernel: |
1298 | 0 | { |
1299 | 0 | size_t |
1300 | 0 | order_f; |
1301 | |
|
1302 | 0 | if (args->rho < 1.0) |
1303 | 0 | kernel->width = kernel->height = 3; /* default radius = 1 */ |
1304 | 0 | else |
1305 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
1306 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1307 | |
|
1308 | 0 | order_f = fact(kernel->width-1); |
1309 | |
|
1310 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1311 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1312 | 0 | sizeof(*kernel->values))); |
1313 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1314 | 0 | return(DestroyKernelInfo(kernel)); |
1315 | | |
1316 | | /* set all kernel values within diamond area to scale given */ |
1317 | 0 | for ( i=0, v=0; v < (ssize_t)kernel->height; v++) |
1318 | 0 | { size_t |
1319 | 0 | alpha = order_f / ( fact((size_t) v) * fact(kernel->height-(size_t) v-1) ); |
1320 | 0 | for ( u=0; u < (ssize_t)kernel->width; u++, i++) |
1321 | 0 | kernel->positive_range += kernel->values[i] = (double) |
1322 | 0 | (alpha * order_f / ( fact((size_t) u) * fact(kernel->height-(size_t) u-1) )); |
1323 | 0 | } |
1324 | 0 | kernel->minimum = 1.0; |
1325 | 0 | kernel->maximum = kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width]; |
1326 | 0 | kernel->negative_range = 0.0; |
1327 | 0 | break; |
1328 | 0 | } |
1329 | | |
1330 | | /* |
1331 | | Convolution Kernels - Well Known Named Constant Kernels |
1332 | | */ |
1333 | 0 | case LaplacianKernel: |
1334 | 0 | { switch ( (int) args->rho ) { |
1335 | 0 | case 0: |
1336 | 0 | default: /* laplacian square filter -- default */ |
1337 | 0 | kernel=ParseKernelArray("3: -1,-1,-1 -1,8,-1 -1,-1,-1"); |
1338 | 0 | break; |
1339 | 0 | case 1: /* laplacian diamond filter */ |
1340 | 0 | kernel=ParseKernelArray("3: 0,-1,0 -1,4,-1 0,-1,0"); |
1341 | 0 | break; |
1342 | 0 | case 2: |
1343 | 0 | kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); |
1344 | 0 | break; |
1345 | 0 | case 3: |
1346 | 0 | kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 1,-2,1"); |
1347 | 0 | break; |
1348 | 0 | case 5: /* a 5x5 laplacian */ |
1349 | 0 | kernel=ParseKernelArray( |
1350 | 0 | "5: -4,-1,0,-1,-4 -1,2,3,2,-1 0,3,4,3,0 -1,2,3,2,-1 -4,-1,0,-1,-4"); |
1351 | 0 | break; |
1352 | 0 | case 7: /* a 7x7 laplacian */ |
1353 | 0 | kernel=ParseKernelArray( |
1354 | 0 | "7:-10,-5,-2,-1,-2,-5,-10 -5,0,3,4,3,0,-5 -2,3,6,7,6,3,-2 -1,4,7,8,7,4,-1 -2,3,6,7,6,3,-2 -5,0,3,4,3,0,-5 -10,-5,-2,-1,-2,-5,-10" ); |
1355 | 0 | break; |
1356 | 0 | case 15: /* a 5x5 LoG (sigma approx 1.4) */ |
1357 | 0 | kernel=ParseKernelArray( |
1358 | 0 | "5: 0,0,-1,0,0 0,-1,-2,-1,0 -1,-2,16,-2,-1 0,-1,-2,-1,0 0,0,-1,0,0"); |
1359 | 0 | break; |
1360 | 0 | case 19: /* a 9x9 LoG (sigma approx 1.4) */ |
1361 | | /* http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue1/IJIP-15.pdf */ |
1362 | 0 | kernel=ParseKernelArray( |
1363 | 0 | "9: 0,-1,-1,-2,-2,-2,-1,-1,0 -1,-2,-4,-5,-5,-5,-4,-2,-1 -1,-4,-5,-3,-0,-3,-5,-4,-1 -2,-5,-3,12,24,12,-3,-5,-2 -2,-5,-0,24,40,24,-0,-5,-2 -2,-5,-3,12,24,12,-3,-5,-2 -1,-4,-5,-3,-0,-3,-5,-4,-1 -1,-2,-4,-5,-5,-5,-4,-2,-1 0,-1,-1,-2,-2,-2,-1,-1,0"); |
1364 | 0 | break; |
1365 | 0 | } |
1366 | 0 | if (kernel == (KernelInfo *) NULL) |
1367 | 0 | return(kernel); |
1368 | 0 | kernel->type = type; |
1369 | 0 | break; |
1370 | 0 | } |
1371 | 0 | case SobelKernel: |
1372 | 0 | { /* Simple Sobel Kernel */ |
1373 | 0 | kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
1374 | 0 | if (kernel == (KernelInfo *) NULL) |
1375 | 0 | return(kernel); |
1376 | 0 | kernel->type = type; |
1377 | 0 | RotateKernelInfo(kernel, args->rho); |
1378 | 0 | break; |
1379 | 0 | } |
1380 | 0 | case RobertsKernel: |
1381 | 0 | { |
1382 | 0 | kernel=ParseKernelArray("3: 0,0,0 1,-1,0 0,0,0"); |
1383 | 0 | if (kernel == (KernelInfo *) NULL) |
1384 | 0 | return(kernel); |
1385 | 0 | kernel->type = type; |
1386 | 0 | RotateKernelInfo(kernel, args->rho); |
1387 | 0 | break; |
1388 | 0 | } |
1389 | 0 | case PrewittKernel: |
1390 | 0 | { |
1391 | 0 | kernel=ParseKernelArray("3: 1,0,-1 1,0,-1 1,0,-1"); |
1392 | 0 | if (kernel == (KernelInfo *) NULL) |
1393 | 0 | return(kernel); |
1394 | 0 | kernel->type = type; |
1395 | 0 | RotateKernelInfo(kernel, args->rho); |
1396 | 0 | break; |
1397 | 0 | } |
1398 | 0 | case CompassKernel: |
1399 | 0 | { |
1400 | 0 | kernel=ParseKernelArray("3: 1,1,-1 1,-2,-1 1,1,-1"); |
1401 | 0 | if (kernel == (KernelInfo *) NULL) |
1402 | 0 | return(kernel); |
1403 | 0 | kernel->type = type; |
1404 | 0 | RotateKernelInfo(kernel, args->rho); |
1405 | 0 | break; |
1406 | 0 | } |
1407 | 0 | case KirschKernel: |
1408 | 0 | { |
1409 | 0 | kernel=ParseKernelArray("3: 5,-3,-3 5,0,-3 5,-3,-3"); |
1410 | 0 | if (kernel == (KernelInfo *) NULL) |
1411 | 0 | return(kernel); |
1412 | 0 | kernel->type = type; |
1413 | 0 | RotateKernelInfo(kernel, args->rho); |
1414 | 0 | break; |
1415 | 0 | } |
1416 | 0 | case FreiChenKernel: |
1417 | | /* Direction is set to be left to right positive */ |
1418 | | /* http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf -- RIGHT? */ |
1419 | | /* http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf -- WRONG? */ |
1420 | 0 | { switch ( (int) args->rho ) { |
1421 | 0 | default: |
1422 | 0 | case 0: |
1423 | 0 | kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
1424 | 0 | if (kernel == (KernelInfo *) NULL) |
1425 | 0 | return(kernel); |
1426 | 0 | kernel->type = type; |
1427 | 0 | kernel->values[3] = +(MagickRealType) MagickSQ2; |
1428 | 0 | kernel->values[5] = -(MagickRealType) MagickSQ2; |
1429 | 0 | CalcKernelMetaData(kernel); /* recalculate meta-data */ |
1430 | 0 | break; |
1431 | 0 | case 2: |
1432 | 0 | kernel=ParseKernelArray("3: 1,2,0 2,0,-2 0,-2,-1"); |
1433 | 0 | if (kernel == (KernelInfo *) NULL) |
1434 | 0 | return(kernel); |
1435 | 0 | kernel->type = type; |
1436 | 0 | kernel->values[1] = kernel->values[3]= +(MagickRealType) MagickSQ2; |
1437 | 0 | kernel->values[5] = kernel->values[7]= -(MagickRealType) MagickSQ2; |
1438 | 0 | CalcKernelMetaData(kernel); /* recalculate meta-data */ |
1439 | 0 | ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
1440 | 0 | break; |
1441 | 0 | case 10: |
1442 | 0 | { |
1443 | 0 | kernel=AcquireKernelInfo("FreiChen:11;FreiChen:12;FreiChen:13;FreiChen:14;FreiChen:15;FreiChen:16;FreiChen:17;FreiChen:18;FreiChen:19",exception); |
1444 | 0 | if (kernel == (KernelInfo *) NULL) |
1445 | 0 | return(kernel); |
1446 | 0 | break; |
1447 | 0 | } |
1448 | 0 | case 1: |
1449 | 0 | case 11: |
1450 | 0 | kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
1451 | 0 | if (kernel == (KernelInfo *) NULL) |
1452 | 0 | return(kernel); |
1453 | 0 | kernel->type = type; |
1454 | 0 | kernel->values[3] = +(MagickRealType) MagickSQ2; |
1455 | 0 | kernel->values[5] = -(MagickRealType) MagickSQ2; |
1456 | 0 | CalcKernelMetaData(kernel); /* recalculate meta-data */ |
1457 | 0 | ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
1458 | 0 | break; |
1459 | 0 | case 12: |
1460 | 0 | kernel=ParseKernelArray("3: 1,2,1 0,0,0 1,2,1"); |
1461 | 0 | if (kernel == (KernelInfo *) NULL) |
1462 | 0 | return(kernel); |
1463 | 0 | kernel->type = type; |
1464 | 0 | kernel->values[1] = +(MagickRealType) MagickSQ2; |
1465 | 0 | kernel->values[7] = +(MagickRealType) MagickSQ2; |
1466 | 0 | CalcKernelMetaData(kernel); |
1467 | 0 | ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
1468 | 0 | break; |
1469 | 0 | case 13: |
1470 | 0 | kernel=ParseKernelArray("3: 2,-1,0 -1,0,1 0,1,-2"); |
1471 | 0 | if (kernel == (KernelInfo *) NULL) |
1472 | 0 | return(kernel); |
1473 | 0 | kernel->type = type; |
1474 | 0 | kernel->values[0] = +(MagickRealType) MagickSQ2; |
1475 | 0 | kernel->values[8] = -(MagickRealType) MagickSQ2; |
1476 | 0 | CalcKernelMetaData(kernel); |
1477 | 0 | ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
1478 | 0 | break; |
1479 | 0 | case 14: |
1480 | 0 | kernel=ParseKernelArray("3: 0,1,-2 -1,0,1 2,-1,0"); |
1481 | 0 | if (kernel == (KernelInfo *) NULL) |
1482 | 0 | return(kernel); |
1483 | 0 | kernel->type = type; |
1484 | 0 | kernel->values[2] = -(MagickRealType) MagickSQ2; |
1485 | 0 | kernel->values[6] = +(MagickRealType) MagickSQ2; |
1486 | 0 | CalcKernelMetaData(kernel); |
1487 | 0 | ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
1488 | 0 | break; |
1489 | 0 | case 15: |
1490 | 0 | kernel=ParseKernelArray("3: 0,-1,0 1,0,1 0,-1,0"); |
1491 | 0 | if (kernel == (KernelInfo *) NULL) |
1492 | 0 | return(kernel); |
1493 | 0 | kernel->type = type; |
1494 | 0 | ScaleKernelInfo(kernel, 1.0/2.0, NoValue); |
1495 | 0 | break; |
1496 | 0 | case 16: |
1497 | 0 | kernel=ParseKernelArray("3: 1,0,-1 0,0,0 -1,0,1"); |
1498 | 0 | if (kernel == (KernelInfo *) NULL) |
1499 | 0 | return(kernel); |
1500 | 0 | kernel->type = type; |
1501 | 0 | ScaleKernelInfo(kernel, 1.0/2.0, NoValue); |
1502 | 0 | break; |
1503 | 0 | case 17: |
1504 | 0 | kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 -1,-2,1"); |
1505 | 0 | if (kernel == (KernelInfo *) NULL) |
1506 | 0 | return(kernel); |
1507 | 0 | kernel->type = type; |
1508 | 0 | ScaleKernelInfo(kernel, 1.0/6.0, NoValue); |
1509 | 0 | break; |
1510 | 0 | case 18: |
1511 | 0 | kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); |
1512 | 0 | if (kernel == (KernelInfo *) NULL) |
1513 | 0 | return(kernel); |
1514 | 0 | kernel->type = type; |
1515 | 0 | ScaleKernelInfo(kernel, 1.0/6.0, NoValue); |
1516 | 0 | break; |
1517 | 0 | case 19: |
1518 | 0 | kernel=ParseKernelArray("3: 1,1,1 1,1,1 1,1,1"); |
1519 | 0 | if (kernel == (KernelInfo *) NULL) |
1520 | 0 | return(kernel); |
1521 | 0 | kernel->type = type; |
1522 | 0 | ScaleKernelInfo(kernel, 1.0/3.0, NoValue); |
1523 | 0 | break; |
1524 | 0 | } |
1525 | 0 | if ( fabs(args->sigma) >= MagickEpsilon ) |
1526 | | /* Rotate by correctly supplied 'angle' */ |
1527 | 0 | RotateKernelInfo(kernel, args->sigma); |
1528 | 0 | else if ( args->rho > 30.0 || args->rho < -30.0 ) |
1529 | | /* Rotate by out of bounds 'type' */ |
1530 | 0 | RotateKernelInfo(kernel, args->rho); |
1531 | 0 | break; |
1532 | 0 | } |
1533 | | |
1534 | | /* |
1535 | | Boolean or Shaped Kernels |
1536 | | */ |
1537 | 0 | case DiamondKernel: |
1538 | 0 | { |
1539 | 0 | if (args->rho < 1.0) |
1540 | 0 | kernel->width = kernel->height = 3; /* default radius = 1 */ |
1541 | 0 | else |
1542 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
1543 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1544 | |
|
1545 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1546 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1547 | 0 | sizeof(*kernel->values))); |
1548 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1549 | 0 | return(DestroyKernelInfo(kernel)); |
1550 | | |
1551 | | /* set all kernel values within diamond area to scale given */ |
1552 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1553 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1554 | 0 | if ( (labs((long) u)+labs((long) v)) <= (long) kernel->x) |
1555 | 0 | kernel->positive_range += kernel->values[i] = args->sigma; |
1556 | 0 | else |
1557 | 0 | kernel->values[i] = nan; |
1558 | 0 | kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
1559 | 0 | break; |
1560 | 0 | } |
1561 | 0 | case SquareKernel: |
1562 | 0 | case RectangleKernel: |
1563 | 0 | { double |
1564 | 0 | scale; |
1565 | 0 | if ( type == SquareKernel ) |
1566 | 0 | { |
1567 | 0 | if (args->rho < 1.0) |
1568 | 0 | kernel->width = kernel->height = 3; /* default radius = 1 */ |
1569 | 0 | else |
1570 | 0 | kernel->width = kernel->height = (size_t) (2*args->rho+1); |
1571 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1572 | 0 | scale = args->sigma; |
1573 | 0 | } |
1574 | 0 | else { |
1575 | | /* NOTE: user defaults set in "AcquireKernelInfo()" */ |
1576 | 0 | if ( args->rho < 1.0 || args->sigma < 1.0 ) |
1577 | 0 | return(DestroyKernelInfo(kernel)); /* invalid args given */ |
1578 | 0 | kernel->width = (size_t)args->rho; |
1579 | 0 | kernel->height = (size_t)args->sigma; |
1580 | 0 | if ( args->xi < 0.0 || args->xi > (double)kernel->width || |
1581 | 0 | args->psi < 0.0 || args->psi > (double)kernel->height ) |
1582 | 0 | return(DestroyKernelInfo(kernel)); /* invalid args given */ |
1583 | 0 | kernel->x = (ssize_t) args->xi; |
1584 | 0 | kernel->y = (ssize_t) args->psi; |
1585 | 0 | scale = 1.0; |
1586 | 0 | } |
1587 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1588 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1589 | 0 | sizeof(*kernel->values))); |
1590 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1591 | 0 | return(DestroyKernelInfo(kernel)); |
1592 | | |
1593 | | /* set all kernel values to scale given */ |
1594 | 0 | u=(ssize_t) (kernel->width*kernel->height); |
1595 | 0 | for ( i=0; i < u; i++) |
1596 | 0 | kernel->values[i] = scale; |
1597 | 0 | kernel->minimum = kernel->maximum = scale; /* a flat shape */ |
1598 | 0 | kernel->positive_range = scale*u; |
1599 | 0 | break; |
1600 | 0 | } |
1601 | 0 | case OctagonKernel: |
1602 | 0 | { |
1603 | 0 | if (args->rho < 1.0) |
1604 | 0 | kernel->width = kernel->height = 5; /* default radius = 2 */ |
1605 | 0 | else |
1606 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
1607 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1608 | |
|
1609 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1610 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1611 | 0 | sizeof(*kernel->values))); |
1612 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1613 | 0 | return(DestroyKernelInfo(kernel)); |
1614 | | |
1615 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1616 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1617 | 0 | if ( (labs((long) u)+labs((long) v)) <= |
1618 | 0 | ((long)kernel->x + (long)(kernel->x/2)) ) |
1619 | 0 | kernel->positive_range += kernel->values[i] = args->sigma; |
1620 | 0 | else |
1621 | 0 | kernel->values[i] = nan; |
1622 | 0 | kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
1623 | 0 | break; |
1624 | 0 | } |
1625 | 0 | case DiskKernel: |
1626 | 0 | { |
1627 | 0 | ssize_t |
1628 | 0 | limit = (ssize_t)(args->rho*args->rho); |
1629 | |
|
1630 | 0 | if (args->rho < 0.4) /* default radius approx 4.3 */ |
1631 | 0 | kernel->width = kernel->height = 9L, limit = 18L; |
1632 | 0 | else |
1633 | 0 | kernel->width = kernel->height = (size_t)fabs(args->rho)*2+1; |
1634 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1635 | |
|
1636 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1637 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1638 | 0 | sizeof(*kernel->values))); |
1639 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1640 | 0 | return(DestroyKernelInfo(kernel)); |
1641 | | |
1642 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1643 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1644 | 0 | if ((u*u+v*v) <= limit) |
1645 | 0 | kernel->positive_range += kernel->values[i] = args->sigma; |
1646 | 0 | else |
1647 | 0 | kernel->values[i] = nan; |
1648 | 0 | kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
1649 | 0 | break; |
1650 | 0 | } |
1651 | 0 | case PlusKernel: |
1652 | 0 | { |
1653 | 0 | if (args->rho < 1.0) |
1654 | 0 | kernel->width = kernel->height = 5; /* default radius 2 */ |
1655 | 0 | else |
1656 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
1657 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1658 | |
|
1659 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1660 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1661 | 0 | sizeof(*kernel->values))); |
1662 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1663 | 0 | return(DestroyKernelInfo(kernel)); |
1664 | | |
1665 | | /* set all kernel values along axises to given scale */ |
1666 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1667 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1668 | 0 | kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan; |
1669 | 0 | kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
1670 | 0 | kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); |
1671 | 0 | break; |
1672 | 0 | } |
1673 | 0 | case CrossKernel: |
1674 | 0 | { |
1675 | 0 | if (args->rho < 1.0) |
1676 | 0 | kernel->width = kernel->height = 5; /* default radius 2 */ |
1677 | 0 | else |
1678 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
1679 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1680 | |
|
1681 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1682 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1683 | 0 | sizeof(*kernel->values))); |
1684 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1685 | 0 | return(DestroyKernelInfo(kernel)); |
1686 | | |
1687 | | /* set all kernel values along axises to given scale */ |
1688 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
1689 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1690 | 0 | kernel->values[i] = (u == v || u == -v) ? args->sigma : nan; |
1691 | 0 | kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
1692 | 0 | kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); |
1693 | 0 | break; |
1694 | 0 | } |
1695 | | /* |
1696 | | HitAndMiss Kernels |
1697 | | */ |
1698 | 0 | case RingKernel: |
1699 | 0 | case PeaksKernel: |
1700 | 0 | { |
1701 | 0 | ssize_t |
1702 | 0 | limit1, |
1703 | 0 | limit2, |
1704 | 0 | scale; |
1705 | |
|
1706 | 0 | if (args->rho < args->sigma) |
1707 | 0 | { |
1708 | 0 | kernel->width = ((size_t)args->sigma)*2+1; |
1709 | 0 | limit1 = (ssize_t)(args->rho*args->rho); |
1710 | 0 | limit2 = (ssize_t)(args->sigma*args->sigma); |
1711 | 0 | } |
1712 | 0 | else |
1713 | 0 | { |
1714 | 0 | kernel->width = ((size_t)args->rho)*2+1; |
1715 | 0 | limit1 = (ssize_t)(args->sigma*args->sigma); |
1716 | 0 | limit2 = (ssize_t)(args->rho*args->rho); |
1717 | 0 | } |
1718 | 0 | if ( limit2 <= 0 ) |
1719 | 0 | kernel->width = 7L, limit1 = 7L, limit2 = 11L; |
1720 | |
|
1721 | 0 | kernel->height = kernel->width; |
1722 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
1723 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
1724 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
1725 | 0 | sizeof(*kernel->values))); |
1726 | 0 | if (kernel->values == (MagickRealType *) NULL) |
1727 | 0 | return(DestroyKernelInfo(kernel)); |
1728 | | |
1729 | | /* set a ring of points of 'scale' ( 0.0 for PeaksKernel ) */ |
1730 | 0 | scale = (ssize_t) (( type == PeaksKernel) ? 0.0 : args->xi); |
1731 | 0 | for ( i=0, v= -kernel->y; v <= (ssize_t)kernel->y; v++) |
1732 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
1733 | 0 | { ssize_t radius=u*u+v*v; |
1734 | 0 | if (limit1 < radius && radius <= limit2) |
1735 | 0 | kernel->positive_range += kernel->values[i] = (double) scale; |
1736 | 0 | else |
1737 | 0 | kernel->values[i] = nan; |
1738 | 0 | } |
1739 | 0 | kernel->minimum = kernel->maximum = (double) scale; |
1740 | 0 | if ( type == PeaksKernel ) { |
1741 | | /* set the central point in the middle */ |
1742 | 0 | kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width] = 1.0; |
1743 | 0 | kernel->positive_range = 1.0; |
1744 | 0 | kernel->maximum = 1.0; |
1745 | 0 | } |
1746 | 0 | break; |
1747 | 0 | } |
1748 | 0 | case EdgesKernel: |
1749 | 0 | { |
1750 | 0 | kernel=AcquireKernelInfo("ThinSE:482",exception); |
1751 | 0 | if (kernel == (KernelInfo *) NULL) |
1752 | 0 | return(kernel); |
1753 | 0 | kernel->type = type; |
1754 | 0 | ExpandMirrorKernelInfo(kernel); /* mirror expansion of kernels */ |
1755 | 0 | break; |
1756 | 0 | } |
1757 | 0 | case CornersKernel: |
1758 | 0 | { |
1759 | 0 | kernel=AcquireKernelInfo("ThinSE:87",exception); |
1760 | 0 | if (kernel == (KernelInfo *) NULL) |
1761 | 0 | return(kernel); |
1762 | 0 | kernel->type = type; |
1763 | 0 | ExpandRotateKernelInfo(kernel, 90.0); /* Expand 90 degree rotations */ |
1764 | 0 | break; |
1765 | 0 | } |
1766 | 0 | case DiagonalsKernel: |
1767 | 0 | { |
1768 | 0 | switch ( (int) args->rho ) { |
1769 | 0 | case 0: |
1770 | 0 | default: |
1771 | 0 | { KernelInfo |
1772 | 0 | *new_kernel; |
1773 | 0 | kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-"); |
1774 | 0 | if (kernel == (KernelInfo *) NULL) |
1775 | 0 | return(kernel); |
1776 | 0 | kernel->type = type; |
1777 | 0 | new_kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-"); |
1778 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1779 | 0 | return(DestroyKernelInfo(kernel)); |
1780 | 0 | new_kernel->type = type; |
1781 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1782 | 0 | ExpandMirrorKernelInfo(kernel); |
1783 | 0 | return(kernel); |
1784 | 0 | } |
1785 | 0 | case 1: |
1786 | 0 | kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-"); |
1787 | 0 | break; |
1788 | 0 | case 2: |
1789 | 0 | kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-"); |
1790 | 0 | break; |
1791 | 0 | } |
1792 | 0 | if (kernel == (KernelInfo *) NULL) |
1793 | 0 | return(kernel); |
1794 | 0 | kernel->type = type; |
1795 | 0 | RotateKernelInfo(kernel, args->sigma); |
1796 | 0 | break; |
1797 | 0 | } |
1798 | 0 | case LineEndsKernel: |
1799 | 0 | { /* Kernels for finding the end of thin lines */ |
1800 | 0 | switch ( (int) args->rho ) { |
1801 | 0 | case 0: |
1802 | 0 | default: |
1803 | | /* set of kernels to find all end of lines */ |
1804 | 0 | return(AcquireKernelInfo("LineEnds:1>;LineEnds:2>",exception)); |
1805 | 0 | case 1: |
1806 | | /* kernel for 4-connected line ends - no rotation */ |
1807 | 0 | kernel=ParseKernelArray("3: 0,0,- 0,1,1 0,0,-"); |
1808 | 0 | break; |
1809 | 0 | case 2: |
1810 | | /* kernel to add for 8-connected lines - no rotation */ |
1811 | 0 | kernel=ParseKernelArray("3: 0,0,0 0,1,0 0,0,1"); |
1812 | 0 | break; |
1813 | 0 | case 3: |
1814 | | /* kernel to add for orthogonal line ends - does not find corners */ |
1815 | 0 | kernel=ParseKernelArray("3: 0,0,0 0,1,1 0,0,0"); |
1816 | 0 | break; |
1817 | 0 | case 4: |
1818 | | /* traditional line end - fails on last T end */ |
1819 | 0 | kernel=ParseKernelArray("3: 0,0,0 0,1,- 0,0,-"); |
1820 | 0 | break; |
1821 | 0 | } |
1822 | 0 | if (kernel == (KernelInfo *) NULL) |
1823 | 0 | return(kernel); |
1824 | 0 | kernel->type = type; |
1825 | 0 | RotateKernelInfo(kernel, args->sigma); |
1826 | 0 | break; |
1827 | 0 | } |
1828 | 0 | case LineJunctionsKernel: |
1829 | 0 | { /* kernels for finding the junctions of multiple lines */ |
1830 | 0 | switch ( (int) args->rho ) { |
1831 | 0 | case 0: |
1832 | 0 | default: |
1833 | | /* set of kernels to find all line junctions */ |
1834 | 0 | return(AcquireKernelInfo("LineJunctions:1@;LineJunctions:2>",exception)); |
1835 | 0 | case 1: |
1836 | | /* Y Junction */ |
1837 | 0 | kernel=ParseKernelArray("3: 1,-,1 -,1,- -,1,-"); |
1838 | 0 | break; |
1839 | 0 | case 2: |
1840 | | /* Diagonal T Junctions */ |
1841 | 0 | kernel=ParseKernelArray("3: 1,-,- -,1,- 1,-,1"); |
1842 | 0 | break; |
1843 | 0 | case 3: |
1844 | | /* Orthogonal T Junctions */ |
1845 | 0 | kernel=ParseKernelArray("3: -,-,- 1,1,1 -,1,-"); |
1846 | 0 | break; |
1847 | 0 | case 4: |
1848 | | /* Diagonal X Junctions */ |
1849 | 0 | kernel=ParseKernelArray("3: 1,-,1 -,1,- 1,-,1"); |
1850 | 0 | break; |
1851 | 0 | case 5: |
1852 | | /* Orthogonal X Junctions - minimal diamond kernel */ |
1853 | 0 | kernel=ParseKernelArray("3: -,1,- 1,1,1 -,1,-"); |
1854 | 0 | break; |
1855 | 0 | } |
1856 | 0 | if (kernel == (KernelInfo *) NULL) |
1857 | 0 | return(kernel); |
1858 | 0 | kernel->type = type; |
1859 | 0 | RotateKernelInfo(kernel, args->sigma); |
1860 | 0 | break; |
1861 | 0 | } |
1862 | 0 | case RidgesKernel: |
1863 | 0 | { /* Ridges - Ridge finding kernels */ |
1864 | 0 | KernelInfo |
1865 | 0 | *new_kernel; |
1866 | 0 | switch ( (int) args->rho ) { |
1867 | 0 | case 1: |
1868 | 0 | default: |
1869 | 0 | kernel=ParseKernelArray("3x1:0,1,0"); |
1870 | 0 | if (kernel == (KernelInfo *) NULL) |
1871 | 0 | return(kernel); |
1872 | 0 | kernel->type = type; |
1873 | 0 | ExpandRotateKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */ |
1874 | 0 | break; |
1875 | 0 | case 2: |
1876 | 0 | kernel=ParseKernelArray("4x1:0,1,1,0"); |
1877 | 0 | if (kernel == (KernelInfo *) NULL) |
1878 | 0 | return(kernel); |
1879 | 0 | kernel->type = type; |
1880 | 0 | ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotated kernels */ |
1881 | | |
1882 | | /* Kernels to find a stepped 'thick' line, 4 rotates + mirrors */ |
1883 | | /* Unfortunately we can not yet rotate a non-square kernel */ |
1884 | | /* But then we can't flip a non-symmetrical kernel either */ |
1885 | 0 | new_kernel=ParseKernelArray("4x3+1+1:0,1,1,- -,1,1,- -,1,1,0"); |
1886 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1887 | 0 | return(DestroyKernelInfo(kernel)); |
1888 | 0 | new_kernel->type = type; |
1889 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1890 | 0 | new_kernel=ParseKernelArray("4x3+2+1:0,1,1,- -,1,1,- -,1,1,0"); |
1891 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1892 | 0 | return(DestroyKernelInfo(kernel)); |
1893 | 0 | new_kernel->type = type; |
1894 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1895 | 0 | new_kernel=ParseKernelArray("4x3+1+1:-,1,1,0 -,1,1,- 0,1,1,-"); |
1896 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1897 | 0 | return(DestroyKernelInfo(kernel)); |
1898 | 0 | new_kernel->type = type; |
1899 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1900 | 0 | new_kernel=ParseKernelArray("4x3+2+1:-,1,1,0 -,1,1,- 0,1,1,-"); |
1901 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1902 | 0 | return(DestroyKernelInfo(kernel)); |
1903 | 0 | new_kernel->type = type; |
1904 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1905 | 0 | new_kernel=ParseKernelArray("3x4+1+1:0,-,- 1,1,1 1,1,1 -,-,0"); |
1906 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1907 | 0 | return(DestroyKernelInfo(kernel)); |
1908 | 0 | new_kernel->type = type; |
1909 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1910 | 0 | new_kernel=ParseKernelArray("3x4+1+2:0,-,- 1,1,1 1,1,1 -,-,0"); |
1911 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1912 | 0 | return(DestroyKernelInfo(kernel)); |
1913 | 0 | new_kernel->type = type; |
1914 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1915 | 0 | new_kernel=ParseKernelArray("3x4+1+1:-,-,0 1,1,1 1,1,1 0,-,-"); |
1916 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1917 | 0 | return(DestroyKernelInfo(kernel)); |
1918 | 0 | new_kernel->type = type; |
1919 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1920 | 0 | new_kernel=ParseKernelArray("3x4+1+2:-,-,0 1,1,1 1,1,1 0,-,-"); |
1921 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1922 | 0 | return(DestroyKernelInfo(kernel)); |
1923 | 0 | new_kernel->type = type; |
1924 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1925 | 0 | break; |
1926 | 0 | } |
1927 | 0 | break; |
1928 | 0 | } |
1929 | 0 | case ConvexHullKernel: |
1930 | 0 | { |
1931 | 0 | KernelInfo |
1932 | 0 | *new_kernel; |
1933 | | /* first set of 8 kernels */ |
1934 | 0 | kernel=ParseKernelArray("3: 1,1,- 1,0,- 1,-,0"); |
1935 | 0 | if (kernel == (KernelInfo *) NULL) |
1936 | 0 | return(kernel); |
1937 | 0 | kernel->type = type; |
1938 | 0 | ExpandRotateKernelInfo(kernel, 90.0); |
1939 | | /* append the mirror versions too - no flip function yet */ |
1940 | 0 | new_kernel=ParseKernelArray("3: 1,1,1 1,0,- -,-,0"); |
1941 | 0 | if (new_kernel == (KernelInfo *) NULL) |
1942 | 0 | return(DestroyKernelInfo(kernel)); |
1943 | 0 | new_kernel->type = type; |
1944 | 0 | ExpandRotateKernelInfo(new_kernel, 90.0); |
1945 | 0 | LastKernelInfo(kernel)->next = new_kernel; |
1946 | 0 | break; |
1947 | 0 | } |
1948 | 0 | case SkeletonKernel: |
1949 | 0 | { |
1950 | 0 | switch ( (int) args->rho ) { |
1951 | 0 | case 1: |
1952 | 0 | default: |
1953 | | /* Traditional Skeleton... |
1954 | | ** A cyclically rotated single kernel |
1955 | | */ |
1956 | 0 | kernel=AcquireKernelInfo("ThinSE:482",exception); |
1957 | 0 | if (kernel == (KernelInfo *) NULL) |
1958 | 0 | return(kernel); |
1959 | 0 | kernel->type = type; |
1960 | 0 | ExpandRotateKernelInfo(kernel, 45.0); /* 8 rotations */ |
1961 | 0 | break; |
1962 | 0 | case 2: |
1963 | | /* HIPR Variation of the cyclic skeleton |
1964 | | ** Corners of the traditional method made more forgiving, |
1965 | | ** but the retain the same cyclic order. |
1966 | | */ |
1967 | 0 | kernel=AcquireKernelInfo("ThinSE:482; ThinSE:87x90;",exception); |
1968 | 0 | if (kernel == (KernelInfo *) NULL) |
1969 | 0 | return(kernel); |
1970 | 0 | if (kernel->next == (KernelInfo *) NULL) |
1971 | 0 | return(DestroyKernelInfo(kernel)); |
1972 | 0 | kernel->type = type; |
1973 | 0 | kernel->next->type = type; |
1974 | 0 | ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotations of the 2 kernels */ |
1975 | 0 | break; |
1976 | 0 | case 3: |
1977 | | /* Dan Bloomberg Skeleton, from his paper on 3x3 thinning SE's |
1978 | | ** "Connectivity-Preserving Morphological Image Transformations" |
1979 | | ** by Dan S. Bloomberg, available on Leptonica, Selected Papers, |
1980 | | ** http://www.leptonica.com/papers/conn.pdf |
1981 | | */ |
1982 | 0 | kernel=AcquireKernelInfo("ThinSE:41; ThinSE:42; ThinSE:43", |
1983 | 0 | exception); |
1984 | 0 | if (kernel == (KernelInfo *) NULL) |
1985 | 0 | return(kernel); |
1986 | 0 | if (kernel->next == (KernelInfo *) NULL) |
1987 | 0 | return(DestroyKernelInfo(kernel)); |
1988 | 0 | if (kernel->next->next == (KernelInfo *) NULL) |
1989 | 0 | return(DestroyKernelInfo(kernel)); |
1990 | 0 | kernel->type = type; |
1991 | 0 | kernel->next->type = type; |
1992 | 0 | kernel->next->next->type = type; |
1993 | 0 | ExpandMirrorKernelInfo(kernel); /* 12 kernels total */ |
1994 | 0 | break; |
1995 | 0 | } |
1996 | 0 | break; |
1997 | 0 | } |
1998 | 0 | case ThinSEKernel: |
1999 | 0 | { /* Special kernels for general thinning, while preserving connections |
2000 | | ** "Connectivity-Preserving Morphological Image Transformations" |
2001 | | ** by Dan S. Bloomberg, available on Leptonica, Selected Papers, |
2002 | | ** http://www.leptonica.com/papers/conn.pdf |
2003 | | ** And |
2004 | | ** http://tpgit.github.com/Leptonica/ccthin_8c_source.html |
2005 | | ** |
2006 | | ** Note kernels do not specify the origin pixel, allowing them |
2007 | | ** to be used for both thickening and thinning operations. |
2008 | | */ |
2009 | 0 | switch ( (int) args->rho ) { |
2010 | | /* SE for 4-connected thinning */ |
2011 | 0 | case 41: /* SE_4_1 */ |
2012 | 0 | kernel=ParseKernelArray("3: -,-,1 0,-,1 -,-,1"); |
2013 | 0 | break; |
2014 | 0 | case 42: /* SE_4_2 */ |
2015 | 0 | kernel=ParseKernelArray("3: -,-,1 0,-,1 -,0,-"); |
2016 | 0 | break; |
2017 | 0 | case 43: /* SE_4_3 */ |
2018 | 0 | kernel=ParseKernelArray("3: -,0,- 0,-,1 -,-,1"); |
2019 | 0 | break; |
2020 | 0 | case 44: /* SE_4_4 */ |
2021 | 0 | kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,-"); |
2022 | 0 | break; |
2023 | 0 | case 45: /* SE_4_5 */ |
2024 | 0 | kernel=ParseKernelArray("3: -,0,1 0,-,1 -,0,-"); |
2025 | 0 | break; |
2026 | 0 | case 46: /* SE_4_6 */ |
2027 | 0 | kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,1"); |
2028 | 0 | break; |
2029 | 0 | case 47: /* SE_4_7 */ |
2030 | 0 | kernel=ParseKernelArray("3: -,1,1 0,-,1 -,0,-"); |
2031 | 0 | break; |
2032 | 0 | case 48: /* SE_4_8 */ |
2033 | 0 | kernel=ParseKernelArray("3: -,-,1 0,-,1 0,-,1"); |
2034 | 0 | break; |
2035 | 0 | case 49: /* SE_4_9 */ |
2036 | 0 | kernel=ParseKernelArray("3: 0,-,1 0,-,1 -,-,1"); |
2037 | 0 | break; |
2038 | | /* SE for 8-connected thinning - negatives of the above */ |
2039 | 0 | case 81: /* SE_8_0 */ |
2040 | 0 | kernel=ParseKernelArray("3: -,1,- 0,-,1 -,1,-"); |
2041 | 0 | break; |
2042 | 0 | case 82: /* SE_8_2 */ |
2043 | 0 | kernel=ParseKernelArray("3: -,1,- 0,-,1 0,-,-"); |
2044 | 0 | break; |
2045 | 0 | case 83: /* SE_8_3 */ |
2046 | 0 | kernel=ParseKernelArray("3: 0,-,- 0,-,1 -,1,-"); |
2047 | 0 | break; |
2048 | 0 | case 84: /* SE_8_4 */ |
2049 | 0 | kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,-"); |
2050 | 0 | break; |
2051 | 0 | case 85: /* SE_8_5 */ |
2052 | 0 | kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,-"); |
2053 | 0 | break; |
2054 | 0 | case 86: /* SE_8_6 */ |
2055 | 0 | kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,1"); |
2056 | 0 | break; |
2057 | 0 | case 87: /* SE_8_7 */ |
2058 | 0 | kernel=ParseKernelArray("3: -,1,- 0,-,1 0,0,-"); |
2059 | 0 | break; |
2060 | 0 | case 88: /* SE_8_8 */ |
2061 | 0 | kernel=ParseKernelArray("3: -,1,- 0,-,1 0,1,-"); |
2062 | 0 | break; |
2063 | 0 | case 89: /* SE_8_9 */ |
2064 | 0 | kernel=ParseKernelArray("3: 0,1,- 0,-,1 -,1,-"); |
2065 | 0 | break; |
2066 | | /* Special combined SE kernels */ |
2067 | 0 | case 423: /* SE_4_2 , SE_4_3 Combined Kernel */ |
2068 | 0 | kernel=ParseKernelArray("3: -,-,1 0,-,- -,0,-"); |
2069 | 0 | break; |
2070 | 0 | case 823: /* SE_8_2 , SE_8_3 Combined Kernel */ |
2071 | 0 | kernel=ParseKernelArray("3: -,1,- -,-,1 0,-,-"); |
2072 | 0 | break; |
2073 | 0 | case 481: /* SE_48_1 - General Connected Corner Kernel */ |
2074 | 0 | kernel=ParseKernelArray("3: -,1,1 0,-,1 0,0,-"); |
2075 | 0 | break; |
2076 | 0 | default: |
2077 | 0 | case 482: /* SE_48_2 - General Edge Kernel */ |
2078 | 0 | kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,1"); |
2079 | 0 | break; |
2080 | 0 | } |
2081 | 0 | if (kernel == (KernelInfo *) NULL) |
2082 | 0 | return(kernel); |
2083 | 0 | kernel->type = type; |
2084 | 0 | RotateKernelInfo(kernel, args->sigma); |
2085 | 0 | break; |
2086 | 0 | } |
2087 | | /* |
2088 | | Distance Measuring Kernels |
2089 | | */ |
2090 | 0 | case ChebyshevKernel: |
2091 | 0 | { |
2092 | 0 | if (args->rho < 1.0) |
2093 | 0 | kernel->width = kernel->height = 3; /* default radius = 1 */ |
2094 | 0 | else |
2095 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
2096 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
2097 | |
|
2098 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
2099 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
2100 | 0 | sizeof(*kernel->values))); |
2101 | 0 | if (kernel->values == (MagickRealType *) NULL) |
2102 | 0 | return(DestroyKernelInfo(kernel)); |
2103 | | |
2104 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
2105 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
2106 | 0 | kernel->positive_range += ( kernel->values[i] = |
2107 | 0 | args->sigma*MagickMax(fabs((double)u),fabs((double)v)) ); |
2108 | 0 | kernel->maximum = kernel->values[0]; |
2109 | 0 | break; |
2110 | 0 | } |
2111 | 0 | case ManhattanKernel: |
2112 | 0 | { |
2113 | 0 | if (args->rho < 1.0) |
2114 | 0 | kernel->width = kernel->height = 3; /* default radius = 1 */ |
2115 | 0 | else |
2116 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
2117 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
2118 | |
|
2119 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
2120 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
2121 | 0 | sizeof(*kernel->values))); |
2122 | 0 | if (kernel->values == (MagickRealType *) NULL) |
2123 | 0 | return(DestroyKernelInfo(kernel)); |
2124 | | |
2125 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
2126 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
2127 | 0 | kernel->positive_range += ( kernel->values[i] = |
2128 | 0 | args->sigma*(labs((long) u)+labs((long) v)) ); |
2129 | 0 | kernel->maximum = kernel->values[0]; |
2130 | 0 | break; |
2131 | 0 | } |
2132 | 0 | case OctagonalKernel: |
2133 | 0 | { |
2134 | 0 | if (args->rho < 2.0) |
2135 | 0 | kernel->width = kernel->height = 5; /* default/minimum radius = 2 */ |
2136 | 0 | else |
2137 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
2138 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
2139 | |
|
2140 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
2141 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
2142 | 0 | sizeof(*kernel->values))); |
2143 | 0 | if (kernel->values == (MagickRealType *) NULL) |
2144 | 0 | return(DestroyKernelInfo(kernel)); |
2145 | | |
2146 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
2147 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
2148 | 0 | { |
2149 | 0 | double |
2150 | 0 | r1 = MagickMax(fabs((double)u),fabs((double)v)), |
2151 | 0 | r2 = floor((double)(labs((long)u)+labs((long)v)+1)/1.5); |
2152 | 0 | kernel->positive_range += kernel->values[i] = |
2153 | 0 | args->sigma*MagickMax(r1,r2); |
2154 | 0 | } |
2155 | 0 | kernel->maximum = kernel->values[0]; |
2156 | 0 | break; |
2157 | 0 | } |
2158 | 0 | case EuclideanKernel: |
2159 | 0 | { |
2160 | 0 | if (args->rho < 1.0) |
2161 | 0 | kernel->width = kernel->height = 3; /* default radius = 1 */ |
2162 | 0 | else |
2163 | 0 | kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
2164 | 0 | kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
2165 | |
|
2166 | 0 | kernel->values=(MagickRealType *) MagickAssumeAligned( |
2167 | 0 | AcquireAlignedMemory(kernel->width,kernel->height* |
2168 | 0 | sizeof(*kernel->values))); |
2169 | 0 | if (kernel->values == (MagickRealType *) NULL) |
2170 | 0 | return(DestroyKernelInfo(kernel)); |
2171 | | |
2172 | 0 | for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
2173 | 0 | for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
2174 | 0 | kernel->positive_range += ( kernel->values[i] = |
2175 | 0 | args->sigma*sqrt((double) (u*u+v*v)) ); |
2176 | 0 | kernel->maximum = kernel->values[0]; |
2177 | 0 | break; |
2178 | 0 | } |
2179 | 0 | default: |
2180 | 0 | { |
2181 | | /* No-Op Kernel - Basically just a single pixel on its own */ |
2182 | 0 | kernel=ParseKernelArray("1:1"); |
2183 | 0 | if (kernel == (KernelInfo *) NULL) |
2184 | 0 | return(kernel); |
2185 | 0 | kernel->type = UndefinedKernel; |
2186 | 0 | break; |
2187 | 0 | } |
2188 | 0 | break; |
2189 | 0 | } |
2190 | 0 | return(kernel); |
2191 | 0 | } |
2192 | | |
2193 | | /* |
2194 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2195 | | % % |
2196 | | % % |
2197 | | % % |
2198 | | % C l o n e K e r n e l I n f o % |
2199 | | % % |
2200 | | % % |
2201 | | % % |
2202 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2203 | | % |
2204 | | % CloneKernelInfo() creates a new clone of the given Kernel List so that its |
2205 | | % can be modified without effecting the original. The cloned kernel should |
2206 | | % be destroyed using DestroyKernelInfo() when no longer needed. |
2207 | | % |
2208 | | % The format of the CloneKernelInfo method is: |
2209 | | % |
2210 | | % KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
2211 | | % |
2212 | | % A description of each parameter follows: |
2213 | | % |
2214 | | % o kernel: the Morphology/Convolution kernel to be cloned |
2215 | | % |
2216 | | */ |
2217 | | MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
2218 | 0 | { |
2219 | 0 | ssize_t |
2220 | 0 | i; |
2221 | |
|
2222 | 0 | KernelInfo |
2223 | 0 | *new_kernel; |
2224 | |
|
2225 | 0 | assert(kernel != (KernelInfo *) NULL); |
2226 | 0 | new_kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
2227 | 0 | if (new_kernel == (KernelInfo *) NULL) |
2228 | 0 | return(new_kernel); |
2229 | 0 | *new_kernel=(*kernel); /* copy values in structure */ |
2230 | | |
2231 | | /* replace the values with a copy of the values */ |
2232 | 0 | new_kernel->values=(MagickRealType *) MagickAssumeAligned( |
2233 | 0 | AcquireAlignedMemory(kernel->width,kernel->height*sizeof(*kernel->values))); |
2234 | 0 | if (new_kernel->values == (MagickRealType *) NULL) |
2235 | 0 | return(DestroyKernelInfo(new_kernel)); |
2236 | 0 | for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) |
2237 | 0 | new_kernel->values[i]=kernel->values[i]; |
2238 | | |
2239 | | /* Also clone the next kernel in the kernel list */ |
2240 | 0 | if ( kernel->next != (KernelInfo *) NULL ) { |
2241 | 0 | new_kernel->next = CloneKernelInfo(kernel->next); |
2242 | 0 | if ( new_kernel->next == (KernelInfo *) NULL ) |
2243 | 0 | return(DestroyKernelInfo(new_kernel)); |
2244 | 0 | } |
2245 | | |
2246 | 0 | return(new_kernel); |
2247 | 0 | } |
2248 | | |
2249 | | /* |
2250 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2251 | | % % |
2252 | | % % |
2253 | | % % |
2254 | | % D e s t r o y K e r n e l I n f o % |
2255 | | % % |
2256 | | % % |
2257 | | % % |
2258 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2259 | | % |
2260 | | % DestroyKernelInfo() frees the memory used by a Convolution/Morphology |
2261 | | % kernel. |
2262 | | % |
2263 | | % The format of the DestroyKernelInfo method is: |
2264 | | % |
2265 | | % KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
2266 | | % |
2267 | | % A description of each parameter follows: |
2268 | | % |
2269 | | % o kernel: the Morphology/Convolution kernel to be destroyed |
2270 | | % |
2271 | | */ |
2272 | | MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
2273 | 0 | { |
2274 | 0 | assert(kernel != (KernelInfo *) NULL); |
2275 | 0 | if (kernel->next != (KernelInfo *) NULL) |
2276 | 0 | kernel->next=DestroyKernelInfo(kernel->next); |
2277 | 0 | kernel->values=(MagickRealType *) RelinquishAlignedMemory(kernel->values); |
2278 | 0 | kernel=(KernelInfo *) RelinquishMagickMemory(kernel); |
2279 | 0 | return(kernel); |
2280 | 0 | } |
2281 | | |
2282 | | /* |
2283 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2284 | | % % |
2285 | | % % |
2286 | | % % |
2287 | | + E x p a n d M i r r o r K e r n e l I n f o % |
2288 | | % % |
2289 | | % % |
2290 | | % % |
2291 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2292 | | % |
2293 | | % ExpandMirrorKernelInfo() takes a single kernel, and expands it into a |
2294 | | % sequence of 90-degree rotated kernels but providing a reflected 180 |
2295 | | % rotation, before the -/+ 90-degree rotations. |
2296 | | % |
2297 | | % This special rotation order produces a better, more symmetrical thinning of |
2298 | | % objects. |
2299 | | % |
2300 | | % The format of the ExpandMirrorKernelInfo method is: |
2301 | | % |
2302 | | % void ExpandMirrorKernelInfo(KernelInfo *kernel) |
2303 | | % |
2304 | | % A description of each parameter follows: |
2305 | | % |
2306 | | % o kernel: the Morphology/Convolution kernel |
2307 | | % |
2308 | | % This function is only internal to this module, as it is not finalized, |
2309 | | % especially with regard to non-orthogonal angles, and rotation of larger |
2310 | | % 2D kernels. |
2311 | | */ |
2312 | | |
2313 | | #if 0 |
2314 | | static void FlopKernelInfo(KernelInfo *kernel) |
2315 | | { /* Do a Flop by reversing each row. */ |
2316 | | size_t |
2317 | | y; |
2318 | | ssize_t |
2319 | | x,r; |
2320 | | double |
2321 | | *k,t; |
2322 | | |
2323 | | for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) |
2324 | | for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--) |
2325 | | t=k[x], k[x]=k[r], k[r]=t; |
2326 | | |
2327 | | kernel->x = kernel->width - kernel->x - 1; |
2328 | | angle = fmod(angle+180.0, 360.0); |
2329 | | } |
2330 | | #endif |
2331 | | |
2332 | | static void ExpandMirrorKernelInfo(KernelInfo *kernel) |
2333 | 0 | { |
2334 | 0 | KernelInfo |
2335 | 0 | *clone, |
2336 | 0 | *last; |
2337 | |
|
2338 | 0 | last = kernel; |
2339 | |
|
2340 | 0 | clone = CloneKernelInfo(last); |
2341 | 0 | if (clone == (KernelInfo *) NULL) |
2342 | 0 | return; |
2343 | 0 | RotateKernelInfo(clone, 180); /* flip */ |
2344 | 0 | LastKernelInfo(last)->next = clone; |
2345 | 0 | last = clone; |
2346 | |
|
2347 | 0 | clone = CloneKernelInfo(last); |
2348 | 0 | if (clone == (KernelInfo *) NULL) |
2349 | 0 | return; |
2350 | 0 | RotateKernelInfo(clone, 90); /* transpose */ |
2351 | 0 | LastKernelInfo(last)->next = clone; |
2352 | 0 | last = clone; |
2353 | |
|
2354 | 0 | clone = CloneKernelInfo(last); |
2355 | 0 | if (clone == (KernelInfo *) NULL) |
2356 | 0 | return; |
2357 | 0 | RotateKernelInfo(clone, 180); /* flop */ |
2358 | 0 | LastKernelInfo(last)->next = clone; |
2359 | |
|
2360 | 0 | return; |
2361 | 0 | } |
2362 | | |
2363 | | /* |
2364 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2365 | | % % |
2366 | | % % |
2367 | | % % |
2368 | | + E x p a n d R o t a t e K e r n e l I n f o % |
2369 | | % % |
2370 | | % % |
2371 | | % % |
2372 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2373 | | % |
2374 | | % ExpandRotateKernelInfo() takes a kernel list, and expands it by rotating |
2375 | | % incrementally by the angle given, until the kernel repeats. |
2376 | | % |
2377 | | % WARNING: 45 degree rotations only works for 3x3 kernels. |
2378 | | % While 90 degree rotations only works for linear and square kernels |
2379 | | % |
2380 | | % The format of the ExpandRotateKernelInfo method is: |
2381 | | % |
2382 | | % void ExpandRotateKernelInfo(KernelInfo *kernel, double angle) |
2383 | | % |
2384 | | % A description of each parameter follows: |
2385 | | % |
2386 | | % o kernel: the Morphology/Convolution kernel |
2387 | | % |
2388 | | % o angle: angle to rotate in degrees |
2389 | | % |
2390 | | % This function is only internal to this module, as it is not finalized, |
2391 | | % especially with regard to non-orthogonal angles, and rotation of larger |
2392 | | % 2D kernels. |
2393 | | */ |
2394 | | |
2395 | | /* Internal Routine - Return true if two kernels are the same */ |
2396 | | static MagickBooleanType SameKernelInfo(const KernelInfo *kernel1, |
2397 | | const KernelInfo *kernel2) |
2398 | 0 | { |
2399 | 0 | size_t |
2400 | 0 | i; |
2401 | | |
2402 | | /* check size and origin location */ |
2403 | 0 | if ( kernel1->width != kernel2->width |
2404 | 0 | || kernel1->height != kernel2->height |
2405 | 0 | || kernel1->x != kernel2->x |
2406 | 0 | || kernel1->y != kernel2->y ) |
2407 | 0 | return MagickFalse; |
2408 | | |
2409 | | /* check actual kernel values */ |
2410 | 0 | for (i=0; i < (kernel1->width*kernel1->height); i++) { |
2411 | | /* Test for Nan equivalence */ |
2412 | 0 | if ( IsNaN(kernel1->values[i]) && !IsNaN(kernel2->values[i]) ) |
2413 | 0 | return MagickFalse; |
2414 | 0 | if ( IsNaN(kernel2->values[i]) && !IsNaN(kernel1->values[i]) ) |
2415 | 0 | return MagickFalse; |
2416 | | /* Test actual values are equivalent */ |
2417 | 0 | if ( fabs(kernel1->values[i] - kernel2->values[i]) >= MagickEpsilon ) |
2418 | 0 | return MagickFalse; |
2419 | 0 | } |
2420 | | |
2421 | 0 | return MagickTrue; |
2422 | 0 | } |
2423 | | |
2424 | | static void ExpandRotateKernelInfo(KernelInfo *kernel,const double angle) |
2425 | 0 | { |
2426 | 0 | KernelInfo |
2427 | 0 | *clone_info, |
2428 | 0 | *last; |
2429 | |
|
2430 | 0 | clone_info=(KernelInfo *) NULL; |
2431 | 0 | last=kernel; |
2432 | 0 | DisableMSCWarning(4127) |
2433 | 0 | while (1) { |
2434 | 0 | RestoreMSCWarning |
2435 | 0 | clone_info=CloneKernelInfo(last); |
2436 | 0 | if (clone_info == (KernelInfo *) NULL) |
2437 | 0 | break; |
2438 | 0 | RotateKernelInfo(clone_info,angle); |
2439 | 0 | if (SameKernelInfo(kernel,clone_info) != MagickFalse) |
2440 | 0 | break; |
2441 | 0 | LastKernelInfo(last)->next=clone_info; |
2442 | 0 | last=clone_info; |
2443 | 0 | } |
2444 | 0 | if (clone_info != (KernelInfo *) NULL) |
2445 | 0 | clone_info=DestroyKernelInfo(clone_info); /* kernel repeated - junk */ |
2446 | 0 | return; |
2447 | 0 | } |
2448 | | |
2449 | | /* |
2450 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2451 | | % % |
2452 | | % % |
2453 | | % % |
2454 | | + C a l c M e t a K e r n a l I n f o % |
2455 | | % % |
2456 | | % % |
2457 | | % % |
2458 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2459 | | % |
2460 | | % CalcKernelMetaData() recalculate the KernelInfo meta-data of this kernel only, |
2461 | | % using the kernel values. This should only ne used if it is not possible to |
2462 | | % calculate that meta-data in some easier way. |
2463 | | % |
2464 | | % It is important that the meta-data is correct before ScaleKernelInfo() is |
2465 | | % used to perform kernel normalization. |
2466 | | % |
2467 | | % The format of the CalcKernelMetaData method is: |
2468 | | % |
2469 | | % void CalcKernelMetaData(KernelInfo *kernel, const double scale ) |
2470 | | % |
2471 | | % A description of each parameter follows: |
2472 | | % |
2473 | | % o kernel: the Morphology/Convolution kernel to modify |
2474 | | % |
2475 | | % WARNING: Minimum and Maximum values are assumed to include zero, even if |
2476 | | % zero is not part of the kernel (as in Gaussian Derived kernels). This |
2477 | | % however is not true for flat-shaped morphological kernels. |
2478 | | % |
2479 | | % WARNING: Only the specific kernel pointed to is modified, not a list of |
2480 | | % multiple kernels. |
2481 | | % |
2482 | | % This is an internal function and not expected to be useful outside this |
2483 | | % module. This could change however. |
2484 | | */ |
2485 | | static void CalcKernelMetaData(KernelInfo *kernel) |
2486 | 0 | { |
2487 | 0 | size_t |
2488 | 0 | i; |
2489 | |
|
2490 | 0 | kernel->minimum = kernel->maximum = 0.0; |
2491 | 0 | kernel->negative_range = kernel->positive_range = 0.0; |
2492 | 0 | for (i=0; i < (kernel->width*kernel->height); i++) |
2493 | 0 | { |
2494 | 0 | if ( fabs(kernel->values[i]) < MagickEpsilon ) |
2495 | 0 | kernel->values[i] = 0.0; |
2496 | 0 | ( kernel->values[i] < 0) |
2497 | 0 | ? ( kernel->negative_range += kernel->values[i] ) |
2498 | 0 | : ( kernel->positive_range += kernel->values[i] ); |
2499 | 0 | Minimize(kernel->minimum, kernel->values[i]); |
2500 | 0 | Maximize(kernel->maximum, kernel->values[i]); |
2501 | 0 | } |
2502 | |
|
2503 | 0 | return; |
2504 | 0 | } |
2505 | | |
2506 | | /* |
2507 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2508 | | % % |
2509 | | % % |
2510 | | % % |
2511 | | % M o r p h o l o g y A p p l y % |
2512 | | % % |
2513 | | % % |
2514 | | % % |
2515 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2516 | | % |
2517 | | % MorphologyApply() applies a morphological method, multiple times using |
2518 | | % a list of multiple kernels. This is the method that should be called by |
2519 | | % other 'operators' that internally use morphology operations as part of |
2520 | | % their processing. |
2521 | | % |
2522 | | % It is basically equivalent to as MorphologyImage() (see below) but without |
2523 | | % any user controls. This allows internal programs to use this method to |
2524 | | % perform a specific task without possible interference by any API user |
2525 | | % supplied settings. |
2526 | | % |
2527 | | % It is MorphologyImage() task to extract any such user controls, and |
2528 | | % pass them to this function for processing. |
2529 | | % |
2530 | | % More specifically all given kernels should already be scaled, normalised, |
2531 | | % and blended appropriately before being parred to this routine. The |
2532 | | % appropriate bias, and compose (typically 'UndefinedComposeOp') given. |
2533 | | % |
2534 | | % The format of the MorphologyApply method is: |
2535 | | % |
2536 | | % Image *MorphologyApply(const Image *image,MorphologyMethod method, |
2537 | | % const ssize_t iterations,const KernelInfo *kernel, |
2538 | | % const CompositeMethod compose,const double bias, |
2539 | | % ExceptionInfo *exception) |
2540 | | % |
2541 | | % A description of each parameter follows: |
2542 | | % |
2543 | | % o image: the source image |
2544 | | % |
2545 | | % o method: the morphology method to be applied. |
2546 | | % |
2547 | | % o iterations: apply the operation this many times (or no change). |
2548 | | % A value of -1 means loop until no change found. |
2549 | | % How this is applied may depend on the morphology method. |
2550 | | % Typically this is a value of 1. |
2551 | | % |
2552 | | % o channel: the channel type. |
2553 | | % |
2554 | | % o kernel: An array of double representing the morphology kernel. |
2555 | | % |
2556 | | % o compose: How to handle or merge multi-kernel results. |
2557 | | % If 'UndefinedCompositeOp' use default for the Morphology method. |
2558 | | % If 'NoCompositeOp' force image to be re-iterated by each kernel. |
2559 | | % Otherwise merge the results using the compose method given. |
2560 | | % |
2561 | | % o bias: Convolution Output Bias. |
2562 | | % |
2563 | | % o exception: return any errors or warnings in this structure. |
2564 | | % |
2565 | | */ |
2566 | | static ssize_t MorphologyPrimitive(const Image *image,Image *morphology_image, |
2567 | | const MorphologyMethod method,const KernelInfo *kernel,const double bias, |
2568 | | ExceptionInfo *exception) |
2569 | 0 | { |
2570 | 0 | #define MorphologyTag "Morphology/Image" |
2571 | |
|
2572 | 0 | CacheView |
2573 | 0 | *image_view, |
2574 | 0 | *morphology_view; |
2575 | |
|
2576 | 0 | MagickBooleanType |
2577 | 0 | status; |
2578 | |
|
2579 | 0 | MagickOffsetType |
2580 | 0 | progress; |
2581 | |
|
2582 | 0 | OffsetInfo |
2583 | 0 | offset; |
2584 | |
|
2585 | 0 | ssize_t |
2586 | 0 | j, |
2587 | 0 | y; |
2588 | |
|
2589 | 0 | size_t |
2590 | 0 | changed, |
2591 | 0 | *changes, |
2592 | 0 | width; |
2593 | | |
2594 | | /* |
2595 | | Some methods (including convolve) needs to use a reflected kernel. |
2596 | | Adjust 'origin' offsets to loop though kernel as a reflection. |
2597 | | */ |
2598 | 0 | assert(image != (Image *) NULL); |
2599 | 0 | assert(image->signature == MagickCoreSignature); |
2600 | 0 | assert(morphology_image != (Image *) NULL); |
2601 | 0 | assert(morphology_image->signature == MagickCoreSignature); |
2602 | 0 | assert(kernel != (KernelInfo *) NULL); |
2603 | 0 | assert(kernel->signature == MagickCoreSignature); |
2604 | 0 | assert(exception != (ExceptionInfo *) NULL); |
2605 | 0 | assert(exception->signature == MagickCoreSignature); |
2606 | 0 | status=MagickTrue; |
2607 | 0 | progress=0; |
2608 | 0 | image_view=AcquireVirtualCacheView(image,exception); |
2609 | 0 | morphology_view=AcquireAuthenticCacheView(morphology_image,exception); |
2610 | 0 | width=image->columns+kernel->width-1; |
2611 | 0 | offset.x=0; |
2612 | 0 | offset.y=0; |
2613 | 0 | switch (method) |
2614 | 0 | { |
2615 | 0 | case ConvolveMorphology: |
2616 | 0 | case DilateMorphology: |
2617 | 0 | case DilateIntensityMorphology: |
2618 | 0 | case IterativeDistanceMorphology: |
2619 | 0 | { |
2620 | | /* |
2621 | | Kernel needs to use a reflection about origin. |
2622 | | */ |
2623 | 0 | offset.x=(ssize_t) kernel->width-kernel->x-1; |
2624 | 0 | offset.y=(ssize_t) kernel->height-kernel->y-1; |
2625 | 0 | break; |
2626 | 0 | } |
2627 | 0 | case ErodeMorphology: |
2628 | 0 | case ErodeIntensityMorphology: |
2629 | 0 | case HitAndMissMorphology: |
2630 | 0 | case ThinningMorphology: |
2631 | 0 | case ThickenMorphology: |
2632 | 0 | { |
2633 | | /* |
2634 | | Use kernel as is, not reflection required. |
2635 | | */ |
2636 | 0 | offset.x=kernel->x; |
2637 | 0 | offset.y=kernel->y; |
2638 | 0 | break; |
2639 | 0 | } |
2640 | 0 | default: |
2641 | 0 | { |
2642 | 0 | (void) ThrowMagickException(exception,GetMagickModule(),OptionWarning, |
2643 | 0 | "InvalidOption","`%s'","not a primitive morphology method"); |
2644 | 0 | break; |
2645 | 0 | } |
2646 | 0 | } |
2647 | 0 | changed=0; |
2648 | 0 | changes=(size_t *) AcquireQuantumMemory(GetOpenMPMaximumThreads(), |
2649 | 0 | sizeof(*changes)); |
2650 | 0 | if (changes == (size_t *) NULL) |
2651 | 0 | ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); |
2652 | 0 | for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++) |
2653 | 0 | changes[j]=0; |
2654 | 0 | if ((method == ConvolveMorphology) && (kernel->width == 1)) |
2655 | 0 | { |
2656 | 0 | ssize_t |
2657 | 0 | x; |
2658 | | |
2659 | | /* |
2660 | | Special handling (for speed) of vertical (blur) kernels. This performs |
2661 | | its handling in columns rather than in rows. This is only done |
2662 | | for convolve as it is the only method that generates very large 1-D |
2663 | | vertical kernels (such as a 'BlurKernel') |
2664 | | */ |
2665 | | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
2666 | | #pragma omp parallel for schedule(static) shared(progress,status) \ |
2667 | | magick_number_threads(image,morphology_image,image->columns,1) |
2668 | | #endif |
2669 | 0 | for (x=0; x < (ssize_t) image->columns; x++) |
2670 | 0 | { |
2671 | 0 | const int |
2672 | 0 | id = GetOpenMPThreadId(); |
2673 | |
|
2674 | 0 | const Quantum |
2675 | 0 | *magick_restrict p; |
2676 | |
|
2677 | 0 | Quantum |
2678 | 0 | *magick_restrict q; |
2679 | |
|
2680 | 0 | ssize_t |
2681 | 0 | center, |
2682 | 0 | r; |
2683 | |
|
2684 | 0 | if (status == MagickFalse) |
2685 | 0 | continue; |
2686 | 0 | p=GetCacheViewVirtualPixels(image_view,x,-offset.y,1,image->rows+ |
2687 | 0 | kernel->height-1,exception); |
2688 | 0 | q=GetCacheViewAuthenticPixels(morphology_view,x,0,1, |
2689 | 0 | morphology_image->rows,exception); |
2690 | 0 | if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
2691 | 0 | { |
2692 | 0 | status=MagickFalse; |
2693 | 0 | continue; |
2694 | 0 | } |
2695 | 0 | center=(ssize_t) GetPixelChannels(image)*offset.y; |
2696 | 0 | for (r=0; r < (ssize_t) image->rows; r++) |
2697 | 0 | { |
2698 | 0 | ssize_t |
2699 | 0 | i; |
2700 | |
|
2701 | 0 | for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
2702 | 0 | { |
2703 | 0 | double |
2704 | 0 | alpha, |
2705 | 0 | gamma, |
2706 | 0 | pixel; |
2707 | |
|
2708 | 0 | PixelChannel |
2709 | 0 | channel; |
2710 | |
|
2711 | 0 | PixelTrait |
2712 | 0 | morphology_traits, |
2713 | 0 | traits; |
2714 | |
|
2715 | 0 | const MagickRealType |
2716 | 0 | *magick_restrict k; |
2717 | |
|
2718 | 0 | const Quantum |
2719 | 0 | *magick_restrict pixels; |
2720 | |
|
2721 | 0 | ssize_t |
2722 | 0 | v; |
2723 | |
|
2724 | 0 | size_t |
2725 | 0 | count; |
2726 | |
|
2727 | 0 | channel=GetPixelChannelChannel(image,i); |
2728 | 0 | traits=GetPixelChannelTraits(image,channel); |
2729 | 0 | morphology_traits=GetPixelChannelTraits(morphology_image,channel); |
2730 | 0 | if ((traits == UndefinedPixelTrait) || |
2731 | 0 | (morphology_traits == UndefinedPixelTrait)) |
2732 | 0 | continue; |
2733 | 0 | if ((traits & CopyPixelTrait) != 0) |
2734 | 0 | { |
2735 | 0 | SetPixelChannel(morphology_image,channel,p[center+i],q); |
2736 | 0 | continue; |
2737 | 0 | } |
2738 | 0 | k=(&kernel->values[kernel->height-1]); |
2739 | 0 | pixels=p; |
2740 | 0 | pixel=bias; |
2741 | 0 | gamma=1.0; |
2742 | 0 | count=0; |
2743 | 0 | if (((image->alpha_trait & BlendPixelTrait) == 0) || |
2744 | 0 | ((morphology_traits & BlendPixelTrait) == 0)) |
2745 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
2746 | 0 | { |
2747 | 0 | if (!IsNaN(*k)) |
2748 | 0 | { |
2749 | 0 | pixel+=(*k)*(double) pixels[i]; |
2750 | 0 | count++; |
2751 | 0 | } |
2752 | 0 | k--; |
2753 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
2754 | 0 | } |
2755 | 0 | else |
2756 | 0 | { |
2757 | 0 | gamma=0.0; |
2758 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
2759 | 0 | { |
2760 | 0 | if (!IsNaN(*k)) |
2761 | 0 | { |
2762 | 0 | alpha=(double) (QuantumScale*(double) |
2763 | 0 | GetPixelAlpha(image,pixels)); |
2764 | 0 | pixel+=alpha*(*k)*(double) pixels[i]; |
2765 | 0 | gamma+=alpha*(*k); |
2766 | 0 | count++; |
2767 | 0 | } |
2768 | 0 | k--; |
2769 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
2770 | 0 | } |
2771 | 0 | } |
2772 | 0 | if (fabs(pixel-(double) p[center+i]) >= MagickEpsilon) |
2773 | 0 | changes[id]++; |
2774 | 0 | gamma=MagickSafeReciprocal(gamma); |
2775 | 0 | if (count != 0) |
2776 | 0 | gamma*=(double) kernel->height/count; |
2777 | 0 | SetPixelChannel(morphology_image,channel,ClampToQuantum(gamma* |
2778 | 0 | pixel),q); |
2779 | 0 | } |
2780 | 0 | p+=(ptrdiff_t) GetPixelChannels(image); |
2781 | 0 | q+=(ptrdiff_t) GetPixelChannels(morphology_image); |
2782 | 0 | } |
2783 | 0 | if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
2784 | 0 | status=MagickFalse; |
2785 | 0 | if (image->progress_monitor != (MagickProgressMonitor) NULL) |
2786 | 0 | { |
2787 | 0 | MagickBooleanType |
2788 | 0 | proceed; |
2789 | |
|
2790 | | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
2791 | | #pragma omp atomic |
2792 | | #endif |
2793 | 0 | progress++; |
2794 | 0 | proceed=SetImageProgress(image,MorphologyTag,progress, |
2795 | 0 | image->columns); |
2796 | 0 | if (proceed == MagickFalse) |
2797 | 0 | status=MagickFalse; |
2798 | 0 | } |
2799 | 0 | } |
2800 | 0 | morphology_image->type=image->type; |
2801 | 0 | morphology_view=DestroyCacheView(morphology_view); |
2802 | 0 | image_view=DestroyCacheView(image_view); |
2803 | 0 | for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++) |
2804 | 0 | changed+=changes[j]; |
2805 | 0 | changes=(size_t *) RelinquishMagickMemory(changes); |
2806 | 0 | return(status ? (ssize_t) (changed/GetImageChannels(image)) : 0); |
2807 | 0 | } |
2808 | | /* |
2809 | | Normal handling of horizontal or rectangular kernels (row by row). |
2810 | | */ |
2811 | | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
2812 | | #pragma omp parallel for schedule(static) shared(progress,status) \ |
2813 | | magick_number_threads(image,morphology_image,image->rows,1) |
2814 | | #endif |
2815 | 0 | for (y=0; y < (ssize_t) image->rows; y++) |
2816 | 0 | { |
2817 | 0 | const int |
2818 | 0 | id = GetOpenMPThreadId(); |
2819 | |
|
2820 | 0 | const Quantum |
2821 | 0 | *magick_restrict p; |
2822 | |
|
2823 | 0 | Quantum |
2824 | 0 | *magick_restrict q; |
2825 | |
|
2826 | 0 | ssize_t |
2827 | 0 | x; |
2828 | |
|
2829 | 0 | ssize_t |
2830 | 0 | center; |
2831 | |
|
2832 | 0 | if (status == MagickFalse) |
2833 | 0 | continue; |
2834 | 0 | p=GetCacheViewVirtualPixels(image_view,-offset.x,y-offset.y,width, |
2835 | 0 | kernel->height,exception); |
2836 | 0 | q=GetCacheViewAuthenticPixels(morphology_view,0,y,morphology_image->columns, |
2837 | 0 | 1,exception); |
2838 | 0 | if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
2839 | 0 | { |
2840 | 0 | status=MagickFalse; |
2841 | 0 | continue; |
2842 | 0 | } |
2843 | 0 | center=(ssize_t) ((ssize_t) GetPixelChannels(image)*(ssize_t) width* |
2844 | 0 | offset.y+(ssize_t) GetPixelChannels(image)*offset.x); |
2845 | 0 | for (x=0; x < (ssize_t) image->columns; x++) |
2846 | 0 | { |
2847 | 0 | ssize_t |
2848 | 0 | i; |
2849 | |
|
2850 | 0 | for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
2851 | 0 | { |
2852 | 0 | double |
2853 | 0 | alpha, |
2854 | 0 | gamma, |
2855 | 0 | intensity, |
2856 | 0 | maximum, |
2857 | 0 | minimum, |
2858 | 0 | pixel; |
2859 | |
|
2860 | 0 | PixelChannel |
2861 | 0 | channel; |
2862 | |
|
2863 | 0 | PixelTrait |
2864 | 0 | morphology_traits, |
2865 | 0 | traits; |
2866 | |
|
2867 | 0 | const MagickRealType |
2868 | 0 | *magick_restrict k; |
2869 | |
|
2870 | 0 | const Quantum |
2871 | 0 | *magick_restrict pixels, |
2872 | 0 | *magick_restrict quantum_pixels; |
2873 | |
|
2874 | 0 | ssize_t |
2875 | 0 | u; |
2876 | |
|
2877 | 0 | ssize_t |
2878 | 0 | v; |
2879 | |
|
2880 | 0 | channel=GetPixelChannelChannel(image,i); |
2881 | 0 | traits=GetPixelChannelTraits(image,channel); |
2882 | 0 | morphology_traits=GetPixelChannelTraits(morphology_image,channel); |
2883 | 0 | if ((traits == UndefinedPixelTrait) || |
2884 | 0 | (morphology_traits == UndefinedPixelTrait)) |
2885 | 0 | continue; |
2886 | 0 | if ((traits & CopyPixelTrait) != 0) |
2887 | 0 | { |
2888 | 0 | SetPixelChannel(morphology_image,channel,p[center+i],q); |
2889 | 0 | continue; |
2890 | 0 | } |
2891 | 0 | pixels=p; |
2892 | 0 | quantum_pixels=(const Quantum *) NULL; |
2893 | 0 | maximum=0.0; |
2894 | 0 | minimum=(double) QuantumRange; |
2895 | 0 | switch (method) |
2896 | 0 | { |
2897 | 0 | case ConvolveMorphology: |
2898 | 0 | { |
2899 | 0 | pixel=bias; |
2900 | 0 | break; |
2901 | 0 | } |
2902 | 0 | case DilateMorphology: |
2903 | 0 | case ErodeIntensityMorphology: |
2904 | 0 | { |
2905 | 0 | pixel=0.0; |
2906 | 0 | break; |
2907 | 0 | } |
2908 | 0 | default: |
2909 | 0 | { |
2910 | 0 | pixel=(double) p[center+i]; |
2911 | 0 | break; |
2912 | 0 | } |
2913 | 0 | } |
2914 | 0 | gamma=1.0; |
2915 | 0 | switch (method) |
2916 | 0 | { |
2917 | 0 | case ConvolveMorphology: |
2918 | 0 | { |
2919 | | /* |
2920 | | Weighted Average of pixels using reflected kernel |
2921 | | |
2922 | | For correct working of this operation for asymmetrical kernels, |
2923 | | the kernel needs to be applied in its reflected form. That is |
2924 | | its values needs to be reversed. |
2925 | | |
2926 | | Correlation is actually the same as this but without reflecting |
2927 | | the kernel, and thus 'lower-level' that Convolution. However as |
2928 | | Convolution is the more common method used, and it does not |
2929 | | really cost us much in terms of processing to use a reflected |
2930 | | kernel, so it is Convolution that is implemented. |
2931 | | |
2932 | | Correlation will have its kernel reflected before calling this |
2933 | | function to do a Convolve. |
2934 | | |
2935 | | For more details of Correlation vs Convolution see |
2936 | | http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf |
2937 | | */ |
2938 | 0 | k=(&kernel->values[kernel->width*kernel->height-1]); |
2939 | 0 | if (((image->alpha_trait & BlendPixelTrait) == 0) || |
2940 | 0 | ((morphology_traits & BlendPixelTrait) == 0)) |
2941 | 0 | { |
2942 | | /* |
2943 | | No alpha blending. |
2944 | | */ |
2945 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
2946 | 0 | { |
2947 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
2948 | 0 | { |
2949 | 0 | if (!IsNaN(*k)) |
2950 | 0 | pixel+=(*k)*(double) pixels[i]; |
2951 | 0 | k--; |
2952 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
2953 | 0 | } |
2954 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
2955 | 0 | } |
2956 | 0 | break; |
2957 | 0 | } |
2958 | | /* |
2959 | | Alpha blending. |
2960 | | */ |
2961 | 0 | gamma=0.0; |
2962 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
2963 | 0 | { |
2964 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
2965 | 0 | { |
2966 | 0 | if (!IsNaN(*k)) |
2967 | 0 | { |
2968 | 0 | alpha=(double) (QuantumScale*(double) |
2969 | 0 | GetPixelAlpha(image,pixels)); |
2970 | 0 | pixel+=alpha*(*k)*(double) pixels[i]; |
2971 | 0 | gamma+=alpha*(*k); |
2972 | 0 | } |
2973 | 0 | k--; |
2974 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
2975 | 0 | } |
2976 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
2977 | 0 | } |
2978 | 0 | break; |
2979 | 0 | } |
2980 | 0 | case ErodeMorphology: |
2981 | 0 | { |
2982 | | /* |
2983 | | Minimum value within kernel neighbourhood. |
2984 | | |
2985 | | The kernel is not reflected for this operation. In normal |
2986 | | Greyscale Morphology, the kernel value should be added |
2987 | | to the real value, this is currently not done, due to the |
2988 | | nature of the boolean kernels being used. |
2989 | | */ |
2990 | 0 | k=kernel->values; |
2991 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
2992 | 0 | { |
2993 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
2994 | 0 | { |
2995 | 0 | if (!IsNaN(*k) && (*k >= 0.5)) |
2996 | 0 | { |
2997 | 0 | if ((double) pixels[i] < pixel) |
2998 | 0 | pixel=(double) pixels[i]; |
2999 | 0 | } |
3000 | 0 | k++; |
3001 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3002 | 0 | } |
3003 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3004 | 0 | } |
3005 | 0 | break; |
3006 | 0 | } |
3007 | 0 | case DilateMorphology: |
3008 | 0 | { |
3009 | | /* |
3010 | | Maximum value within kernel neighbourhood. |
3011 | | |
3012 | | For correct working of this operation for asymmetrical kernels, |
3013 | | the kernel needs to be applied in its reflected form. That is |
3014 | | its values needs to be reversed. |
3015 | | |
3016 | | In normal Greyscale Morphology, the kernel value should be |
3017 | | added to the real value, this is currently not done, due to the |
3018 | | nature of the boolean kernels being used. |
3019 | | */ |
3020 | 0 | k=(&kernel->values[kernel->width*kernel->height-1]); |
3021 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
3022 | 0 | { |
3023 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3024 | 0 | { |
3025 | 0 | if (!IsNaN(*k) && (*k > 0.5)) |
3026 | 0 | { |
3027 | 0 | if ((double) pixels[i] > pixel) |
3028 | 0 | pixel=(double) pixels[i]; |
3029 | 0 | } |
3030 | 0 | k--; |
3031 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3032 | 0 | } |
3033 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3034 | 0 | } |
3035 | 0 | break; |
3036 | 0 | } |
3037 | 0 | case HitAndMissMorphology: |
3038 | 0 | case ThinningMorphology: |
3039 | 0 | case ThickenMorphology: |
3040 | 0 | { |
3041 | | /* |
3042 | | Minimum of foreground pixel minus maximum of background pixels. |
3043 | | |
3044 | | The kernel is not reflected for this operation, and consists |
3045 | | of both foreground and background pixel neighbourhoods, 0.0 for |
3046 | | background, and 1.0 for foreground with either Nan or 0.5 values |
3047 | | for don't care. |
3048 | | |
3049 | | This never produces a meaningless negative result. Such results |
3050 | | cause Thinning/Thicken to not work correctly when used against a |
3051 | | greyscale image. |
3052 | | */ |
3053 | 0 | k=kernel->values; |
3054 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
3055 | 0 | { |
3056 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3057 | 0 | { |
3058 | 0 | if (!IsNaN(*k)) |
3059 | 0 | { |
3060 | 0 | if (*k > 0.7) |
3061 | 0 | { |
3062 | 0 | if ((double) pixels[i] < minimum) |
3063 | 0 | minimum=(double) pixels[i]; |
3064 | 0 | } |
3065 | 0 | else |
3066 | 0 | if (*k < 0.3) |
3067 | 0 | { |
3068 | 0 | if ((double) pixels[i] > maximum) |
3069 | 0 | maximum=(double) pixels[i]; |
3070 | 0 | } |
3071 | 0 | } |
3072 | 0 | k++; |
3073 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3074 | 0 | } |
3075 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3076 | 0 | } |
3077 | 0 | minimum-=maximum; |
3078 | 0 | if (minimum < 0.0) |
3079 | 0 | minimum=0.0; |
3080 | 0 | pixel=minimum; |
3081 | 0 | if (method == ThinningMorphology) |
3082 | 0 | pixel=(double) p[center+i]-minimum; |
3083 | 0 | else |
3084 | 0 | if (method == ThickenMorphology) |
3085 | 0 | pixel=(double) p[center+i]+minimum; |
3086 | 0 | break; |
3087 | 0 | } |
3088 | 0 | case ErodeIntensityMorphology: |
3089 | 0 | { |
3090 | | /* |
3091 | | Select pixel with minimum intensity within kernel neighbourhood. |
3092 | | |
3093 | | The kernel is not reflected for this operation. |
3094 | | */ |
3095 | 0 | k=kernel->values; |
3096 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
3097 | 0 | { |
3098 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3099 | 0 | { |
3100 | 0 | if (!IsNaN(*k) && (*k >= 0.5)) |
3101 | 0 | { |
3102 | 0 | intensity=(double) GetPixelIntensity(image,pixels); |
3103 | 0 | if (intensity < minimum) |
3104 | 0 | { |
3105 | 0 | quantum_pixels=pixels; |
3106 | 0 | pixel=(double) pixels[i]; |
3107 | 0 | minimum=intensity; |
3108 | 0 | } |
3109 | 0 | } |
3110 | 0 | k++; |
3111 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3112 | 0 | } |
3113 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3114 | 0 | } |
3115 | 0 | break; |
3116 | 0 | } |
3117 | 0 | case DilateIntensityMorphology: |
3118 | 0 | { |
3119 | | /* |
3120 | | Select pixel with maximum intensity within kernel neighbourhood. |
3121 | | |
3122 | | The kernel is not reflected for this operation. |
3123 | | */ |
3124 | 0 | k=(&kernel->values[kernel->width*kernel->height-1]); |
3125 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
3126 | 0 | { |
3127 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3128 | 0 | { |
3129 | 0 | if (!IsNaN(*k) && (*k >= 0.5)) |
3130 | 0 | { |
3131 | 0 | intensity=(double) GetPixelIntensity(image,pixels); |
3132 | 0 | if (intensity > maximum) |
3133 | 0 | { |
3134 | 0 | pixel=(double) pixels[i]; |
3135 | 0 | quantum_pixels=pixels; |
3136 | 0 | maximum=intensity; |
3137 | 0 | } |
3138 | 0 | } |
3139 | 0 | k--; |
3140 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3141 | 0 | } |
3142 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3143 | 0 | } |
3144 | 0 | break; |
3145 | 0 | } |
3146 | 0 | case IterativeDistanceMorphology: |
3147 | 0 | { |
3148 | | /* |
3149 | | Compute th iterative distance from black edge of a white image |
3150 | | shape. Essentially white values are decreased to the smallest |
3151 | | 'distance from edge' it can find. |
3152 | | |
3153 | | It works by adding kernel values to the neighbourhood, and |
3154 | | select the minimum value found. The kernel is rotated before |
3155 | | use, so kernel distances match resulting distances, when a user |
3156 | | provided asymmetric kernel is applied. |
3157 | | |
3158 | | This code is nearly identical to True GrayScale Morphology but |
3159 | | not quite. |
3160 | | |
3161 | | GreyDilate Kernel values added, maximum value found Kernel is |
3162 | | rotated before use. |
3163 | | |
3164 | | GrayErode: Kernel values subtracted and minimum value found No |
3165 | | kernel rotation used. |
3166 | | |
3167 | | Note the Iterative Distance method is essentially a |
3168 | | GrayErode, but with negative kernel values, and kernel rotation |
3169 | | applied. |
3170 | | */ |
3171 | 0 | k=(&kernel->values[kernel->width*kernel->height-1]); |
3172 | 0 | for (v=0; v < (ssize_t) kernel->height; v++) |
3173 | 0 | { |
3174 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3175 | 0 | { |
3176 | 0 | if (!IsNaN(*k)) |
3177 | 0 | { |
3178 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3179 | 0 | pixel=(double) pixels[i]+(*k); |
3180 | 0 | } |
3181 | 0 | k--; |
3182 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3183 | 0 | } |
3184 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3185 | 0 | } |
3186 | 0 | break; |
3187 | 0 | } |
3188 | 0 | case UndefinedMorphology: |
3189 | 0 | default: |
3190 | 0 | break; |
3191 | 0 | } |
3192 | 0 | if (quantum_pixels != (const Quantum *) NULL) |
3193 | 0 | { |
3194 | 0 | SetPixelChannel(morphology_image,channel,quantum_pixels[i],q); |
3195 | 0 | continue; |
3196 | 0 | } |
3197 | 0 | gamma=MagickSafeReciprocal(gamma); |
3198 | 0 | SetPixelChannel(morphology_image,channel,ClampToQuantum(gamma*pixel),q); |
3199 | 0 | if (fabs(pixel-(double) p[center+i]) >= MagickEpsilon) |
3200 | 0 | changes[id]++; |
3201 | 0 | } |
3202 | 0 | p+=(ptrdiff_t) GetPixelChannels(image); |
3203 | 0 | q+=(ptrdiff_t) GetPixelChannels(morphology_image); |
3204 | 0 | } |
3205 | 0 | if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
3206 | 0 | status=MagickFalse; |
3207 | 0 | if (image->progress_monitor != (MagickProgressMonitor) NULL) |
3208 | 0 | { |
3209 | 0 | MagickBooleanType |
3210 | 0 | proceed; |
3211 | |
|
3212 | | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
3213 | | #pragma omp atomic |
3214 | | #endif |
3215 | 0 | progress++; |
3216 | 0 | proceed=SetImageProgress(image,MorphologyTag,progress,image->rows); |
3217 | 0 | if (proceed == MagickFalse) |
3218 | 0 | status=MagickFalse; |
3219 | 0 | } |
3220 | 0 | } |
3221 | 0 | morphology_view=DestroyCacheView(morphology_view); |
3222 | 0 | image_view=DestroyCacheView(image_view); |
3223 | 0 | for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++) |
3224 | 0 | changed+=changes[j]; |
3225 | 0 | changes=(size_t *) RelinquishMagickMemory(changes); |
3226 | 0 | return(status ? (ssize_t) (changed/GetImageChannels(image)) : -1); |
3227 | 0 | } |
3228 | | |
3229 | | /* |
3230 | | This is almost identical to the MorphologyPrimitive() function above, but |
3231 | | applies the primitive directly to the actual image using two passes, once in |
3232 | | each direction, with the results of the previous (and current) row being |
3233 | | re-used. |
3234 | | |
3235 | | That is after each row is 'Sync'ed' into the image, the next row makes use of |
3236 | | those values as part of the calculation of the next row. It repeats, but |
3237 | | going in the opposite (bottom-up) direction. |
3238 | | |
3239 | | Because of this 're-use of results' this function can not make use of multi- |
3240 | | threaded, parallel processing. |
3241 | | */ |
3242 | | static ssize_t MorphologyPrimitiveDirect(Image *image, |
3243 | | const MorphologyMethod method,const KernelInfo *kernel, |
3244 | | ExceptionInfo *exception) |
3245 | 0 | { |
3246 | 0 | CacheView |
3247 | 0 | *morphology_view, |
3248 | 0 | *image_view; |
3249 | |
|
3250 | 0 | MagickBooleanType |
3251 | 0 | status; |
3252 | |
|
3253 | 0 | MagickOffsetType |
3254 | 0 | progress; |
3255 | |
|
3256 | 0 | OffsetInfo |
3257 | 0 | offset; |
3258 | |
|
3259 | 0 | size_t |
3260 | 0 | width, |
3261 | 0 | changed; |
3262 | |
|
3263 | 0 | ssize_t |
3264 | 0 | y; |
3265 | |
|
3266 | 0 | assert(image != (Image *) NULL); |
3267 | 0 | assert(image->signature == MagickCoreSignature); |
3268 | 0 | assert(kernel != (KernelInfo *) NULL); |
3269 | 0 | assert(kernel->signature == MagickCoreSignature); |
3270 | 0 | assert(exception != (ExceptionInfo *) NULL); |
3271 | 0 | assert(exception->signature == MagickCoreSignature); |
3272 | 0 | status=MagickTrue; |
3273 | 0 | changed=0; |
3274 | 0 | progress=0; |
3275 | 0 | switch(method) |
3276 | 0 | { |
3277 | 0 | case DistanceMorphology: |
3278 | 0 | case VoronoiMorphology: |
3279 | 0 | { |
3280 | | /* |
3281 | | Kernel reflected about origin. |
3282 | | */ |
3283 | 0 | offset.x=(ssize_t) kernel->width-kernel->x-1; |
3284 | 0 | offset.y=(ssize_t) kernel->height-kernel->y-1; |
3285 | 0 | break; |
3286 | 0 | } |
3287 | 0 | default: |
3288 | 0 | { |
3289 | 0 | offset.x=kernel->x; |
3290 | 0 | offset.y=kernel->y; |
3291 | 0 | break; |
3292 | 0 | } |
3293 | 0 | } |
3294 | | /* |
3295 | | Two views into same image, do not thread. |
3296 | | */ |
3297 | 0 | image_view=AcquireVirtualCacheView(image,exception); |
3298 | 0 | morphology_view=AcquireAuthenticCacheView(image,exception); |
3299 | 0 | width=image->columns+kernel->width-1; |
3300 | 0 | for (y=0; y < (ssize_t) image->rows; y++) |
3301 | 0 | { |
3302 | 0 | const Quantum |
3303 | 0 | *magick_restrict p; |
3304 | |
|
3305 | 0 | Quantum |
3306 | 0 | *magick_restrict q; |
3307 | |
|
3308 | 0 | ssize_t |
3309 | 0 | x; |
3310 | | |
3311 | | /* |
3312 | | Read virtual pixels, and authentic pixels, from the same image! We read |
3313 | | using virtual to get virtual pixel handling, but write back into the same |
3314 | | image. |
3315 | | |
3316 | | Only top half of kernel is processed as we do a single pass downward |
3317 | | through the image iterating the distance function as we go. |
3318 | | */ |
3319 | 0 | if (status == MagickFalse) |
3320 | 0 | continue; |
3321 | 0 | p=GetCacheViewVirtualPixels(image_view,-offset.x,y-offset.y,width,(size_t) |
3322 | 0 | offset.y+1,exception); |
3323 | 0 | q=GetCacheViewAuthenticPixels(morphology_view,0,y,image->columns,1, |
3324 | 0 | exception); |
3325 | 0 | if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
3326 | 0 | { |
3327 | 0 | status=MagickFalse; |
3328 | 0 | continue; |
3329 | 0 | } |
3330 | 0 | for (x=0; x < (ssize_t) image->columns; x++) |
3331 | 0 | { |
3332 | 0 | ssize_t |
3333 | 0 | i; |
3334 | |
|
3335 | 0 | for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
3336 | 0 | { |
3337 | 0 | double |
3338 | 0 | pixel; |
3339 | |
|
3340 | 0 | PixelChannel |
3341 | 0 | channel; |
3342 | |
|
3343 | 0 | PixelTrait |
3344 | 0 | traits; |
3345 | |
|
3346 | 0 | const MagickRealType |
3347 | 0 | *magick_restrict k; |
3348 | |
|
3349 | 0 | const Quantum |
3350 | 0 | *magick_restrict pixels; |
3351 | |
|
3352 | 0 | ssize_t |
3353 | 0 | u; |
3354 | |
|
3355 | 0 | ssize_t |
3356 | 0 | v; |
3357 | |
|
3358 | 0 | channel=GetPixelChannelChannel(image,i); |
3359 | 0 | traits=GetPixelChannelTraits(image,channel); |
3360 | 0 | if (traits == UndefinedPixelTrait) |
3361 | 0 | continue; |
3362 | 0 | if ((traits & CopyPixelTrait) != 0) |
3363 | 0 | continue; |
3364 | 0 | pixels=p; |
3365 | 0 | pixel=(double) QuantumRange; |
3366 | 0 | switch (method) |
3367 | 0 | { |
3368 | 0 | case DistanceMorphology: |
3369 | 0 | { |
3370 | 0 | k=(&kernel->values[kernel->width*kernel->height-1]); |
3371 | 0 | for (v=0; v <= offset.y; v++) |
3372 | 0 | { |
3373 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3374 | 0 | { |
3375 | 0 | if (!IsNaN(*k)) |
3376 | 0 | { |
3377 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3378 | 0 | pixel=(double) pixels[i]+(*k); |
3379 | 0 | } |
3380 | 0 | k--; |
3381 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3382 | 0 | } |
3383 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3384 | 0 | } |
3385 | 0 | k=(&kernel->values[(ssize_t) kernel->width*(kernel->y+1)-1]); |
3386 | 0 | pixels=q-offset.x*(ssize_t) GetPixelChannels(image); |
3387 | 0 | for (u=0; u < offset.x; u++) |
3388 | 0 | { |
3389 | 0 | if (!IsNaN(*k) && ((x+u-offset.x) >= 0)) |
3390 | 0 | { |
3391 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3392 | 0 | pixel=(double) pixels[i]+(*k); |
3393 | 0 | } |
3394 | 0 | k--; |
3395 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3396 | 0 | } |
3397 | 0 | break; |
3398 | 0 | } |
3399 | 0 | case VoronoiMorphology: |
3400 | 0 | { |
3401 | 0 | k=(&kernel->values[kernel->width*kernel->height-1]); |
3402 | 0 | for (v=0; v < offset.y; v++) |
3403 | 0 | { |
3404 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3405 | 0 | { |
3406 | 0 | if (!IsNaN(*k)) |
3407 | 0 | { |
3408 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3409 | 0 | pixel=(double) pixels[i]+(*k); |
3410 | 0 | } |
3411 | 0 | k--; |
3412 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3413 | 0 | } |
3414 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3415 | 0 | } |
3416 | 0 | k=(&kernel->values[(ssize_t) kernel->width*(kernel->y+1)-1]); |
3417 | 0 | pixels=q-offset.x*(ssize_t) GetPixelChannels(image); |
3418 | 0 | for (u=0; u < offset.x; u++) |
3419 | 0 | { |
3420 | 0 | if (!IsNaN(*k) && ((x+u-offset.x) >= 0)) |
3421 | 0 | { |
3422 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3423 | 0 | pixel=(double) pixels[i]+(*k); |
3424 | 0 | } |
3425 | 0 | k--; |
3426 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3427 | 0 | } |
3428 | 0 | break; |
3429 | 0 | } |
3430 | 0 | default: |
3431 | 0 | break; |
3432 | 0 | } |
3433 | 0 | if (fabs(pixel-(double) q[i]) > MagickEpsilon) |
3434 | 0 | changed++; |
3435 | 0 | q[i]=ClampToQuantum(pixel); |
3436 | 0 | } |
3437 | 0 | p+=(ptrdiff_t) GetPixelChannels(image); |
3438 | 0 | q+=(ptrdiff_t) GetPixelChannels(image); |
3439 | 0 | } |
3440 | 0 | if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
3441 | 0 | status=MagickFalse; |
3442 | 0 | if (image->progress_monitor != (MagickProgressMonitor) NULL) |
3443 | 0 | { |
3444 | 0 | MagickBooleanType |
3445 | 0 | proceed; |
3446 | |
|
3447 | | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
3448 | | #pragma omp atomic |
3449 | | #endif |
3450 | 0 | progress++; |
3451 | 0 | proceed=SetImageProgress(image,MorphologyTag,progress,2*image->rows); |
3452 | 0 | if (proceed == MagickFalse) |
3453 | 0 | status=MagickFalse; |
3454 | 0 | } |
3455 | 0 | } |
3456 | 0 | morphology_view=DestroyCacheView(morphology_view); |
3457 | 0 | image_view=DestroyCacheView(image_view); |
3458 | | /* |
3459 | | Do the reverse pass through the image. |
3460 | | */ |
3461 | 0 | image_view=AcquireVirtualCacheView(image,exception); |
3462 | 0 | morphology_view=AcquireAuthenticCacheView(image,exception); |
3463 | 0 | for (y=(ssize_t) image->rows-1; y >= 0; y--) |
3464 | 0 | { |
3465 | 0 | const Quantum |
3466 | 0 | *magick_restrict p; |
3467 | |
|
3468 | 0 | Quantum |
3469 | 0 | *magick_restrict q; |
3470 | |
|
3471 | 0 | ssize_t |
3472 | 0 | x; |
3473 | | |
3474 | | /* |
3475 | | Read virtual pixels, and authentic pixels, from the same image. We |
3476 | | read using virtual to get virtual pixel handling, but write back |
3477 | | into the same image. |
3478 | | |
3479 | | Only the bottom half of the kernel is processed as we up the image. |
3480 | | */ |
3481 | 0 | if (status == MagickFalse) |
3482 | 0 | continue; |
3483 | 0 | p=GetCacheViewVirtualPixels(image_view,-offset.x,y,width,(size_t) |
3484 | 0 | kernel->y+1,exception); |
3485 | 0 | q=GetCacheViewAuthenticPixels(morphology_view,0,y,image->columns,1, |
3486 | 0 | exception); |
3487 | 0 | if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
3488 | 0 | { |
3489 | 0 | status=MagickFalse; |
3490 | 0 | continue; |
3491 | 0 | } |
3492 | 0 | p+=(ptrdiff_t) (image->columns-1)*GetPixelChannels(image); |
3493 | 0 | q+=(ptrdiff_t) (image->columns-1)*GetPixelChannels(image); |
3494 | 0 | for (x=(ssize_t) image->columns-1; x >= 0; x--) |
3495 | 0 | { |
3496 | 0 | ssize_t |
3497 | 0 | i; |
3498 | |
|
3499 | 0 | for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
3500 | 0 | { |
3501 | 0 | double |
3502 | 0 | pixel; |
3503 | |
|
3504 | 0 | PixelChannel |
3505 | 0 | channel; |
3506 | |
|
3507 | 0 | PixelTrait |
3508 | 0 | traits; |
3509 | |
|
3510 | 0 | const MagickRealType |
3511 | 0 | *magick_restrict k; |
3512 | |
|
3513 | 0 | const Quantum |
3514 | 0 | *magick_restrict pixels; |
3515 | |
|
3516 | 0 | ssize_t |
3517 | 0 | u; |
3518 | |
|
3519 | 0 | ssize_t |
3520 | 0 | v; |
3521 | |
|
3522 | 0 | channel=GetPixelChannelChannel(image,i); |
3523 | 0 | traits=GetPixelChannelTraits(image,channel); |
3524 | 0 | if (traits == UndefinedPixelTrait) |
3525 | 0 | continue; |
3526 | 0 | if ((traits & CopyPixelTrait) != 0) |
3527 | 0 | continue; |
3528 | 0 | pixels=p; |
3529 | 0 | pixel=(double) QuantumRange; |
3530 | 0 | switch (method) |
3531 | 0 | { |
3532 | 0 | case DistanceMorphology: |
3533 | 0 | { |
3534 | 0 | k=(&kernel->values[(ssize_t) kernel->width*(kernel->y+1)-1]); |
3535 | 0 | for (v=offset.y; v < (ssize_t) kernel->height; v++) |
3536 | 0 | { |
3537 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3538 | 0 | { |
3539 | 0 | if (!IsNaN(*k)) |
3540 | 0 | { |
3541 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3542 | 0 | pixel=(double) pixels[i]+(*k); |
3543 | 0 | } |
3544 | 0 | k--; |
3545 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3546 | 0 | } |
3547 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3548 | 0 | } |
3549 | 0 | k=(&kernel->values[(ssize_t) kernel->width*kernel->y+kernel->x-1]); |
3550 | 0 | pixels=q; |
3551 | 0 | for (u=offset.x+1; u < (ssize_t) kernel->width; u++) |
3552 | 0 | { |
3553 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3554 | 0 | if (!IsNaN(*k) && ((x+u-offset.x) < (ssize_t) image->columns)) |
3555 | 0 | { |
3556 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3557 | 0 | pixel=(double) pixels[i]+(*k); |
3558 | 0 | } |
3559 | 0 | k--; |
3560 | 0 | } |
3561 | 0 | break; |
3562 | 0 | } |
3563 | 0 | case VoronoiMorphology: |
3564 | 0 | { |
3565 | 0 | k=(&kernel->values[(ssize_t) kernel->width*(kernel->y+1)-1]); |
3566 | 0 | for (v=offset.y; v < (ssize_t) kernel->height; v++) |
3567 | 0 | { |
3568 | 0 | for (u=0; u < (ssize_t) kernel->width; u++) |
3569 | 0 | { |
3570 | 0 | if (!IsNaN(*k)) |
3571 | 0 | { |
3572 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3573 | 0 | pixel=(double) pixels[i]+(*k); |
3574 | 0 | } |
3575 | 0 | k--; |
3576 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3577 | 0 | } |
3578 | 0 | pixels+=(image->columns-1)*GetPixelChannels(image); |
3579 | 0 | } |
3580 | 0 | k=(&kernel->values[(ssize_t) kernel->width*(kernel->y+1)-1]); |
3581 | 0 | pixels=q; |
3582 | 0 | for (u=offset.x+1; u < (ssize_t) kernel->width; u++) |
3583 | 0 | { |
3584 | 0 | pixels+=(ptrdiff_t) GetPixelChannels(image); |
3585 | 0 | if (!IsNaN(*k) && ((x+u-offset.x) < (ssize_t) image->columns)) |
3586 | 0 | { |
3587 | 0 | if (((double) pixels[i]+(*k)) < pixel) |
3588 | 0 | pixel=(double) pixels[i]+(*k); |
3589 | 0 | } |
3590 | 0 | k--; |
3591 | 0 | } |
3592 | 0 | break; |
3593 | 0 | } |
3594 | 0 | default: |
3595 | 0 | break; |
3596 | 0 | } |
3597 | 0 | if (fabs(pixel-(double) q[i]) > MagickEpsilon) |
3598 | 0 | changed++; |
3599 | 0 | q[i]=ClampToQuantum(pixel); |
3600 | 0 | } |
3601 | 0 | p-=(ptrdiff_t)GetPixelChannels(image); |
3602 | 0 | q-=GetPixelChannels(image); |
3603 | 0 | } |
3604 | 0 | if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
3605 | 0 | status=MagickFalse; |
3606 | 0 | if (image->progress_monitor != (MagickProgressMonitor) NULL) |
3607 | 0 | { |
3608 | 0 | MagickBooleanType |
3609 | 0 | proceed; |
3610 | |
|
3611 | | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
3612 | | #pragma omp atomic |
3613 | | #endif |
3614 | 0 | progress++; |
3615 | 0 | proceed=SetImageProgress(image,MorphologyTag,progress,2*image->rows); |
3616 | 0 | if (proceed == MagickFalse) |
3617 | 0 | status=MagickFalse; |
3618 | 0 | } |
3619 | 0 | } |
3620 | 0 | morphology_view=DestroyCacheView(morphology_view); |
3621 | 0 | image_view=DestroyCacheView(image_view); |
3622 | 0 | return(status ? (ssize_t) (changed/GetImageChannels(image)) : -1); |
3623 | 0 | } |
3624 | | |
3625 | | /* |
3626 | | Apply a Morphology by calling one of the above low level primitive |
3627 | | application functions. This function handles any iteration loops, |
3628 | | composition or re-iteration of results, and compound morphology methods that |
3629 | | is based on multiple low-level (staged) morphology methods. |
3630 | | |
3631 | | Basically this provides the complex glue between the requested morphology |
3632 | | method and raw low-level implementation (above). |
3633 | | */ |
3634 | | MagickPrivate Image *MorphologyApply(const Image *image, |
3635 | | const MorphologyMethod method, const ssize_t iterations, |
3636 | | const KernelInfo *kernel, const CompositeOperator compose,const double bias, |
3637 | | ExceptionInfo *exception) |
3638 | 0 | { |
3639 | 0 | CompositeOperator |
3640 | 0 | curr_compose; |
3641 | |
|
3642 | 0 | Image |
3643 | 0 | *curr_image, /* Image we are working with or iterating */ |
3644 | 0 | *work_image, /* secondary image for primitive iteration */ |
3645 | 0 | *save_image, /* saved image - for 'edge' method only */ |
3646 | 0 | *rslt_image; /* resultant image - after multi-kernel handling */ |
3647 | |
|
3648 | 0 | KernelInfo |
3649 | 0 | *reflected_kernel, /* A reflected copy of the kernel (if needed) */ |
3650 | 0 | *norm_kernel, /* the current normal un-reflected kernel */ |
3651 | 0 | *rflt_kernel, /* the current reflected kernel (if needed) */ |
3652 | 0 | *this_kernel; /* the kernel being applied */ |
3653 | |
|
3654 | 0 | MorphologyMethod |
3655 | 0 | primitive; /* the current morphology primitive being applied */ |
3656 | |
|
3657 | 0 | CompositeOperator |
3658 | 0 | rslt_compose; /* multi-kernel compose method for results to use */ |
3659 | |
|
3660 | 0 | MagickBooleanType |
3661 | 0 | special, /* do we use a direct modify function? */ |
3662 | 0 | verbose; /* verbose output of results */ |
3663 | |
|
3664 | 0 | size_t |
3665 | 0 | method_loop, /* Loop 1: number of compound method iterations (norm 1) */ |
3666 | 0 | method_limit, /* maximum number of compound method iterations */ |
3667 | 0 | kernel_number, /* Loop 2: the kernel number being applied */ |
3668 | 0 | stage_loop, /* Loop 3: primitive loop for compound morphology */ |
3669 | 0 | stage_limit, /* how many primitives are in this compound */ |
3670 | 0 | kernel_loop, /* Loop 4: iterate the kernel over image */ |
3671 | 0 | kernel_limit, /* number of times to iterate kernel */ |
3672 | 0 | count, /* total count of primitive steps applied */ |
3673 | 0 | kernel_changed, /* total count of changed using iterated kernel */ |
3674 | 0 | method_changed; /* total count of changed over method iteration */ |
3675 | |
|
3676 | 0 | ssize_t |
3677 | 0 | changed; /* number pixels changed by last primitive operation */ |
3678 | |
|
3679 | 0 | char |
3680 | 0 | v_info[MagickPathExtent]; |
3681 | |
|
3682 | 0 | assert(image != (Image *) NULL); |
3683 | 0 | assert(image->signature == MagickCoreSignature); |
3684 | 0 | assert(kernel != (KernelInfo *) NULL); |
3685 | 0 | assert(kernel->signature == MagickCoreSignature); |
3686 | 0 | assert(exception != (ExceptionInfo *) NULL); |
3687 | 0 | assert(exception->signature == MagickCoreSignature); |
3688 | | |
3689 | 0 | count = 0; /* number of low-level morphology primitives performed */ |
3690 | 0 | if ( iterations == 0 ) |
3691 | 0 | return((Image *) NULL); /* null operation - nothing to do! */ |
3692 | | |
3693 | 0 | kernel_limit = (size_t) iterations; |
3694 | 0 | if ( iterations < 0 ) /* negative interactions = infinite (well almost) */ |
3695 | 0 | kernel_limit = image->columns>image->rows ? image->columns : image->rows; |
3696 | |
|
3697 | 0 | verbose = IsStringTrue(GetImageArtifact(image,"debug")); |
3698 | | |
3699 | | /* initialise for cleanup */ |
3700 | 0 | curr_image = (Image *) image; |
3701 | 0 | curr_compose = image->compose; |
3702 | 0 | (void) curr_compose; |
3703 | 0 | work_image = save_image = rslt_image = (Image *) NULL; |
3704 | 0 | reflected_kernel = (KernelInfo *) NULL; |
3705 | | |
3706 | | /* Initialize specific methods |
3707 | | * + which loop should use the given iterations |
3708 | | * + how many primitives make up the compound morphology |
3709 | | * + multi-kernel compose method to use (by default) |
3710 | | */ |
3711 | 0 | method_limit = 1; /* just do method once, unless otherwise set */ |
3712 | 0 | stage_limit = 1; /* assume method is not a compound */ |
3713 | 0 | special = MagickFalse; /* assume it is NOT a direct modify primitive */ |
3714 | 0 | rslt_compose = compose; /* and we are composing multi-kernels as given */ |
3715 | 0 | switch( method ) { |
3716 | 0 | case SmoothMorphology: /* 4 primitive compound morphology */ |
3717 | 0 | stage_limit = 4; |
3718 | 0 | break; |
3719 | 0 | case OpenMorphology: /* 2 primitive compound morphology */ |
3720 | 0 | case OpenIntensityMorphology: |
3721 | 0 | case TopHatMorphology: |
3722 | 0 | case CloseMorphology: |
3723 | 0 | case CloseIntensityMorphology: |
3724 | 0 | case BottomHatMorphology: |
3725 | 0 | case EdgeMorphology: |
3726 | 0 | stage_limit = 2; |
3727 | 0 | break; |
3728 | 0 | case HitAndMissMorphology: |
3729 | 0 | rslt_compose = LightenCompositeOp; /* Union of multi-kernel results */ |
3730 | 0 | magick_fallthrough; |
3731 | 0 | case ThinningMorphology: |
3732 | 0 | case ThickenMorphology: |
3733 | 0 | method_limit = kernel_limit; /* iterate the whole method */ |
3734 | 0 | kernel_limit = 1; /* do not do kernel iteration */ |
3735 | 0 | break; |
3736 | 0 | case DistanceMorphology: |
3737 | 0 | case VoronoiMorphology: |
3738 | 0 | special = MagickTrue; /* use special direct primitive */ |
3739 | 0 | break; |
3740 | 0 | default: |
3741 | 0 | break; |
3742 | 0 | } |
3743 | | |
3744 | | /* Apply special methods with special requirements |
3745 | | ** For example, single run only, or post-processing requirements |
3746 | | */ |
3747 | 0 | if ( special != MagickFalse ) |
3748 | 0 | { |
3749 | 0 | rslt_image=CloneImage(image,0,0,MagickTrue,exception); |
3750 | 0 | if (rslt_image == (Image *) NULL) |
3751 | 0 | goto error_cleanup; |
3752 | 0 | if (SetImageStorageClass(rslt_image,DirectClass,exception) == MagickFalse) |
3753 | 0 | goto error_cleanup; |
3754 | | |
3755 | 0 | changed=MorphologyPrimitiveDirect(rslt_image,method,kernel,exception); |
3756 | |
|
3757 | 0 | if (verbose != MagickFalse) |
3758 | 0 | (void) (void) FormatLocaleFile(stderr, |
3759 | 0 | "%s:%.20g.%.20g #%.20g => Changed %.20g\n", |
3760 | 0 | CommandOptionToMnemonic(MagickMorphologyOptions, method), |
3761 | 0 | 1.0,0.0,1.0, (double) changed); |
3762 | |
|
3763 | 0 | if ( changed < 0 ) |
3764 | 0 | goto error_cleanup; |
3765 | | |
3766 | 0 | if ( method == VoronoiMorphology ) { |
3767 | | /* Preserve the alpha channel of input image - but turned it off */ |
3768 | 0 | (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel, |
3769 | 0 | exception); |
3770 | 0 | (void) CompositeImage(rslt_image,image,CopyAlphaCompositeOp, |
3771 | 0 | MagickTrue,0,0,exception); |
3772 | 0 | (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel, |
3773 | 0 | exception); |
3774 | 0 | } |
3775 | 0 | goto exit_cleanup; |
3776 | 0 | } |
3777 | | |
3778 | | /* Handle user (caller) specified multi-kernel composition method */ |
3779 | 0 | if ( compose != UndefinedCompositeOp ) |
3780 | 0 | rslt_compose = compose; /* override default composition for method */ |
3781 | 0 | if ( rslt_compose == UndefinedCompositeOp ) |
3782 | 0 | rslt_compose = NoCompositeOp; /* still not defined! Then re-iterate */ |
3783 | | |
3784 | | /* Some methods require a reflected kernel to use with primitives. |
3785 | | * Create the reflected kernel for those methods. */ |
3786 | 0 | switch ( method ) { |
3787 | 0 | case CorrelateMorphology: |
3788 | 0 | case CloseMorphology: |
3789 | 0 | case CloseIntensityMorphology: |
3790 | 0 | case BottomHatMorphology: |
3791 | 0 | case SmoothMorphology: |
3792 | 0 | reflected_kernel = CloneKernelInfo(kernel); |
3793 | 0 | if (reflected_kernel == (KernelInfo *) NULL) |
3794 | 0 | goto error_cleanup; |
3795 | 0 | RotateKernelInfo(reflected_kernel,180); |
3796 | 0 | break; |
3797 | 0 | default: |
3798 | 0 | break; |
3799 | 0 | } |
3800 | | |
3801 | | /* Loops around more primitive morphology methods |
3802 | | ** erose, dilate, open, close, smooth, edge, etc... |
3803 | | */ |
3804 | | /* Loop 1: iterate the compound method */ |
3805 | 0 | method_loop = 0; |
3806 | 0 | method_changed = 1; |
3807 | 0 | while ( method_loop < method_limit && method_changed > 0 ) { |
3808 | 0 | method_loop++; |
3809 | 0 | method_changed = 0; |
3810 | | |
3811 | | /* Loop 2: iterate over each kernel in a multi-kernel list */ |
3812 | 0 | norm_kernel = (KernelInfo *) kernel; |
3813 | 0 | this_kernel = (KernelInfo *) kernel; |
3814 | 0 | rflt_kernel = reflected_kernel; |
3815 | |
|
3816 | 0 | kernel_number = 0; |
3817 | 0 | while ( norm_kernel != NULL ) { |
3818 | | |
3819 | | /* Loop 3: Compound Morphology Staging - Select Primitive to apply */ |
3820 | 0 | stage_loop = 0; /* the compound morphology stage number */ |
3821 | 0 | while ( stage_loop < stage_limit ) { |
3822 | 0 | stage_loop++; /* The stage of the compound morphology */ |
3823 | | |
3824 | | /* Select primitive morphology for this stage of compound method */ |
3825 | 0 | this_kernel = norm_kernel; /* default use unreflected kernel */ |
3826 | 0 | primitive = method; /* Assume method is a primitive */ |
3827 | 0 | switch( method ) { |
3828 | 0 | case ErodeMorphology: /* just erode */ |
3829 | 0 | case EdgeInMorphology: /* erode and image difference */ |
3830 | 0 | primitive = ErodeMorphology; |
3831 | 0 | break; |
3832 | 0 | case DilateMorphology: /* just dilate */ |
3833 | 0 | case EdgeOutMorphology: /* dilate and image difference */ |
3834 | 0 | primitive = DilateMorphology; |
3835 | 0 | break; |
3836 | 0 | case OpenMorphology: /* erode then dilate */ |
3837 | 0 | case TopHatMorphology: /* open and image difference */ |
3838 | 0 | primitive = ErodeMorphology; |
3839 | 0 | if ( stage_loop == 2 ) |
3840 | 0 | primitive = DilateMorphology; |
3841 | 0 | break; |
3842 | 0 | case OpenIntensityMorphology: |
3843 | 0 | primitive = ErodeIntensityMorphology; |
3844 | 0 | if ( stage_loop == 2 ) |
3845 | 0 | primitive = DilateIntensityMorphology; |
3846 | 0 | break; |
3847 | 0 | case CloseMorphology: /* dilate, then erode */ |
3848 | 0 | case BottomHatMorphology: /* close and image difference */ |
3849 | 0 | this_kernel = rflt_kernel; /* use the reflected kernel */ |
3850 | 0 | primitive = DilateMorphology; |
3851 | 0 | if ( stage_loop == 2 ) |
3852 | 0 | primitive = ErodeMorphology; |
3853 | 0 | break; |
3854 | 0 | case CloseIntensityMorphology: |
3855 | 0 | this_kernel = rflt_kernel; /* use the reflected kernel */ |
3856 | 0 | primitive = DilateIntensityMorphology; |
3857 | 0 | if ( stage_loop == 2 ) |
3858 | 0 | primitive = ErodeIntensityMorphology; |
3859 | 0 | break; |
3860 | 0 | case SmoothMorphology: /* open, close */ |
3861 | 0 | switch ( stage_loop ) { |
3862 | 0 | case 1: /* start an open method, which starts with Erode */ |
3863 | 0 | primitive = ErodeMorphology; |
3864 | 0 | break; |
3865 | 0 | case 2: /* now Dilate the Erode */ |
3866 | 0 | primitive = DilateMorphology; |
3867 | 0 | break; |
3868 | 0 | case 3: /* Reflect kernel a close */ |
3869 | 0 | this_kernel = rflt_kernel; /* use the reflected kernel */ |
3870 | 0 | primitive = DilateMorphology; |
3871 | 0 | break; |
3872 | 0 | case 4: /* Finish the Close */ |
3873 | 0 | this_kernel = rflt_kernel; /* use the reflected kernel */ |
3874 | 0 | primitive = ErodeMorphology; |
3875 | 0 | break; |
3876 | 0 | } |
3877 | 0 | break; |
3878 | 0 | case EdgeMorphology: /* dilate and erode difference */ |
3879 | 0 | primitive = DilateMorphology; |
3880 | 0 | if ( stage_loop == 2 ) { |
3881 | 0 | save_image = curr_image; /* save the image difference */ |
3882 | 0 | curr_image = (Image *) image; |
3883 | 0 | primitive = ErodeMorphology; |
3884 | 0 | } |
3885 | 0 | break; |
3886 | 0 | case CorrelateMorphology: |
3887 | | /* A Correlation is a Convolution with a reflected kernel. |
3888 | | ** However a Convolution is a weighted sum using a reflected |
3889 | | ** kernel. It may seem strange to convert a Correlation into a |
3890 | | ** Convolution as the Correlation is the simpler method, but |
3891 | | ** Convolution is much more commonly used, and it makes sense to |
3892 | | ** implement it directly so as to avoid the need to duplicate the |
3893 | | ** kernel when it is not required (which is typically the |
3894 | | ** default). |
3895 | | */ |
3896 | 0 | this_kernel = rflt_kernel; /* use the reflected kernel */ |
3897 | 0 | primitive = ConvolveMorphology; |
3898 | 0 | break; |
3899 | 0 | default: |
3900 | 0 | break; |
3901 | 0 | } |
3902 | 0 | assert( this_kernel != (KernelInfo *) NULL ); |
3903 | | |
3904 | | /* Extra information for debugging compound operations */ |
3905 | 0 | if (verbose != MagickFalse) { |
3906 | 0 | if ( stage_limit > 1 ) |
3907 | 0 | (void) FormatLocaleString(v_info,MagickPathExtent,"%s:%.20g.%.20g -> ", |
3908 | 0 | CommandOptionToMnemonic(MagickMorphologyOptions,method),(double) |
3909 | 0 | method_loop,(double) stage_loop); |
3910 | 0 | else if ( primitive != method ) |
3911 | 0 | (void) FormatLocaleString(v_info, MagickPathExtent, "%s:%.20g -> ", |
3912 | 0 | CommandOptionToMnemonic(MagickMorphologyOptions, method),(double) |
3913 | 0 | method_loop); |
3914 | 0 | else |
3915 | 0 | v_info[0] = '\0'; |
3916 | 0 | } |
3917 | | |
3918 | | /* Loop 4: Iterate the kernel with primitive */ |
3919 | 0 | kernel_loop = 0; |
3920 | 0 | kernel_changed = 0; |
3921 | 0 | changed = 1; |
3922 | 0 | while ( kernel_loop < kernel_limit && changed > 0 ) { |
3923 | 0 | kernel_loop++; /* the iteration of this kernel */ |
3924 | | |
3925 | | /* Create a clone as the destination image, if not yet defined */ |
3926 | 0 | if ( work_image == (Image *) NULL ) |
3927 | 0 | { |
3928 | 0 | work_image=CloneImage(image,0,0,MagickTrue,exception); |
3929 | 0 | if (work_image == (Image *) NULL) |
3930 | 0 | goto error_cleanup; |
3931 | 0 | if (SetImageStorageClass(work_image,DirectClass,exception) == MagickFalse) |
3932 | 0 | goto error_cleanup; |
3933 | 0 | } |
3934 | | |
3935 | | /* APPLY THE MORPHOLOGICAL PRIMITIVE (curr -> work) */ |
3936 | 0 | count++; |
3937 | 0 | changed = MorphologyPrimitive(curr_image, work_image, primitive, |
3938 | 0 | this_kernel, bias, exception); |
3939 | 0 | if (verbose != MagickFalse) { |
3940 | 0 | if ( kernel_loop > 1 ) |
3941 | 0 | (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line from previous */ |
3942 | 0 | (void) (void) FormatLocaleFile(stderr, |
3943 | 0 | "%s%s%s:%.20g.%.20g #%.20g => Changed %.20g", |
3944 | 0 | v_info,CommandOptionToMnemonic(MagickMorphologyOptions, |
3945 | 0 | primitive),(this_kernel == rflt_kernel ) ? "*" : "", |
3946 | 0 | (double) (method_loop+kernel_loop-1),(double) kernel_number, |
3947 | 0 | (double) count,(double) changed); |
3948 | 0 | } |
3949 | 0 | if ( changed < 0 ) |
3950 | 0 | goto error_cleanup; |
3951 | 0 | kernel_changed = (size_t) ((ssize_t) kernel_changed+changed); |
3952 | 0 | method_changed = (size_t) ((ssize_t) method_changed+changed); |
3953 | | |
3954 | | /* prepare next loop */ |
3955 | 0 | { Image *tmp = work_image; /* swap images for iteration */ |
3956 | 0 | work_image = curr_image; |
3957 | 0 | curr_image = tmp; |
3958 | 0 | } |
3959 | 0 | if ( work_image == image ) |
3960 | 0 | work_image = (Image *) NULL; /* replace input 'image' */ |
3961 | |
|
3962 | 0 | } /* End Loop 4: Iterate the kernel with primitive */ |
3963 | | |
3964 | 0 | if (verbose != MagickFalse && kernel_changed != (size_t)changed) |
3965 | 0 | (void) FormatLocaleFile(stderr, " Total %.20g",(double) kernel_changed); |
3966 | 0 | if (verbose != MagickFalse && stage_loop < stage_limit) |
3967 | 0 | (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line before looping */ |
3968 | |
|
3969 | | #if 0 |
3970 | | (void) FormatLocaleFile(stderr, "--E-- image=0x%lx\n", (unsigned long)image); |
3971 | | (void) FormatLocaleFile(stderr, " curr =0x%lx\n", (unsigned long)curr_image); |
3972 | | (void) FormatLocaleFile(stderr, " work =0x%lx\n", (unsigned long)work_image); |
3973 | | (void) FormatLocaleFile(stderr, " save =0x%lx\n", (unsigned long)save_image); |
3974 | | (void) FormatLocaleFile(stderr, " union=0x%lx\n", (unsigned long)rslt_image); |
3975 | | #endif |
3976 | |
|
3977 | 0 | } /* End Loop 3: Primitive (staging) Loop for Compound Methods */ |
3978 | | |
3979 | | /* Final Post-processing for some Compound Methods |
3980 | | ** |
3981 | | ** The removal of any 'Sync' channel flag in the Image Composition |
3982 | | ** below ensures the mathematical compose method is applied in a |
3983 | | ** purely mathematical way, and only to the selected channels. |
3984 | | ** Turn off SVG composition 'alpha blending'. |
3985 | | */ |
3986 | 0 | switch( method ) { |
3987 | 0 | case EdgeOutMorphology: |
3988 | 0 | case EdgeInMorphology: |
3989 | 0 | case TopHatMorphology: |
3990 | 0 | case BottomHatMorphology: |
3991 | 0 | if (verbose != MagickFalse) |
3992 | 0 | (void) FormatLocaleFile(stderr, |
3993 | 0 | "\n%s: Difference with original image",CommandOptionToMnemonic( |
3994 | 0 | MagickMorphologyOptions, method) ); |
3995 | 0 | (void) CompositeImage(curr_image,image,DifferenceCompositeOp, |
3996 | 0 | MagickTrue,0,0,exception); |
3997 | 0 | break; |
3998 | 0 | case EdgeMorphology: |
3999 | 0 | if (verbose != MagickFalse) |
4000 | 0 | (void) FormatLocaleFile(stderr, |
4001 | 0 | "\n%s: Difference of Dilate and Erode",CommandOptionToMnemonic( |
4002 | 0 | MagickMorphologyOptions, method) ); |
4003 | 0 | (void) CompositeImage(curr_image,save_image,DifferenceCompositeOp, |
4004 | 0 | MagickTrue,0,0,exception); |
4005 | 0 | save_image = DestroyImage(save_image); /* finished with save image */ |
4006 | 0 | break; |
4007 | 0 | default: |
4008 | 0 | break; |
4009 | 0 | } |
4010 | | |
4011 | | /* multi-kernel handling: re-iterate, or compose results */ |
4012 | 0 | if ( kernel->next == (KernelInfo *) NULL ) |
4013 | 0 | rslt_image = curr_image; /* just return the resulting image */ |
4014 | 0 | else if ( rslt_compose == NoCompositeOp ) |
4015 | 0 | { if (verbose != MagickFalse) { |
4016 | 0 | if ( this_kernel->next != (KernelInfo *) NULL ) |
4017 | 0 | (void) FormatLocaleFile(stderr, " (re-iterate)"); |
4018 | 0 | else |
4019 | 0 | (void) FormatLocaleFile(stderr, " (done)"); |
4020 | 0 | } |
4021 | 0 | rslt_image = curr_image; /* return result, and re-iterate */ |
4022 | 0 | } |
4023 | 0 | else if ( rslt_image == (Image *) NULL) |
4024 | 0 | { if (verbose != MagickFalse) |
4025 | 0 | (void) FormatLocaleFile(stderr, " (save for compose)"); |
4026 | 0 | rslt_image = curr_image; |
4027 | 0 | curr_image = (Image *) image; /* continue with original image */ |
4028 | 0 | } |
4029 | 0 | else |
4030 | 0 | { /* Add the new 'current' result to the composition |
4031 | | ** |
4032 | | ** The removal of any 'Sync' channel flag in the Image Composition |
4033 | | ** below ensures the mathematical compose method is applied in a |
4034 | | ** purely mathematical way, and only to the selected channels. |
4035 | | ** IE: Turn off SVG composition 'alpha blending'. |
4036 | | */ |
4037 | 0 | if (verbose != MagickFalse) |
4038 | 0 | (void) FormatLocaleFile(stderr, " (compose \"%s\")", |
4039 | 0 | CommandOptionToMnemonic(MagickComposeOptions, rslt_compose) ); |
4040 | 0 | (void) CompositeImage(rslt_image,curr_image,rslt_compose,MagickTrue, |
4041 | 0 | 0,0,exception); |
4042 | 0 | curr_image = DestroyImage(curr_image); |
4043 | 0 | curr_image = (Image *) image; /* continue with original image */ |
4044 | 0 | } |
4045 | 0 | if (verbose != MagickFalse) |
4046 | 0 | (void) FormatLocaleFile(stderr, "\n"); |
4047 | | |
4048 | | /* loop to the next kernel in a multi-kernel list */ |
4049 | 0 | norm_kernel = norm_kernel->next; |
4050 | 0 | if ( rflt_kernel != (KernelInfo *) NULL ) |
4051 | 0 | rflt_kernel = rflt_kernel->next; |
4052 | 0 | kernel_number++; |
4053 | 0 | } /* End Loop 2: Loop over each kernel */ |
4054 | |
|
4055 | 0 | } /* End Loop 1: compound method interaction */ |
4056 | | |
4057 | 0 | goto exit_cleanup; |
4058 | | |
4059 | | /* Yes goto's are bad, but it makes cleanup lot more efficient */ |
4060 | 0 | error_cleanup: |
4061 | 0 | if ( curr_image == rslt_image ) |
4062 | 0 | curr_image = (Image *) NULL; |
4063 | 0 | if ( rslt_image != (Image *) NULL ) |
4064 | 0 | rslt_image = DestroyImage(rslt_image); |
4065 | 0 | exit_cleanup: |
4066 | 0 | if ( curr_image == rslt_image || curr_image == image ) |
4067 | 0 | curr_image = (Image *) NULL; |
4068 | 0 | if ( curr_image != (Image *) NULL ) |
4069 | 0 | curr_image = DestroyImage(curr_image); |
4070 | 0 | if ( work_image != (Image *) NULL ) |
4071 | 0 | work_image = DestroyImage(work_image); |
4072 | 0 | if ( save_image != (Image *) NULL ) |
4073 | 0 | save_image = DestroyImage(save_image); |
4074 | 0 | if ( reflected_kernel != (KernelInfo *) NULL ) |
4075 | 0 | reflected_kernel = DestroyKernelInfo(reflected_kernel); |
4076 | 0 | return(rslt_image); |
4077 | 0 | } |
4078 | | |
4079 | | |
4080 | | /* |
4081 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4082 | | % % |
4083 | | % % |
4084 | | % % |
4085 | | % M o r p h o l o g y I m a g e % |
4086 | | % % |
4087 | | % % |
4088 | | % % |
4089 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4090 | | % |
4091 | | % MorphologyImage() applies a user supplied kernel to the image according to |
4092 | | % the given morphology method. |
4093 | | % |
4094 | | % This function applies any and all user defined settings before calling |
4095 | | % the above internal function MorphologyApply(). |
4096 | | % |
4097 | | % User defined settings include... |
4098 | | % * Output Bias for Convolution and correlation ("-define convolve:bias=??") |
4099 | | % * Kernel Scale/normalize settings ("-define convolve:scale=??") |
4100 | | % This can also includes the addition of a scaled unity kernel. |
4101 | | % * Show Kernel being applied ("-define morphology:showKernel=1") |
4102 | | % |
4103 | | % Other operators that do not want user supplied options interfering, |
4104 | | % especially "convolve:bias" and "morphology:showKernel" should use |
4105 | | % MorphologyApply() directly. |
4106 | | % |
4107 | | % The format of the MorphologyImage method is: |
4108 | | % |
4109 | | % Image *MorphologyImage(const Image *image,MorphologyMethod method, |
4110 | | % const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception) |
4111 | | % |
4112 | | % A description of each parameter follows: |
4113 | | % |
4114 | | % o image: the image. |
4115 | | % |
4116 | | % o method: the morphology method to be applied. |
4117 | | % |
4118 | | % o iterations: apply the operation this many times (or no change). |
4119 | | % A value of -1 means loop until no change found. |
4120 | | % How this is applied may depend on the morphology method. |
4121 | | % Typically this is a value of 1. |
4122 | | % |
4123 | | % o kernel: An array of double representing the morphology kernel. |
4124 | | % Warning: kernel may be normalized for the Convolve method. |
4125 | | % |
4126 | | % o exception: return any errors or warnings in this structure. |
4127 | | % |
4128 | | */ |
4129 | | MagickExport Image *MorphologyImage(const Image *image, |
4130 | | const MorphologyMethod method,const ssize_t iterations, |
4131 | | const KernelInfo *kernel,ExceptionInfo *exception) |
4132 | 0 | { |
4133 | 0 | const char |
4134 | 0 | *artifact; |
4135 | |
|
4136 | 0 | CompositeOperator |
4137 | 0 | compose; |
4138 | |
|
4139 | 0 | double |
4140 | 0 | bias; |
4141 | |
|
4142 | 0 | Image |
4143 | 0 | *morphology_image; |
4144 | |
|
4145 | 0 | KernelInfo |
4146 | 0 | *curr_kernel; |
4147 | |
|
4148 | 0 | assert(image != (const Image *) NULL); |
4149 | 0 | assert(image->signature == MagickCoreSignature); |
4150 | 0 | assert(exception != (ExceptionInfo *) NULL); |
4151 | 0 | assert(exception->signature == MagickCoreSignature); |
4152 | 0 | if (IsEventLogging() != MagickFalse) |
4153 | 0 | (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
4154 | 0 | curr_kernel = (KernelInfo *) kernel; |
4155 | 0 | bias=0.0; |
4156 | 0 | compose = UndefinedCompositeOp; /* use default for method */ |
4157 | | |
4158 | | /* Apply Convolve/Correlate Normalization and Scaling Factors. |
4159 | | * This is done BEFORE the ShowKernelInfo() function is called so that |
4160 | | * users can see the results of the 'option:convolve:scale' option. |
4161 | | */ |
4162 | 0 | if ( method == ConvolveMorphology || method == CorrelateMorphology ) { |
4163 | | /* Get the bias value as it will be needed */ |
4164 | 0 | artifact = GetImageArtifact(image,"convolve:bias"); |
4165 | 0 | if ( artifact != (const char *) NULL) { |
4166 | 0 | if (IsGeometry(artifact) == MagickFalse) |
4167 | 0 | (void) ThrowMagickException(exception,GetMagickModule(), |
4168 | 0 | OptionWarning,"InvalidSetting","'%s' '%s'", |
4169 | 0 | "convolve:bias",artifact); |
4170 | 0 | else |
4171 | 0 | bias=StringToDoubleInterval(artifact,(double) QuantumRange+1.0); |
4172 | 0 | } |
4173 | | |
4174 | | /* Scale kernel according to user wishes */ |
4175 | 0 | artifact = GetImageArtifact(image,"convolve:scale"); |
4176 | 0 | if ( artifact != (const char *) NULL ) { |
4177 | 0 | if (IsGeometry(artifact) == MagickFalse) |
4178 | 0 | (void) ThrowMagickException(exception,GetMagickModule(), |
4179 | 0 | OptionWarning,"InvalidSetting","'%s' '%s'", |
4180 | 0 | "convolve:scale",artifact); |
4181 | 0 | else { |
4182 | 0 | if ( curr_kernel == kernel ) |
4183 | 0 | curr_kernel = CloneKernelInfo(kernel); |
4184 | 0 | if (curr_kernel == (KernelInfo *) NULL) |
4185 | 0 | return((Image *) NULL); |
4186 | 0 | ScaleGeometryKernelInfo(curr_kernel, artifact); |
4187 | 0 | } |
4188 | 0 | } |
4189 | 0 | } |
4190 | | |
4191 | | /* display the (normalized) kernel via stderr */ |
4192 | 0 | artifact=GetImageArtifact(image,"morphology:showKernel"); |
4193 | 0 | if (IsStringTrue(artifact) != MagickFalse) |
4194 | 0 | ShowKernelInfo(curr_kernel); |
4195 | | |
4196 | | /* Override the default handling of multi-kernel morphology results |
4197 | | * If 'Undefined' use the default method |
4198 | | * If 'None' (default for 'Convolve') re-iterate previous result |
4199 | | * Otherwise merge resulting images using compose method given. |
4200 | | * Default for 'HitAndMiss' is 'Lighten'. |
4201 | | */ |
4202 | 0 | { |
4203 | 0 | ssize_t |
4204 | 0 | parse; |
4205 | |
|
4206 | 0 | artifact = GetImageArtifact(image,"morphology:compose"); |
4207 | 0 | if ( artifact != (const char *) NULL) { |
4208 | 0 | parse=ParseCommandOption(MagickComposeOptions, |
4209 | 0 | MagickFalse,artifact); |
4210 | 0 | if ( parse < 0 ) |
4211 | 0 | (void) ThrowMagickException(exception,GetMagickModule(), |
4212 | 0 | OptionWarning,"UnrecognizedComposeOperator","'%s' '%s'", |
4213 | 0 | "morphology:compose",artifact); |
4214 | 0 | else |
4215 | 0 | compose=(CompositeOperator)parse; |
4216 | 0 | } |
4217 | 0 | } |
4218 | | /* Apply the Morphology */ |
4219 | 0 | morphology_image = MorphologyApply(image,method,iterations, |
4220 | 0 | curr_kernel,compose,bias,exception); |
4221 | | |
4222 | | /* Cleanup and Exit */ |
4223 | 0 | if ( curr_kernel != kernel ) |
4224 | 0 | curr_kernel=DestroyKernelInfo(curr_kernel); |
4225 | 0 | return(morphology_image); |
4226 | 0 | } |
4227 | | |
4228 | | /* |
4229 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4230 | | % % |
4231 | | % % |
4232 | | % % |
4233 | | + R o t a t e K e r n e l I n f o % |
4234 | | % % |
4235 | | % % |
4236 | | % % |
4237 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4238 | | % |
4239 | | % RotateKernelInfo() rotates the kernel by the angle given. |
4240 | | % |
4241 | | % Currently it is restricted to 90 degree angles, of either 1D kernels |
4242 | | % or square kernels. And 'circular' rotations of 45 degrees for 3x3 kernels. |
4243 | | % It will ignore useless rotations for specific 'named' built-in kernels. |
4244 | | % |
4245 | | % The format of the RotateKernelInfo method is: |
4246 | | % |
4247 | | % void RotateKernelInfo(KernelInfo *kernel, double angle) |
4248 | | % |
4249 | | % A description of each parameter follows: |
4250 | | % |
4251 | | % o kernel: the Morphology/Convolution kernel |
4252 | | % |
4253 | | % o angle: angle to rotate in degrees |
4254 | | % |
4255 | | % This function is currently internal to this module only, but can be exported |
4256 | | % to other modules if needed. |
4257 | | */ |
4258 | | static void RotateKernelInfo(KernelInfo *kernel, double angle) |
4259 | 0 | { |
4260 | | /* angle the lower kernels first */ |
4261 | 0 | if ( kernel->next != (KernelInfo *) NULL) |
4262 | 0 | RotateKernelInfo(kernel->next, angle); |
4263 | | |
4264 | | /* WARNING: Currently assumes the kernel (rightly) is horizontally symmetrical |
4265 | | ** |
4266 | | ** TODO: expand beyond simple 90 degree rotates, flips and flops |
4267 | | */ |
4268 | | |
4269 | | /* Modulus the angle */ |
4270 | 0 | angle = fmod(angle, 360.0); |
4271 | 0 | if ( angle < 0 ) |
4272 | 0 | angle += 360.0; |
4273 | |
|
4274 | 0 | if ( 337.5 < angle || angle <= 22.5 ) |
4275 | 0 | return; /* Near zero angle - no change! - At least not at this time */ |
4276 | | |
4277 | | /* Handle special cases */ |
4278 | 0 | switch (kernel->type) { |
4279 | | /* These built-in kernels are cylindrical kernels, rotating is useless */ |
4280 | 0 | case GaussianKernel: |
4281 | 0 | case DoGKernel: |
4282 | 0 | case LoGKernel: |
4283 | 0 | case DiskKernel: |
4284 | 0 | case PeaksKernel: |
4285 | 0 | case LaplacianKernel: |
4286 | 0 | case ChebyshevKernel: |
4287 | 0 | case ManhattanKernel: |
4288 | 0 | case EuclideanKernel: |
4289 | 0 | return; |
4290 | | |
4291 | | /* These may be rotatable at non-90 angles in the future */ |
4292 | | /* but simply rotating them in multiples of 90 degrees is useless */ |
4293 | 0 | case SquareKernel: |
4294 | 0 | case DiamondKernel: |
4295 | 0 | case PlusKernel: |
4296 | 0 | case CrossKernel: |
4297 | 0 | return; |
4298 | | |
4299 | | /* These only allows a +/-90 degree rotation (by transpose) */ |
4300 | | /* A 180 degree rotation is useless */ |
4301 | 0 | case BlurKernel: |
4302 | 0 | if ( 135.0 < angle && angle <= 225.0 ) |
4303 | 0 | return; |
4304 | 0 | if ( 225.0 < angle && angle <= 315.0 ) |
4305 | 0 | angle -= 180; |
4306 | 0 | break; |
4307 | | |
4308 | 0 | default: |
4309 | 0 | break; |
4310 | 0 | } |
4311 | | /* Attempt rotations by 45 degrees -- 3x3 kernels only */ |
4312 | 0 | if ( 22.5 < fmod(angle,90.0) && fmod(angle,90.0) <= 67.5 ) |
4313 | 0 | { |
4314 | 0 | if ( kernel->width == 3 && kernel->height == 3 ) |
4315 | 0 | { /* Rotate a 3x3 square by 45 degree angle */ |
4316 | 0 | double t = kernel->values[0]; |
4317 | 0 | kernel->values[0] = kernel->values[3]; |
4318 | 0 | kernel->values[3] = kernel->values[6]; |
4319 | 0 | kernel->values[6] = kernel->values[7]; |
4320 | 0 | kernel->values[7] = kernel->values[8]; |
4321 | 0 | kernel->values[8] = kernel->values[5]; |
4322 | 0 | kernel->values[5] = kernel->values[2]; |
4323 | 0 | kernel->values[2] = kernel->values[1]; |
4324 | 0 | kernel->values[1] = t; |
4325 | | /* rotate non-centered origin */ |
4326 | 0 | if ( kernel->x != 1 || kernel->y != 1 ) { |
4327 | 0 | ssize_t x,y; |
4328 | 0 | x = (ssize_t) kernel->x-1; |
4329 | 0 | y = (ssize_t) kernel->y-1; |
4330 | 0 | if ( x == y ) x = 0; |
4331 | 0 | else if ( x == 0 ) x = -y; |
4332 | 0 | else if ( x == -y ) y = 0; |
4333 | 0 | else if ( y == 0 ) y = x; |
4334 | 0 | kernel->x = (ssize_t) x+1; |
4335 | 0 | kernel->y = (ssize_t) y+1; |
4336 | 0 | } |
4337 | 0 | angle = fmod(angle+315.0, 360.0); /* angle reduced 45 degrees */ |
4338 | 0 | kernel->angle = fmod(kernel->angle+45.0, 360.0); |
4339 | 0 | } |
4340 | 0 | else |
4341 | 0 | perror("Unable to rotate non-3x3 kernel by 45 degrees"); |
4342 | 0 | } |
4343 | 0 | if ( 45.0 < fmod(angle, 180.0) && fmod(angle,180.0) <= 135.0 ) |
4344 | 0 | { |
4345 | 0 | if ( kernel->width == 1 || kernel->height == 1 ) |
4346 | 0 | { /* Do a transpose of a 1 dimensional kernel, |
4347 | | ** which results in a fast 90 degree rotation of some type. |
4348 | | */ |
4349 | 0 | ssize_t |
4350 | 0 | t; |
4351 | 0 | t = (ssize_t) kernel->width; |
4352 | 0 | kernel->width = kernel->height; |
4353 | 0 | kernel->height = (size_t) t; |
4354 | 0 | t = kernel->x; |
4355 | 0 | kernel->x = kernel->y; |
4356 | 0 | kernel->y = t; |
4357 | 0 | if ( kernel->width == 1 ) { |
4358 | 0 | angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ |
4359 | 0 | kernel->angle = fmod(kernel->angle+90.0, 360.0); |
4360 | 0 | } else { |
4361 | 0 | angle = fmod(angle+90.0, 360.0); /* angle increased 90 degrees */ |
4362 | 0 | kernel->angle = fmod(kernel->angle+270.0, 360.0); |
4363 | 0 | } |
4364 | 0 | } |
4365 | 0 | else if ( kernel->width == kernel->height ) |
4366 | 0 | { /* Rotate a square array of values by 90 degrees */ |
4367 | 0 | { ssize_t |
4368 | 0 | i,j,x,y; |
4369 | |
|
4370 | 0 | MagickRealType |
4371 | 0 | *k,t; |
4372 | |
|
4373 | 0 | k=kernel->values; |
4374 | 0 | for( i=0, x=(ssize_t) kernel->width-1; i<=x; i++, x--) |
4375 | 0 | for( j=0, y=(ssize_t) kernel->height-1; j<y; j++, y--) |
4376 | 0 | { t = k[i+j*(ssize_t) kernel->width]; |
4377 | 0 | k[i+j*(ssize_t) kernel->width] = k[j+x*(ssize_t) kernel->width]; |
4378 | 0 | k[j+x*(ssize_t) kernel->width] = k[x+y*(ssize_t) kernel->width]; |
4379 | 0 | k[x+y*(ssize_t) kernel->width] = k[y+i*(ssize_t) kernel->width]; |
4380 | 0 | k[y+i*(ssize_t) kernel->width] = t; |
4381 | 0 | } |
4382 | 0 | } |
4383 | | /* rotate the origin - relative to center of array */ |
4384 | 0 | { ssize_t x,y; |
4385 | 0 | x = (ssize_t) (kernel->x*2-(ssize_t) kernel->width+1); |
4386 | 0 | y = (ssize_t) (kernel->y*2-(ssize_t) kernel->height+1); |
4387 | 0 | kernel->x = (ssize_t) ( -y +(ssize_t) kernel->width-1)/2; |
4388 | 0 | kernel->y = (ssize_t) ( +x +(ssize_t) kernel->height-1)/2; |
4389 | 0 | } |
4390 | 0 | angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ |
4391 | 0 | kernel->angle = fmod(kernel->angle+90.0, 360.0); |
4392 | 0 | } |
4393 | 0 | else |
4394 | 0 | perror("Unable to rotate a non-square, non-linear kernel 90 degrees"); |
4395 | 0 | } |
4396 | 0 | if ( 135.0 < angle && angle <= 225.0 ) |
4397 | 0 | { |
4398 | | /* For a 180 degree rotation - also know as a reflection |
4399 | | * This is actually a very very common operation! |
4400 | | * Basically all that is needed is a reversal of the kernel data! |
4401 | | * And a reflection of the origin |
4402 | | */ |
4403 | 0 | MagickRealType |
4404 | 0 | t; |
4405 | |
|
4406 | 0 | MagickRealType |
4407 | 0 | *k; |
4408 | |
|
4409 | 0 | ssize_t |
4410 | 0 | i, |
4411 | 0 | j; |
4412 | |
|
4413 | 0 | k=kernel->values; |
4414 | 0 | j=(ssize_t) (kernel->width*kernel->height-1); |
4415 | 0 | for (i=0; i < j; i++, j--) |
4416 | 0 | t=k[i], k[i]=k[j], k[j]=t; |
4417 | |
|
4418 | 0 | kernel->x = (ssize_t) kernel->width - kernel->x - 1; |
4419 | 0 | kernel->y = (ssize_t) kernel->height - kernel->y - 1; |
4420 | 0 | angle = fmod(angle-180.0, 360.0); /* angle+180 degrees */ |
4421 | 0 | kernel->angle = fmod(kernel->angle+180.0, 360.0); |
4422 | 0 | } |
4423 | | /* At this point angle should at least between -45 (315) and +45 degrees |
4424 | | * In the future some form of non-orthogonal angled rotates could be |
4425 | | * performed here, possibly with a linear kernel restriction. |
4426 | | */ |
4427 | |
|
4428 | 0 | return; |
4429 | 0 | } |
4430 | | |
4431 | | /* |
4432 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4433 | | % % |
4434 | | % % |
4435 | | % % |
4436 | | % S c a l e G e o m e t r y K e r n e l I n f o % |
4437 | | % % |
4438 | | % % |
4439 | | % % |
4440 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4441 | | % |
4442 | | % ScaleGeometryKernelInfo() takes a geometry argument string, typically |
4443 | | % provided as a "-set option:convolve:scale {geometry}" user setting, |
4444 | | % and modifies the kernel according to the parsed arguments of that setting. |
4445 | | % |
4446 | | % The first argument (and any normalization flags) are passed to |
4447 | | % ScaleKernelInfo() to scale/normalize the kernel. The second argument |
4448 | | % is then passed to UnityAddKernelInfo() to add a scaled unity kernel |
4449 | | % into the scaled/normalized kernel. |
4450 | | % |
4451 | | % The format of the ScaleGeometryKernelInfo method is: |
4452 | | % |
4453 | | % void ScaleGeometryKernelInfo(KernelInfo *kernel, |
4454 | | % const double scaling_factor,const MagickStatusType normalize_flags) |
4455 | | % |
4456 | | % A description of each parameter follows: |
4457 | | % |
4458 | | % o kernel: the Morphology/Convolution kernel to modify |
4459 | | % |
4460 | | % o geometry: |
4461 | | % The geometry string to parse, typically from the user provided |
4462 | | % "-set option:convolve:scale {geometry}" setting. |
4463 | | % |
4464 | | */ |
4465 | | MagickExport void ScaleGeometryKernelInfo (KernelInfo *kernel, |
4466 | | const char *geometry) |
4467 | 0 | { |
4468 | 0 | MagickStatusType |
4469 | 0 | flags; |
4470 | |
|
4471 | 0 | GeometryInfo |
4472 | 0 | args; |
4473 | |
|
4474 | 0 | SetGeometryInfo(&args); |
4475 | 0 | flags = ParseGeometry(geometry, &args); |
4476 | |
|
4477 | | #if 0 |
4478 | | /* For Debugging Geometry Input */ |
4479 | | (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", |
4480 | | flags, args.rho, args.sigma, args.xi, args.psi ); |
4481 | | #endif |
4482 | |
|
4483 | 0 | if ( (flags & PercentValue) != 0 ) /* Handle Percentage flag*/ |
4484 | 0 | args.rho *= 0.01, args.sigma *= 0.01; |
4485 | |
|
4486 | 0 | if ( (flags & RhoValue) == 0 ) /* Set Defaults for missing args */ |
4487 | 0 | args.rho = 1.0; |
4488 | 0 | if ( (flags & SigmaValue) == 0 ) |
4489 | 0 | args.sigma = 0.0; |
4490 | | |
4491 | | /* Scale/Normalize the input kernel */ |
4492 | 0 | ScaleKernelInfo(kernel, args.rho, (GeometryFlags) flags); |
4493 | | |
4494 | | /* Add Unity Kernel, for blending with original */ |
4495 | 0 | if ( (flags & SigmaValue) != 0 ) |
4496 | 0 | UnityAddKernelInfo(kernel, args.sigma); |
4497 | |
|
4498 | 0 | return; |
4499 | 0 | } |
4500 | | /* |
4501 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4502 | | % % |
4503 | | % % |
4504 | | % % |
4505 | | % S c a l e K e r n e l I n f o % |
4506 | | % % |
4507 | | % % |
4508 | | % % |
4509 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4510 | | % |
4511 | | % ScaleKernelInfo() scales the given kernel list by the given amount, with or |
4512 | | % without normalization of the sum of the kernel values (as per given flags). |
4513 | | % |
4514 | | % By default (no flags given) the values within the kernel is scaled |
4515 | | % directly using given scaling factor without change. |
4516 | | % |
4517 | | % If either of the two 'normalize_flags' are given the kernel will first be |
4518 | | % normalized and then further scaled by the scaling factor value given. |
4519 | | % |
4520 | | % Kernel normalization ('normalize_flags' given) is designed to ensure that |
4521 | | % any use of the kernel scaling factor with 'Convolve' or 'Correlate' |
4522 | | % morphology methods will fall into -1.0 to +1.0 range. Note that for |
4523 | | % non-HDRI versions of IM this may cause images to have any negative results |
4524 | | % clipped, unless some 'bias' is used. |
4525 | | % |
4526 | | % More specifically. Kernels which only contain positive values (such as a |
4527 | | % 'Gaussian' kernel) will be scaled so that those values sum to +1.0, |
4528 | | % ensuring a 0.0 to +1.0 output range for non-HDRI images. |
4529 | | % |
4530 | | % For Kernels that contain some negative values, (such as 'Sharpen' kernels) |
4531 | | % the kernel will be scaled by the absolute of the sum of kernel values, so |
4532 | | % that it will generally fall within the +/- 1.0 range. |
4533 | | % |
4534 | | % For kernels whose values sum to zero, (such as 'Laplacian' kernels) kernel |
4535 | | % will be scaled by just the sum of the positive values, so that its output |
4536 | | % range will again fall into the +/- 1.0 range. |
4537 | | % |
4538 | | % For special kernels designed for locating shapes using 'Correlate', (often |
4539 | | % only containing +1 and -1 values, representing foreground/background |
4540 | | % matching) a special normalization method is provided to scale the positive |
4541 | | % values separately to those of the negative values, so the kernel will be |
4542 | | % forced to become a zero-sum kernel better suited to such searches. |
4543 | | % |
4544 | | % WARNING: Correct normalization of the kernel assumes that the '*_range' |
4545 | | % attributes within the kernel structure have been correctly set during the |
4546 | | % kernels creation. |
4547 | | % |
4548 | | % NOTE: The values used for 'normalize_flags' have been selected specifically |
4549 | | % to match the use of geometry options, so that '!' means NormalizeValue, '^' |
4550 | | % means CorrelateNormalizeValue. All other GeometryFlags values are ignored. |
4551 | | % |
4552 | | % The format of the ScaleKernelInfo method is: |
4553 | | % |
4554 | | % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, |
4555 | | % const MagickStatusType normalize_flags ) |
4556 | | % |
4557 | | % A description of each parameter follows: |
4558 | | % |
4559 | | % o kernel: the Morphology/Convolution kernel |
4560 | | % |
4561 | | % o scaling_factor: |
4562 | | % multiply all values (after normalization) by this factor if not |
4563 | | % zero. If the kernel is normalized regardless of any flags. |
4564 | | % |
4565 | | % o normalize_flags: |
4566 | | % GeometryFlags defining normalization method to use. |
4567 | | % specifically: NormalizeValue, CorrelateNormalizeValue, |
4568 | | % and/or PercentValue |
4569 | | % |
4570 | | */ |
4571 | | MagickExport void ScaleKernelInfo(KernelInfo *kernel, |
4572 | | const double scaling_factor,const GeometryFlags normalize_flags) |
4573 | 0 | { |
4574 | 0 | double |
4575 | 0 | pos_scale, |
4576 | 0 | neg_scale; |
4577 | |
|
4578 | 0 | ssize_t |
4579 | 0 | i; |
4580 | | |
4581 | | /* do the other kernels in a multi-kernel list first */ |
4582 | 0 | if ( kernel->next != (KernelInfo *) NULL) |
4583 | 0 | ScaleKernelInfo(kernel->next, scaling_factor, normalize_flags); |
4584 | | |
4585 | | /* Normalization of Kernel */ |
4586 | 0 | pos_scale = 1.0; |
4587 | 0 | if ( (normalize_flags&NormalizeValue) != 0 ) { |
4588 | 0 | if ( fabs(kernel->positive_range + kernel->negative_range) >= MagickEpsilon ) |
4589 | | /* non-zero-summing kernel (generally positive) */ |
4590 | 0 | pos_scale = fabs(kernel->positive_range + kernel->negative_range); |
4591 | 0 | else |
4592 | | /* zero-summing kernel */ |
4593 | 0 | pos_scale = kernel->positive_range; |
4594 | 0 | } |
4595 | | /* Force kernel into a normalized zero-summing kernel */ |
4596 | 0 | if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) { |
4597 | 0 | pos_scale = ( fabs(kernel->positive_range) >= MagickEpsilon ) |
4598 | 0 | ? kernel->positive_range : 1.0; |
4599 | 0 | neg_scale = ( fabs(kernel->negative_range) >= MagickEpsilon ) |
4600 | 0 | ? -kernel->negative_range : 1.0; |
4601 | 0 | } |
4602 | 0 | else |
4603 | 0 | neg_scale = pos_scale; |
4604 | | |
4605 | | /* finalize scaling_factor for positive and negative components */ |
4606 | 0 | pos_scale = scaling_factor/pos_scale; |
4607 | 0 | neg_scale = scaling_factor/neg_scale; |
4608 | |
|
4609 | 0 | for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) |
4610 | 0 | if (!IsNaN(kernel->values[i])) |
4611 | 0 | kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale; |
4612 | | |
4613 | | /* convolution output range */ |
4614 | 0 | kernel->positive_range *= pos_scale; |
4615 | 0 | kernel->negative_range *= neg_scale; |
4616 | | /* maximum and minimum values in kernel */ |
4617 | 0 | kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale; |
4618 | 0 | kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale; |
4619 | | |
4620 | | /* swap kernel settings if user's scaling factor is negative */ |
4621 | 0 | if ( scaling_factor < MagickEpsilon ) { |
4622 | 0 | double t; |
4623 | 0 | t = kernel->positive_range; |
4624 | 0 | kernel->positive_range = kernel->negative_range; |
4625 | 0 | kernel->negative_range = t; |
4626 | 0 | t = kernel->maximum; |
4627 | 0 | kernel->maximum = kernel->minimum; |
4628 | 0 | kernel->minimum = 1; |
4629 | 0 | } |
4630 | |
|
4631 | 0 | return; |
4632 | 0 | } |
4633 | | |
4634 | | /* |
4635 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4636 | | % % |
4637 | | % % |
4638 | | % % |
4639 | | % S h o w K e r n e l I n f o % |
4640 | | % % |
4641 | | % % |
4642 | | % % |
4643 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4644 | | % |
4645 | | % ShowKernelInfo() outputs the details of the given kernel definition to |
4646 | | % standard error, generally due to a users 'morphology:showKernel' option |
4647 | | % request. |
4648 | | % |
4649 | | % The format of the ShowKernel method is: |
4650 | | % |
4651 | | % void ShowKernelInfo(const KernelInfo *kernel) |
4652 | | % |
4653 | | % A description of each parameter follows: |
4654 | | % |
4655 | | % o kernel: the Morphology/Convolution kernel |
4656 | | % |
4657 | | */ |
4658 | | MagickPrivate void ShowKernelInfo(const KernelInfo *kernel) |
4659 | 0 | { |
4660 | 0 | const KernelInfo |
4661 | 0 | *k; |
4662 | |
|
4663 | 0 | size_t |
4664 | 0 | c, i, u, v; |
4665 | |
|
4666 | 0 | for (c=0, k=kernel; k != (KernelInfo *) NULL; c++, k=k->next ) { |
4667 | |
|
4668 | 0 | (void) FormatLocaleFile(stderr, "Kernel"); |
4669 | 0 | if ( kernel->next != (KernelInfo *) NULL ) |
4670 | 0 | (void) FormatLocaleFile(stderr, " #%lu", (unsigned long) c ); |
4671 | 0 | (void) FormatLocaleFile(stderr, " \"%s", |
4672 | 0 | CommandOptionToMnemonic(MagickKernelOptions, k->type) ); |
4673 | 0 | if ( fabs(k->angle) >= MagickEpsilon ) |
4674 | 0 | (void) FormatLocaleFile(stderr, "@%lg", k->angle); |
4675 | 0 | (void) FormatLocaleFile(stderr, "\" of size %lux%lu%+ld%+ld",(unsigned long) |
4676 | 0 | k->width,(unsigned long) k->height,(long) k->x,(long) k->y); |
4677 | 0 | (void) FormatLocaleFile(stderr, |
4678 | 0 | " with values from %.*lg to %.*lg\n", |
4679 | 0 | GetMagickPrecision(), k->minimum, |
4680 | 0 | GetMagickPrecision(), k->maximum); |
4681 | 0 | (void) FormatLocaleFile(stderr, "Forming a output range from %.*lg to %.*lg", |
4682 | 0 | GetMagickPrecision(), k->negative_range, |
4683 | 0 | GetMagickPrecision(), k->positive_range); |
4684 | 0 | if ( fabs(k->positive_range+k->negative_range) < MagickEpsilon ) |
4685 | 0 | (void) FormatLocaleFile(stderr, " (Zero-Summing)\n"); |
4686 | 0 | else if ( fabs(k->positive_range+k->negative_range-1.0) < MagickEpsilon ) |
4687 | 0 | (void) FormatLocaleFile(stderr, " (Normalized)\n"); |
4688 | 0 | else |
4689 | 0 | (void) FormatLocaleFile(stderr, " (Sum %.*lg)\n", |
4690 | 0 | GetMagickPrecision(), k->positive_range+k->negative_range); |
4691 | 0 | for (i=v=0; v < k->height; v++) { |
4692 | 0 | (void) FormatLocaleFile(stderr, "%2lu:", (unsigned long) v ); |
4693 | 0 | for (u=0; u < k->width; u++, i++) |
4694 | 0 | if (IsNaN(k->values[i])) |
4695 | 0 | (void) FormatLocaleFile(stderr," %*s", GetMagickPrecision()+3, "nan"); |
4696 | 0 | else |
4697 | 0 | (void) FormatLocaleFile(stderr," %*.*lg", GetMagickPrecision()+3, |
4698 | 0 | GetMagickPrecision(), (double) k->values[i]); |
4699 | 0 | (void) FormatLocaleFile(stderr,"\n"); |
4700 | 0 | } |
4701 | 0 | } |
4702 | 0 | } |
4703 | | |
4704 | | /* |
4705 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4706 | | % % |
4707 | | % % |
4708 | | % % |
4709 | | % U n i t y A d d K e r n a l I n f o % |
4710 | | % % |
4711 | | % % |
4712 | | % % |
4713 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4714 | | % |
4715 | | % UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel |
4716 | | % to the given pre-scaled and normalized Kernel. This in effect adds that |
4717 | | % amount of the original image into the resulting convolution kernel. This |
4718 | | % value is usually provided by the user as a percentage value in the |
4719 | | % 'convolve:scale' setting. |
4720 | | % |
4721 | | % The resulting effect is to convert the defined kernels into blended |
4722 | | % soft-blurs, unsharp kernels or into sharpening kernels. |
4723 | | % |
4724 | | % The format of the UnityAdditionKernelInfo method is: |
4725 | | % |
4726 | | % void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale ) |
4727 | | % |
4728 | | % A description of each parameter follows: |
4729 | | % |
4730 | | % o kernel: the Morphology/Convolution kernel |
4731 | | % |
4732 | | % o scale: |
4733 | | % scaling factor for the unity kernel to be added to |
4734 | | % the given kernel. |
4735 | | % |
4736 | | */ |
4737 | | MagickExport void UnityAddKernelInfo(KernelInfo *kernel, |
4738 | | const double scale) |
4739 | 0 | { |
4740 | | /* do the other kernels in a multi-kernel list first */ |
4741 | 0 | if ( kernel->next != (KernelInfo *) NULL) |
4742 | 0 | UnityAddKernelInfo(kernel->next, scale); |
4743 | | |
4744 | | /* Add the scaled unity kernel to the existing kernel */ |
4745 | 0 | kernel->values[kernel->x+kernel->y*(ssize_t) kernel->width] += scale; |
4746 | 0 | CalcKernelMetaData(kernel); /* recalculate the meta-data */ |
4747 | |
|
4748 | 0 | return; |
4749 | 0 | } |
4750 | | |
4751 | | /* |
4752 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4753 | | % % |
4754 | | % % |
4755 | | % % |
4756 | | % Z e r o K e r n e l N a n s % |
4757 | | % % |
4758 | | % % |
4759 | | % % |
4760 | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4761 | | % |
4762 | | % ZeroKernelNans() replaces any special 'nan' value that may be present in |
4763 | | % the kernel with a zero value. This is typically done when the kernel will |
4764 | | % be used in special hardware (GPU) convolution processors, to simply |
4765 | | % matters. |
4766 | | % |
4767 | | % The format of the ZeroKernelNans method is: |
4768 | | % |
4769 | | % void ZeroKernelNans (KernelInfo *kernel) |
4770 | | % |
4771 | | % A description of each parameter follows: |
4772 | | % |
4773 | | % o kernel: the Morphology/Convolution kernel |
4774 | | % |
4775 | | */ |
4776 | | MagickPrivate void ZeroKernelNans(KernelInfo *kernel) |
4777 | 0 | { |
4778 | 0 | size_t |
4779 | 0 | i; |
4780 | | |
4781 | | /* do the other kernels in a multi-kernel list first */ |
4782 | 0 | if (kernel->next != (KernelInfo *) NULL) |
4783 | 0 | ZeroKernelNans(kernel->next); |
4784 | |
|
4785 | 0 | for (i=0; i < (kernel->width*kernel->height); i++) |
4786 | 0 | if (IsNaN(kernel->values[i])) |
4787 | 0 | kernel->values[i]=0.0; |
4788 | |
|
4789 | 0 | return; |
4790 | 0 | } |