/src/libjxl/lib/jxl/enc_ans.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) the JPEG XL Project Authors. All rights reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style |
4 | | // license that can be found in the LICENSE file. |
5 | | |
6 | | #include "lib/jxl/enc_ans.h" |
7 | | |
8 | | #include <jxl/memory_manager.h> |
9 | | #include <jxl/types.h> |
10 | | |
11 | | #include <algorithm> |
12 | | #include <array> |
13 | | #include <cmath> |
14 | | #include <cstddef> |
15 | | #include <cstdint> |
16 | | #include <limits> |
17 | | #include <utility> |
18 | | #include <vector> |
19 | | |
20 | | #include "lib/jxl/ans_common.h" |
21 | | #include "lib/jxl/ans_params.h" |
22 | | #include "lib/jxl/base/bits.h" |
23 | | #include "lib/jxl/base/common.h" |
24 | | #include "lib/jxl/base/compiler_specific.h" |
25 | | #include "lib/jxl/base/status.h" |
26 | | #include "lib/jxl/common.h" |
27 | | #include "lib/jxl/dec_ans.h" |
28 | | #include "lib/jxl/enc_ans_params.h" |
29 | | #include "lib/jxl/enc_aux_out.h" |
30 | | #include "lib/jxl/enc_cluster.h" |
31 | | #include "lib/jxl/enc_context_map.h" |
32 | | #include "lib/jxl/enc_fields.h" |
33 | | #include "lib/jxl/enc_huffman.h" |
34 | | #include "lib/jxl/enc_lz77.h" |
35 | | #include "lib/jxl/enc_params.h" |
36 | | #include "lib/jxl/fields.h" |
37 | | #include "lib/jxl/modular/options.h" |
38 | | |
39 | | namespace jxl { |
40 | | |
41 | | namespace { |
42 | | |
43 | | #if (!JXL_IS_DEBUG_BUILD) |
44 | | constexpr |
45 | | #endif |
46 | | bool ans_fuzzer_friendly_ = false; |
47 | | |
48 | | const int kMaxNumSymbolsForSmallCode = 2; |
49 | | |
50 | | template <typename Writer> |
51 | 535k | void StoreVarLenUint8(size_t n, Writer* writer) { |
52 | 535k | JXL_DASSERT(n <= 255); |
53 | 535k | if (n == 0) { |
54 | 45.1k | writer->Write(1, 0); |
55 | 490k | } else { |
56 | 490k | writer->Write(1, 1); |
57 | 490k | size_t nbits = FloorLog2Nonzero(n); |
58 | 490k | writer->Write(3, nbits); |
59 | 490k | writer->Write(nbits, n - (1ULL << nbits)); |
60 | 490k | } |
61 | 535k | } enc_ans.cc:void jxl::(anonymous namespace)::StoreVarLenUint8<jxl::SizeWriter>(unsigned long, jxl::SizeWriter*) Line | Count | Source | 51 | 509k | void StoreVarLenUint8(size_t n, Writer* writer) { | 52 | 509k | JXL_DASSERT(n <= 255); | 53 | 509k | if (n == 0) { | 54 | 42.8k | writer->Write(1, 0); | 55 | 466k | } else { | 56 | 466k | writer->Write(1, 1); | 57 | 466k | size_t nbits = FloorLog2Nonzero(n); | 58 | 466k | writer->Write(3, nbits); | 59 | 466k | writer->Write(nbits, n - (1ULL << nbits)); | 60 | 466k | } | 61 | 509k | } |
enc_ans.cc:void jxl::(anonymous namespace)::StoreVarLenUint8<jxl::BitWriter>(unsigned long, jxl::BitWriter*) Line | Count | Source | 51 | 25.9k | void StoreVarLenUint8(size_t n, Writer* writer) { | 52 | 25.9k | JXL_DASSERT(n <= 255); | 53 | 25.9k | if (n == 0) { | 54 | 2.24k | writer->Write(1, 0); | 55 | 23.6k | } else { | 56 | 23.6k | writer->Write(1, 1); | 57 | 23.6k | size_t nbits = FloorLog2Nonzero(n); | 58 | 23.6k | writer->Write(3, nbits); | 59 | 23.6k | writer->Write(nbits, n - (1ULL << nbits)); | 60 | 23.6k | } | 61 | 25.9k | } |
|
62 | | |
63 | | template <typename Writer> |
64 | 2.29k | void StoreVarLenUint16(size_t n, Writer* writer) { |
65 | 2.29k | JXL_DASSERT(n <= 65535); |
66 | 2.29k | if (n == 0) { |
67 | 42 | writer->Write(1, 0); |
68 | 2.24k | } else { |
69 | 2.24k | writer->Write(1, 1); |
70 | 2.24k | size_t nbits = FloorLog2Nonzero(n); |
71 | 2.24k | writer->Write(4, nbits); |
72 | 2.24k | writer->Write(nbits, n - (1ULL << nbits)); |
73 | 2.24k | } |
74 | 2.29k | } enc_ans.cc:void jxl::(anonymous namespace)::StoreVarLenUint16<jxl::BitWriter>(unsigned long, jxl::BitWriter*) Line | Count | Source | 64 | 540 | void StoreVarLenUint16(size_t n, Writer* writer) { | 65 | 540 | JXL_DASSERT(n <= 65535); | 66 | 540 | if (n == 0) { | 67 | 42 | writer->Write(1, 0); | 68 | 498 | } else { | 69 | 498 | writer->Write(1, 1); | 70 | 498 | size_t nbits = FloorLog2Nonzero(n); | 71 | 498 | writer->Write(4, nbits); | 72 | 498 | writer->Write(nbits, n - (1ULL << nbits)); | 73 | 498 | } | 74 | 540 | } |
enc_ans.cc:void jxl::(anonymous namespace)::StoreVarLenUint16<jxl::SizeWriter>(unsigned long, jxl::SizeWriter*) Line | Count | Source | 64 | 1.75k | void StoreVarLenUint16(size_t n, Writer* writer) { | 65 | 1.75k | JXL_DASSERT(n <= 65535); | 66 | 1.75k | if (n == 0) { | 67 | 0 | writer->Write(1, 0); | 68 | 1.75k | } else { | 69 | 1.75k | writer->Write(1, 1); | 70 | 1.75k | size_t nbits = FloorLog2Nonzero(n); | 71 | 1.75k | writer->Write(4, nbits); | 72 | 1.75k | writer->Write(nbits, n - (1ULL << nbits)); | 73 | 1.75k | } | 74 | 1.75k | } |
|
75 | | |
76 | | class ANSEncodingHistogram { |
77 | | public: |
78 | 19.9k | const std::vector<ANSHistBin>& Counts() const { return counts_; } |
79 | 69.9k | float Cost() const { return cost_; } |
80 | | // The only way to construct valid histogram for ANS encoding |
81 | | static StatusOr<ANSEncodingHistogram> ComputeBest( |
82 | | const Histogram& histo, |
83 | 69.9k | HistogramParams::ANSHistogramStrategy ans_histogram_strategy) { |
84 | 69.9k | ANSEncodingHistogram result; |
85 | | |
86 | 69.9k | result.alphabet_size_ = histo.alphabet_size(); |
87 | 69.9k | if (result.alphabet_size_ > ANS_MAX_ALPHABET_SIZE) |
88 | 0 | return JXL_FAILURE("Too many entries in an ANS histogram"); |
89 | | |
90 | 69.9k | if (result.alphabet_size_ > 0) { |
91 | | // Flat code |
92 | 69.9k | result.method_ = 0; |
93 | 69.9k | result.num_symbols_ = result.alphabet_size_; |
94 | 69.9k | result.counts_ = CreateFlatHistogram(result.alphabet_size_, ANS_TAB_SIZE); |
95 | | // in this case length can be non-suitable for SIMD - fix it |
96 | 69.9k | result.counts_.resize(histo.counts.size()); |
97 | 69.9k | SizeWriter writer; |
98 | 69.9k | JXL_RETURN_IF_ERROR(result.Encode(&writer)); |
99 | 69.9k | result.cost_ = writer.size + EstimateDataBitsFlat(histo); |
100 | 69.9k | } else { |
101 | | // Empty histogram |
102 | 0 | result.method_ = 1; |
103 | 0 | result.num_symbols_ = 0; |
104 | 0 | result.cost_ = 3; |
105 | 0 | return result; |
106 | 0 | } |
107 | | |
108 | 69.9k | size_t symbol_count = 0; |
109 | 2.78M | for (size_t n = 0; n < result.alphabet_size_; ++n) { |
110 | 2.71M | if (histo.counts[n] > 0) { |
111 | 1.38M | if (symbol_count < kMaxNumSymbolsForSmallCode) { |
112 | 133k | result.symbols_[symbol_count] = n; |
113 | 133k | } |
114 | 1.38M | ++symbol_count; |
115 | 1.38M | } |
116 | 2.71M | } |
117 | 69.9k | result.num_symbols_ = symbol_count; |
118 | 69.9k | if (symbol_count == 1) { |
119 | | // Single-bin histogram |
120 | 6.84k | result.method_ = 1; |
121 | 6.84k | result.counts_ = histo.counts; |
122 | 6.84k | result.counts_[result.symbols_[0]] = ANS_TAB_SIZE; |
123 | 6.84k | SizeWriter writer; |
124 | 6.84k | JXL_RETURN_IF_ERROR(result.Encode(&writer)); |
125 | 6.84k | result.cost_ = writer.size; |
126 | 6.84k | return result; |
127 | 6.84k | } |
128 | | |
129 | | // Here min 2 symbols |
130 | 63.1k | ANSEncodingHistogram normalized = result; |
131 | 272k | auto try_shift = [&](uint32_t shift) -> Status { |
132 | | // `shift = 12` and `shift = 11` are the same |
133 | 272k | normalized.method_ = std::min(shift, ANS_LOG_TAB_SIZE - 1) + 1; |
134 | | |
135 | 272k | if (!normalized.RebalanceHistogram(histo)) { |
136 | 0 | return JXL_FAILURE("Logic error: couldn't rebalance a histogram"); |
137 | 0 | } |
138 | 272k | SizeWriter writer; |
139 | 272k | JXL_RETURN_IF_ERROR(normalized.Encode(&writer)); |
140 | 272k | normalized.cost_ = writer.size + normalized.EstimateDataBits(histo); |
141 | 272k | if (normalized.cost_ < result.cost_) { |
142 | 70.3k | result = normalized; |
143 | 70.3k | } |
144 | 272k | return true; |
145 | 272k | }; |
146 | | |
147 | 63.1k | switch (ans_histogram_strategy) { |
148 | 1.22k | case HistogramParams::ANSHistogramStrategy::kPrecise: |
149 | 15.9k | for (uint32_t shift = 0; shift < ANS_LOG_TAB_SIZE; shift++) { |
150 | 14.6k | JXL_RETURN_IF_ERROR(try_shift(shift)); |
151 | 14.6k | } |
152 | 1.22k | break; |
153 | 18.0k | case HistogramParams::ANSHistogramStrategy::kApproximate: |
154 | 144k | for (uint32_t shift = 0; shift <= ANS_LOG_TAB_SIZE; shift += 2) { |
155 | 126k | JXL_RETURN_IF_ERROR(try_shift(shift)); |
156 | 126k | } |
157 | 18.0k | break; |
158 | 43.8k | case HistogramParams::ANSHistogramStrategy::kFast: |
159 | 43.8k | JXL_RETURN_IF_ERROR(try_shift(0)); |
160 | 43.8k | JXL_RETURN_IF_ERROR(try_shift(ANS_LOG_TAB_SIZE / 2)); |
161 | 43.8k | JXL_RETURN_IF_ERROR(try_shift(ANS_LOG_TAB_SIZE)); |
162 | 43.8k | break; |
163 | 63.1k | } |
164 | | |
165 | | // Sanity check |
166 | | #if JXL_IS_DEBUG_BUILD |
167 | | JXL_ENSURE(histo.counts.size() == result.counts_.size()); |
168 | | ANSHistBin total = 0; // Used only in assert. |
169 | | for (size_t i = 0; i < result.alphabet_size_; ++i) { |
170 | | JXL_ENSURE(result.counts_[i] >= 0); |
171 | | // For non-flat histogram values should be zero or non-zero simultaneously |
172 | | // for the same symbol in both initial and normalized histograms. |
173 | | JXL_ENSURE(result.method_ == 0 || |
174 | | (histo.counts[i] > 0) == (result.counts_[i] > 0)); |
175 | | // Check accuracy of the histogram values |
176 | | if (result.method_ > 0 && result.counts_[i] > 0 && |
177 | | i != result.omit_pos_) { |
178 | | int logcounts = FloorLog2Nonzero<uint32_t>(result.counts_[i]); |
179 | | int bitcount = |
180 | | GetPopulationCountPrecision(logcounts, result.method_ - 1); |
181 | | int drop_bits = logcounts - bitcount; |
182 | | // Check that the value is divisible by 2^drop_bits |
183 | | JXL_ENSURE((result.counts_[i] & ((1 << drop_bits) - 1)) == 0); |
184 | | } |
185 | | total += result.counts_[i]; |
186 | | } |
187 | | for (size_t i = result.alphabet_size_; i < result.counts_.size(); ++i) { |
188 | | JXL_ENSURE(histo.counts[i] == 0); |
189 | | JXL_ENSURE(result.counts_[i] == 0); |
190 | | } |
191 | | JXL_ENSURE((histo.total_count == 0) || (total == ANS_TAB_SIZE)); |
192 | | #endif |
193 | 63.1k | return result; |
194 | 63.1k | } |
195 | | |
196 | | template <typename Writer> |
197 | 369k | Status Encode(Writer* writer) { |
198 | | // The check ensures also that all RLE sequences can be |
199 | | // encoded by `StoreVarLenUint8` |
200 | 369k | JXL_ENSURE(alphabet_size_ <= ANS_MAX_ALPHABET_SIZE); |
201 | | |
202 | | /// Flat histogram. |
203 | 369k | if (method_ == 0) { |
204 | | // Mark non-small tree. |
205 | 70.3k | writer->Write(1, 0); |
206 | | // Mark uniform histogram. |
207 | 70.3k | writer->Write(1, 1); |
208 | 70.3k | JXL_ENSURE(alphabet_size_ > 0); |
209 | | // Encode alphabet size. |
210 | 70.3k | StoreVarLenUint8(alphabet_size_ - 1, writer); |
211 | | |
212 | 70.3k | return true; |
213 | 70.3k | } |
214 | | |
215 | | /// Small tree. |
216 | 298k | if (num_symbols_ <= kMaxNumSymbolsForSmallCode) { |
217 | | // Small tree marker to encode 1-2 symbols. |
218 | 11.4k | writer->Write(1, 1); |
219 | 11.4k | if (num_symbols_ == 0) { |
220 | 0 | writer->Write(1, 0); |
221 | 0 | StoreVarLenUint8(0, writer); |
222 | 11.4k | } else { |
223 | 11.4k | writer->Write(1, num_symbols_ - 1); |
224 | 27.2k | for (size_t i = 0; i < num_symbols_; ++i) { |
225 | 15.7k | StoreVarLenUint8(symbols_[i], writer); |
226 | 15.7k | } |
227 | 11.4k | } |
228 | 11.4k | if (num_symbols_ == 2) { |
229 | 4.25k | writer->Write(ANS_LOG_TAB_SIZE, counts_[symbols_[0]]); |
230 | 4.25k | } |
231 | | |
232 | 11.4k | return true; |
233 | 11.4k | } |
234 | | |
235 | | /// General tree. |
236 | | // Mark non-small tree. |
237 | 287k | writer->Write(1, 0); |
238 | | // Mark non-flat histogram. |
239 | 287k | writer->Write(1, 0); |
240 | | |
241 | | // Elias gamma-like code for `shift = method - 1`. Only difference is that |
242 | | // if the number of bits to be encoded is equal to `upper_bound_log`, |
243 | | // we skip the terminating 0 in unary coding. |
244 | 287k | int upper_bound_log = FloorLog2Nonzero(ANS_LOG_TAB_SIZE + 1); |
245 | 287k | int log = FloorLog2Nonzero(method_); |
246 | 287k | writer->Write(log, (1 << log) - 1); |
247 | 287k | if (log != upper_bound_log) writer->Write(1, 0); |
248 | 287k | writer->Write(log, ((1 << log) - 1) & method_); |
249 | | |
250 | | // Since `num_symbols_ >= 3`, we know that `alphabet_size_ >= 3`, therefore |
251 | | // we encode `alphabet_size_ - 3`. |
252 | 287k | StoreVarLenUint8(alphabet_size_ - 3, writer); |
253 | | |
254 | | // Precompute sequences for RLE encoding. Contains the number of identical |
255 | | // values starting at a given index. Only contains that value at the first |
256 | | // element of the series. |
257 | 287k | uint8_t same[ANS_MAX_ALPHABET_SIZE] = {}; |
258 | 287k | size_t last = 0; |
259 | 12.0M | for (size_t i = 1; i <= alphabet_size_; i++) { |
260 | | // Store the sequence length once different symbol reached, or we are |
261 | | // near the omit_pos_, or we're at the end. We don't support including the |
262 | | // omit_pos_ in an RLE sequence because this value may use a different |
263 | | // amount of log2 bits than standard, it is too complex to handle in the |
264 | | // decoder. |
265 | 11.7M | if (i == alphabet_size_ || i == omit_pos_ || i == omit_pos_ + 1 || |
266 | 11.7M | counts_[i] != counts_[last]) { |
267 | 6.73M | same[last] = i - last; |
268 | 6.73M | last = i; |
269 | 6.73M | } |
270 | 11.7M | } |
271 | | |
272 | 287k | uint8_t bit_width[ANS_MAX_ALPHABET_SIZE] = {}; |
273 | | // Use shortest possible Huffman code to encode `omit_pos` (see |
274 | | // `kBitWidthLengths`). `bit_width` value at `omit_pos` should be the |
275 | | // first of maximal values in the whole `bit_width` array, so it can be |
276 | | // increased without changing that property |
277 | 287k | int omit_width = 10; |
278 | 12.0M | for (size_t i = 0; i < alphabet_size_; ++i) { |
279 | 11.7M | if (i != omit_pos_ && counts_[i] > 0) { |
280 | 5.85M | bit_width[i] = FloorLog2Nonzero<uint32_t>(counts_[i]) + 1; |
281 | 5.85M | omit_width = std::max(omit_width, bit_width[i] + int{i < omit_pos_}); |
282 | 5.85M | } |
283 | 11.7M | } |
284 | 287k | bit_width[omit_pos_] = static_cast<uint8_t>(omit_width); |
285 | | |
286 | | // The bit widths are encoded with a static Huffman code. |
287 | | // The last symbol is used as RLE sequence. |
288 | 287k | constexpr uint8_t kBitWidthLengths[ANS_LOG_TAB_SIZE + 2] = { |
289 | 287k | 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 6, 7, 7, |
290 | 287k | }; |
291 | 287k | constexpr uint8_t kBitWidthSymbols[ANS_LOG_TAB_SIZE + 2] = { |
292 | 287k | 17, 11, 15, 3, 9, 7, 4, 2, 5, 6, 0, 33, 1, 65, |
293 | 287k | }; |
294 | 287k | constexpr uint8_t kMinReps = 5; |
295 | 287k | constexpr size_t rep = ANS_LOG_TAB_SIZE + 1; |
296 | | // Encode count bit widths |
297 | 8.29M | for (size_t i = 0; i < alphabet_size_; ++i) { |
298 | 8.00M | writer->Write(kBitWidthLengths[bit_width[i]], |
299 | 8.00M | kBitWidthSymbols[bit_width[i]]); |
300 | 8.00M | if (same[i] >= kMinReps) { |
301 | | // Encode the RLE symbol and skip the repeated ones. |
302 | 161k | writer->Write(kBitWidthLengths[rep], kBitWidthSymbols[rep]); |
303 | 161k | StoreVarLenUint8(same[i] - kMinReps, writer); |
304 | 161k | i += same[i] - 1; |
305 | 161k | } |
306 | 8.00M | } |
307 | | // Encode additional bits of accuracy |
308 | 287k | uint32_t shift = method_ - 1; |
309 | 287k | if (shift != 0) { // otherwise `bitcount = 0` |
310 | 6.11M | for (size_t i = 0; i < alphabet_size_; ++i) { |
311 | 5.90M | if (bit_width[i] > 1 && i != omit_pos_) { |
312 | 4.16M | int bitcount = GetPopulationCountPrecision(bit_width[i] - 1, shift); |
313 | 4.16M | int drop_bits = bit_width[i] - 1 - bitcount; |
314 | 4.16M | JXL_DASSERT((counts_[i] & ((1 << drop_bits) - 1)) == 0); |
315 | 4.16M | writer->Write(bitcount, (counts_[i] >> drop_bits) - (1 << bitcount)); |
316 | 4.16M | } |
317 | 5.90M | if (same[i] >= kMinReps) { |
318 | | // Skip symbols encoded by RLE. |
319 | 111k | i += same[i] - 1; |
320 | 111k | } |
321 | 5.90M | } |
322 | 213k | } |
323 | 287k | return true; |
324 | 298k | } enc_ans.cc:jxl::Status jxl::(anonymous namespace)::ANSEncodingHistogram::Encode<jxl::SizeWriter>(jxl::SizeWriter*) Line | Count | Source | 197 | 349k | Status Encode(Writer* writer) { | 198 | | // The check ensures also that all RLE sequences can be | 199 | | // encoded by `StoreVarLenUint8` | 200 | 349k | JXL_ENSURE(alphabet_size_ <= ANS_MAX_ALPHABET_SIZE); | 201 | | | 202 | | /// Flat histogram. | 203 | 349k | if (method_ == 0) { | 204 | | // Mark non-small tree. | 205 | 69.9k | writer->Write(1, 0); | 206 | | // Mark uniform histogram. | 207 | 69.9k | writer->Write(1, 1); | 208 | 69.9k | JXL_ENSURE(alphabet_size_ > 0); | 209 | | // Encode alphabet size. | 210 | 69.9k | StoreVarLenUint8(alphabet_size_ - 1, writer); | 211 | | | 212 | 69.9k | return true; | 213 | 69.9k | } | 214 | | | 215 | | /// Small tree. | 216 | 279k | if (num_symbols_ <= kMaxNumSymbolsForSmallCode) { | 217 | | // Small tree marker to encode 1-2 symbols. | 218 | 10.8k | writer->Write(1, 1); | 219 | 10.8k | if (num_symbols_ == 0) { | 220 | 0 | writer->Write(1, 0); | 221 | 0 | StoreVarLenUint8(0, writer); | 222 | 10.8k | } else { | 223 | 10.8k | writer->Write(1, num_symbols_ - 1); | 224 | 25.8k | for (size_t i = 0; i < num_symbols_; ++i) { | 225 | 14.9k | StoreVarLenUint8(symbols_[i], writer); | 226 | 14.9k | } | 227 | 10.8k | } | 228 | 10.8k | if (num_symbols_ == 2) { | 229 | 4.05k | writer->Write(ANS_LOG_TAB_SIZE, counts_[symbols_[0]]); | 230 | 4.05k | } | 231 | | | 232 | 10.8k | return true; | 233 | 10.8k | } | 234 | | | 235 | | /// General tree. | 236 | | // Mark non-small tree. | 237 | 268k | writer->Write(1, 0); | 238 | | // Mark non-flat histogram. | 239 | 268k | writer->Write(1, 0); | 240 | | | 241 | | // Elias gamma-like code for `shift = method - 1`. Only difference is that | 242 | | // if the number of bits to be encoded is equal to `upper_bound_log`, | 243 | | // we skip the terminating 0 in unary coding. | 244 | 268k | int upper_bound_log = FloorLog2Nonzero(ANS_LOG_TAB_SIZE + 1); | 245 | 268k | int log = FloorLog2Nonzero(method_); | 246 | 268k | writer->Write(log, (1 << log) - 1); | 247 | 268k | if (log != upper_bound_log) writer->Write(1, 0); | 248 | 268k | writer->Write(log, ((1 << log) - 1) & method_); | 249 | | | 250 | | // Since `num_symbols_ >= 3`, we know that `alphabet_size_ >= 3`, therefore | 251 | | // we encode `alphabet_size_ - 3`. | 252 | 268k | StoreVarLenUint8(alphabet_size_ - 3, writer); | 253 | | | 254 | | // Precompute sequences for RLE encoding. Contains the number of identical | 255 | | // values starting at a given index. Only contains that value at the first | 256 | | // element of the series. | 257 | 268k | uint8_t same[ANS_MAX_ALPHABET_SIZE] = {}; | 258 | 268k | size_t last = 0; | 259 | 11.4M | for (size_t i = 1; i <= alphabet_size_; i++) { | 260 | | // Store the sequence length once different symbol reached, or we are | 261 | | // near the omit_pos_, or we're at the end. We don't support including the | 262 | | // omit_pos_ in an RLE sequence because this value may use a different | 263 | | // amount of log2 bits than standard, it is too complex to handle in the | 264 | | // decoder. | 265 | 11.1M | if (i == alphabet_size_ || i == omit_pos_ || i == omit_pos_ + 1 || | 266 | 11.1M | counts_[i] != counts_[last]) { | 267 | 6.36M | same[last] = i - last; | 268 | 6.36M | last = i; | 269 | 6.36M | } | 270 | 11.1M | } | 271 | | | 272 | 268k | uint8_t bit_width[ANS_MAX_ALPHABET_SIZE] = {}; | 273 | | // Use shortest possible Huffman code to encode `omit_pos` (see | 274 | | // `kBitWidthLengths`). `bit_width` value at `omit_pos` should be the | 275 | | // first of maximal values in the whole `bit_width` array, so it can be | 276 | | // increased without changing that property | 277 | 268k | int omit_width = 10; | 278 | 11.4M | for (size_t i = 0; i < alphabet_size_; ++i) { | 279 | 11.1M | if (i != omit_pos_ && counts_[i] > 0) { | 280 | 5.51M | bit_width[i] = FloorLog2Nonzero<uint32_t>(counts_[i]) + 1; | 281 | 5.51M | omit_width = std::max(omit_width, bit_width[i] + int{i < omit_pos_}); | 282 | 5.51M | } | 283 | 11.1M | } | 284 | 268k | bit_width[omit_pos_] = static_cast<uint8_t>(omit_width); | 285 | | | 286 | | // The bit widths are encoded with a static Huffman code. | 287 | | // The last symbol is used as RLE sequence. | 288 | 268k | constexpr uint8_t kBitWidthLengths[ANS_LOG_TAB_SIZE + 2] = { | 289 | 268k | 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 6, 7, 7, | 290 | 268k | }; | 291 | 268k | constexpr uint8_t kBitWidthSymbols[ANS_LOG_TAB_SIZE + 2] = { | 292 | 268k | 17, 11, 15, 3, 9, 7, 4, 2, 5, 6, 0, 33, 1, 65, | 293 | 268k | }; | 294 | 268k | constexpr uint8_t kMinReps = 5; | 295 | 268k | constexpr size_t rep = ANS_LOG_TAB_SIZE + 1; | 296 | | // Encode count bit widths | 297 | 7.82M | for (size_t i = 0; i < alphabet_size_; ++i) { | 298 | 7.55M | writer->Write(kBitWidthLengths[bit_width[i]], | 299 | 7.55M | kBitWidthSymbols[bit_width[i]]); | 300 | 7.55M | if (same[i] >= kMinReps) { | 301 | | // Encode the RLE symbol and skip the repeated ones. | 302 | 155k | writer->Write(kBitWidthLengths[rep], kBitWidthSymbols[rep]); | 303 | 155k | StoreVarLenUint8(same[i] - kMinReps, writer); | 304 | 155k | i += same[i] - 1; | 305 | 155k | } | 306 | 7.55M | } | 307 | | // Encode additional bits of accuracy | 308 | 268k | uint32_t shift = method_ - 1; | 309 | 268k | if (shift != 0) { // otherwise `bitcount = 0` | 310 | 5.95M | for (size_t i = 0; i < alphabet_size_; ++i) { | 311 | 5.74M | if (bit_width[i] > 1 && i != omit_pos_) { | 312 | 4.05M | int bitcount = GetPopulationCountPrecision(bit_width[i] - 1, shift); | 313 | 4.05M | int drop_bits = bit_width[i] - 1 - bitcount; | 314 | 4.05M | JXL_DASSERT((counts_[i] & ((1 << drop_bits) - 1)) == 0); | 315 | 4.05M | writer->Write(bitcount, (counts_[i] >> drop_bits) - (1 << bitcount)); | 316 | 4.05M | } | 317 | 5.74M | if (same[i] >= kMinReps) { | 318 | | // Skip symbols encoded by RLE. | 319 | 109k | i += same[i] - 1; | 320 | 109k | } | 321 | 5.74M | } | 322 | 206k | } | 323 | 268k | return true; | 324 | 279k | } |
enc_ans.cc:jxl::Status jxl::(anonymous namespace)::ANSEncodingHistogram::Encode<jxl::BitWriter>(jxl::BitWriter*) Line | Count | Source | 197 | 19.4k | Status Encode(Writer* writer) { | 198 | | // The check ensures also that all RLE sequences can be | 199 | | // encoded by `StoreVarLenUint8` | 200 | 19.4k | JXL_ENSURE(alphabet_size_ <= ANS_MAX_ALPHABET_SIZE); | 201 | | | 202 | | /// Flat histogram. | 203 | 19.4k | if (method_ == 0) { | 204 | | // Mark non-small tree. | 205 | 372 | writer->Write(1, 0); | 206 | | // Mark uniform histogram. | 207 | 372 | writer->Write(1, 1); | 208 | 372 | JXL_ENSURE(alphabet_size_ > 0); | 209 | | // Encode alphabet size. | 210 | 372 | StoreVarLenUint8(alphabet_size_ - 1, writer); | 211 | | | 212 | 372 | return true; | 213 | 372 | } | 214 | | | 215 | | /// Small tree. | 216 | 19.0k | if (num_symbols_ <= kMaxNumSymbolsForSmallCode) { | 217 | | // Small tree marker to encode 1-2 symbols. | 218 | 580 | writer->Write(1, 1); | 219 | 580 | if (num_symbols_ == 0) { | 220 | 0 | writer->Write(1, 0); | 221 | 0 | StoreVarLenUint8(0, writer); | 222 | 580 | } else { | 223 | 580 | writer->Write(1, num_symbols_ - 1); | 224 | 1.35k | for (size_t i = 0; i < num_symbols_; ++i) { | 225 | 777 | StoreVarLenUint8(symbols_[i], writer); | 226 | 777 | } | 227 | 580 | } | 228 | 580 | if (num_symbols_ == 2) { | 229 | 197 | writer->Write(ANS_LOG_TAB_SIZE, counts_[symbols_[0]]); | 230 | 197 | } | 231 | | | 232 | 580 | return true; | 233 | 580 | } | 234 | | | 235 | | /// General tree. | 236 | | // Mark non-small tree. | 237 | 18.4k | writer->Write(1, 0); | 238 | | // Mark non-flat histogram. | 239 | 18.4k | writer->Write(1, 0); | 240 | | | 241 | | // Elias gamma-like code for `shift = method - 1`. Only difference is that | 242 | | // if the number of bits to be encoded is equal to `upper_bound_log`, | 243 | | // we skip the terminating 0 in unary coding. | 244 | 18.4k | int upper_bound_log = FloorLog2Nonzero(ANS_LOG_TAB_SIZE + 1); | 245 | 18.4k | int log = FloorLog2Nonzero(method_); | 246 | 18.4k | writer->Write(log, (1 << log) - 1); | 247 | 18.4k | if (log != upper_bound_log) writer->Write(1, 0); | 248 | 18.4k | writer->Write(log, ((1 << log) - 1) & method_); | 249 | | | 250 | | // Since `num_symbols_ >= 3`, we know that `alphabet_size_ >= 3`, therefore | 251 | | // we encode `alphabet_size_ - 3`. | 252 | 18.4k | StoreVarLenUint8(alphabet_size_ - 3, writer); | 253 | | | 254 | | // Precompute sequences for RLE encoding. Contains the number of identical | 255 | | // values starting at a given index. Only contains that value at the first | 256 | | // element of the series. | 257 | 18.4k | uint8_t same[ANS_MAX_ALPHABET_SIZE] = {}; | 258 | 18.4k | size_t last = 0; | 259 | 565k | for (size_t i = 1; i <= alphabet_size_; i++) { | 260 | | // Store the sequence length once different symbol reached, or we are | 261 | | // near the omit_pos_, or we're at the end. We don't support including the | 262 | | // omit_pos_ in an RLE sequence because this value may use a different | 263 | | // amount of log2 bits than standard, it is too complex to handle in the | 264 | | // decoder. | 265 | 546k | if (i == alphabet_size_ || i == omit_pos_ || i == omit_pos_ + 1 || | 266 | 546k | counts_[i] != counts_[last]) { | 267 | 366k | same[last] = i - last; | 268 | 366k | last = i; | 269 | 366k | } | 270 | 546k | } | 271 | | | 272 | 18.4k | uint8_t bit_width[ANS_MAX_ALPHABET_SIZE] = {}; | 273 | | // Use shortest possible Huffman code to encode `omit_pos` (see | 274 | | // `kBitWidthLengths`). `bit_width` value at `omit_pos` should be the | 275 | | // first of maximal values in the whole `bit_width` array, so it can be | 276 | | // increased without changing that property | 277 | 18.4k | int omit_width = 10; | 278 | 565k | for (size_t i = 0; i < alphabet_size_; ++i) { | 279 | 546k | if (i != omit_pos_ && counts_[i] > 0) { | 280 | 340k | bit_width[i] = FloorLog2Nonzero<uint32_t>(counts_[i]) + 1; | 281 | 340k | omit_width = std::max(omit_width, bit_width[i] + int{i < omit_pos_}); | 282 | 340k | } | 283 | 546k | } | 284 | 18.4k | bit_width[omit_pos_] = static_cast<uint8_t>(omit_width); | 285 | | | 286 | | // The bit widths are encoded with a static Huffman code. | 287 | | // The last symbol is used as RLE sequence. | 288 | 18.4k | constexpr uint8_t kBitWidthLengths[ANS_LOG_TAB_SIZE + 2] = { | 289 | 18.4k | 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 6, 7, 7, | 290 | 18.4k | }; | 291 | 18.4k | constexpr uint8_t kBitWidthSymbols[ANS_LOG_TAB_SIZE + 2] = { | 292 | 18.4k | 17, 11, 15, 3, 9, 7, 4, 2, 5, 6, 0, 33, 1, 65, | 293 | 18.4k | }; | 294 | 18.4k | constexpr uint8_t kMinReps = 5; | 295 | 18.4k | constexpr size_t rep = ANS_LOG_TAB_SIZE + 1; | 296 | | // Encode count bit widths | 297 | 467k | for (size_t i = 0; i < alphabet_size_; ++i) { | 298 | 449k | writer->Write(kBitWidthLengths[bit_width[i]], | 299 | 449k | kBitWidthSymbols[bit_width[i]]); | 300 | 449k | if (same[i] >= kMinReps) { | 301 | | // Encode the RLE symbol and skip the repeated ones. | 302 | 6.28k | writer->Write(kBitWidthLengths[rep], kBitWidthSymbols[rep]); | 303 | 6.28k | StoreVarLenUint8(same[i] - kMinReps, writer); | 304 | 6.28k | i += same[i] - 1; | 305 | 6.28k | } | 306 | 449k | } | 307 | | // Encode additional bits of accuracy | 308 | 18.4k | uint32_t shift = method_ - 1; | 309 | 18.4k | if (shift != 0) { // otherwise `bitcount = 0` | 310 | 163k | for (size_t i = 0; i < alphabet_size_; ++i) { | 311 | 156k | if (bit_width[i] > 1 && i != omit_pos_) { | 312 | 109k | int bitcount = GetPopulationCountPrecision(bit_width[i] - 1, shift); | 313 | 109k | int drop_bits = bit_width[i] - 1 - bitcount; | 314 | 109k | JXL_DASSERT((counts_[i] & ((1 << drop_bits) - 1)) == 0); | 315 | 109k | writer->Write(bitcount, (counts_[i] >> drop_bits) - (1 << bitcount)); | 316 | 109k | } | 317 | 156k | if (same[i] >= kMinReps) { | 318 | | // Skip symbols encoded by RLE. | 319 | 2.22k | i += same[i] - 1; | 320 | 2.22k | } | 321 | 156k | } | 322 | 6.39k | } | 323 | 18.4k | return true; | 324 | 19.0k | } |
|
325 | | |
326 | | void ANSBuildInfoTable(const AliasTable::Entry* table, size_t log_alpha_size, |
327 | 19.9k | ANSEncSymbolInfo* info) { |
328 | | // Create valid alias table for empty streams |
329 | 632k | for (size_t s = 0; s < std::max(size_t{1}, alphabet_size_); ++s) { |
330 | 612k | const ANSHistBin freq = s == alphabet_size_ ? ANS_TAB_SIZE : counts_[s]; |
331 | 612k | info[s].freq_ = static_cast<uint16_t>(freq); |
332 | 612k | #ifdef USE_MULT_BY_RECIPROCAL |
333 | 612k | if (freq != 0) { |
334 | 378k | info[s].ifreq_ = ((1ull << RECIPROCAL_PRECISION) + info[s].freq_ - 1) / |
335 | 378k | info[s].freq_; |
336 | 378k | } else { |
337 | 234k | info[s].ifreq_ = |
338 | 234k | 1; // Shouldn't matter (symbol shouldn't occur), but... |
339 | 234k | } |
340 | 612k | #endif |
341 | 612k | info[s].reverse_map_.resize(freq); |
342 | 612k | } |
343 | 19.9k | size_t log_entry_size = ANS_LOG_TAB_SIZE - log_alpha_size; |
344 | 19.9k | size_t entry_size_minus_1 = (1 << log_entry_size) - 1; |
345 | 81.5M | for (int i = 0; i < ANS_TAB_SIZE; i++) { |
346 | 81.5M | AliasTable::Symbol s = |
347 | 81.5M | AliasTable::Lookup(table, i, log_entry_size, entry_size_minus_1); |
348 | 81.5M | info[s.value].reverse_map_[s.offset] = i; |
349 | 81.5M | } |
350 | 19.9k | } |
351 | | |
352 | | private: |
353 | 69.9k | ANSEncodingHistogram() {} |
354 | | |
355 | | // Fixed-point log2 LUT for values of [0,4096] |
356 | | using Lg2LUT = std::array<uint32_t, ANS_TAB_SIZE + 1>; |
357 | | static const Lg2LUT lg2; |
358 | | |
359 | 272k | float EstimateDataBits(const Histogram& histo) { |
360 | 272k | int64_t sum = 0; |
361 | 11.4M | for (size_t i = 0; i < alphabet_size_; ++i) { |
362 | | // += histogram[i] * -log(counts[i]/total_counts) |
363 | 11.2M | sum += histo.counts[i] * int64_t{lg2[counts_[i]]}; |
364 | 11.2M | } |
365 | 272k | return (histo.total_count - ldexpf(sum, -31)) * ANS_LOG_TAB_SIZE; |
366 | 272k | } |
367 | | |
368 | 69.9k | static float EstimateDataBitsFlat(const Histogram& histo) { |
369 | 69.9k | size_t len = histo.alphabet_size(); |
370 | 69.9k | int64_t flat_bits = int64_t{lg2[len]} * ANS_LOG_TAB_SIZE; |
371 | 69.9k | return ldexpf(histo.total_count * flat_bits, -31); |
372 | 69.9k | } |
373 | | |
374 | | struct CountsEntropy { |
375 | | ANSHistBin count : 16; // allowed value of counts in a histogram bin |
376 | | ANSHistBin step_log : 16; // log2 of increase step size (can use 5 bits) |
377 | | int32_t delta_lg2; // change of log between that value and the next allowed |
378 | | }; |
379 | | |
380 | | // Array is sorted by decreasing allowed counts for each possible shift. |
381 | | // Exclusion of single-bin histograms before `RebalanceHistogram` allows |
382 | | // to put count upper limit of 4095, and shifts of 11 and 12 produce the |
383 | | // same table |
384 | | using CountsArray = |
385 | | std::array<std::array<CountsEntropy, ANS_TAB_SIZE>, ANS_LOG_TAB_SIZE>; |
386 | | static const CountsArray allowed_counts; |
387 | | |
388 | | // Returns the difference between largest count that can be represented and is |
389 | | // smaller than "count" and smallest representable count larger than "count". |
390 | 25.5M | static uint32_t SmallestIncrementLog(uint32_t count, uint32_t shift) { |
391 | 25.5M | if (count == 0) return 0; |
392 | 20.1M | uint32_t bits = FloorLog2Nonzero(count); |
393 | 20.1M | uint32_t drop_bits = bits - GetPopulationCountPrecision(bits, shift); |
394 | 20.1M | return drop_bits; |
395 | 25.5M | } |
396 | | // We are growing/reducing histogram step by step trying to maximize total |
397 | | // entropy i.e. sum of `freq[n] * log[counts[n]]` with a given sum of |
398 | | // `counts[n]` chosen from `allowed_counts[shift]`. This sum is balanced by |
399 | | // the `counts[omit_pos_]` in the highest bin of histogram. We start from |
400 | | // close to correct solution and each time a step with maximum entropy |
401 | | // increase per unit of bin change is chosen. This greedy scheme is not |
402 | | // guaranteed to achieve the global maximum, but cannot produce invalid |
403 | | // histogram. We use a fixed-point approximation for logarithms and all |
404 | | // arithmetic is integer besides initial approximation. Sum of `freq` and each |
405 | | // of `lg2[counts]` are supposed to be limited to `int32_t` range, so that the |
406 | | // sum of their products should not exceed `int64_t`. |
407 | 272k | bool RebalanceHistogram(const Histogram& histo) { |
408 | 272k | constexpr ANSHistBin table_size = ANS_TAB_SIZE; |
409 | 272k | uint32_t shift = method_ - 1; |
410 | | |
411 | 272k | struct EntropyDelta { |
412 | 272k | ANSHistBin freq; // initial count |
413 | 272k | size_t count_ind; // index of current bin value in `allowed_counts` |
414 | 272k | size_t bin_ind; // index of current bin in `counts` |
415 | 272k | }; |
416 | | // Penalties corresponding to different step sizes - entropy decrease in |
417 | | // balancing bin, step of size (1 << ANS_LOG_TAB_SIZE - 1) is not possible |
418 | 272k | int64_t balance_inc[ANS_LOG_TAB_SIZE - 1] = {}; |
419 | 272k | int64_t balance_dec[ANS_LOG_TAB_SIZE - 1] = {}; |
420 | 272k | const auto& ac = allowed_counts[shift]; |
421 | | // TODO(ivan) separate cases of shift >= 11 - all steps are 1 there, and |
422 | | // possibly 10 - all relevant steps are 2. |
423 | | // Total entropy change by a step: increase/decrease in current bin |
424 | | // together with corresponding decrease/increase in the balancing bin. |
425 | | // Inc steps increase current bin, dec steps decrease |
426 | 108M | const auto delta_entropy_inc = [&](const EntropyDelta& a) { |
427 | 108M | return a.freq * int64_t{ac[a.count_ind].delta_lg2} - |
428 | 108M | balance_inc[ac[a.count_ind].step_log]; |
429 | 108M | }; |
430 | 16.8M | const auto delta_entropy_dec = [&](const EntropyDelta& a) { |
431 | 16.8M | return a.freq * int64_t{ac[a.count_ind + 1].delta_lg2} - |
432 | 16.8M | balance_dec[ac[a.count_ind + 1].step_log]; |
433 | 16.8M | }; |
434 | | // Compare steps by entropy increase per unit of histogram bin change. |
435 | | // Truncation is OK here, accuracy is anyway better than float |
436 | 53.4M | const auto IncLess = [&](const EntropyDelta& a, const EntropyDelta& b) { |
437 | 53.4M | return delta_entropy_inc(a) >> ac[a.count_ind].step_log < |
438 | 53.4M | delta_entropy_inc(b) >> ac[b.count_ind].step_log; |
439 | 53.4M | }; |
440 | 8.22M | const auto DecLess = [&](const EntropyDelta& a, const EntropyDelta& b) { |
441 | 8.22M | return delta_entropy_dec(a) >> ac[a.count_ind + 1].step_log < |
442 | 8.22M | delta_entropy_dec(b) >> ac[b.count_ind + 1].step_log; |
443 | 8.22M | }; |
444 | | // Vector of adjustable bins from `allowed_counts` |
445 | 272k | std::vector<EntropyDelta> bins; |
446 | 272k | bins.reserve(256); |
447 | | |
448 | 272k | double norm = double{table_size} / histo.total_count; |
449 | | |
450 | 272k | size_t remainder_pos = 0; // highest balancing bin in the histogram |
451 | 272k | int64_t max_freq = 0; |
452 | 272k | ANSHistBin rest = table_size; // reserve of histogram counts to distribute |
453 | 11.4M | for (size_t n = 0; n < alphabet_size_; ++n) { |
454 | 11.2M | ANSHistBin freq = histo.counts[n]; |
455 | 11.2M | if (freq > max_freq) { |
456 | 582k | remainder_pos = n; |
457 | 582k | max_freq = freq; |
458 | 582k | } |
459 | | |
460 | 11.2M | double target = freq * norm; // rounding |
461 | | // Keep zeros and clamp nonzero freq counts to [1, table_size) |
462 | 11.2M | ANSHistBin count = std::max<ANSHistBin>(round(target), freq > 0); |
463 | 11.2M | count = std::min<ANSHistBin>(count, table_size - 1); |
464 | 11.2M | uint32_t step_log = SmallestIncrementLog(count, shift); |
465 | 11.2M | ANSHistBin inc = 1 << step_log; |
466 | 11.2M | count &= ~(inc - 1); |
467 | | |
468 | 11.2M | counts_[n] = count; |
469 | 11.2M | rest -= count; |
470 | 11.2M | if (target > 1.0) { |
471 | 5.67M | size_t count_ind = 0; |
472 | | // TODO(ivan) binary search instead of linear? |
473 | 6.67G | while (ac[count_ind].count != count) ++count_ind; |
474 | 5.67M | bins.push_back({freq, count_ind, n}); |
475 | 5.67M | } |
476 | 11.2M | } |
477 | | |
478 | | // Delete the highest balancing bin from adjustable by `allowed_counts` |
479 | 272k | bins.erase(std::find_if( |
480 | 272k | bins.begin(), bins.end(), |
481 | 1.70M | [&](const EntropyDelta& a) { return a.bin_ind == remainder_pos; })); |
482 | | // From now on `rest` is the height of balancing bin, |
483 | | // here it can be negative, but will be tracted into positive domain later |
484 | 272k | rest += counts_[remainder_pos]; |
485 | | |
486 | 272k | if (!bins.empty()) { |
487 | 272k | const uint32_t max_log = ac[1].step_log; |
488 | 1.96M | while (true) { |
489 | | // Update balancing bin penalties setting guards and tractors |
490 | 17.3M | for (uint32_t log = 0; log <= max_log; ++log) { |
491 | 15.4M | ANSHistBin delta = 1 << log; |
492 | 15.4M | if (rest >= table_size) { |
493 | | // Tract large `rest` into allowed domain: |
494 | 0 | balance_inc[log] = 0; // permit all inc steps |
495 | 0 | balance_dec[log] = 0; // forbid all dec steps |
496 | 15.4M | } else if (rest > 1) { |
497 | | // `rest` is OK, put guards against non-possible steps |
498 | 15.4M | balance_inc[log] = |
499 | 15.4M | rest > delta // possible step |
500 | 15.4M | ? max_freq * int64_t{lg2[rest] - lg2[rest - delta]} |
501 | 15.4M | : std::numeric_limits<int64_t>::max(); // forbidden |
502 | 15.4M | balance_dec[log] = |
503 | 15.4M | rest + delta < table_size // possible step |
504 | 15.4M | ? max_freq * int64_t{lg2[rest + delta] - lg2[rest]} |
505 | 15.4M | : 0; // forbidden |
506 | 15.4M | } else { |
507 | | // Tract negative or zero `rest` into positive: |
508 | | // forbid all inc steps |
509 | 153 | balance_inc[log] = std::numeric_limits<int64_t>::max(); |
510 | | // permit all dec steps |
511 | 153 | balance_dec[log] = std::numeric_limits<int64_t>::max(); |
512 | 153 | } |
513 | 15.4M | } |
514 | | // Try to increase entropy |
515 | 1.96M | auto best_bin_inc = std::max_element(bins.begin(), bins.end(), IncLess); |
516 | 1.96M | if (delta_entropy_inc(*best_bin_inc) > 0) { |
517 | | // Grow the bin with the best histogram entropy increase |
518 | 1.59M | rest -= 1 << ac[best_bin_inc->count_ind--].step_log; |
519 | 1.59M | } else { |
520 | | // This still implies that entropy is strictly increasing each step |
521 | | // (or `rest` is tracted into positive domain), so we cannot loop |
522 | | // infinitely |
523 | 369k | auto best_bin_dec = |
524 | 369k | std::min_element(bins.begin(), bins.end(), DecLess); |
525 | | // Break if no reverse steps can grow entropy (or valid) |
526 | 369k | if (delta_entropy_dec(*best_bin_dec) >= 0) break; |
527 | | // Decrease the bin with the best histogram entropy increase |
528 | 96.7k | rest += 1 << ac[++best_bin_dec->count_ind].step_log; |
529 | 96.7k | } |
530 | 1.96M | } |
531 | | // Set counts besides the balancing bin |
532 | 5.40M | for (auto& a : bins) counts_[a.bin_ind] = ac[a.count_ind].count; |
533 | | |
534 | | // The scheme works fine if we have room to grow `bit_width` of balancing |
535 | | // bin, otherwise we need to put balancing bin to the first bin of 12 bit |
536 | | // width. In this case both that bin and balancing one should be close to |
537 | | // 2048 in targets, so exchange of them will not produce much worse |
538 | | // histogram |
539 | 2.48M | for (size_t n = 0; n < remainder_pos; ++n) { |
540 | 2.21M | if (counts_[n] >= 2048) { |
541 | 729 | counts_[remainder_pos] = counts_[n]; |
542 | 729 | remainder_pos = n; |
543 | 729 | break; |
544 | 729 | } |
545 | 2.21M | } |
546 | 272k | } |
547 | | // Set balancing bin |
548 | 272k | counts_[remainder_pos] = rest; |
549 | 272k | omit_pos_ = remainder_pos; |
550 | | |
551 | 272k | return counts_[remainder_pos] > 0; |
552 | 272k | } |
553 | | |
554 | | float cost_ = 0; |
555 | | uint32_t method_ = 0; |
556 | | size_t omit_pos_ = 0; |
557 | | size_t alphabet_size_ = 0; |
558 | | size_t num_symbols_ = 0; |
559 | | size_t symbols_[kMaxNumSymbolsForSmallCode] = {}; |
560 | | std::vector<ANSHistBin> counts_{}; |
561 | | }; |
562 | | |
563 | | using AEH = ANSEncodingHistogram; |
564 | | |
565 | 292 | const AEH::Lg2LUT AEH::lg2 = [] { |
566 | 292 | Lg2LUT lg2; |
567 | 292 | lg2[0] = 0; // for entropy calculations it is OK |
568 | 1.19M | for (size_t i = 1; i < lg2.size(); ++i) { |
569 | 1.19M | lg2[i] = round(ldexp(log2(i) / ANS_LOG_TAB_SIZE, 31)); |
570 | 1.19M | } |
571 | 292 | return lg2; |
572 | 292 | }(); |
573 | | |
574 | 292 | const AEH::CountsArray AEH::allowed_counts = [] { |
575 | 292 | CountsArray allowed_counts = {}; |
576 | | |
577 | 3.79k | for (uint32_t shift = 0; shift < allowed_counts.size(); ++shift) { |
578 | 3.50k | auto& ac = allowed_counts[shift]; |
579 | 14.3M | for (uint32_t i = 1; i < ac.size(); ++i) { |
580 | 14.3M | int32_t cnt = i & ~((1 << SmallestIncrementLog(i, shift)) - 1); |
581 | 14.3M | ac[cnt].count = cnt; |
582 | 14.3M | } |
583 | 3.50k | std::sort(ac.begin(), ac.end(), |
584 | 47.3M | [](const CountsEntropy& a, const CountsEntropy& b) { |
585 | 47.3M | return a.count > b.count; |
586 | 47.3M | }); |
587 | 3.50k | int ind = 1; |
588 | 2.79M | while (ac[ind].count > 0) { |
589 | 2.79M | ac[ind].delta_lg2 = round( |
590 | 2.79M | ldexp(log2(static_cast<double>(ac[ind - 1].count) / ac[ind].count) / |
591 | 2.79M | ANS_LOG_TAB_SIZE, |
592 | 2.79M | 31)); |
593 | 2.79M | ac[ind].step_log = |
594 | 2.79M | FloorLog2Nonzero<uint32_t>(ac[ind - 1].count - ac[ind].count); |
595 | 2.79M | ++ind; |
596 | 2.79M | } |
597 | | // Guards against non-possible steps: |
598 | | // at max value [0] - 0 (by init), at min value - max |
599 | 3.50k | ac[ind].delta_lg2 = std::numeric_limits<int32_t>::max(); |
600 | 3.50k | } |
601 | 292 | return allowed_counts; |
602 | 292 | }(); |
603 | | |
604 | | } // namespace |
605 | | |
606 | 50.0k | StatusOr<float> Histogram::ANSPopulationCost() const { |
607 | 50.0k | if (counts.size() > ANS_MAX_ALPHABET_SIZE) { |
608 | 0 | return std::numeric_limits<float>::max(); |
609 | 0 | } |
610 | 50.0k | JXL_ASSIGN_OR_RETURN( |
611 | 50.0k | ANSEncodingHistogram normalized, |
612 | 50.0k | ANSEncodingHistogram::ComputeBest( |
613 | 50.0k | *this, HistogramParams::ANSHistogramStrategy::kFast)); |
614 | 50.0k | return normalized.Cost(); |
615 | 50.0k | } |
616 | | |
617 | | // Returns an estimate or exact cost of encoding this histogram and the |
618 | | // corresponding data. |
619 | | StatusOr<size_t> EntropyEncodingData::BuildAndStoreANSEncodingData( |
620 | | JxlMemoryManager* memory_manager, |
621 | | HistogramParams::ANSHistogramStrategy ans_histogram_strategy, |
622 | 22.1k | const Histogram& histogram, BitWriter* writer) { |
623 | 22.1k | ANSEncSymbolInfo* info = encoding_info.back().data(); |
624 | 22.1k | size_t size = histogram.alphabet_size(); |
625 | 22.1k | if (use_prefix_code) { |
626 | 2.29k | size_t cost = 0; |
627 | 2.29k | if (size <= 1) return 0; |
628 | 2.24k | std::vector<uint32_t> histo(size); |
629 | 16.6k | for (size_t i = 0; i < size; i++) { |
630 | 14.4k | JXL_ENSURE(histogram.counts[i] >= 0); |
631 | 14.4k | histo[i] = histogram.counts[i]; |
632 | 14.4k | } |
633 | 2.24k | std::vector<uint8_t> depths(size); |
634 | 2.24k | std::vector<uint16_t> bits(size); |
635 | 2.24k | if (writer == nullptr) { |
636 | 1.75k | BitWriter tmp_writer{memory_manager}; |
637 | 1.75k | JXL_RETURN_IF_ERROR(tmp_writer.WithMaxBits( |
638 | 1.75k | 8 * size + 8, // safe upper bound |
639 | 1.75k | LayerType::Header, /*aux_out=*/nullptr, [&] { |
640 | 1.75k | return BuildAndStoreHuffmanTree(histo.data(), size, depths.data(), |
641 | 1.75k | bits.data(), &tmp_writer); |
642 | 1.75k | })); |
643 | 1.75k | cost = tmp_writer.BitsWritten(); |
644 | 1.75k | } else { |
645 | 498 | size_t start = writer->BitsWritten(); |
646 | 498 | JXL_RETURN_IF_ERROR(BuildAndStoreHuffmanTree( |
647 | 498 | histo.data(), size, depths.data(), bits.data(), writer)); |
648 | 498 | cost = writer->BitsWritten() - start; |
649 | 498 | } |
650 | 16.6k | for (size_t i = 0; i < size; i++) { |
651 | 14.4k | info[i].bits = depths[i] == 0 ? 0 : bits[i]; |
652 | 14.4k | info[i].depth = depths[i]; |
653 | 14.4k | } |
654 | | // Estimate data cost. |
655 | 16.6k | for (size_t i = 0; i < size; i++) { |
656 | 14.4k | cost += histo[i] * info[i].depth; |
657 | 14.4k | } |
658 | 2.24k | return cost; |
659 | 2.24k | } |
660 | 39.8k | JXL_ASSIGN_OR_RETURN( |
661 | 39.8k | ANSEncodingHistogram normalized, |
662 | 39.8k | ANSEncodingHistogram::ComputeBest(histogram, ans_histogram_strategy)); |
663 | 39.8k | AliasTable::Entry a[ANS_MAX_ALPHABET_SIZE]; |
664 | 39.8k | JXL_RETURN_IF_ERROR( |
665 | 39.8k | InitAliasTable(normalized.Counts(), ANS_LOG_TAB_SIZE, log_alpha_size, a)); |
666 | 19.9k | normalized.ANSBuildInfoTable(a, log_alpha_size, info); |
667 | 19.9k | if (writer != nullptr) { |
668 | | // size_t start = writer->BitsWritten(); |
669 | 19.4k | JXL_RETURN_IF_ERROR(normalized.Encode(writer)); |
670 | | // return writer->BitsWritten() - start; |
671 | 19.4k | } |
672 | 19.9k | return static_cast<size_t>(ceilf(normalized.Cost())); |
673 | 19.9k | } |
674 | | |
675 | | namespace { |
676 | | |
677 | | Histogram HistogramFromSymbolInfo( |
678 | 0 | const std::vector<ANSEncSymbolInfo>& encoding_info, bool use_prefix_code) { |
679 | 0 | Histogram histo; |
680 | 0 | histo.counts.resize(DivCeil(encoding_info.size(), Histogram::kRounding) * |
681 | 0 | Histogram::kRounding); |
682 | 0 | histo.total_count = 0; |
683 | 0 | for (size_t i = 0; i < encoding_info.size(); ++i) { |
684 | 0 | const ANSEncSymbolInfo& info = encoding_info[i]; |
685 | 0 | int count = use_prefix_code |
686 | 0 | ? (info.depth ? (1u << (PREFIX_MAX_BITS - info.depth)) : 0) |
687 | 0 | : info.freq_; |
688 | 0 | histo.counts[i] = count; |
689 | 0 | histo.total_count += count; |
690 | 0 | } |
691 | 0 | return histo; |
692 | 0 | } |
693 | | |
694 | | } // namespace |
695 | | |
696 | | Status EntropyEncodingData::ChooseUintConfigs( |
697 | | const HistogramParams& params, |
698 | | const std::vector<std::vector<Token>>& tokens, |
699 | 3.53k | std::vector<Histogram>& clustered_histograms) { |
700 | | // Set sane default `log_alpha_size`. |
701 | 3.53k | if (use_prefix_code) { |
702 | 2.28k | log_alpha_size = PREFIX_MAX_BITS; |
703 | 2.28k | } else if (params.streaming_mode) { |
704 | | // TODO(szabadka) Figure out if we can use lower values here. |
705 | 0 | log_alpha_size = 8; |
706 | 1.24k | } else if (lz77.enabled) { |
707 | 354 | log_alpha_size = 8; |
708 | 890 | } else { |
709 | 890 | log_alpha_size = 7; |
710 | 890 | } |
711 | | |
712 | 3.53k | if (ans_fuzzer_friendly_) { |
713 | 0 | uint_config.assign(1, HybridUintConfig(7, 0, 0)); |
714 | 0 | return true; |
715 | 0 | } |
716 | | |
717 | 3.53k | uint_config.assign(clustered_histograms.size(), params.UintConfig()); |
718 | | // If the uint config is fixed, just use it. |
719 | 3.53k | if (params.uint_method != HistogramParams::HybridUintMethod::kBest && |
720 | 3.53k | params.uint_method != HistogramParams::HybridUintMethod::kFast) { |
721 | 2.73k | return true; |
722 | 2.73k | } |
723 | | // Even if the uint config is adaptive, just stick with the default in |
724 | | // streaming mode. |
725 | 800 | if (params.streaming_mode) { |
726 | 0 | return true; |
727 | 0 | } |
728 | | |
729 | | // Brute-force method that tries a few options. |
730 | 800 | std::vector<HybridUintConfig> configs; |
731 | 800 | if (params.uint_method == HistogramParams::HybridUintMethod::kBest) { |
732 | 234 | configs = { |
733 | 234 | HybridUintConfig(4, 2, 0), // default |
734 | 234 | HybridUintConfig(4, 1, 0), // less precise |
735 | 234 | HybridUintConfig(4, 2, 1), // add sign |
736 | 234 | HybridUintConfig(4, 2, 2), // add sign+parity |
737 | 234 | HybridUintConfig(4, 1, 2), // add parity but less msb |
738 | | // Same as above, but more direct coding. |
739 | 234 | HybridUintConfig(5, 2, 0), HybridUintConfig(5, 1, 0), |
740 | 234 | HybridUintConfig(5, 2, 1), HybridUintConfig(5, 2, 2), |
741 | 234 | HybridUintConfig(5, 1, 2), |
742 | | // Same as above, but less direct coding. |
743 | 234 | HybridUintConfig(3, 2, 0), HybridUintConfig(3, 1, 0), |
744 | 234 | HybridUintConfig(3, 2, 1), HybridUintConfig(3, 1, 2), |
745 | | // For near-lossless. |
746 | 234 | HybridUintConfig(4, 1, 3), HybridUintConfig(5, 1, 4), |
747 | 234 | HybridUintConfig(5, 2, 3), HybridUintConfig(6, 1, 5), |
748 | 234 | HybridUintConfig(6, 2, 4), HybridUintConfig(6, 0, 0), |
749 | | // Other |
750 | 234 | HybridUintConfig(0, 0, 0), // varlenuint |
751 | 234 | HybridUintConfig(2, 0, 1), // works well for ctx map |
752 | 234 | HybridUintConfig(7, 0, 0), // direct coding |
753 | 234 | HybridUintConfig(8, 0, 0), // direct coding |
754 | 234 | HybridUintConfig(9, 0, 0), // direct coding |
755 | 234 | HybridUintConfig(10, 0, 0), // direct coding |
756 | 234 | HybridUintConfig(11, 0, 0), // direct coding |
757 | 234 | HybridUintConfig(12, 0, 0), // direct coding |
758 | 234 | }; |
759 | 566 | } else if (params.uint_method == HistogramParams::HybridUintMethod::kFast) { |
760 | 566 | configs = { |
761 | 566 | HybridUintConfig(4, 2, 0), // default |
762 | 566 | HybridUintConfig(4, 1, 2), // add parity but less msb |
763 | 566 | HybridUintConfig(0, 0, 0), // smallest histograms |
764 | 566 | HybridUintConfig(2, 0, 1), // works well for ctx map |
765 | 566 | }; |
766 | 566 | } |
767 | | |
768 | 800 | std::vector<float> costs(clustered_histograms.size(), |
769 | 800 | std::numeric_limits<float>::max()); |
770 | 800 | std::vector<uint32_t> extra_bits(clustered_histograms.size()); |
771 | 800 | std::vector<uint8_t> is_valid(clustered_histograms.size()); |
772 | | // Wider histograms are assigned max cost in PopulationCost anyway |
773 | | // and therefore will not be used |
774 | 800 | size_t max_alpha = ANS_MAX_ALPHABET_SIZE; |
775 | 8.81k | for (HybridUintConfig cfg : configs) { |
776 | 8.81k | std::fill(is_valid.begin(), is_valid.end(), true); |
777 | 8.81k | std::fill(extra_bits.begin(), extra_bits.end(), 0); |
778 | | |
779 | 46.5k | for (auto& histo : clustered_histograms) { |
780 | 46.5k | histo.Clear(); |
781 | 46.5k | } |
782 | 34.2k | for (const auto& stream : tokens) { |
783 | 82.2M | for (const auto& token : stream) { |
784 | | // TODO(veluca): do not ignore lz77 commands. |
785 | 82.2M | if (token.is_lz77_length) continue; |
786 | 82.2M | size_t histo = context_map[token.context]; |
787 | 82.2M | if (!is_valid[histo]) continue; |
788 | 71.7M | uint32_t tok, nbits, bits; |
789 | 71.7M | cfg.Encode(token.value, &tok, &nbits, &bits); |
790 | 71.7M | if (tok >= max_alpha || (lz77.enabled && tok >= lz77.min_symbol)) { |
791 | 2.10k | is_valid[histo] = JXL_FALSE; |
792 | 2.10k | continue; |
793 | 2.10k | } |
794 | 71.7M | extra_bits[histo] += nbits; |
795 | 71.7M | clustered_histograms[histo].Add(tok); |
796 | 71.7M | } |
797 | 34.2k | } |
798 | | |
799 | 55.3k | for (size_t i = 0; i < clustered_histograms.size(); i++) { |
800 | 46.5k | if (!is_valid[i]) continue; |
801 | 88.8k | JXL_ASSIGN_OR_RETURN(float cost, |
802 | 88.8k | clustered_histograms[i].ANSPopulationCost()); |
803 | 88.8k | cost += extra_bits[i]; |
804 | | // add signaling cost of the hybriduintconfig itself |
805 | 88.8k | cost += CeilLog2Nonzero(cfg.split_exponent + 1); |
806 | 88.8k | cost += CeilLog2Nonzero(cfg.split_exponent - cfg.msb_in_token + 1); |
807 | 88.8k | if (cost < costs[i]) { |
808 | 12.0k | uint_config[i] = cfg; |
809 | 12.0k | costs[i] = cost; |
810 | 12.0k | } |
811 | 88.8k | } |
812 | 8.81k | } |
813 | | |
814 | | // Rebuild histograms. |
815 | 5.55k | for (auto& histo : clustered_histograms) { |
816 | 5.55k | histo.Clear(); |
817 | 5.55k | } |
818 | | // `log_alpha_size - 5` is encoded in the header, so min is 5. |
819 | 800 | size_t log_size = 5; |
820 | 7.15k | for (const auto& stream : tokens) { |
821 | 6.09M | for (const auto& token : stream) { |
822 | 6.09M | uint32_t tok, nbits, bits; |
823 | 6.09M | size_t histo = context_map[token.context]; |
824 | 6.09M | (token.is_lz77_length ? lz77.length_uint_config : uint_config[histo]) |
825 | 6.09M | .Encode(token.value, &tok, &nbits, &bits); |
826 | 6.09M | tok += token.is_lz77_length ? lz77.min_symbol : 0; |
827 | 6.09M | clustered_histograms[histo].Add(tok); |
828 | 6.09M | while (tok >= (1u << log_size)) ++log_size; |
829 | 6.09M | } |
830 | 7.15k | } |
831 | 800 | size_t max_log_alpha_size = use_prefix_code ? PREFIX_MAX_BITS : 8; |
832 | 800 | JXL_ENSURE(log_size <= max_log_alpha_size); |
833 | | |
834 | 800 | if (use_prefix_code) { |
835 | 106 | log_alpha_size = PREFIX_MAX_BITS; |
836 | 694 | } else { |
837 | 694 | log_alpha_size = log_size; |
838 | 694 | } |
839 | | |
840 | 800 | return true; |
841 | 800 | } |
842 | | |
843 | | // NOTE: `layer` is only for clustered_entropy; caller does ReclaimAndCharge. |
844 | | // Returns cost (in bits). |
845 | | StatusOr<size_t> EntropyEncodingData::BuildAndStoreEntropyCodes( |
846 | | JxlMemoryManager* memory_manager, const HistogramParams& params, |
847 | | const std::vector<std::vector<Token>>& tokens, |
848 | | const std::vector<Histogram>& builder, BitWriter* writer, LayerType layer, |
849 | 3.53k | AuxOut* aux_out) { |
850 | 3.53k | const size_t prev_histograms = encoding_info.size(); |
851 | 3.53k | std::vector<Histogram> clustered_histograms; |
852 | 3.53k | for (size_t i = 0; i < prev_histograms; ++i) { |
853 | 0 | clustered_histograms.push_back( |
854 | 0 | HistogramFromSymbolInfo(encoding_info[i], use_prefix_code)); |
855 | 0 | } |
856 | 3.53k | size_t context_offset = context_map.size(); |
857 | 3.53k | context_map.resize(context_offset + builder.size()); |
858 | 3.53k | if (builder.size() > 1) { |
859 | 1.30k | if (!ans_fuzzer_friendly_) { |
860 | 1.30k | std::vector<uint32_t> histogram_symbols; |
861 | 1.30k | JXL_RETURN_IF_ERROR(ClusterHistograms(params, builder, kClustersLimit, |
862 | 1.30k | &clustered_histograms, |
863 | 1.30k | &histogram_symbols)); |
864 | 584k | for (size_t c = 0; c < builder.size(); ++c) { |
865 | 583k | context_map[context_offset + c] = |
866 | 583k | static_cast<uint8_t>(histogram_symbols[c]); |
867 | 583k | } |
868 | 1.30k | } else { |
869 | 0 | JXL_ENSURE(encoding_info.empty()); |
870 | 0 | std::fill(context_map.begin(), context_map.end(), 0); |
871 | 0 | size_t max_symbol = 0; |
872 | 0 | for (const Histogram& h : builder) { |
873 | 0 | max_symbol = std::max(h.counts.size(), max_symbol); |
874 | 0 | } |
875 | 0 | size_t num_symbols = 1 << CeilLog2Nonzero(max_symbol + 1); |
876 | 0 | clustered_histograms.resize(1); |
877 | 0 | clustered_histograms[0].Clear(); |
878 | 0 | for (size_t i = 0; i < num_symbols; i++) { |
879 | 0 | clustered_histograms[0].Add(i); |
880 | 0 | } |
881 | 0 | } |
882 | 1.30k | if (writer != nullptr) { |
883 | 1.09k | JXL_RETURN_IF_ERROR(EncodeContextMap( |
884 | 1.09k | context_map, clustered_histograms.size(), writer, layer, aux_out)); |
885 | 1.09k | } |
886 | 2.22k | } else { |
887 | 2.22k | JXL_ENSURE(encoding_info.empty()); |
888 | 2.22k | clustered_histograms.push_back(builder[0]); |
889 | 2.22k | } |
890 | 3.53k | if (aux_out != nullptr) { |
891 | 0 | for (size_t i = prev_histograms; i < clustered_histograms.size(); ++i) { |
892 | 0 | aux_out->layer(layer).clustered_entropy += |
893 | 0 | clustered_histograms[i].ShannonEntropy(); |
894 | 0 | } |
895 | 0 | } |
896 | | |
897 | 3.53k | JXL_RETURN_IF_ERROR(ChooseUintConfigs(params, tokens, clustered_histograms)); |
898 | | |
899 | 3.53k | SizeWriter size_writer; // Used if writer == nullptr to estimate costs. |
900 | 3.53k | size_t cost = use_prefix_code ? 1 : 3; |
901 | | |
902 | 3.53k | if (writer) writer->Write(1, TO_JXL_BOOL(use_prefix_code)); |
903 | 3.53k | if (writer == nullptr) { |
904 | 2.02k | EncodeUintConfigs(uint_config, &size_writer, log_alpha_size); |
905 | 2.02k | } else { |
906 | 1.50k | if (!use_prefix_code) writer->Write(2, log_alpha_size - 5); |
907 | 1.50k | EncodeUintConfigs(uint_config, writer, log_alpha_size); |
908 | 1.50k | } |
909 | 3.53k | if (use_prefix_code) { |
910 | 2.29k | for (const auto& histo : clustered_histograms) { |
911 | 2.29k | size_t alphabet_size = std::max<size_t>(1, histo.alphabet_size()); |
912 | 2.29k | if (writer) { |
913 | 540 | StoreVarLenUint16(alphabet_size - 1, writer); |
914 | 1.75k | } else { |
915 | 1.75k | StoreVarLenUint16(alphabet_size - 1, &size_writer); |
916 | 1.75k | } |
917 | 2.29k | } |
918 | 2.28k | } |
919 | 3.53k | cost += size_writer.size; |
920 | 25.7k | for (size_t c = prev_histograms; c < clustered_histograms.size(); ++c) { |
921 | 22.1k | size_t alphabet_size = clustered_histograms[c].alphabet_size(); |
922 | 22.1k | encoding_info.emplace_back(); |
923 | 22.1k | encoding_info.back().resize(alphabet_size); |
924 | 22.1k | BitWriter* histo_writer = writer; |
925 | 22.1k | if (params.streaming_mode) { |
926 | 0 | encoded_histograms.emplace_back(memory_manager); |
927 | 0 | histo_writer = &encoded_histograms.back(); |
928 | 0 | } |
929 | 22.1k | const auto& body = [&]() -> Status { |
930 | 22.1k | JXL_ASSIGN_OR_RETURN(size_t ans_cost, |
931 | 22.1k | BuildAndStoreANSEncodingData( |
932 | 22.1k | memory_manager, params.ans_histogram_strategy, |
933 | 22.1k | clustered_histograms[c], histo_writer)); |
934 | 22.1k | cost += ans_cost; |
935 | 22.1k | return true; |
936 | 22.1k | }; |
937 | 22.1k | if (histo_writer) { |
938 | 19.9k | JXL_RETURN_IF_ERROR(histo_writer->WithMaxBits( |
939 | 19.9k | 256 + alphabet_size * 24, layer, aux_out, body, |
940 | 19.9k | /*finished_histogram=*/true)); |
941 | 19.9k | } else { |
942 | 2.22k | JXL_RETURN_IF_ERROR(body()); |
943 | 2.22k | } |
944 | 22.1k | if (params.streaming_mode) { |
945 | 0 | JXL_RETURN_IF_ERROR(writer->AppendUnaligned(*histo_writer)); |
946 | 0 | } |
947 | 22.1k | } |
948 | 3.53k | return cost; |
949 | 3.53k | } |
950 | | |
951 | | template <typename Writer> |
952 | | void EncodeUintConfig(const HybridUintConfig uint_config, Writer* writer, |
953 | 22.5k | size_t log_alpha_size) { |
954 | 22.5k | writer->Write(CeilLog2Nonzero(log_alpha_size + 1), |
955 | 22.5k | uint_config.split_exponent); |
956 | 22.5k | if (uint_config.split_exponent == log_alpha_size) { |
957 | 0 | return; // msb/lsb don't matter. |
958 | 0 | } |
959 | 22.5k | size_t nbits = CeilLog2Nonzero(uint_config.split_exponent + 1); |
960 | 22.5k | writer->Write(nbits, uint_config.msb_in_token); |
961 | 22.5k | nbits = CeilLog2Nonzero(uint_config.split_exponent - |
962 | 22.5k | uint_config.msb_in_token + 1); |
963 | 22.5k | writer->Write(nbits, uint_config.lsb_in_token); |
964 | 22.5k | } void jxl::EncodeUintConfig<jxl::SizeWriter>(jxl::HybridUintConfig, jxl::SizeWriter*, unsigned long) Line | Count | Source | 953 | 2.43k | size_t log_alpha_size) { | 954 | 2.43k | writer->Write(CeilLog2Nonzero(log_alpha_size + 1), | 955 | 2.43k | uint_config.split_exponent); | 956 | 2.43k | if (uint_config.split_exponent == log_alpha_size) { | 957 | 0 | return; // msb/lsb don't matter. | 958 | 0 | } | 959 | 2.43k | size_t nbits = CeilLog2Nonzero(uint_config.split_exponent + 1); | 960 | 2.43k | writer->Write(nbits, uint_config.msb_in_token); | 961 | 2.43k | nbits = CeilLog2Nonzero(uint_config.split_exponent - | 962 | 2.43k | uint_config.msb_in_token + 1); | 963 | 2.43k | writer->Write(nbits, uint_config.lsb_in_token); | 964 | 2.43k | } |
void jxl::EncodeUintConfig<jxl::BitWriter>(jxl::HybridUintConfig, jxl::BitWriter*, unsigned long) Line | Count | Source | 953 | 20.1k | size_t log_alpha_size) { | 954 | 20.1k | writer->Write(CeilLog2Nonzero(log_alpha_size + 1), | 955 | 20.1k | uint_config.split_exponent); | 956 | 20.1k | if (uint_config.split_exponent == log_alpha_size) { | 957 | 0 | return; // msb/lsb don't matter. | 958 | 0 | } | 959 | 20.1k | size_t nbits = CeilLog2Nonzero(uint_config.split_exponent + 1); | 960 | 20.1k | writer->Write(nbits, uint_config.msb_in_token); | 961 | 20.1k | nbits = CeilLog2Nonzero(uint_config.split_exponent - | 962 | 20.1k | uint_config.msb_in_token + 1); | 963 | 20.1k | writer->Write(nbits, uint_config.lsb_in_token); | 964 | 20.1k | } |
|
965 | | template <typename Writer> |
966 | | void EncodeUintConfigs(const std::vector<HybridUintConfig>& uint_config, |
967 | 3.53k | Writer* writer, size_t log_alpha_size) { |
968 | | // TODO(veluca): RLE? |
969 | 22.1k | for (const auto& cfg : uint_config) { |
970 | 22.1k | EncodeUintConfig(cfg, writer, log_alpha_size); |
971 | 22.1k | } |
972 | 3.53k | } void jxl::EncodeUintConfigs<jxl::BitWriter>(std::__1::vector<jxl::HybridUintConfig, std::__1::allocator<jxl::HybridUintConfig> > const&, jxl::BitWriter*, unsigned long) Line | Count | Source | 967 | 1.50k | Writer* writer, size_t log_alpha_size) { | 968 | | // TODO(veluca): RLE? | 969 | 19.9k | for (const auto& cfg : uint_config) { | 970 | 19.9k | EncodeUintConfig(cfg, writer, log_alpha_size); | 971 | 19.9k | } | 972 | 1.50k | } |
void jxl::EncodeUintConfigs<jxl::SizeWriter>(std::__1::vector<jxl::HybridUintConfig, std::__1::allocator<jxl::HybridUintConfig> > const&, jxl::SizeWriter*, unsigned long) Line | Count | Source | 967 | 2.02k | Writer* writer, size_t log_alpha_size) { | 968 | | // TODO(veluca): RLE? | 969 | 2.22k | for (const auto& cfg : uint_config) { | 970 | 2.22k | EncodeUintConfig(cfg, writer, log_alpha_size); | 971 | 2.22k | } | 972 | 2.02k | } |
|
973 | | template void EncodeUintConfigs(const std::vector<HybridUintConfig>&, |
974 | | BitWriter*, size_t); |
975 | | |
976 | | Status EncodeHistograms(const EntropyEncodingData& codes, BitWriter* writer, |
977 | 0 | LayerType layer, AuxOut* aux_out) { |
978 | 0 | return writer->WithMaxBits( |
979 | 0 | 128 + kClustersLimit * 136, layer, aux_out, |
980 | 0 | [&]() -> Status { |
981 | 0 | JXL_RETURN_IF_ERROR(Bundle::Write(codes.lz77, writer, layer, aux_out)); |
982 | 0 | if (codes.lz77.enabled) { |
983 | 0 | EncodeUintConfig(codes.lz77.length_uint_config, writer, |
984 | 0 | /*log_alpha_size=*/8); |
985 | 0 | } |
986 | 0 | JXL_RETURN_IF_ERROR(EncodeContextMap(codes.context_map, |
987 | 0 | codes.encoding_info.size(), writer, |
988 | 0 | layer, aux_out)); |
989 | 0 | writer->Write(1, TO_JXL_BOOL(codes.use_prefix_code)); |
990 | 0 | size_t log_alpha_size = 8; |
991 | 0 | if (codes.use_prefix_code) { |
992 | 0 | log_alpha_size = PREFIX_MAX_BITS; |
993 | 0 | } else { |
994 | 0 | log_alpha_size = 8; // streaming_mode |
995 | 0 | writer->Write(2, log_alpha_size - 5); |
996 | 0 | } |
997 | 0 | EncodeUintConfigs(codes.uint_config, writer, log_alpha_size); |
998 | 0 | if (codes.use_prefix_code) { |
999 | 0 | for (const auto& info : codes.encoding_info) { |
1000 | 0 | StoreVarLenUint16(info.size() - 1, writer); |
1001 | 0 | } |
1002 | 0 | } |
1003 | 0 | for (const auto& histo_writer : codes.encoded_histograms) { |
1004 | 0 | JXL_RETURN_IF_ERROR(writer->AppendUnaligned(histo_writer)); |
1005 | 0 | } |
1006 | 0 | return true; |
1007 | 0 | }, |
1008 | 0 | /*finished_histogram=*/true); |
1009 | 0 | } |
1010 | | |
1011 | | StatusOr<size_t> BuildAndEncodeHistograms( |
1012 | | JxlMemoryManager* memory_manager, const HistogramParams& params, |
1013 | | size_t num_contexts, std::vector<std::vector<Token>>& tokens, |
1014 | | EntropyEncodingData* codes, BitWriter* writer, LayerType layer, |
1015 | 3.53k | AuxOut* aux_out) { |
1016 | | // TODO(Ivan): presumably not needed - default |
1017 | | // if (params.initialize_global_state) codes->lz77.enabled = false; |
1018 | 3.53k | codes->lz77.nonserialized_distance_context = num_contexts; |
1019 | 3.53k | codes->lz77.min_symbol = params.force_huffman ? 512 : 224; |
1020 | 3.53k | std::vector<std::vector<Token>> tokens_lz77 = |
1021 | 3.53k | ApplyLZ77(params, num_contexts, tokens, codes->lz77); |
1022 | 3.53k | if (!tokens_lz77.empty()) codes->lz77.enabled = true; |
1023 | 3.53k | if (ans_fuzzer_friendly_) { |
1024 | 0 | codes->lz77.length_uint_config = HybridUintConfig(10, 0, 0); |
1025 | 0 | codes->lz77.min_symbol = 2048; |
1026 | 0 | } |
1027 | | |
1028 | 3.53k | size_t cost = 0; |
1029 | 3.53k | const size_t max_contexts = std::min(num_contexts, kClustersLimit); |
1030 | 3.53k | const auto& body = [&]() -> Status { |
1031 | 3.53k | if (writer) { |
1032 | 1.50k | JXL_RETURN_IF_ERROR(Bundle::Write(codes->lz77, writer, layer, aux_out)); |
1033 | 2.02k | } else { |
1034 | 2.02k | size_t ebits, bits; |
1035 | 2.02k | JXL_RETURN_IF_ERROR(Bundle::CanEncode(codes->lz77, &ebits, &bits)); |
1036 | 2.02k | cost += bits; |
1037 | 2.02k | } |
1038 | 3.53k | if (codes->lz77.enabled) { |
1039 | 365 | if (writer) { |
1040 | 149 | size_t b = writer->BitsWritten(); |
1041 | 149 | EncodeUintConfig(codes->lz77.length_uint_config, writer, |
1042 | 149 | /*log_alpha_size=*/8); |
1043 | 149 | cost += writer->BitsWritten() - b; |
1044 | 216 | } else { |
1045 | 216 | SizeWriter size_writer; |
1046 | 216 | EncodeUintConfig(codes->lz77.length_uint_config, &size_writer, |
1047 | 216 | /*log_alpha_size=*/8); |
1048 | 216 | cost += size_writer.size; |
1049 | 216 | } |
1050 | 365 | num_contexts += 1; |
1051 | 365 | tokens = std::move(tokens_lz77); |
1052 | 365 | } |
1053 | 3.53k | size_t total_tokens = 0; |
1054 | | // Build histograms. |
1055 | 3.53k | std::vector<Histogram> builder(num_contexts); |
1056 | 3.53k | HybridUintConfig uint_config = params.UintConfig(); |
1057 | 3.53k | if (ans_fuzzer_friendly_) { |
1058 | 0 | uint_config = HybridUintConfig(10, 0, 0); |
1059 | 0 | } |
1060 | 10.2k | for (const auto& stream : tokens) { |
1061 | 10.2k | if (codes->lz77.enabled) { |
1062 | 422k | for (const auto& token : stream) { |
1063 | 422k | total_tokens++; |
1064 | 422k | uint32_t tok, nbits, bits; |
1065 | 422k | (token.is_lz77_length ? codes->lz77.length_uint_config : uint_config) |
1066 | 422k | .Encode(token.value, &tok, &nbits, &bits); |
1067 | 422k | tok += token.is_lz77_length ? codes->lz77.min_symbol : 0; |
1068 | 422k | JXL_DASSERT(token.context < num_contexts); |
1069 | 422k | builder[token.context].Add(tok); |
1070 | 422k | } |
1071 | 9.92k | } else if (num_contexts == 1) { |
1072 | 319k | for (const auto& token : stream) { |
1073 | 319k | total_tokens++; |
1074 | 319k | uint32_t tok, nbits, bits; |
1075 | 319k | uint_config.Encode(token.value, &tok, &nbits, &bits); |
1076 | 319k | builder[0].Add(tok); |
1077 | 319k | } |
1078 | 7.68k | } else { |
1079 | 32.8M | for (const auto& token : stream) { |
1080 | 32.8M | total_tokens++; |
1081 | 32.8M | uint32_t tok, nbits, bits; |
1082 | 32.8M | uint_config.Encode(token.value, &tok, &nbits, &bits); |
1083 | 32.8M | JXL_DASSERT(token.context < num_contexts); |
1084 | 32.8M | builder[token.context].Add(tok); |
1085 | 32.8M | } |
1086 | 7.68k | } |
1087 | 10.2k | } |
1088 | | |
1089 | 3.53k | if (params.add_missing_symbols) { |
1090 | 0 | for (size_t c = 0; c < num_contexts; ++c) { |
1091 | 0 | for (int symbol = 0; symbol < ANS_MAX_ALPHABET_SIZE; ++symbol) { |
1092 | 0 | builder[c].Add(symbol); |
1093 | 0 | } |
1094 | 0 | } |
1095 | 0 | } |
1096 | | |
1097 | 3.53k | if (params.initialize_global_state) { |
1098 | 3.53k | bool use_prefix_code = |
1099 | 3.53k | params.force_huffman || total_tokens < 100 || |
1100 | 3.53k | params.clustering == HistogramParams::ClusteringType::kFastest || |
1101 | 3.53k | ans_fuzzer_friendly_; |
1102 | 3.53k | if (!use_prefix_code) { |
1103 | 1.25k | bool all_singleton = true; |
1104 | 324k | for (size_t i = 0; i < num_contexts; i++) { |
1105 | 323k | if (builder[i].ShannonEntropy() >= 1e-5) { |
1106 | 137k | all_singleton = false; |
1107 | 137k | } |
1108 | 323k | } |
1109 | 1.25k | if (all_singleton) { |
1110 | 12 | use_prefix_code = true; |
1111 | 12 | } |
1112 | 1.25k | } |
1113 | 3.53k | codes->use_prefix_code = use_prefix_code; |
1114 | 3.53k | } |
1115 | | |
1116 | 3.53k | if (params.add_fixed_histograms) { |
1117 | | // TODO(szabadka) Add more fixed histograms. |
1118 | | // TODO(szabadka) Reduce alphabet size by choosing a non-default |
1119 | | // uint_config. |
1120 | 0 | const size_t alphabet_size = ANS_MAX_ALPHABET_SIZE; |
1121 | 0 | codes->log_alpha_size = 8; |
1122 | 0 | JXL_ENSURE(alphabet_size == 1u << codes->log_alpha_size); |
1123 | 0 | static_assert(ANS_MAX_ALPHABET_SIZE <= ANS_TAB_SIZE, |
1124 | 0 | "Alphabet does not fit table"); |
1125 | 0 | codes->encoding_info.emplace_back(); |
1126 | 0 | codes->encoding_info.back().resize(alphabet_size); |
1127 | 0 | codes->encoded_histograms.emplace_back(memory_manager); |
1128 | 0 | BitWriter* histo_writer = &codes->encoded_histograms.back(); |
1129 | 0 | JXL_RETURN_IF_ERROR(histo_writer->WithMaxBits( |
1130 | 0 | 256 + alphabet_size * 24, LayerType::Header, nullptr, |
1131 | 0 | [&]() -> Status { |
1132 | 0 | JXL_ASSIGN_OR_RETURN( |
1133 | 0 | size_t ans_cost, |
1134 | 0 | codes->BuildAndStoreANSEncodingData( |
1135 | 0 | memory_manager, params.ans_histogram_strategy, |
1136 | 0 | Histogram::Flat(alphabet_size, ANS_TAB_SIZE), |
1137 | 0 | histo_writer)); |
1138 | 0 | (void)ans_cost; |
1139 | 0 | return true; |
1140 | 0 | })); |
1141 | 0 | } |
1142 | | |
1143 | | // Encode histograms. |
1144 | 3.53k | JXL_ASSIGN_OR_RETURN( |
1145 | 3.53k | size_t entropy_bits, |
1146 | 3.53k | codes->BuildAndStoreEntropyCodes(memory_manager, params, tokens, |
1147 | 3.53k | builder, writer, layer, aux_out)); |
1148 | 3.53k | cost += entropy_bits; |
1149 | 3.53k | return true; |
1150 | 3.53k | }; |
1151 | 3.53k | if (writer) { |
1152 | 1.50k | JXL_RETURN_IF_ERROR(writer->WithMaxBits( |
1153 | 1.50k | 128 + num_contexts * 40 + max_contexts * 96, layer, aux_out, body, |
1154 | 1.50k | /*finished_histogram=*/true)); |
1155 | 2.02k | } else { |
1156 | 2.02k | JXL_RETURN_IF_ERROR(body()); |
1157 | 2.02k | } |
1158 | | |
1159 | 3.53k | if (aux_out != nullptr) { |
1160 | 0 | aux_out->layer(layer).num_clustered_histograms += |
1161 | 0 | codes->encoding_info.size(); |
1162 | 0 | } |
1163 | 3.53k | return cost; |
1164 | 3.53k | } |
1165 | | |
1166 | | size_t WriteTokens(const std::vector<Token>& tokens, |
1167 | | const EntropyEncodingData& codes, size_t context_offset, |
1168 | 2.11k | BitWriter* writer) { |
1169 | 2.11k | size_t num_extra_bits = 0; |
1170 | 2.11k | if (codes.use_prefix_code) { |
1171 | 19.6k | for (const auto& token : tokens) { |
1172 | 19.6k | uint32_t tok, nbits, bits; |
1173 | 19.6k | size_t histo = codes.context_map[context_offset + token.context]; |
1174 | 19.6k | (token.is_lz77_length ? codes.lz77.length_uint_config |
1175 | 19.6k | : codes.uint_config[histo]) |
1176 | 19.6k | .Encode(token.value, &tok, &nbits, &bits); |
1177 | 19.6k | tok += token.is_lz77_length ? codes.lz77.min_symbol : 0; |
1178 | | // Combine two calls to the BitWriter. Equivalent to: |
1179 | | // writer->Write(codes.encoding_info[histo][tok].depth, |
1180 | | // codes.encoding_info[histo][tok].bits); |
1181 | | // writer->Write(nbits, bits); |
1182 | 19.6k | uint64_t data = codes.encoding_info[histo][tok].bits; |
1183 | 19.6k | data |= static_cast<uint64_t>(bits) |
1184 | 19.6k | << codes.encoding_info[histo][tok].depth; |
1185 | 19.6k | writer->Write(codes.encoding_info[histo][tok].depth + nbits, data); |
1186 | 19.6k | num_extra_bits += nbits; |
1187 | 19.6k | } |
1188 | 583 | return num_extra_bits; |
1189 | 583 | } |
1190 | 1.53k | std::vector<uint64_t> out; |
1191 | 1.53k | std::vector<uint8_t> out_nbits; |
1192 | 1.53k | out.reserve(tokens.size()); |
1193 | 1.53k | out_nbits.reserve(tokens.size()); |
1194 | 1.53k | uint64_t allbits = 0; |
1195 | 1.53k | size_t numallbits = 0; |
1196 | | // Writes in *reversed* order. |
1197 | 66.2M | auto addbits = [&](size_t bits, size_t nbits) { |
1198 | 66.2M | if (JXL_UNLIKELY(nbits)) { |
1199 | 8.43M | JXL_DASSERT(bits >> nbits == 0); |
1200 | 8.43M | if (JXL_UNLIKELY(numallbits + nbits > BitWriter::kMaxBitsPerCall)) { |
1201 | 1.66M | out.push_back(allbits); |
1202 | 1.66M | out_nbits.push_back(numallbits); |
1203 | 1.66M | numallbits = allbits = 0; |
1204 | 1.66M | } |
1205 | 8.43M | allbits <<= nbits; |
1206 | 8.43M | allbits |= bits; |
1207 | 8.43M | numallbits += nbits; |
1208 | 8.43M | } |
1209 | 66.2M | }; |
1210 | 1.53k | const int end = tokens.size(); |
1211 | 1.53k | ANSCoder ans; |
1212 | 1.53k | if (codes.lz77.enabled || codes.context_map.size() > 1) { |
1213 | 33.0M | for (int i = end - 1; i >= 0; --i) { |
1214 | 33.0M | const Token token = tokens[i]; |
1215 | 33.0M | const uint8_t histo = codes.context_map[context_offset + token.context]; |
1216 | 33.0M | uint32_t tok, nbits, bits; |
1217 | 33.0M | (token.is_lz77_length ? codes.lz77.length_uint_config |
1218 | 33.0M | : codes.uint_config[histo]) |
1219 | 33.0M | .Encode(tokens[i].value, &tok, &nbits, &bits); |
1220 | 33.0M | tok += token.is_lz77_length ? codes.lz77.min_symbol : 0; |
1221 | 33.0M | const ANSEncSymbolInfo& info = codes.encoding_info[histo][tok]; |
1222 | 33.0M | JXL_DASSERT(info.freq_ > 0); |
1223 | | // Extra bits first as this is reversed. |
1224 | 33.0M | addbits(bits, nbits); |
1225 | 33.0M | num_extra_bits += nbits; |
1226 | 33.0M | uint8_t ans_nbits = 0; |
1227 | 33.0M | uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits); |
1228 | 33.0M | addbits(ans_bits, ans_nbits); |
1229 | 33.0M | } |
1230 | 1.50k | } else { |
1231 | 82.3k | for (int i = end - 1; i >= 0; --i) { |
1232 | 82.2k | uint32_t tok, nbits, bits; |
1233 | 82.2k | codes.uint_config[0].Encode(tokens[i].value, &tok, &nbits, &bits); |
1234 | 82.2k | const ANSEncSymbolInfo& info = codes.encoding_info[0][tok]; |
1235 | | // Extra bits first as this is reversed. |
1236 | 82.2k | addbits(bits, nbits); |
1237 | 82.2k | num_extra_bits += nbits; |
1238 | 82.2k | uint8_t ans_nbits = 0; |
1239 | 82.2k | uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits); |
1240 | 82.2k | addbits(ans_bits, ans_nbits); |
1241 | 82.2k | } |
1242 | 31 | } |
1243 | 1.53k | const uint32_t state = ans.GetState(); |
1244 | 1.53k | writer->Write(32, state); |
1245 | 1.53k | writer->Write(numallbits, allbits); |
1246 | 1.66M | for (int i = out.size(); i > 0; --i) { |
1247 | 1.66M | writer->Write(out_nbits[i - 1], out[i - 1]); |
1248 | 1.66M | } |
1249 | 1.53k | return num_extra_bits; |
1250 | 2.11k | } |
1251 | | |
1252 | | Status WriteTokens(const std::vector<Token>& tokens, |
1253 | | const EntropyEncodingData& codes, size_t context_offset, |
1254 | 1.59k | BitWriter* writer, LayerType layer, AuxOut* aux_out) { |
1255 | | // Theoretically, we could have 15 prefix code bits + 31 extra bits. |
1256 | 1.59k | return writer->WithMaxBits( |
1257 | 1.59k | 46 * tokens.size() + 32 * 1024 * 4, layer, aux_out, [&] { |
1258 | 1.59k | size_t num_extra_bits = |
1259 | 1.59k | WriteTokens(tokens, codes, context_offset, writer); |
1260 | 1.59k | if (aux_out != nullptr) { |
1261 | 0 | aux_out->layer(layer).extra_bits += num_extra_bits; |
1262 | 0 | } |
1263 | 1.59k | return true; |
1264 | 1.59k | }); |
1265 | 1.59k | } |
1266 | | |
1267 | 0 | void SetANSFuzzerFriendly(bool ans_fuzzer_friendly) { |
1268 | | #if JXL_IS_DEBUG_BUILD // Guard against accidental / malicious changes. |
1269 | | ans_fuzzer_friendly_ = ans_fuzzer_friendly; |
1270 | | #endif |
1271 | 0 | } |
1272 | | |
1273 | | HistogramParams HistogramParams::ForModular( |
1274 | | const CompressParams& cparams, |
1275 | 566 | const std::vector<uint8_t>& extra_dc_precision, bool streaming_mode) { |
1276 | 566 | HistogramParams params; |
1277 | 566 | params.streaming_mode = streaming_mode; |
1278 | 566 | if (cparams.speed_tier > SpeedTier::kKitten) { |
1279 | 566 | params.clustering = HistogramParams::ClusteringType::kFast; |
1280 | 566 | params.ans_histogram_strategy = |
1281 | 566 | cparams.speed_tier > SpeedTier::kThunder |
1282 | 566 | ? HistogramParams::ANSHistogramStrategy::kFast |
1283 | 566 | : HistogramParams::ANSHistogramStrategy::kApproximate; |
1284 | 566 | params.lz77_method = |
1285 | 566 | cparams.modular_mode && cparams.speed_tier <= SpeedTier::kHare |
1286 | 566 | ? HistogramParams::LZ77Method::kRLE |
1287 | 566 | : HistogramParams::LZ77Method::kNone; |
1288 | | // Near-lossless DC, as well as modular mode, require choosing hybrid uint |
1289 | | // more carefully. |
1290 | 566 | if ((!extra_dc_precision.empty() && extra_dc_precision[0] != 0) || |
1291 | 566 | (cparams.modular_mode && cparams.speed_tier < SpeedTier::kCheetah)) { |
1292 | 380 | params.uint_method = HistogramParams::HybridUintMethod::kFast; |
1293 | 380 | } else { |
1294 | 186 | params.uint_method = HistogramParams::HybridUintMethod::kNone; |
1295 | 186 | } |
1296 | 566 | } else if (cparams.speed_tier <= SpeedTier::kTortoise) { |
1297 | 0 | params.lz77_method = HistogramParams::LZ77Method::kOptimal; |
1298 | 0 | } else { |
1299 | 0 | params.lz77_method = HistogramParams::LZ77Method::kLZ77; |
1300 | 0 | } |
1301 | 566 | if (cparams.decoding_speed_tier >= 2) { |
1302 | 0 | params.max_histograms = 12; |
1303 | 0 | } |
1304 | 566 | if ((cparams.decoding_speed_tier >= 3 || |
1305 | 566 | cparams.options.predictor == Predictor::Zero) && |
1306 | 566 | cparams.modular_mode) { |
1307 | 0 | params.lz77_method = cparams.speed_tier >= SpeedTier::kCheetah |
1308 | 0 | ? HistogramParams::LZ77Method::kRLE |
1309 | 0 | : cparams.speed_tier >= SpeedTier::kKitten |
1310 | 0 | ? HistogramParams::LZ77Method::kLZ77 |
1311 | 0 | : HistogramParams::LZ77Method::kOptimal; |
1312 | 0 | } |
1313 | 566 | return params; |
1314 | 566 | } |
1315 | | } // namespace jxl |