/src/libjxl/lib/jxl/enc_frame.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) the JPEG XL Project Authors. All rights reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style |
4 | | // license that can be found in the LICENSE file. |
5 | | |
6 | | #include "lib/jxl/enc_frame.h" |
7 | | |
8 | | #include <jxl/cms_interface.h> |
9 | | #include <jxl/encode.h> |
10 | | #include <jxl/memory_manager.h> |
11 | | #include <jxl/types.h> |
12 | | |
13 | | #include <algorithm> |
14 | | #include <array> |
15 | | #include <cmath> |
16 | | #include <cstddef> |
17 | | #include <cstdint> |
18 | | #include <memory> |
19 | | #include <numeric> |
20 | | #include <utility> |
21 | | #include <vector> |
22 | | |
23 | | #include "lib/jxl/ac_context.h" |
24 | | #include "lib/jxl/ac_strategy.h" |
25 | | #include "lib/jxl/base/bits.h" |
26 | | #include "lib/jxl/base/common.h" |
27 | | #include "lib/jxl/base/compiler_specific.h" |
28 | | #include "lib/jxl/base/data_parallel.h" |
29 | | #include "lib/jxl/base/override.h" |
30 | | #include "lib/jxl/base/printf_macros.h" |
31 | | #include "lib/jxl/base/rect.h" |
32 | | #include "lib/jxl/base/span.h" |
33 | | #include "lib/jxl/base/status.h" |
34 | | #include "lib/jxl/chroma_from_luma.h" |
35 | | #include "lib/jxl/coeff_order.h" |
36 | | #include "lib/jxl/coeff_order_fwd.h" |
37 | | #include "lib/jxl/color_encoding_internal.h" |
38 | | #include "lib/jxl/common.h" // kMaxNumPasses |
39 | | #include "lib/jxl/dct_util.h" |
40 | | #include "lib/jxl/dec_external_image.h" |
41 | | #include "lib/jxl/dec_modular.h" |
42 | | #include "lib/jxl/enc_ac_strategy.h" |
43 | | #include "lib/jxl/enc_adaptive_quantization.h" |
44 | | #include "lib/jxl/enc_ans.h" |
45 | | #include "lib/jxl/enc_ans_params.h" |
46 | | #include "lib/jxl/enc_aux_out.h" |
47 | | #include "lib/jxl/enc_bit_writer.h" |
48 | | #include "lib/jxl/enc_cache.h" |
49 | | #include "lib/jxl/enc_chroma_from_luma.h" |
50 | | #include "lib/jxl/enc_coeff_order.h" |
51 | | #include "lib/jxl/enc_context_map.h" |
52 | | #include "lib/jxl/enc_entropy_coder.h" |
53 | | #include "lib/jxl/enc_external_image.h" |
54 | | #include "lib/jxl/enc_fields.h" |
55 | | #include "lib/jxl/enc_group.h" |
56 | | #include "lib/jxl/enc_heuristics.h" |
57 | | #include "lib/jxl/enc_modular.h" |
58 | | #include "lib/jxl/enc_noise.h" |
59 | | #include "lib/jxl/enc_params.h" |
60 | | #include "lib/jxl/enc_patch_dictionary.h" |
61 | | #include "lib/jxl/enc_photon_noise.h" |
62 | | #include "lib/jxl/enc_progressive_split.h" |
63 | | #include "lib/jxl/enc_quant_weights.h" |
64 | | #include "lib/jxl/enc_splines.h" |
65 | | #include "lib/jxl/enc_toc.h" |
66 | | #include "lib/jxl/enc_xyb.h" |
67 | | #include "lib/jxl/encode_internal.h" |
68 | | #include "lib/jxl/fields.h" |
69 | | #include "lib/jxl/frame_dimensions.h" |
70 | | #include "lib/jxl/frame_header.h" |
71 | | #include "lib/jxl/image.h" |
72 | | #include "lib/jxl/image_bundle.h" |
73 | | #include "lib/jxl/image_metadata.h" |
74 | | #include "lib/jxl/image_ops.h" |
75 | | #include "lib/jxl/jpeg/enc_jpeg_data.h" |
76 | | #include "lib/jxl/jpeg/jpeg_data.h" |
77 | | #include "lib/jxl/loop_filter.h" |
78 | | #include "lib/jxl/modular/options.h" |
79 | | #include "lib/jxl/noise.h" |
80 | | #include "lib/jxl/padded_bytes.h" |
81 | | #include "lib/jxl/passes_state.h" |
82 | | #include "lib/jxl/quant_weights.h" |
83 | | #include "lib/jxl/quantizer.h" |
84 | | #include "lib/jxl/splines.h" |
85 | | #include "lib/jxl/toc.h" |
86 | | |
87 | | namespace jxl { |
88 | | |
89 | 283 | Status ParamsPostInit(CompressParams* p) { |
90 | 283 | if (!p->manual_noise.empty() && |
91 | 283 | p->manual_noise.size() != NoiseParams::kNumNoisePoints) { |
92 | 0 | return JXL_FAILURE("Invalid number of noise lut entries"); |
93 | 0 | } |
94 | 283 | if (!p->manual_xyb_factors.empty() && p->manual_xyb_factors.size() != 3) { |
95 | 0 | return JXL_FAILURE("Invalid number of XYB quantization factors"); |
96 | 0 | } |
97 | 283 | if (!p->modular_mode && p->butteraugli_distance < kMinButteraugliDistance) { |
98 | 0 | p->butteraugli_distance = kMinButteraugliDistance; |
99 | 0 | } |
100 | 283 | if (p->original_butteraugli_distance == -1.0) { |
101 | 186 | p->original_butteraugli_distance = p->butteraugli_distance; |
102 | 186 | } |
103 | 283 | if (p->resampling <= 0) { |
104 | 186 | p->resampling = 1; |
105 | | // For very low bit rates, using 2x2 resampling gives better results on |
106 | | // most photographic images, with an adjusted butteraugli score chosen to |
107 | | // give roughly the same amount of bits per pixel. |
108 | 186 | if (!p->already_downsampled && p->butteraugli_distance >= 10) { |
109 | | // TODO(Jonnyawsom3): Explore 4x4 resampling at distance 25. Lower bpp |
110 | | // but results are inconsistent and images under 4K become far too blurry. |
111 | 0 | p->resampling = 2; |
112 | | // Adding 0.25 balances photo with non-photo, shifting towards lower bpp |
113 | | // to avoid large overshoot while maintaining quality equal to before. |
114 | 0 | p->butteraugli_distance = (p->butteraugli_distance * 0.25) + 0.25; |
115 | 0 | } |
116 | 186 | } |
117 | 283 | if (p->ec_resampling <= 0) { |
118 | 186 | p->ec_resampling = p->resampling; |
119 | 186 | } |
120 | 283 | return true; |
121 | 283 | } |
122 | | |
123 | | namespace { |
124 | | |
125 | | template <typename T> |
126 | | uint32_t GetBitDepth(JxlBitDepth bit_depth, const T& metadata, |
127 | 283 | JxlPixelFormat format) { |
128 | 283 | if (bit_depth.type == JXL_BIT_DEPTH_FROM_PIXEL_FORMAT) { |
129 | 283 | return BitsPerChannel(format.data_type); |
130 | 283 | } else if (bit_depth.type == JXL_BIT_DEPTH_FROM_CODESTREAM) { |
131 | 0 | return metadata.bit_depth.bits_per_sample; |
132 | 0 | } else if (bit_depth.type == JXL_BIT_DEPTH_CUSTOM) { |
133 | 0 | return bit_depth.bits_per_sample; |
134 | 0 | } else { |
135 | 0 | return 0; |
136 | 0 | } |
137 | 283 | } enc_frame.cc:unsigned int jxl::(anonymous namespace)::GetBitDepth<jxl::ImageMetadata>(JxlBitDepth, jxl::ImageMetadata const&, JxlPixelFormat) Line | Count | Source | 127 | 283 | JxlPixelFormat format) { | 128 | 283 | if (bit_depth.type == JXL_BIT_DEPTH_FROM_PIXEL_FORMAT) { | 129 | 283 | return BitsPerChannel(format.data_type); | 130 | 283 | } else if (bit_depth.type == JXL_BIT_DEPTH_FROM_CODESTREAM) { | 131 | 0 | return metadata.bit_depth.bits_per_sample; | 132 | 0 | } else if (bit_depth.type == JXL_BIT_DEPTH_CUSTOM) { | 133 | 0 | return bit_depth.bits_per_sample; | 134 | 0 | } else { | 135 | 0 | return 0; | 136 | 0 | } | 137 | 283 | } |
Unexecuted instantiation: enc_frame.cc:unsigned int jxl::(anonymous namespace)::GetBitDepth<jxl::ExtraChannelInfo>(JxlBitDepth, jxl::ExtraChannelInfo const&, JxlPixelFormat) |
138 | | |
139 | | Status CopyColorChannels(JxlChunkedFrameInputSource input, Rect rect, |
140 | | const FrameInfo& frame_info, |
141 | | const ImageMetadata& metadata, ThreadPool* pool, |
142 | | Image3F* color, ImageF* alpha, |
143 | 283 | bool* has_interleaved_alpha) { |
144 | 283 | JxlPixelFormat format = {4, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0}; |
145 | 283 | input.get_color_channels_pixel_format(input.opaque, &format); |
146 | 283 | *has_interleaved_alpha = format.num_channels == 2 || format.num_channels == 4; |
147 | 283 | size_t bits_per_sample = |
148 | 283 | GetBitDepth(frame_info.image_bit_depth, metadata, format); |
149 | 283 | size_t row_offset; |
150 | 283 | auto buffer = GetColorBuffer(input, rect.x0(), rect.y0(), rect.xsize(), |
151 | 283 | rect.ysize(), &row_offset); |
152 | 283 | if (!buffer) { |
153 | 0 | return JXL_FAILURE("no buffer for color channels given"); |
154 | 0 | } |
155 | 283 | size_t color_channels = frame_info.ib_needs_color_transform |
156 | 283 | ? metadata.color_encoding.Channels() |
157 | 283 | : 3; |
158 | 283 | if (format.num_channels < color_channels) { |
159 | 0 | return JXL_FAILURE("Expected %" PRIuS |
160 | 0 | " color channels, received only %u channels", |
161 | 0 | color_channels, format.num_channels); |
162 | 0 | } |
163 | 283 | const uint8_t* data = reinterpret_cast<const uint8_t*>(buffer.get()); |
164 | 1.10k | for (size_t c = 0; c < color_channels; ++c) { |
165 | 819 | JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck( |
166 | 819 | data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format, |
167 | 819 | c, pool, &color->Plane(c))); |
168 | 819 | } |
169 | 283 | if (color_channels == 1) { |
170 | 15 | JXL_RETURN_IF_ERROR(CopyImageTo(color->Plane(0), &color->Plane(1))); |
171 | 15 | JXL_RETURN_IF_ERROR(CopyImageTo(color->Plane(0), &color->Plane(2))); |
172 | 15 | } |
173 | 283 | if (alpha) { |
174 | 14 | if (*has_interleaved_alpha) { |
175 | 14 | JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck( |
176 | 14 | data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format, |
177 | 14 | format.num_channels - 1, pool, alpha)); |
178 | 14 | } else { |
179 | | // if alpha is not passed, but it is expected, then assume |
180 | | // it is all-opaque |
181 | 0 | FillImage(1.0f, alpha); |
182 | 0 | } |
183 | 14 | } |
184 | 283 | return true; |
185 | 283 | } |
186 | | |
187 | | Status CopyExtraChannels(JxlChunkedFrameInputSource input, Rect rect, |
188 | | const FrameInfo& frame_info, |
189 | | const ImageMetadata& metadata, |
190 | | bool has_interleaved_alpha, ThreadPool* pool, |
191 | 283 | std::vector<ImageF>* extra_channels) { |
192 | 297 | for (size_t ec = 0; ec < metadata.num_extra_channels; ec++) { |
193 | 14 | if (has_interleaved_alpha && |
194 | 14 | metadata.extra_channel_info[ec].type == ExtraChannel::kAlpha) { |
195 | | // Skip this alpha channel, but still request additional alpha channels |
196 | | // if they exist. |
197 | 14 | has_interleaved_alpha = false; |
198 | 14 | continue; |
199 | 14 | } |
200 | 0 | JxlPixelFormat ec_format = {1, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0}; |
201 | 0 | input.get_extra_channel_pixel_format(input.opaque, ec, &ec_format); |
202 | 0 | ec_format.num_channels = 1; |
203 | 0 | size_t row_offset; |
204 | 0 | auto buffer = |
205 | 0 | GetExtraChannelBuffer(input, ec, rect.x0(), rect.y0(), rect.xsize(), |
206 | 0 | rect.ysize(), &row_offset); |
207 | 0 | if (!buffer) { |
208 | 0 | return JXL_FAILURE("no buffer for extra channel given"); |
209 | 0 | } |
210 | 0 | size_t bits_per_sample = GetBitDepth( |
211 | 0 | frame_info.image_bit_depth, metadata.extra_channel_info[ec], ec_format); |
212 | 0 | if (!ConvertFromExternalNoSizeCheck( |
213 | 0 | reinterpret_cast<const uint8_t*>(buffer.get()), rect.xsize(), |
214 | 0 | rect.ysize(), row_offset, bits_per_sample, ec_format, 0, pool, |
215 | 0 | &(*extra_channels)[ec])) { |
216 | 0 | return JXL_FAILURE("Failed to set buffer for extra channel"); |
217 | 0 | } |
218 | 0 | } |
219 | 283 | return true; |
220 | 283 | } |
221 | | |
222 | | void SetProgressiveMode(const CompressParams& cparams, |
223 | 283 | ProgressiveSplitter* progressive_splitter) { |
224 | 283 | constexpr PassDefinition progressive_passes_dc_vlf_lf_full_ac[] = { |
225 | 283 | {/*num_coefficients=*/2, /*shift=*/0, |
226 | 283 | /*suitable_for_downsampling_of_at_least=*/4}, |
227 | 283 | {/*num_coefficients=*/3, /*shift=*/0, |
228 | 283 | /*suitable_for_downsampling_of_at_least=*/2}, |
229 | 283 | {/*num_coefficients=*/8, /*shift=*/0, |
230 | 283 | /*suitable_for_downsampling_of_at_least=*/0}, |
231 | 283 | }; |
232 | 283 | constexpr PassDefinition progressive_passes_dc_quant_ac_full_ac[] = { |
233 | 283 | {/*num_coefficients=*/8, /*shift=*/1, |
234 | 283 | /*suitable_for_downsampling_of_at_least=*/2}, |
235 | 283 | {/*num_coefficients=*/8, /*shift=*/0, |
236 | 283 | /*suitable_for_downsampling_of_at_least=*/0}, |
237 | 283 | }; |
238 | 283 | bool progressive_mode = ApplyOverride(cparams.progressive_mode, false); |
239 | 283 | bool qprogressive_mode = ApplyOverride(cparams.qprogressive_mode, false); |
240 | 283 | if (cparams.custom_progressive_mode) { |
241 | 0 | progressive_splitter->SetProgressiveMode(*cparams.custom_progressive_mode); |
242 | 283 | } else if (qprogressive_mode) { |
243 | 0 | progressive_splitter->SetProgressiveMode( |
244 | 0 | ProgressiveMode{progressive_passes_dc_quant_ac_full_ac}); |
245 | 283 | } else if (progressive_mode) { |
246 | 0 | progressive_splitter->SetProgressiveMode( |
247 | 0 | ProgressiveMode{progressive_passes_dc_vlf_lf_full_ac}); |
248 | 0 | } |
249 | 283 | } |
250 | | |
251 | 283 | uint64_t FrameFlagsFromParams(const CompressParams& cparams) { |
252 | 283 | uint64_t flags = 0; |
253 | | |
254 | 283 | const float dist = cparams.butteraugli_distance; |
255 | | |
256 | | // We don't add noise at low butteraugli distances because the original |
257 | | // noise is stored within the compressed image and adding noise makes things |
258 | | // worse. |
259 | 283 | if (ApplyOverride(cparams.noise, dist >= kMinButteraugliForNoise) || |
260 | 283 | cparams.photon_noise_iso > 0 || |
261 | 283 | cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) { |
262 | 0 | flags |= FrameHeader::kNoise; |
263 | 0 | } |
264 | | |
265 | 283 | if (cparams.progressive_dc > 0 && cparams.modular_mode == false) { |
266 | 0 | flags |= FrameHeader::kUseDcFrame; |
267 | 0 | } |
268 | | |
269 | 283 | return flags; |
270 | 283 | } |
271 | | |
272 | | Status LoopFilterFromParams(const CompressParams& cparams, bool streaming_mode, |
273 | 283 | FrameHeader* JXL_RESTRICT frame_header) { |
274 | 283 | LoopFilter* loop_filter = &frame_header->loop_filter; |
275 | | |
276 | | // Gaborish defaults to enabled in Hare or slower. |
277 | 283 | loop_filter->gab = ApplyOverride( |
278 | 283 | cparams.gaborish, cparams.speed_tier <= SpeedTier::kHare && |
279 | 283 | frame_header->encoding == FrameEncoding::kVarDCT && |
280 | 283 | cparams.decoding_speed_tier < 4 && |
281 | 283 | cparams.butteraugli_distance > 0.5f && |
282 | 283 | !cparams.disable_perceptual_optimizations); |
283 | | |
284 | 283 | if (cparams.epf != -1) { |
285 | 0 | loop_filter->epf_iters = cparams.epf; |
286 | 283 | } else if (cparams.disable_perceptual_optimizations) { |
287 | 0 | loop_filter->epf_iters = 0; |
288 | 0 | return true; |
289 | 283 | } else { |
290 | 283 | if (frame_header->encoding == FrameEncoding::kModular) { |
291 | 97 | loop_filter->epf_iters = 0; |
292 | 186 | } else { |
293 | 186 | constexpr float kThresholds[3] = {0.7, 1.5, 4.0}; |
294 | 186 | loop_filter->epf_iters = 0; |
295 | 186 | if (cparams.decoding_speed_tier < 3) { |
296 | 744 | for (size_t i = cparams.decoding_speed_tier == 2 ? 1 : 0; i < 3; i++) { |
297 | 558 | if (cparams.butteraugli_distance >= kThresholds[i]) { |
298 | 186 | loop_filter->epf_iters++; |
299 | 186 | } |
300 | 558 | } |
301 | 186 | } |
302 | 186 | } |
303 | 283 | } |
304 | | // Strength of EPF in modular mode. |
305 | 283 | if (frame_header->encoding == FrameEncoding::kModular && |
306 | 283 | !cparams.IsLossless()) { |
307 | | // TODO(veluca): this formula is nonsense. |
308 | 97 | loop_filter->epf_sigma_for_modular = |
309 | 97 | std::max(cparams.butteraugli_distance, 1.0f); |
310 | 97 | } |
311 | 283 | if (frame_header->encoding == FrameEncoding::kModular && |
312 | 283 | cparams.lossy_palette) { |
313 | 0 | loop_filter->epf_sigma_for_modular = 1.0f; |
314 | 0 | } |
315 | | |
316 | 283 | return true; |
317 | 283 | } |
318 | | |
319 | | Status MakeFrameHeader(size_t xsize, size_t ysize, |
320 | | const CompressParams& cparams, |
321 | | const ProgressiveSplitter& progressive_splitter, |
322 | | const FrameInfo& frame_info, |
323 | | const jpeg::JPEGData* jpeg_data, bool streaming_mode, |
324 | 283 | FrameHeader* JXL_RESTRICT frame_header) { |
325 | 283 | frame_header->nonserialized_is_preview = frame_info.is_preview; |
326 | 283 | frame_header->is_last = frame_info.is_last; |
327 | 283 | frame_header->save_before_color_transform = |
328 | 283 | frame_info.save_before_color_transform; |
329 | 283 | frame_header->frame_type = frame_info.frame_type; |
330 | 283 | frame_header->name = frame_info.name; |
331 | | |
332 | 283 | JXL_RETURN_IF_ERROR(progressive_splitter.InitPasses(&frame_header->passes)); |
333 | | |
334 | 283 | if (cparams.modular_mode) { |
335 | 97 | frame_header->encoding = FrameEncoding::kModular; |
336 | 97 | if (cparams.modular_group_size_shift == -1) { |
337 | | // By default, use the smallest group size for faster decoding 2 |
338 | | // and higher. Greatly speeds up decoding via multithreading at |
339 | | // the cost of density. |
340 | 97 | if (cparams.decoding_speed_tier >= 2 || |
341 | | // Force decoding speed to tier 2 for progressive lossless. |
342 | 97 | (cparams.decoding_speed_tier >= 1 && cparams.responsive == 1 |
343 | 97 | && cparams.IsLossless())) { |
344 | 0 | frame_header->group_size_shift = 0; |
345 | | // no point using groups when only one group is full and the others are |
346 | | // less than half full: multithreading will not really help much, while |
347 | | // compression does suffer |
348 | 97 | } else if (xsize <= 400 && ysize <= 400) { |
349 | 97 | frame_header->group_size_shift = 2; |
350 | 97 | } else { |
351 | 0 | frame_header->group_size_shift = 1; |
352 | 0 | } |
353 | 97 | } else { |
354 | 0 | frame_header->group_size_shift = cparams.modular_group_size_shift; |
355 | 0 | } |
356 | 97 | } |
357 | | |
358 | 283 | if (jpeg_data) { |
359 | | // we are transcoding a JPEG, so we don't get to choose |
360 | 0 | frame_header->encoding = FrameEncoding::kVarDCT; |
361 | 0 | frame_header->x_qm_scale = 2; |
362 | 0 | frame_header->b_qm_scale = 2; |
363 | 0 | JXL_RETURN_IF_ERROR(SetChromaSubsamplingFromJpegData( |
364 | 0 | *jpeg_data, &frame_header->chroma_subsampling)); |
365 | 0 | JXL_RETURN_IF_ERROR(SetColorTransformFromJpegData( |
366 | 0 | *jpeg_data, &frame_header->color_transform)); |
367 | 283 | } else { |
368 | 283 | frame_header->color_transform = cparams.color_transform; |
369 | 283 | if (!cparams.modular_mode && |
370 | 283 | (frame_header->chroma_subsampling.MaxHShift() != 0 || |
371 | 186 | frame_header->chroma_subsampling.MaxVShift() != 0)) { |
372 | 0 | return JXL_FAILURE( |
373 | 0 | "Chroma subsampling is not supported in VarDCT mode when not " |
374 | 0 | "recompressing JPEGs"); |
375 | 0 | } |
376 | 283 | } |
377 | 283 | if (frame_header->color_transform != ColorTransform::kYCbCr && |
378 | 283 | (frame_header->chroma_subsampling.MaxHShift() != 0 || |
379 | 283 | frame_header->chroma_subsampling.MaxVShift() != 0)) { |
380 | 0 | return JXL_FAILURE( |
381 | 0 | "Chroma subsampling is not supported when color transform is not " |
382 | 0 | "YCbCr"); |
383 | 0 | } |
384 | | |
385 | 283 | frame_header->flags = FrameFlagsFromParams(cparams); |
386 | | // Non-photon noise is not supported in the Modular encoder for now. |
387 | 283 | if (frame_header->encoding != FrameEncoding::kVarDCT && |
388 | 283 | cparams.photon_noise_iso == 0 && cparams.manual_noise.empty()) { |
389 | 97 | frame_header->UpdateFlag(false, FrameHeader::Flags::kNoise); |
390 | 97 | } |
391 | | |
392 | 283 | JXL_RETURN_IF_ERROR( |
393 | 283 | LoopFilterFromParams(cparams, streaming_mode, frame_header)); |
394 | | |
395 | 283 | frame_header->dc_level = frame_info.dc_level; |
396 | 283 | if (frame_header->dc_level > 2) { |
397 | | // With 3 or more progressive_dc frames, the implementation does not yet |
398 | | // work, see enc_cache.cc. |
399 | 0 | return JXL_FAILURE("progressive_dc > 2 is not yet supported"); |
400 | 0 | } |
401 | 283 | if (cparams.progressive_dc > 0 && |
402 | 283 | (cparams.ec_resampling != 1 || cparams.resampling != 1)) { |
403 | 0 | return JXL_FAILURE("Resampling not supported with DC frames"); |
404 | 0 | } |
405 | 283 | if (cparams.resampling != 1 && cparams.resampling != 2 && |
406 | 283 | cparams.resampling != 4 && cparams.resampling != 8) { |
407 | 0 | return JXL_FAILURE("Invalid resampling factor"); |
408 | 0 | } |
409 | 283 | if (cparams.ec_resampling != 1 && cparams.ec_resampling != 2 && |
410 | 283 | cparams.ec_resampling != 4 && cparams.ec_resampling != 8) { |
411 | 0 | return JXL_FAILURE("Invalid ec_resampling factor"); |
412 | 0 | } |
413 | | // Resized frames. |
414 | 283 | if (frame_info.frame_type != FrameType::kDCFrame) { |
415 | 283 | frame_header->frame_origin = frame_info.origin; |
416 | 283 | size_t ups = 1; |
417 | 283 | if (cparams.already_downsampled) ups = cparams.resampling; |
418 | | |
419 | | // TODO(lode): this is not correct in case of odd original image sizes in |
420 | | // combination with cparams.already_downsampled. Likely these values should |
421 | | // be set to respectively frame_header->default_xsize() and |
422 | | // frame_header->default_ysize() instead, the original (non downsampled) |
423 | | // intended decoded image dimensions. But it may be more subtle than that |
424 | | // if combined with crop. This issue causes custom_size_or_origin to be |
425 | | // incorrectly set to true in case of already_downsampled with odd output |
426 | | // image size when no cropping is used. |
427 | 283 | frame_header->frame_size.xsize = xsize * ups; |
428 | 283 | frame_header->frame_size.ysize = ysize * ups; |
429 | 283 | if (frame_info.origin.x0 != 0 || frame_info.origin.y0 != 0 || |
430 | 283 | frame_header->frame_size.xsize != frame_header->default_xsize() || |
431 | 283 | frame_header->frame_size.ysize != frame_header->default_ysize()) { |
432 | 97 | frame_header->custom_size_or_origin = true; |
433 | 97 | } |
434 | 283 | } |
435 | | // Upsampling. |
436 | 283 | frame_header->upsampling = cparams.resampling; |
437 | 283 | const std::vector<ExtraChannelInfo>& extra_channels = |
438 | 283 | frame_header->nonserialized_metadata->m.extra_channel_info; |
439 | 283 | frame_header->extra_channel_upsampling.clear(); |
440 | 283 | frame_header->extra_channel_upsampling.resize(extra_channels.size(), |
441 | 283 | cparams.ec_resampling); |
442 | 283 | frame_header->save_as_reference = frame_info.save_as_reference; |
443 | | |
444 | | // Set blending-related information. |
445 | 283 | if (frame_info.blend || frame_header->custom_size_or_origin) { |
446 | | // Set blend_channel to the first alpha channel. These values are only |
447 | | // encoded in case a blend mode involving alpha is used and there are more |
448 | | // than one extra channels. |
449 | 97 | size_t index = 0; |
450 | 97 | if (frame_info.alpha_channel == -1) { |
451 | 97 | if (extra_channels.size() > 1) { |
452 | 0 | for (size_t i = 0; i < extra_channels.size(); i++) { |
453 | 0 | if (extra_channels[i].type == ExtraChannel::kAlpha) { |
454 | 0 | index = i; |
455 | 0 | break; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | } |
459 | 97 | } else { |
460 | 0 | index = static_cast<size_t>(frame_info.alpha_channel); |
461 | 0 | JXL_ENSURE(index == 0 || index < extra_channels.size()); |
462 | 0 | } |
463 | 97 | frame_header->blending_info.alpha_channel = index; |
464 | 97 | frame_header->blending_info.mode = |
465 | 97 | frame_info.blend ? frame_info.blendmode : BlendMode::kReplace; |
466 | 97 | frame_header->blending_info.source = frame_info.source; |
467 | 97 | frame_header->blending_info.clamp = frame_info.clamp; |
468 | 97 | const auto& extra_channel_info = frame_info.extra_channel_blending_info; |
469 | 97 | for (size_t i = 0; i < extra_channels.size(); i++) { |
470 | 0 | if (i < extra_channel_info.size()) { |
471 | 0 | frame_header->extra_channel_blending_info[i] = extra_channel_info[i]; |
472 | 0 | } else { |
473 | 0 | frame_header->extra_channel_blending_info[i].alpha_channel = index; |
474 | 0 | BlendMode default_blend = frame_info.blendmode; |
475 | 0 | if (extra_channels[i].type != ExtraChannel::kBlack && i != index) { |
476 | | // K needs to be blended, spot colors and other stuff gets added |
477 | 0 | default_blend = BlendMode::kAdd; |
478 | 0 | } |
479 | 0 | frame_header->extra_channel_blending_info[i].mode = |
480 | 0 | frame_info.blend ? default_blend : BlendMode::kReplace; |
481 | 0 | frame_header->extra_channel_blending_info[i].source = 1; |
482 | 0 | } |
483 | 0 | } |
484 | 97 | } |
485 | | |
486 | 283 | frame_header->animation_frame.duration = frame_info.duration; |
487 | 283 | frame_header->animation_frame.timecode = frame_info.timecode; |
488 | | |
489 | 283 | if (jpeg_data) { |
490 | 0 | frame_header->UpdateFlag(false, FrameHeader::kUseDcFrame); |
491 | 0 | frame_header->UpdateFlag(true, FrameHeader::kSkipAdaptiveDCSmoothing); |
492 | 0 | } |
493 | | |
494 | 283 | return true; |
495 | 283 | } |
496 | | |
497 | | // Invisible (alpha = 0) pixels tend to be a mess in optimized PNGs. |
498 | | // Since they have no visual impact whatsoever, we can replace them with |
499 | | // something that compresses better and reduces artifacts near the edges. This |
500 | | // does some kind of smooth stuff that seems to work. |
501 | | // Replace invisible pixels with a weighted average of the pixel to the left, |
502 | | // the pixel to the topright, and non-invisible neighbours. |
503 | | // Produces downward-blurry smears, with in the upwards direction only a 1px |
504 | | // edge duplication but not more. It would probably be better to smear in all |
505 | | // directions. That requires an alpha-weighed convolution with a large enough |
506 | | // kernel though, which might be overkill... |
507 | 14 | void SimplifyInvisible(Image3F* image, const ImageF& alpha, bool lossless) { |
508 | 56 | for (size_t c = 0; c < 3; ++c) { |
509 | 1.11k | for (size_t y = 0; y < image->ysize(); ++y) { |
510 | 1.06k | float* JXL_RESTRICT row = image->PlaneRow(c, y); |
511 | 1.06k | const float* JXL_RESTRICT prow = |
512 | 1.06k | (y > 0 ? image->PlaneRow(c, y - 1) : nullptr); |
513 | 1.06k | const float* JXL_RESTRICT nrow = |
514 | 1.06k | (y + 1 < image->ysize() ? image->PlaneRow(c, y + 1) : nullptr); |
515 | 1.06k | const float* JXL_RESTRICT a = alpha.Row(y); |
516 | 1.06k | const float* JXL_RESTRICT pa = (y > 0 ? alpha.Row(y - 1) : nullptr); |
517 | 1.06k | const float* JXL_RESTRICT na = |
518 | 1.06k | (y + 1 < image->ysize() ? alpha.Row(y + 1) : nullptr); |
519 | 57.6k | for (size_t x = 0; x < image->xsize(); ++x) { |
520 | 56.6k | if (a[x] == 0) { |
521 | 29.7k | if (lossless) { |
522 | 0 | row[x] = 0; |
523 | 0 | continue; |
524 | 0 | } |
525 | 29.7k | float d = 0.f; |
526 | 29.7k | row[x] = 0; |
527 | 29.7k | if (x > 0) { |
528 | 28.8k | row[x] += row[x - 1]; |
529 | 28.8k | d++; |
530 | 28.8k | if (a[x - 1] > 0.f) { |
531 | 270 | row[x] += row[x - 1]; |
532 | 270 | d++; |
533 | 270 | } |
534 | 28.8k | } |
535 | 29.7k | if (x + 1 < image->xsize()) { |
536 | 28.9k | if (y > 0) { |
537 | 27.2k | row[x] += prow[x + 1]; |
538 | 27.2k | d++; |
539 | 27.2k | } |
540 | 28.9k | if (a[x + 1] > 0.f) { |
541 | 300 | row[x] += 2.f * row[x + 1]; |
542 | 300 | d += 2.f; |
543 | 300 | } |
544 | 28.9k | if (y > 0 && pa[x + 1] > 0.f) { |
545 | 366 | row[x] += 2.f * prow[x + 1]; |
546 | 366 | d += 2.f; |
547 | 366 | } |
548 | 28.9k | if (y + 1 < image->ysize() && na[x + 1] > 0.f) { |
549 | 399 | row[x] += 2.f * nrow[x + 1]; |
550 | 399 | d += 2.f; |
551 | 399 | } |
552 | 28.9k | } |
553 | 29.7k | if (y > 0 && pa[x] > 0.f) { |
554 | 237 | row[x] += 2.f * prow[x]; |
555 | 237 | d += 2.f; |
556 | 237 | } |
557 | 29.7k | if (y + 1 < image->ysize() && na[x] > 0.f) { |
558 | 261 | row[x] += 2.f * nrow[x]; |
559 | 261 | d += 2.f; |
560 | 261 | } |
561 | 29.7k | if (d > 1.f) row[x] /= d; |
562 | 29.7k | } |
563 | 56.6k | } |
564 | 1.06k | } |
565 | 42 | } |
566 | 14 | } |
567 | | |
568 | | struct PixelStatsForChromacityAdjustment { |
569 | | float dx = 0; |
570 | | float db = 0; |
571 | | float exposed_blue = 0; |
572 | 186 | static float CalcPlane(const ImageF* JXL_RESTRICT plane, const Rect& rect) { |
573 | 186 | float xmax = 0; |
574 | 186 | float ymax = 0; |
575 | 58.6k | for (size_t ty = 1; ty < rect.ysize(); ++ty) { |
576 | 25.4M | for (size_t tx = 1; tx < rect.xsize(); ++tx) { |
577 | 25.3M | float cur = rect.Row(plane, ty)[tx]; |
578 | 25.3M | float prev_row = rect.Row(plane, ty - 1)[tx]; |
579 | 25.3M | float prev = rect.Row(plane, ty)[tx - 1]; |
580 | 25.3M | xmax = std::max(xmax, std::abs(cur - prev)); |
581 | 25.3M | ymax = std::max(ymax, std::abs(cur - prev_row)); |
582 | 25.3M | } |
583 | 58.4k | } |
584 | 186 | return std::max(xmax, ymax); |
585 | 186 | } |
586 | | void CalcExposedBlue(const ImageF* JXL_RESTRICT plane_y, |
587 | 186 | const ImageF* JXL_RESTRICT plane_b, const Rect& rect) { |
588 | 186 | float eb = 0; |
589 | 186 | float xmax = 0; |
590 | 186 | float ymax = 0; |
591 | 58.6k | for (size_t ty = 1; ty < rect.ysize(); ++ty) { |
592 | 25.4M | for (size_t tx = 1; tx < rect.xsize(); ++tx) { |
593 | 25.3M | float cur_y = rect.Row(plane_y, ty)[tx]; |
594 | 25.3M | float cur_b = rect.Row(plane_b, ty)[tx]; |
595 | 25.3M | float exposed_b = cur_b - cur_y * 1.2; |
596 | 25.3M | float diff_b = cur_b - cur_y; |
597 | 25.3M | float prev_row = rect.Row(plane_b, ty - 1)[tx]; |
598 | 25.3M | float prev = rect.Row(plane_b, ty)[tx - 1]; |
599 | 25.3M | float diff_prev_row = prev_row - rect.Row(plane_y, ty - 1)[tx]; |
600 | 25.3M | float diff_prev = prev - rect.Row(plane_y, ty)[tx - 1]; |
601 | 25.3M | xmax = std::max(xmax, std::abs(diff_b - diff_prev)); |
602 | 25.3M | ymax = std::max(ymax, std::abs(diff_b - diff_prev_row)); |
603 | 25.3M | if (exposed_b >= 0) { |
604 | 5.76M | exposed_b *= std::abs(cur_b - prev) + std::abs(cur_b - prev_row); |
605 | 5.76M | eb = std::max(eb, exposed_b); |
606 | 5.76M | } |
607 | 25.3M | } |
608 | 58.4k | } |
609 | 186 | exposed_blue = eb; |
610 | 186 | db = std::max(xmax, ymax); |
611 | 186 | } |
612 | 186 | void Calc(const Image3F* JXL_RESTRICT opsin, const Rect& rect) { |
613 | 186 | dx = CalcPlane(&opsin->Plane(0), rect); |
614 | 186 | CalcExposedBlue(&opsin->Plane(1), &opsin->Plane(2), rect); |
615 | 186 | } |
616 | 186 | int HowMuchIsXChannelPixelized() const { |
617 | 186 | if (dx >= 0.026) { |
618 | 96 | return 3; |
619 | 96 | } |
620 | 90 | if (dx >= 0.022) { |
621 | 28 | return 2; |
622 | 28 | } |
623 | 62 | if (dx >= 0.015) { |
624 | 4 | return 1; |
625 | 4 | } |
626 | 58 | return 0; |
627 | 62 | } |
628 | 186 | int HowMuchIsBChannelPixelized() const { |
629 | 186 | int add = exposed_blue >= 0.13 ? 1 : 0; |
630 | 186 | if (db > 0.38) { |
631 | 94 | return 2 + add; |
632 | 94 | } |
633 | 92 | if (db > 0.33) { |
634 | 15 | return 1 + add; |
635 | 15 | } |
636 | 77 | if (db > 0.28) { |
637 | 3 | return add; |
638 | 3 | } |
639 | 74 | return 0; |
640 | 77 | } |
641 | | }; |
642 | | |
643 | | void ComputeChromacityAdjustments(const CompressParams& cparams, |
644 | | const Image3F& opsin, const Rect& rect, |
645 | 283 | FrameHeader* frame_header) { |
646 | 283 | if (frame_header->encoding != FrameEncoding::kVarDCT || |
647 | 283 | cparams.max_error_mode) { |
648 | 97 | return; |
649 | 97 | } |
650 | | // 1) Distance based approach for chromacity adjustment: |
651 | 186 | float x_qm_scale_steps[3] = {2.5f, 5.5f, 9.5f}; |
652 | 186 | frame_header->x_qm_scale = 3; |
653 | 558 | for (float x_qm_scale_step : x_qm_scale_steps) { |
654 | 558 | if (cparams.original_butteraugli_distance > x_qm_scale_step) { |
655 | 0 | frame_header->x_qm_scale++; |
656 | 0 | } |
657 | 558 | } |
658 | | // 2) Pixel-based approach for chromacity adjustment: |
659 | | // look at the individual pixels and make a guess how difficult |
660 | | // the image would be based on the worst case pixel. |
661 | 186 | PixelStatsForChromacityAdjustment pixel_stats; |
662 | 186 | if (cparams.speed_tier <= SpeedTier::kSquirrel) { |
663 | 186 | pixel_stats.Calc(&opsin, rect); |
664 | 186 | } |
665 | | // For X take the most severe adjustment. |
666 | 186 | frame_header->x_qm_scale = std::max<int>( |
667 | 186 | frame_header->x_qm_scale, 2 + pixel_stats.HowMuchIsXChannelPixelized()); |
668 | | // B only adjusted by pixel-based approach. |
669 | 186 | frame_header->b_qm_scale = 2 + pixel_stats.HowMuchIsBChannelPixelized(); |
670 | 186 | } |
671 | | |
672 | | void ComputeNoiseParams(const CompressParams& cparams, bool streaming_mode, |
673 | | bool color_is_jpeg, const Image3F& opsin, |
674 | | const FrameDimensions& frame_dim, |
675 | 283 | FrameHeader* frame_header, NoiseParams* noise_params) { |
676 | 283 | if (cparams.photon_noise_iso > 0) { |
677 | 0 | *noise_params = SimulatePhotonNoise(frame_dim.xsize, frame_dim.ysize, |
678 | 0 | cparams.photon_noise_iso); |
679 | 283 | } else if (cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) { |
680 | 0 | for (size_t i = 0; i < NoiseParams::kNumNoisePoints; i++) { |
681 | 0 | noise_params->lut[i] = cparams.manual_noise[i]; |
682 | 0 | } |
683 | 283 | } else if (frame_header->encoding == FrameEncoding::kVarDCT && |
684 | 283 | frame_header->flags & FrameHeader::kNoise && !color_is_jpeg && |
685 | 283 | !streaming_mode) { |
686 | | // Don't start at zero amplitude since adding noise is expensive -- it |
687 | | // significantly slows down decoding, and this is unlikely to |
688 | | // completely go away even with advanced optimizations. After the |
689 | | // kNoiseModelingRampUpDistanceRange we have reached the full level, |
690 | | // i.e. noise is no longer represented by the compressed image, so we |
691 | | // can add full noise by the noise modeling itself. |
692 | 0 | static const float kNoiseModelingRampUpDistanceRange = 0.6; |
693 | 0 | static const float kNoiseLevelAtStartOfRampUp = 0.25; |
694 | 0 | static const float kNoiseRampupStart = 1.0; |
695 | | // TODO(user) test and properly select quality_coef with smooth |
696 | | // filter |
697 | 0 | float quality_coef = 1.0f; |
698 | 0 | const float rampup = (cparams.butteraugli_distance - kNoiseRampupStart) / |
699 | 0 | kNoiseModelingRampUpDistanceRange; |
700 | 0 | if (rampup < 1.0f) { |
701 | 0 | quality_coef = kNoiseLevelAtStartOfRampUp + |
702 | 0 | (1.0f - kNoiseLevelAtStartOfRampUp) * rampup; |
703 | 0 | } |
704 | 0 | if (rampup < 0.0f) { |
705 | 0 | quality_coef = kNoiseRampupStart; |
706 | 0 | } |
707 | 0 | if (!GetNoiseParameter(opsin, noise_params, quality_coef)) { |
708 | 0 | frame_header->flags &= ~FrameHeader::kNoise; |
709 | 0 | } |
710 | 0 | } |
711 | 283 | } |
712 | | |
713 | | Status DownsampleColorChannels(const CompressParams& cparams, |
714 | | const FrameHeader& frame_header, |
715 | 283 | bool color_is_jpeg, Image3F* opsin) { |
716 | 283 | if (color_is_jpeg || frame_header.upsampling == 1 || |
717 | 283 | cparams.already_downsampled) { |
718 | 283 | return true; |
719 | 283 | } |
720 | 0 | if (frame_header.encoding == FrameEncoding::kVarDCT && |
721 | 0 | frame_header.upsampling == 2) { |
722 | | // TODO(lode): use the regular DownsampleImage, or adapt to the custom |
723 | | // coefficients, if there is are custom upscaling coefficients in |
724 | | // CustomTransformData |
725 | 0 | if (cparams.speed_tier <= SpeedTier::kGlacier) { |
726 | | // TODO(Jonnyawsom3): Until optimized, enabled only for Glacier and |
727 | | // TectonicPlate. It's an 80% slowdown and downsampling is only active |
728 | | // at high distances by default anyway, making improvements negligible. |
729 | 0 | JXL_RETURN_IF_ERROR(DownsampleImage2_Iterative(opsin)); |
730 | 0 | } else { |
731 | 0 | JXL_RETURN_IF_ERROR(DownsampleImage2_Sharper(opsin)); |
732 | 0 | } |
733 | 0 | } else { |
734 | 0 | JXL_ASSIGN_OR_RETURN(*opsin, |
735 | 0 | DownsampleImage(*opsin, frame_header.upsampling)); |
736 | 0 | } |
737 | 0 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
738 | 0 | JXL_RETURN_IF_ERROR(PadImageToBlockMultipleInPlace(opsin)); |
739 | 0 | } |
740 | 0 | return true; |
741 | 0 | } |
742 | | |
743 | | template <size_t L, typename V, typename R> |
744 | 0 | void FindIndexOfSumMaximum(const V* array, R* idx, V* sum) { |
745 | 0 | static_assert(L > 0, "Empty arrays have undefined maximum"); |
746 | 0 | V maxval = 0; |
747 | 0 | V val = 0; |
748 | 0 | R maxidx = 0; |
749 | 0 | for (size_t i = 0; i < L; ++i) { |
750 | 0 | val += array[i]; |
751 | 0 | if (val > maxval) { |
752 | 0 | maxval = val; |
753 | 0 | maxidx = i; |
754 | 0 | } |
755 | 0 | } |
756 | 0 | *idx = maxidx; |
757 | 0 | *sum = maxval; |
758 | 0 | } |
759 | | |
760 | | Status ComputeJPEGTranscodingData(const jpeg::JPEGData& jpeg_data, |
761 | | const FrameHeader& frame_header, |
762 | | ThreadPool* pool, |
763 | | ModularFrameEncoder* enc_modular, |
764 | 0 | PassesEncoderState* enc_state) { |
765 | 0 | PassesSharedState& shared = enc_state->shared; |
766 | 0 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
767 | 0 | const FrameDimensions& frame_dim = shared.frame_dim; |
768 | |
|
769 | 0 | const size_t xsize = frame_dim.xsize_padded; |
770 | 0 | const size_t ysize = frame_dim.ysize_padded; |
771 | 0 | const size_t xsize_blocks = frame_dim.xsize_blocks; |
772 | 0 | const size_t ysize_blocks = frame_dim.ysize_blocks; |
773 | | |
774 | | // no-op chroma from luma |
775 | 0 | JXL_ASSIGN_OR_RETURN(shared.cmap, ColorCorrelationMap::Create( |
776 | 0 | memory_manager, xsize, ysize, false)); |
777 | 0 | shared.ac_strategy.FillDCT8(); |
778 | 0 | FillImage(static_cast<uint8_t>(0), &shared.epf_sharpness); |
779 | |
|
780 | 0 | enc_state->coeffs.clear(); |
781 | 0 | while (enc_state->coeffs.size() < enc_state->passes.size()) { |
782 | 0 | JXL_ASSIGN_OR_RETURN( |
783 | 0 | std::unique_ptr<ACImageT<int32_t>> coeffs, |
784 | 0 | ACImageT<int32_t>::Make(memory_manager, kGroupDim * kGroupDim, |
785 | 0 | frame_dim.num_groups)); |
786 | 0 | enc_state->coeffs.emplace_back(std::move(coeffs)); |
787 | 0 | } |
788 | | |
789 | | // convert JPEG quantization table to a Quantizer object |
790 | 0 | float dcquantization[3]; |
791 | 0 | std::vector<QuantEncoding> qe(kNumQuantTables, QuantEncoding::Library<0>()); |
792 | |
|
793 | 0 | auto jpeg_c_map = |
794 | 0 | JpegOrder(frame_header.color_transform, jpeg_data.components.size() == 1); |
795 | |
|
796 | 0 | std::vector<int> qt(192); |
797 | 0 | std::array<int32_t, 3> qt_dc; |
798 | 0 | for (size_t c = 0; c < 3; c++) { |
799 | 0 | size_t jpeg_c = jpeg_c_map[c]; |
800 | 0 | const int32_t* quant = |
801 | 0 | jpeg_data.quant[jpeg_data.components[jpeg_c].quant_idx].values.data(); |
802 | |
|
803 | 0 | dcquantization[c] = 255 * 8.0f / quant[0]; |
804 | 0 | for (size_t y = 0; y < 8; y++) { |
805 | 0 | for (size_t x = 0; x < 8; x++) { |
806 | | // JPEG XL transposes the DCT, JPEG doesn't. |
807 | 0 | qt[c * 64 + 8 * x + y] = quant[8 * y + x]; |
808 | 0 | } |
809 | 0 | } |
810 | 0 | qt_dc[c] = qt[c * 64]; |
811 | 0 | } |
812 | 0 | JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC( |
813 | 0 | memory_manager, &shared.matrices, dcquantization)); |
814 | 0 | float dcquantization_r[3] = {1.0f / dcquantization[0], |
815 | 0 | 1.0f / dcquantization[1], |
816 | 0 | 1.0f / dcquantization[2]}; |
817 | |
|
818 | 0 | std::vector<int32_t> scaled_qtable(192); |
819 | 0 | for (size_t c = 0; c < 3; c++) { |
820 | 0 | for (size_t i = 0; i < 64; i++) { |
821 | 0 | scaled_qtable[64 * c + i] = |
822 | 0 | (1 << kCFLFixedPointPrecision) * qt[64 + i] / qt[64 * c + i]; |
823 | 0 | } |
824 | 0 | } |
825 | |
|
826 | 0 | qe[static_cast<size_t>(AcStrategyType::DCT)] = |
827 | 0 | QuantEncoding::RAW(std::move(qt)); |
828 | 0 | JXL_RETURN_IF_ERROR( |
829 | 0 | DequantMatricesSetCustom(&shared.matrices, qe, enc_modular)); |
830 | | |
831 | | // Ensure that InvGlobalScale() is 1. |
832 | 0 | shared.quantizer = Quantizer(shared.matrices, 1, kGlobalScaleDenom); |
833 | | // Recompute MulDC() and InvMulDC(). |
834 | 0 | shared.quantizer.RecomputeFromGlobalScale(); |
835 | | |
836 | | // Per-block dequant scaling should be 1. |
837 | 0 | FillImage(static_cast<int32_t>(shared.quantizer.InvGlobalScale()), |
838 | 0 | &shared.raw_quant_field); |
839 | |
|
840 | 0 | auto jpeg_row = [&](size_t c, size_t y) { |
841 | 0 | return jpeg_data.components[jpeg_c_map[c]].coeffs.data() + |
842 | 0 | jpeg_data.components[jpeg_c_map[c]].width_in_blocks * kDCTBlockSize * |
843 | 0 | y; |
844 | 0 | }; |
845 | |
|
846 | 0 | bool DCzero = (frame_header.color_transform == ColorTransform::kYCbCr); |
847 | | // Compute chroma-from-luma for AC (doesn't seem to be useful for DC) |
848 | 0 | if (frame_header.chroma_subsampling.Is444() && |
849 | 0 | enc_state->cparams.force_cfl_jpeg_recompression && |
850 | 0 | jpeg_data.components.size() == 3) { |
851 | 0 | for (size_t c : {0, 2}) { |
852 | 0 | ImageSB* map = (c == 0 ? &shared.cmap.ytox_map : &shared.cmap.ytob_map); |
853 | 0 | const float kScale = kDefaultColorFactor; |
854 | 0 | const int kOffset = 127; |
855 | 0 | const float kBase = c == 0 ? shared.cmap.base().YtoXRatio(0) |
856 | 0 | : shared.cmap.base().YtoBRatio(0); |
857 | 0 | const float kZeroThresh = |
858 | 0 | kScale * kZeroBiasDefault[c] * |
859 | 0 | 0.9999f; // just epsilon less for better rounding |
860 | |
|
861 | 0 | auto process_row = [&](const uint32_t task, |
862 | 0 | const size_t thread) -> Status { |
863 | 0 | size_t ty = task; |
864 | 0 | int8_t* JXL_RESTRICT row_out = map->Row(ty); |
865 | 0 | for (size_t tx = 0; tx < map->xsize(); ++tx) { |
866 | 0 | const size_t y0 = ty * kColorTileDimInBlocks; |
867 | 0 | const size_t x0 = tx * kColorTileDimInBlocks; |
868 | 0 | const size_t y1 = std::min(frame_dim.ysize_blocks, |
869 | 0 | (ty + 1) * kColorTileDimInBlocks); |
870 | 0 | const size_t x1 = std::min(frame_dim.xsize_blocks, |
871 | 0 | (tx + 1) * kColorTileDimInBlocks); |
872 | 0 | int32_t d_num_zeros[257] = {0}; |
873 | | // TODO(veluca): this needs SIMD + fixed point adaptation, and/or |
874 | | // conversion to the new CfL algorithm. |
875 | 0 | for (size_t y = y0; y < y1; ++y) { |
876 | 0 | const int16_t* JXL_RESTRICT row_m = jpeg_row(1, y); |
877 | 0 | const int16_t* JXL_RESTRICT row_s = jpeg_row(c, y); |
878 | 0 | for (size_t x = x0; x < x1; ++x) { |
879 | 0 | for (size_t coeffpos = 1; coeffpos < kDCTBlockSize; coeffpos++) { |
880 | 0 | const float scaled_m = row_m[x * kDCTBlockSize + coeffpos] * |
881 | 0 | scaled_qtable[64 * c + coeffpos] * |
882 | 0 | (1.0f / (1 << kCFLFixedPointPrecision)); |
883 | 0 | const float scaled_s = |
884 | 0 | kScale * row_s[x * kDCTBlockSize + coeffpos] + |
885 | 0 | (kOffset - kBase * kScale) * scaled_m; |
886 | 0 | if (std::abs(scaled_m) > 1e-8f) { |
887 | 0 | float from; |
888 | 0 | float to; |
889 | 0 | if (scaled_m > 0) { |
890 | 0 | from = (scaled_s - kZeroThresh) / scaled_m; |
891 | 0 | to = (scaled_s + kZeroThresh) / scaled_m; |
892 | 0 | } else { |
893 | 0 | from = (scaled_s + kZeroThresh) / scaled_m; |
894 | 0 | to = (scaled_s - kZeroThresh) / scaled_m; |
895 | 0 | } |
896 | 0 | if (from < 0.0f) { |
897 | 0 | from = 0.0f; |
898 | 0 | } |
899 | 0 | if (to > 255.0f) { |
900 | 0 | to = 255.0f; |
901 | 0 | } |
902 | | // Instead of clamping the both values |
903 | | // we just check that range is sane. |
904 | 0 | if (from <= to) { |
905 | 0 | d_num_zeros[static_cast<int>(std::ceil(from))]++; |
906 | 0 | d_num_zeros[static_cast<int>(std::floor(to + 1))]--; |
907 | 0 | } |
908 | 0 | } |
909 | 0 | } |
910 | 0 | } |
911 | 0 | } |
912 | 0 | int best = 0; |
913 | 0 | int32_t best_sum = 0; |
914 | 0 | FindIndexOfSumMaximum<256>(d_num_zeros, &best, &best_sum); |
915 | 0 | int32_t offset_sum = 0; |
916 | 0 | for (int i = 0; i < 256; ++i) { |
917 | 0 | if (i <= kOffset) { |
918 | 0 | offset_sum += d_num_zeros[i]; |
919 | 0 | } |
920 | 0 | } |
921 | 0 | row_out[tx] = 0; |
922 | 0 | if (best_sum > offset_sum + 1) { |
923 | 0 | row_out[tx] = best - kOffset; |
924 | 0 | } |
925 | 0 | } |
926 | 0 | return true; |
927 | 0 | }; |
928 | |
|
929 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, map->ysize(), ThreadPool::NoInit, |
930 | 0 | process_row, "FindCorrelation")); |
931 | 0 | } |
932 | 0 | } |
933 | | |
934 | 0 | JXL_ASSIGN_OR_RETURN( |
935 | 0 | Image3F dc, Image3F::Create(memory_manager, xsize_blocks, ysize_blocks)); |
936 | 0 | if (!frame_header.chroma_subsampling.Is444()) { |
937 | 0 | ZeroFillImage(&dc); |
938 | 0 | for (auto& coeff : enc_state->coeffs) { |
939 | 0 | coeff->ZeroFill(); |
940 | 0 | } |
941 | 0 | } |
942 | | // JPEG DC is from -1024 to 1023. |
943 | 0 | std::vector<size_t> dc_counts[3] = {}; |
944 | 0 | dc_counts[0].resize(2048); |
945 | 0 | dc_counts[1].resize(2048); |
946 | 0 | dc_counts[2].resize(2048); |
947 | 0 | size_t total_dc[3] = {}; |
948 | 0 | for (size_t c : {1, 0, 2}) { |
949 | 0 | if (jpeg_data.components.size() == 1 && c != 1) { |
950 | 0 | for (auto& coeff : enc_state->coeffs) { |
951 | 0 | coeff->ZeroFillPlane(c); |
952 | 0 | } |
953 | 0 | ZeroFillImage(&dc.Plane(c)); |
954 | | // Ensure no division by 0. |
955 | 0 | dc_counts[c][1024] = 1; |
956 | 0 | total_dc[c] = 1; |
957 | 0 | continue; |
958 | 0 | } |
959 | 0 | size_t hshift = frame_header.chroma_subsampling.HShift(c); |
960 | 0 | size_t vshift = frame_header.chroma_subsampling.VShift(c); |
961 | 0 | ImageSB& map = (c == 0 ? shared.cmap.ytox_map : shared.cmap.ytob_map); |
962 | 0 | for (size_t group_index = 0; group_index < frame_dim.num_groups; |
963 | 0 | group_index++) { |
964 | 0 | const size_t gx = group_index % frame_dim.xsize_groups; |
965 | 0 | const size_t gy = group_index / frame_dim.xsize_groups; |
966 | 0 | int32_t* coeffs[kMaxNumPasses]; |
967 | 0 | for (size_t i = 0; i < enc_state->coeffs.size(); i++) { |
968 | 0 | coeffs[i] = enc_state->coeffs[i]->PlaneRow(c, group_index, 0).ptr32; |
969 | 0 | } |
970 | 0 | int32_t block[64]; |
971 | 0 | for (size_t by = gy * kGroupDimInBlocks; |
972 | 0 | by < ysize_blocks && by < (gy + 1) * kGroupDimInBlocks; ++by) { |
973 | 0 | if ((by >> vshift) << vshift != by) continue; |
974 | 0 | const int16_t* JXL_RESTRICT inputjpeg = jpeg_row(c, by >> vshift); |
975 | 0 | const int16_t* JXL_RESTRICT inputjpegY = jpeg_row(1, by); |
976 | 0 | float* JXL_RESTRICT fdc = dc.PlaneRow(c, by >> vshift); |
977 | 0 | const int8_t* JXL_RESTRICT cm = |
978 | 0 | map.ConstRow(by / kColorTileDimInBlocks); |
979 | 0 | for (size_t bx = gx * kGroupDimInBlocks; |
980 | 0 | bx < xsize_blocks && bx < (gx + 1) * kGroupDimInBlocks; ++bx) { |
981 | 0 | if ((bx >> hshift) << hshift != bx) continue; |
982 | 0 | size_t base = (bx >> hshift) * kDCTBlockSize; |
983 | 0 | int idc; |
984 | 0 | if (DCzero) { |
985 | 0 | idc = inputjpeg[base]; |
986 | 0 | } else { |
987 | 0 | idc = inputjpeg[base] + 1024 / qt_dc[c]; |
988 | 0 | } |
989 | 0 | dc_counts[c][std::min(static_cast<uint32_t>(idc + 1024), |
990 | 0 | static_cast<uint32_t>(2047))]++; |
991 | 0 | total_dc[c]++; |
992 | 0 | fdc[bx >> hshift] = idc * dcquantization_r[c]; |
993 | 0 | if (c == 1 || !enc_state->cparams.force_cfl_jpeg_recompression || |
994 | 0 | !frame_header.chroma_subsampling.Is444()) { |
995 | 0 | for (size_t y = 0; y < 8; y++) { |
996 | 0 | for (size_t x = 0; x < 8; x++) { |
997 | 0 | block[y * 8 + x] = inputjpeg[base + x * 8 + y]; |
998 | 0 | } |
999 | 0 | } |
1000 | 0 | } else { |
1001 | 0 | const int32_t scale = |
1002 | 0 | ColorCorrelation::RatioJPEG(cm[bx / kColorTileDimInBlocks]); |
1003 | |
|
1004 | 0 | for (size_t y = 0; y < 8; y++) { |
1005 | 0 | for (size_t x = 0; x < 8; x++) { |
1006 | 0 | int Y = inputjpegY[kDCTBlockSize * bx + x * 8 + y]; |
1007 | 0 | int QChroma = inputjpeg[kDCTBlockSize * bx + x * 8 + y]; |
1008 | | // Fixed-point multiply of CfL scale with quant table ratio |
1009 | | // first, and Y value second. |
1010 | 0 | int coeff_scale = (scale * scaled_qtable[64 * c + y * 8 + x] + |
1011 | 0 | (1 << (kCFLFixedPointPrecision - 1))) >> |
1012 | 0 | kCFLFixedPointPrecision; |
1013 | 0 | int cfl_factor = |
1014 | 0 | (Y * coeff_scale + (1 << (kCFLFixedPointPrecision - 1))) >> |
1015 | 0 | kCFLFixedPointPrecision; |
1016 | 0 | int QCR = QChroma - cfl_factor; |
1017 | 0 | block[y * 8 + x] = QCR; |
1018 | 0 | } |
1019 | 0 | } |
1020 | 0 | } |
1021 | 0 | enc_state->progressive_splitter.SplitACCoefficients( |
1022 | 0 | block, AcStrategy::FromRawStrategy(AcStrategyType::DCT), bx, by, |
1023 | 0 | coeffs); |
1024 | 0 | for (size_t i = 0; i < enc_state->coeffs.size(); i++) { |
1025 | 0 | coeffs[i] += kDCTBlockSize; |
1026 | 0 | } |
1027 | 0 | } |
1028 | 0 | } |
1029 | 0 | } |
1030 | 0 | } |
1031 | |
|
1032 | 0 | auto& dct = enc_state->shared.block_ctx_map.dc_thresholds; |
1033 | 0 | auto& num_dc_ctxs = enc_state->shared.block_ctx_map.num_dc_ctxs; |
1034 | 0 | num_dc_ctxs = 1; |
1035 | 0 | for (size_t i = 0; i < 3; i++) { |
1036 | 0 | dct[i].clear(); |
1037 | 0 | int num_thresholds = (CeilLog2Nonzero(total_dc[i]) - 12) / 2; |
1038 | | // up to 3 buckets per channel: |
1039 | | // dark/medium/bright, yellow/unsat/blue, green/unsat/red |
1040 | 0 | num_thresholds = jxl::Clamp1(num_thresholds, 0, 2); |
1041 | 0 | size_t cumsum = 0; |
1042 | 0 | size_t cut = total_dc[i] / (num_thresholds + 1); |
1043 | 0 | for (int j = 0; j < 2048; j++) { |
1044 | 0 | cumsum += dc_counts[i][j]; |
1045 | 0 | if (cumsum > cut) { |
1046 | 0 | dct[i].push_back(j - 1025); |
1047 | 0 | cut = total_dc[i] * (dct[i].size() + 1) / (num_thresholds + 1); |
1048 | 0 | } |
1049 | 0 | } |
1050 | 0 | num_dc_ctxs *= dct[i].size() + 1; |
1051 | 0 | } |
1052 | |
|
1053 | 0 | auto& ctx_map = enc_state->shared.block_ctx_map.ctx_map; |
1054 | 0 | ctx_map.clear(); |
1055 | 0 | ctx_map.resize(3 * kNumOrders * num_dc_ctxs, 0); |
1056 | |
|
1057 | 0 | int lbuckets = (dct[1].size() + 1); |
1058 | 0 | for (size_t i = 0; i < num_dc_ctxs; i++) { |
1059 | | // up to 9 contexts for luma |
1060 | 0 | ctx_map[i] = i / lbuckets; |
1061 | | // up to 3 contexts for chroma |
1062 | 0 | ctx_map[kNumOrders * num_dc_ctxs + i] = |
1063 | 0 | ctx_map[2 * kNumOrders * num_dc_ctxs + i] = |
1064 | 0 | num_dc_ctxs / lbuckets + (i % lbuckets); |
1065 | 0 | } |
1066 | 0 | enc_state->shared.block_ctx_map.num_ctxs = |
1067 | 0 | *std::max_element(ctx_map.begin(), ctx_map.end()) + 1; |
1068 | | |
1069 | | // disable DC frame for now |
1070 | 0 | auto compute_dc_coeffs = [&](const uint32_t group_index, |
1071 | 0 | size_t /* thread */) -> Status { |
1072 | 0 | const Rect r = enc_state->shared.frame_dim.DCGroupRect(group_index); |
1073 | 0 | JXL_RETURN_IF_ERROR(enc_modular->AddVarDCTDC(frame_header, dc, r, |
1074 | 0 | group_index, |
1075 | 0 | /*nl_dc=*/false, enc_state, |
1076 | 0 | /*jpeg_transcode=*/true)); |
1077 | 0 | JXL_RETURN_IF_ERROR(enc_modular->AddACMetadata( |
1078 | 0 | r, group_index, /*jpeg_transcode=*/true, enc_state)); |
1079 | 0 | return true; |
1080 | 0 | }; |
1081 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, shared.frame_dim.num_dc_groups, |
1082 | 0 | ThreadPool::NoInit, compute_dc_coeffs, |
1083 | 0 | "Compute DC coeffs")); |
1084 | | |
1085 | 0 | return true; |
1086 | 0 | } |
1087 | | |
1088 | | Status ComputeVarDCTEncodingData(const FrameHeader& frame_header, |
1089 | | const Image3F* linear, |
1090 | | Image3F* JXL_RESTRICT opsin, const Rect& rect, |
1091 | | const JxlCmsInterface& cms, ThreadPool* pool, |
1092 | | ModularFrameEncoder* enc_modular, |
1093 | | PassesEncoderState* enc_state, |
1094 | 186 | AuxOut* aux_out) { |
1095 | 186 | JXL_ENSURE((rect.xsize() % kBlockDim) == 0 && |
1096 | 186 | (rect.ysize() % kBlockDim) == 0); |
1097 | 186 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
1098 | | // Save pre-Gaborish opsin for AR control field heuristics computation. |
1099 | 186 | Image3F orig_opsin; |
1100 | 186 | JXL_ASSIGN_OR_RETURN( |
1101 | 186 | orig_opsin, Image3F::Create(memory_manager, rect.xsize(), rect.ysize())); |
1102 | 186 | JXL_RETURN_IF_ERROR(CopyImageTo(rect, *opsin, Rect(orig_opsin), &orig_opsin)); |
1103 | 186 | JXL_RETURN_IF_ERROR(orig_opsin.ShrinkTo(enc_state->shared.frame_dim.xsize, |
1104 | 186 | enc_state->shared.frame_dim.ysize)); |
1105 | | |
1106 | 186 | JXL_RETURN_IF_ERROR(LossyFrameHeuristics(frame_header, enc_state, enc_modular, |
1107 | 186 | linear, opsin, rect, cms, pool, |
1108 | 186 | aux_out)); |
1109 | | |
1110 | 186 | JXL_RETURN_IF_ERROR(InitializePassesEncoder( |
1111 | 186 | frame_header, *opsin, rect, cms, pool, enc_state, enc_modular, aux_out)); |
1112 | | |
1113 | 186 | JXL_RETURN_IF_ERROR( |
1114 | 186 | ComputeARHeuristics(frame_header, enc_state, orig_opsin, rect, pool)); |
1115 | | |
1116 | 186 | JXL_RETURN_IF_ERROR(ComputeACMetadata(pool, enc_state, enc_modular)); |
1117 | | |
1118 | 186 | return true; |
1119 | 186 | } |
1120 | | |
1121 | | Status ComputeAllCoeffOrders(PassesEncoderState& enc_state, |
1122 | 186 | const FrameDimensions& frame_dim) { |
1123 | 186 | auto used_orders_info = ComputeUsedOrders( |
1124 | 186 | enc_state.cparams.speed_tier, enc_state.shared.ac_strategy, |
1125 | 186 | Rect(enc_state.shared.raw_quant_field)); |
1126 | 186 | enc_state.used_orders.resize(enc_state.progressive_splitter.GetNumPasses()); |
1127 | 372 | for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) { |
1128 | 186 | JXL_RETURN_IF_ERROR(ComputeCoeffOrder( |
1129 | 186 | enc_state.cparams.speed_tier, *enc_state.coeffs[i], |
1130 | 186 | enc_state.shared.ac_strategy, frame_dim, enc_state.used_orders[i], |
1131 | 186 | enc_state.used_acs, used_orders_info.first, used_orders_info.second, |
1132 | 186 | &enc_state.shared.coeff_orders[i * enc_state.shared.coeff_order_size])); |
1133 | 186 | } |
1134 | 186 | enc_state.used_acs |= used_orders_info.first; |
1135 | 186 | return true; |
1136 | 186 | } |
1137 | | |
1138 | | // Working area for TokenizeCoefficients (per-group!) |
1139 | | struct EncCache { |
1140 | | // Allocates memory when first called. |
1141 | 595 | Status InitOnce(JxlMemoryManager* memory_manager) { |
1142 | 595 | if (num_nzeroes.xsize() == 0) { |
1143 | 186 | JXL_ASSIGN_OR_RETURN(num_nzeroes, |
1144 | 186 | Image3I::Create(memory_manager, kGroupDimInBlocks, |
1145 | 186 | kGroupDimInBlocks)); |
1146 | 186 | } |
1147 | 595 | return true; |
1148 | 595 | } |
1149 | | // TokenizeCoefficients |
1150 | | Image3I num_nzeroes; |
1151 | | }; |
1152 | | |
1153 | | Status TokenizeAllCoefficients(const FrameHeader& frame_header, |
1154 | | ThreadPool* pool, |
1155 | 186 | PassesEncoderState* enc_state) { |
1156 | 186 | PassesSharedState& shared = enc_state->shared; |
1157 | 186 | std::vector<EncCache> group_caches; |
1158 | 186 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
1159 | 186 | const auto tokenize_group_init = [&](const size_t num_threads) -> Status { |
1160 | 186 | group_caches.resize(num_threads); |
1161 | 186 | return true; |
1162 | 186 | }; |
1163 | 186 | const auto tokenize_group = [&](const uint32_t group_index, |
1164 | 595 | const size_t thread) -> Status { |
1165 | | // Tokenize coefficients. |
1166 | 595 | const Rect rect = shared.frame_dim.BlockGroupRect(group_index); |
1167 | 1.19k | for (size_t idx_pass = 0; idx_pass < enc_state->passes.size(); idx_pass++) { |
1168 | 595 | JXL_ENSURE(enc_state->coeffs[idx_pass]->Type() == ACType::k32); |
1169 | 595 | const int32_t* JXL_RESTRICT ac_rows[3] = { |
1170 | 595 | enc_state->coeffs[idx_pass]->PlaneRow(0, group_index, 0).ptr32, |
1171 | 595 | enc_state->coeffs[idx_pass]->PlaneRow(1, group_index, 0).ptr32, |
1172 | 595 | enc_state->coeffs[idx_pass]->PlaneRow(2, group_index, 0).ptr32, |
1173 | 595 | }; |
1174 | | // Ensure group cache is initialized. |
1175 | 595 | JXL_RETURN_IF_ERROR(group_caches[thread].InitOnce(memory_manager)); |
1176 | 595 | JXL_RETURN_IF_ERROR(TokenizeCoefficients( |
1177 | 595 | &shared.coeff_orders[idx_pass * shared.coeff_order_size], rect, |
1178 | 595 | ac_rows, shared.ac_strategy, frame_header.chroma_subsampling, |
1179 | 595 | &group_caches[thread].num_nzeroes, |
1180 | 595 | &enc_state->passes[idx_pass].ac_tokens[group_index], shared.quant_dc, |
1181 | 595 | shared.raw_quant_field, shared.block_ctx_map)); |
1182 | 595 | } |
1183 | 595 | return true; |
1184 | 595 | }; |
1185 | 186 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, shared.frame_dim.num_groups, |
1186 | 186 | tokenize_group_init, tokenize_group, |
1187 | 186 | "TokenizeGroup")); |
1188 | 186 | return true; |
1189 | 186 | } |
1190 | | |
1191 | | Status EncodeGlobalDCInfo(const PassesSharedState& shared, BitWriter* writer, |
1192 | 186 | AuxOut* aux_out) { |
1193 | | // Encode quantizer DC and global scale. |
1194 | 186 | QuantizerParams params = shared.quantizer.GetParams(); |
1195 | 186 | JXL_RETURN_IF_ERROR( |
1196 | 186 | WriteQuantizerParams(params, writer, LayerType::Quant, aux_out)); |
1197 | 186 | JXL_RETURN_IF_ERROR(EncodeBlockCtxMap(shared.block_ctx_map, writer, aux_out)); |
1198 | 186 | JXL_RETURN_IF_ERROR(ColorCorrelationEncodeDC(shared.cmap.base(), writer, |
1199 | 186 | LayerType::Dc, aux_out)); |
1200 | 186 | return true; |
1201 | 186 | } |
1202 | | |
1203 | | // In streaming mode, this function only performs the histogram clustering and |
1204 | | // saves the histogram bitstreams in enc_state, the actual AC global bitstream |
1205 | | // is written in OutputAcGlobal() function after all the groups are processed. |
1206 | | Status EncodeGlobalACInfo(PassesEncoderState* enc_state, BitWriter* writer, |
1207 | 186 | ModularFrameEncoder* enc_modular, AuxOut* aux_out) { |
1208 | 186 | PassesSharedState& shared = enc_state->shared; |
1209 | 186 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
1210 | 186 | JXL_RETURN_IF_ERROR(DequantMatricesEncode(memory_manager, shared.matrices, |
1211 | 186 | writer, LayerType::Quant, aux_out, |
1212 | 186 | enc_modular)); |
1213 | 186 | size_t num_histo_bits = CeilLog2Nonzero(shared.frame_dim.num_groups); |
1214 | 186 | if (!enc_state->streaming_mode && num_histo_bits != 0) { |
1215 | 141 | JXL_RETURN_IF_ERROR( |
1216 | 141 | writer->WithMaxBits(num_histo_bits, LayerType::Ac, aux_out, [&] { |
1217 | 141 | writer->Write(num_histo_bits, shared.num_histograms - 1); |
1218 | 141 | return true; |
1219 | 141 | })); |
1220 | 141 | } |
1221 | | |
1222 | 372 | for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses(); i++) { |
1223 | | // Encode coefficient orders. |
1224 | 186 | if (!enc_state->streaming_mode) { |
1225 | 186 | size_t order_bits = 0; |
1226 | 186 | JXL_RETURN_IF_ERROR(U32Coder::CanEncode( |
1227 | 186 | kOrderEnc, enc_state->used_orders[i], &order_bits)); |
1228 | 186 | JXL_RETURN_IF_ERROR( |
1229 | 186 | writer->WithMaxBits(order_bits, LayerType::Order, aux_out, [&] { |
1230 | 186 | return U32Coder::Write(kOrderEnc, enc_state->used_orders[i], |
1231 | 186 | writer); |
1232 | 186 | })); |
1233 | 186 | JXL_RETURN_IF_ERROR( |
1234 | 186 | EncodeCoeffOrders(enc_state->used_orders[i], |
1235 | 186 | &shared.coeff_orders[i * shared.coeff_order_size], |
1236 | 186 | writer, LayerType::Order, aux_out)); |
1237 | 186 | } |
1238 | | |
1239 | | // Encode histograms. |
1240 | 186 | HistogramParams hist_params(enc_state->cparams.speed_tier, |
1241 | 186 | shared.block_ctx_map.NumACContexts()); |
1242 | 186 | if (enc_state->cparams.speed_tier > SpeedTier::kTortoise) { |
1243 | 186 | hist_params.lz77_method = HistogramParams::LZ77Method::kNone; |
1244 | 186 | } |
1245 | 186 | if (enc_state->cparams.decoding_speed_tier >= 1) { |
1246 | 0 | hist_params.max_histograms = 6; |
1247 | 0 | } |
1248 | 186 | size_t num_histogram_groups = shared.num_histograms; |
1249 | 186 | if (enc_state->streaming_mode) { |
1250 | 0 | size_t prev_num_histograms = |
1251 | 0 | enc_state->passes[i].codes.encoding_info.size(); |
1252 | 0 | if (enc_state->initialize_global_state) { |
1253 | 0 | prev_num_histograms += kNumFixedHistograms; |
1254 | 0 | hist_params.add_fixed_histograms = true; |
1255 | 0 | } |
1256 | 0 | size_t remaining_histograms = kClustersLimit - prev_num_histograms; |
1257 | | // Heuristic to assign budget of new histograms to DC groups. |
1258 | | // TODO(szabadka) Tune this together with the DC group ordering. |
1259 | 0 | size_t max_histograms = remaining_histograms < 20 |
1260 | 0 | ? std::min<size_t>(remaining_histograms, 4) |
1261 | 0 | : remaining_histograms / 4; |
1262 | 0 | hist_params.max_histograms = |
1263 | 0 | std::min(max_histograms, hist_params.max_histograms); |
1264 | 0 | num_histogram_groups = 1; |
1265 | 0 | } |
1266 | 186 | hist_params.streaming_mode = enc_state->streaming_mode; |
1267 | 186 | hist_params.initialize_global_state = enc_state->initialize_global_state; |
1268 | 186 | JXL_ASSIGN_OR_RETURN( |
1269 | 186 | size_t cost, |
1270 | 186 | BuildAndEncodeHistograms( |
1271 | 186 | memory_manager, hist_params, |
1272 | 186 | num_histogram_groups * shared.block_ctx_map.NumACContexts(), |
1273 | 186 | enc_state->passes[i].ac_tokens, &enc_state->passes[i].codes, writer, |
1274 | 186 | LayerType::Ac, aux_out)); |
1275 | 186 | (void)cost; |
1276 | 186 | } |
1277 | | |
1278 | 186 | return true; |
1279 | 186 | } |
1280 | | Status EncodeGroups(const FrameHeader& frame_header, |
1281 | | PassesEncoderState* enc_state, |
1282 | | ModularFrameEncoder* enc_modular, ThreadPool* pool, |
1283 | | std::vector<std::unique_ptr<BitWriter>>* group_codes, |
1284 | 283 | AuxOut* aux_out) { |
1285 | 283 | const PassesSharedState& shared = enc_state->shared; |
1286 | 283 | JxlMemoryManager* memory_manager = shared.memory_manager; |
1287 | 283 | const FrameDimensions& frame_dim = shared.frame_dim; |
1288 | 283 | const size_t num_groups = frame_dim.num_groups; |
1289 | 283 | const size_t num_passes = enc_state->progressive_splitter.GetNumPasses(); |
1290 | 283 | const size_t global_ac_index = frame_dim.num_dc_groups + 1; |
1291 | 283 | const bool is_small_image = |
1292 | 283 | !enc_state->streaming_mode && num_groups == 1 && num_passes == 1; |
1293 | 283 | const size_t num_toc_entries = |
1294 | 283 | is_small_image ? 1 |
1295 | 283 | : AcGroupIndex(0, 0, num_groups, frame_dim.num_dc_groups) + |
1296 | 141 | num_groups * num_passes; |
1297 | 283 | JXL_ENSURE(group_codes->empty()); |
1298 | 283 | group_codes->reserve(num_toc_entries); |
1299 | 1.39k | for (size_t i = 0; i < num_toc_entries; ++i) { |
1300 | 1.11k | group_codes->emplace_back(jxl::make_unique<BitWriter>(memory_manager)); |
1301 | 1.11k | } |
1302 | | |
1303 | 2.88k | const auto get_output = [&](const size_t index) -> BitWriter* { |
1304 | 2.88k | return (*group_codes)[is_small_image ? 0 : index].get(); |
1305 | 2.88k | }; |
1306 | 1.28k | auto ac_group_code = [&](size_t pass, size_t group) { |
1307 | 1.28k | return get_output(AcGroupIndex(pass, group, frame_dim.num_groups, |
1308 | 1.28k | frame_dim.num_dc_groups)); |
1309 | 1.28k | }; |
1310 | | |
1311 | 283 | if (enc_state->initialize_global_state) { |
1312 | 283 | if (frame_header.flags & FrameHeader::kPatches) { |
1313 | 97 | JXL_RETURN_IF_ERROR(PatchDictionaryEncoder::Encode( |
1314 | 97 | shared.image_features.patches, get_output(0), LayerType::Dictionary, |
1315 | 97 | aux_out)); |
1316 | 97 | } |
1317 | 283 | if (frame_header.flags & FrameHeader::kSplines) { |
1318 | 0 | JXL_RETURN_IF_ERROR(EncodeSplines(shared.image_features.splines, |
1319 | 0 | get_output(0), LayerType::Splines, |
1320 | 0 | HistogramParams(), aux_out)); |
1321 | 0 | } |
1322 | 283 | if (frame_header.flags & FrameHeader::kNoise) { |
1323 | 0 | JXL_RETURN_IF_ERROR(EncodeNoise(shared.image_features.noise_params, |
1324 | 0 | get_output(0), LayerType::Noise, |
1325 | 0 | aux_out)); |
1326 | 0 | } |
1327 | | |
1328 | 283 | JXL_RETURN_IF_ERROR(DequantMatricesEncodeDC(shared.matrices, get_output(0), |
1329 | 283 | LayerType::Quant, aux_out)); |
1330 | 283 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
1331 | 186 | JXL_RETURN_IF_ERROR(EncodeGlobalDCInfo(shared, get_output(0), aux_out)); |
1332 | 186 | } |
1333 | 283 | JXL_RETURN_IF_ERROR(enc_modular->EncodeGlobalInfo(enc_state->streaming_mode, |
1334 | 283 | get_output(0), aux_out)); |
1335 | 283 | JXL_RETURN_IF_ERROR(enc_modular->EncodeStream(get_output(0), aux_out, |
1336 | 283 | LayerType::ModularGlobal, |
1337 | 283 | ModularStreamId::Global())); |
1338 | 283 | } |
1339 | | |
1340 | 283 | std::vector<std::unique_ptr<AuxOut>> aux_outs; |
1341 | 283 | auto resize_aux_outs = [&aux_outs, |
1342 | 849 | aux_out](const size_t num_threads) -> Status { |
1343 | 849 | if (aux_out == nullptr) { |
1344 | 849 | aux_outs.resize(num_threads); |
1345 | 849 | } else { |
1346 | 0 | while (aux_outs.size() > num_threads) { |
1347 | 0 | aux_out->Assimilate(*aux_outs.back()); |
1348 | 0 | aux_outs.pop_back(); |
1349 | 0 | } |
1350 | 0 | while (num_threads > aux_outs.size()) { |
1351 | 0 | aux_outs.emplace_back(jxl::make_unique<AuxOut>()); |
1352 | 0 | } |
1353 | 0 | } |
1354 | 849 | return true; |
1355 | 849 | }; |
1356 | | |
1357 | 283 | const auto process_dc_group = [&](const uint32_t group_index, |
1358 | 283 | const size_t thread) -> Status { |
1359 | 283 | AuxOut* my_aux_out = aux_outs[thread].get(); |
1360 | 283 | uint32_t input_index = enc_state->streaming_mode ? 0 : group_index; |
1361 | 283 | BitWriter* output = get_output(input_index + 1); |
1362 | 283 | if (frame_header.encoding == FrameEncoding::kVarDCT && |
1363 | 283 | !(frame_header.flags & FrameHeader::kUseDcFrame)) { |
1364 | 186 | JXL_RETURN_IF_ERROR( |
1365 | 186 | output->WithMaxBits(2, LayerType::Dc, my_aux_out, [&] { |
1366 | 186 | output->Write(2, enc_modular->extra_dc_precision[group_index]); |
1367 | 186 | return true; |
1368 | 186 | })); |
1369 | 186 | JXL_RETURN_IF_ERROR( |
1370 | 186 | enc_modular->EncodeStream(output, my_aux_out, LayerType::Dc, |
1371 | 186 | ModularStreamId::VarDCTDC(group_index))); |
1372 | 186 | } |
1373 | 283 | JXL_RETURN_IF_ERROR( |
1374 | 283 | enc_modular->EncodeStream(output, my_aux_out, LayerType::ModularDcGroup, |
1375 | 283 | ModularStreamId::ModularDC(group_index))); |
1376 | 283 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
1377 | 186 | const Rect& rect = enc_state->shared.frame_dim.DCGroupRect(input_index); |
1378 | 186 | size_t nb_bits = CeilLog2Nonzero(rect.xsize() * rect.ysize()); |
1379 | 186 | if (nb_bits != 0) { |
1380 | 168 | JXL_RETURN_IF_ERROR(output->WithMaxBits( |
1381 | 168 | nb_bits, LayerType::ControlFields, my_aux_out, [&] { |
1382 | 168 | output->Write(nb_bits, |
1383 | 168 | enc_modular->ac_metadata_size[group_index] - 1); |
1384 | 168 | return true; |
1385 | 168 | })); |
1386 | 168 | } |
1387 | 186 | JXL_RETURN_IF_ERROR(enc_modular->EncodeStream( |
1388 | 186 | output, my_aux_out, LayerType::ControlFields, |
1389 | 186 | ModularStreamId::ACMetadata(group_index))); |
1390 | 186 | } |
1391 | 283 | return true; |
1392 | 283 | }; |
1393 | 283 | if (enc_state->streaming_mode) { |
1394 | 0 | JXL_ENSURE(frame_dim.num_dc_groups == 1); |
1395 | 0 | JXL_RETURN_IF_ERROR(resize_aux_outs(1)); |
1396 | 0 | JXL_RETURN_IF_ERROR(process_dc_group(enc_state->dc_group_index, 0)); |
1397 | 283 | } else { |
1398 | 283 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, frame_dim.num_dc_groups, |
1399 | 283 | resize_aux_outs, process_dc_group, |
1400 | 283 | "EncodeDCGroup")); |
1401 | 283 | } |
1402 | 283 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
1403 | 186 | JXL_RETURN_IF_ERROR(EncodeGlobalACInfo( |
1404 | 186 | enc_state, get_output(global_ac_index), enc_modular, aux_out)); |
1405 | 186 | } |
1406 | | |
1407 | 283 | const auto process_group = [&](const uint32_t group_index, |
1408 | 692 | const size_t thread) -> Status { |
1409 | 692 | AuxOut* my_aux_out = aux_outs[thread].get(); |
1410 | | |
1411 | 692 | size_t ac_group_id = |
1412 | 692 | enc_state->streaming_mode |
1413 | 692 | ? enc_modular->ComputeStreamingAbsoluteAcGroupId( |
1414 | 0 | enc_state->dc_group_index, group_index, shared.frame_dim) |
1415 | 692 | : group_index; |
1416 | | |
1417 | 1.38k | for (size_t i = 0; i < num_passes; i++) { |
1418 | 692 | JXL_DEBUG_V(2, "Encoding AC group %u [abs %" PRIuS "] pass %" PRIuS, |
1419 | 692 | group_index, ac_group_id, i); |
1420 | 692 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
1421 | 595 | JXL_RETURN_IF_ERROR(EncodeGroupTokenizedCoefficients( |
1422 | 595 | group_index, i, enc_state->histogram_idx[group_index], *enc_state, |
1423 | 595 | ac_group_code(i, group_index), my_aux_out)); |
1424 | 595 | } |
1425 | | // Write all modular encoded data (color?, alpha, depth, extra channels) |
1426 | 692 | JXL_RETURN_IF_ERROR(enc_modular->EncodeStream( |
1427 | 692 | ac_group_code(i, group_index), my_aux_out, LayerType::ModularAcGroup, |
1428 | 692 | ModularStreamId::ModularAC(ac_group_id, i))); |
1429 | 692 | JXL_DEBUG_V(2, |
1430 | 692 | "AC group %u [abs %" PRIuS "] pass %" PRIuS |
1431 | 692 | " encoded size is %" PRIuS " bits", |
1432 | 692 | group_index, ac_group_id, i, |
1433 | 692 | ac_group_code(i, group_index)->BitsWritten()); |
1434 | 692 | } |
1435 | 692 | return true; |
1436 | 692 | }; |
1437 | 283 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_groups, resize_aux_outs, |
1438 | 283 | process_group, "EncodeGroupCoefficients")); |
1439 | | // Resizing aux_outs to 0 also Assimilates the array. |
1440 | 283 | static_cast<void>(resize_aux_outs(0)); |
1441 | | |
1442 | 1.11k | for (std::unique_ptr<BitWriter>& bw : *group_codes) { |
1443 | 1.11k | JXL_RETURN_IF_ERROR(bw->WithMaxBits(8, LayerType::Ac, aux_out, [&] { |
1444 | 1.11k | bw->ZeroPadToByte(); // end of group. |
1445 | 1.11k | return true; |
1446 | 1.11k | })); |
1447 | 1.11k | } |
1448 | 283 | return true; |
1449 | 283 | } |
1450 | | |
1451 | | Status ComputeEncodingData( |
1452 | | const CompressParams& cparams, const FrameInfo& frame_info, |
1453 | | const CodecMetadata* metadata, JxlEncoderChunkedFrameAdapter& frame_data, |
1454 | | const jpeg::JPEGData* jpeg_data, size_t x0, size_t y0, size_t xsize, |
1455 | | size_t ysize, const JxlCmsInterface& cms, ThreadPool* pool, |
1456 | | FrameHeader& mutable_frame_header, ModularFrameEncoder& enc_modular, |
1457 | | PassesEncoderState& enc_state, |
1458 | 283 | std::vector<std::unique_ptr<BitWriter>>* group_codes, AuxOut* aux_out) { |
1459 | 283 | JXL_ENSURE(x0 + xsize <= frame_data.xsize); |
1460 | 283 | JXL_ENSURE(y0 + ysize <= frame_data.ysize); |
1461 | 283 | JxlMemoryManager* memory_manager = enc_state.memory_manager(); |
1462 | 283 | const FrameHeader& frame_header = mutable_frame_header; |
1463 | 283 | PassesSharedState& shared = enc_state.shared; |
1464 | 283 | shared.metadata = metadata; |
1465 | 283 | if (enc_state.streaming_mode) { |
1466 | 0 | shared.frame_dim.Set( |
1467 | 0 | xsize, ysize, frame_header.group_size_shift, |
1468 | 0 | /*max_hshift=*/0, /*max_vshift=*/0, |
1469 | 0 | mutable_frame_header.encoding == FrameEncoding::kModular, |
1470 | 0 | /*upsampling=*/1); |
1471 | 283 | } else { |
1472 | 283 | shared.frame_dim = frame_header.ToFrameDimensions(); |
1473 | 283 | } |
1474 | | |
1475 | 283 | shared.image_features.patches.SetShared(&shared.reference_frames); |
1476 | 283 | const FrameDimensions& frame_dim = shared.frame_dim; |
1477 | 283 | JXL_ASSIGN_OR_RETURN( |
1478 | 283 | shared.ac_strategy, |
1479 | 283 | AcStrategyImage::Create(memory_manager, frame_dim.xsize_blocks, |
1480 | 283 | frame_dim.ysize_blocks)); |
1481 | 283 | JXL_ASSIGN_OR_RETURN(shared.raw_quant_field, |
1482 | 283 | ImageI::Create(memory_manager, frame_dim.xsize_blocks, |
1483 | 283 | frame_dim.ysize_blocks)); |
1484 | 283 | JXL_ASSIGN_OR_RETURN(shared.epf_sharpness, |
1485 | 283 | ImageB::Create(memory_manager, frame_dim.xsize_blocks, |
1486 | 283 | frame_dim.ysize_blocks)); |
1487 | 283 | JXL_ASSIGN_OR_RETURN( |
1488 | 283 | shared.cmap, ColorCorrelationMap::Create(memory_manager, frame_dim.xsize, |
1489 | 283 | frame_dim.ysize)); |
1490 | 283 | shared.coeff_order_size = kCoeffOrderMaxSize; |
1491 | 283 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
1492 | 186 | shared.coeff_orders.resize(frame_header.passes.num_passes * |
1493 | 186 | kCoeffOrderMaxSize); |
1494 | 186 | } |
1495 | | |
1496 | 283 | JXL_ASSIGN_OR_RETURN(shared.quant_dc, |
1497 | 283 | ImageB::Create(memory_manager, frame_dim.xsize_blocks, |
1498 | 283 | frame_dim.ysize_blocks)); |
1499 | 283 | JXL_ASSIGN_OR_RETURN(shared.dc_storage, |
1500 | 283 | Image3F::Create(memory_manager, frame_dim.xsize_blocks, |
1501 | 283 | frame_dim.ysize_blocks)); |
1502 | 283 | shared.dc = &shared.dc_storage; |
1503 | | |
1504 | 283 | const size_t num_extra_channels = metadata->m.num_extra_channels; |
1505 | 283 | const ExtraChannelInfo* alpha_eci = metadata->m.Find(ExtraChannel::kAlpha); |
1506 | 283 | const ExtraChannelInfo* black_eci = metadata->m.Find(ExtraChannel::kBlack); |
1507 | 283 | const size_t alpha_idx = alpha_eci - metadata->m.extra_channel_info.data(); |
1508 | 283 | const size_t black_idx = black_eci - metadata->m.extra_channel_info.data(); |
1509 | 283 | const ColorEncoding c_enc = metadata->m.color_encoding; |
1510 | | |
1511 | | // Make the image patch bigger than the currently processed group in streaming |
1512 | | // mode so that we can take into account border pixels around the group when |
1513 | | // computing inverse Gaborish and adaptive quantization map. |
1514 | 283 | int max_border = enc_state.streaming_mode ? kBlockDim : 0; |
1515 | 283 | Rect frame_rect(0, 0, frame_data.xsize, frame_data.ysize); |
1516 | 283 | Rect frame_area_rect = Rect(x0, y0, xsize, ysize); |
1517 | 283 | Rect patch_rect = frame_area_rect.Extend(max_border, frame_rect); |
1518 | 283 | JXL_ENSURE(patch_rect.IsInside(frame_rect)); |
1519 | | |
1520 | | // Allocating a large enough image avoids a copy when padding. |
1521 | 566 | JXL_ASSIGN_OR_RETURN( |
1522 | 566 | Image3F color, |
1523 | 566 | Image3F::Create(memory_manager, RoundUpToBlockDim(patch_rect.xsize()), |
1524 | 566 | RoundUpToBlockDim(patch_rect.ysize()))); |
1525 | 566 | JXL_RETURN_IF_ERROR(color.ShrinkTo(patch_rect.xsize(), patch_rect.ysize())); |
1526 | 283 | std::vector<ImageF> extra_channels(num_extra_channels); |
1527 | 283 | for (auto& extra_channel : extra_channels) { |
1528 | 14 | JXL_ASSIGN_OR_RETURN( |
1529 | 14 | extra_channel, |
1530 | 14 | ImageF::Create(memory_manager, patch_rect.xsize(), patch_rect.ysize())); |
1531 | 14 | } |
1532 | 283 | ImageF* alpha = alpha_eci ? &extra_channels[alpha_idx] : nullptr; |
1533 | 283 | ImageF* black = black_eci ? &extra_channels[black_idx] : nullptr; |
1534 | 283 | bool has_interleaved_alpha = false; |
1535 | 283 | JxlChunkedFrameInputSource input = frame_data.GetInputSource(); |
1536 | 283 | if (!jpeg_data) { |
1537 | 283 | JXL_RETURN_IF_ERROR(CopyColorChannels(input, patch_rect, frame_info, |
1538 | 283 | metadata->m, pool, &color, alpha, |
1539 | 283 | &has_interleaved_alpha)); |
1540 | 283 | } |
1541 | 283 | JXL_RETURN_IF_ERROR(CopyExtraChannels(input, patch_rect, frame_info, |
1542 | 283 | metadata->m, has_interleaved_alpha, |
1543 | 283 | pool, &extra_channels)); |
1544 | | |
1545 | 283 | enc_state.cparams = cparams; |
1546 | | |
1547 | 283 | Image3F linear_storage; |
1548 | 283 | Image3F* linear = nullptr; |
1549 | | |
1550 | 283 | if (!jpeg_data) { |
1551 | 283 | if (frame_header.color_transform == ColorTransform::kXYB && |
1552 | 283 | frame_info.ib_needs_color_transform) { |
1553 | 186 | if (frame_header.encoding == FrameEncoding::kVarDCT && |
1554 | 186 | cparams.speed_tier <= SpeedTier::kKitten) { |
1555 | 0 | JXL_ASSIGN_OR_RETURN(linear_storage, |
1556 | 0 | Image3F::Create(memory_manager, patch_rect.xsize(), |
1557 | 0 | patch_rect.ysize())); |
1558 | 0 | linear = &linear_storage; |
1559 | 0 | } |
1560 | 186 | JXL_RETURN_IF_ERROR(ToXYB(c_enc, metadata->m.IntensityTarget(), black, |
1561 | 186 | pool, &color, cms, linear)); |
1562 | 186 | } else { |
1563 | | // Nothing to do. |
1564 | | // RGB or YCbCr: forward YCbCr is not implemented, this is only used when |
1565 | | // the input is already in YCbCr |
1566 | | // If encoding a special DC or reference frame: input is already in XYB. |
1567 | 97 | } |
1568 | 283 | bool lossless = cparams.IsLossless(); |
1569 | 283 | if (alpha && !alpha_eci->alpha_associated && |
1570 | 283 | frame_header.frame_type == FrameType::kRegularFrame && |
1571 | 283 | !ApplyOverride(cparams.keep_invisible, cparams.IsLossless()) && |
1572 | 283 | cparams.ec_resampling == cparams.resampling && |
1573 | 283 | !cparams.disable_perceptual_optimizations) { |
1574 | | // simplify invisible pixels |
1575 | 14 | SimplifyInvisible(&color, *alpha, lossless); |
1576 | 14 | if (linear) { |
1577 | 0 | SimplifyInvisible(linear, *alpha, lossless); |
1578 | 0 | } |
1579 | 14 | } |
1580 | 283 | JXL_RETURN_IF_ERROR(PadImageToBlockMultipleInPlace(&color)); |
1581 | 283 | } |
1582 | | |
1583 | | // Rectangle within color that corresponds to the currently processed group in |
1584 | | // streaming mode. |
1585 | 283 | Rect group_rect(x0 - patch_rect.x0(), y0 - patch_rect.y0(), |
1586 | 283 | RoundUpToBlockDim(xsize), RoundUpToBlockDim(ysize)); |
1587 | | |
1588 | 283 | if (enc_state.initialize_global_state && !jpeg_data) { |
1589 | 283 | ComputeChromacityAdjustments(cparams, color, group_rect, |
1590 | 283 | &mutable_frame_header); |
1591 | 283 | } |
1592 | | |
1593 | 283 | bool has_jpeg_data = (jpeg_data != nullptr); |
1594 | 283 | ComputeNoiseParams(cparams, enc_state.streaming_mode, has_jpeg_data, color, |
1595 | 283 | frame_dim, &mutable_frame_header, |
1596 | 283 | &shared.image_features.noise_params); |
1597 | | |
1598 | 283 | JXL_RETURN_IF_ERROR( |
1599 | 283 | DownsampleColorChannels(cparams, frame_header, has_jpeg_data, &color)); |
1600 | | |
1601 | 283 | if (cparams.ec_resampling != 1 && !cparams.already_downsampled) { |
1602 | 0 | for (ImageF& ec : extra_channels) { |
1603 | 0 | JXL_ASSIGN_OR_RETURN(ec, DownsampleImage(ec, cparams.ec_resampling)); |
1604 | 0 | } |
1605 | 0 | } |
1606 | | |
1607 | 283 | if (!enc_state.streaming_mode) { |
1608 | 283 | group_rect = Rect(color); |
1609 | 283 | } |
1610 | | |
1611 | 283 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
1612 | 186 | enc_state.passes.resize(enc_state.progressive_splitter.GetNumPasses()); |
1613 | 186 | for (PassesEncoderState::PassData& pass : enc_state.passes) { |
1614 | 186 | pass.ac_tokens.resize(shared.frame_dim.num_groups); |
1615 | 186 | } |
1616 | 186 | if (jpeg_data) { |
1617 | 0 | JXL_RETURN_IF_ERROR(ComputeJPEGTranscodingData( |
1618 | 0 | *jpeg_data, frame_header, pool, &enc_modular, &enc_state)); |
1619 | 186 | } else { |
1620 | 186 | JXL_RETURN_IF_ERROR(ComputeVarDCTEncodingData( |
1621 | 186 | frame_header, linear, &color, group_rect, cms, pool, &enc_modular, |
1622 | 186 | &enc_state, aux_out)); |
1623 | 186 | } |
1624 | 186 | JXL_RETURN_IF_ERROR(ComputeAllCoeffOrders(enc_state, frame_dim)); |
1625 | 186 | if (!enc_state.streaming_mode) { |
1626 | 186 | shared.num_histograms = 1; |
1627 | 186 | enc_state.histogram_idx.resize(frame_dim.num_groups); |
1628 | 186 | } |
1629 | 186 | JXL_RETURN_IF_ERROR( |
1630 | 186 | TokenizeAllCoefficients(frame_header, pool, &enc_state)); |
1631 | 186 | } |
1632 | | |
1633 | 283 | if (cparams.modular_mode || !extra_channels.empty()) { |
1634 | 111 | JXL_RETURN_IF_ERROR(enc_modular.ComputeEncodingData( |
1635 | 111 | frame_header, metadata->m, &color, extra_channels, group_rect, |
1636 | 111 | frame_dim, frame_area_rect, &enc_state, cms, pool, aux_out, |
1637 | 111 | /*do_color=*/cparams.modular_mode)); |
1638 | 111 | } |
1639 | | |
1640 | 283 | if (!enc_state.streaming_mode) { |
1641 | | // If checks pass here, a Global MA tree is used. |
1642 | 283 | if (cparams.speed_tier < SpeedTier::kTortoise || |
1643 | 283 | !cparams.ModularPartIsLossless() || cparams.lossy_palette || |
1644 | 283 | (cparams.responsive == 1 && !cparams.IsLossless()) || |
1645 | | // Allow Local trees for progressive lossless but not lossy. |
1646 | 283 | (cparams.buffering && cparams.responsive < 0) || |
1647 | 283 | !cparams.custom_fixed_tree.empty()) { |
1648 | | // Use local trees if doing lossless modular, unless at very slow speeds. |
1649 | 283 | JXL_RETURN_IF_ERROR(enc_modular.ComputeTree(pool)); |
1650 | 283 | JXL_RETURN_IF_ERROR(enc_modular.ComputeTokens(pool)); |
1651 | 283 | } |
1652 | 283 | mutable_frame_header.UpdateFlag(shared.image_features.patches.HasAny(), |
1653 | 283 | FrameHeader::kPatches); |
1654 | 283 | mutable_frame_header.UpdateFlag(shared.image_features.splines.HasAny(), |
1655 | 283 | FrameHeader::kSplines); |
1656 | 283 | } |
1657 | | |
1658 | 283 | JXL_RETURN_IF_ERROR(EncodeGroups(frame_header, &enc_state, &enc_modular, pool, |
1659 | 283 | group_codes, aux_out)); |
1660 | 283 | if (enc_state.streaming_mode) { |
1661 | 0 | const size_t group_index = enc_state.dc_group_index; |
1662 | 0 | enc_modular.ClearStreamData(ModularStreamId::VarDCTDC(group_index)); |
1663 | 0 | enc_modular.ClearStreamData(ModularStreamId::ACMetadata(group_index)); |
1664 | 0 | enc_modular.ClearModularStreamData(); |
1665 | 0 | } |
1666 | 283 | return true; |
1667 | 283 | } |
1668 | | |
1669 | | Status PermuteGroups(const CompressParams& cparams, |
1670 | | const FrameDimensions& frame_dim, size_t num_passes, |
1671 | | std::vector<coeff_order_t>* permutation, |
1672 | 283 | std::vector<std::unique_ptr<BitWriter>>* group_codes) { |
1673 | 283 | const size_t num_groups = frame_dim.num_groups; |
1674 | 283 | if (!cparams.centerfirst || (num_passes == 1 && num_groups == 1)) { |
1675 | 283 | return true; |
1676 | 283 | } |
1677 | | // Don't permute global DC/AC or DC. |
1678 | 0 | permutation->resize(frame_dim.num_dc_groups + 2); |
1679 | 0 | std::iota(permutation->begin(), permutation->end(), 0); |
1680 | 0 | std::vector<coeff_order_t> ac_group_order(num_groups); |
1681 | 0 | std::iota(ac_group_order.begin(), ac_group_order.end(), 0); |
1682 | 0 | size_t group_dim = frame_dim.group_dim; |
1683 | | |
1684 | | // The center of the image is either given by parameters or chosen |
1685 | | // to be the middle of the image by default if center_x, center_y resp. |
1686 | | // are not provided. |
1687 | |
|
1688 | 0 | int64_t imag_cx; |
1689 | 0 | if (cparams.center_x != static_cast<size_t>(-1)) { |
1690 | 0 | JXL_RETURN_IF_ERROR(cparams.center_x < frame_dim.xsize); |
1691 | 0 | imag_cx = cparams.center_x; |
1692 | 0 | } else { |
1693 | 0 | imag_cx = frame_dim.xsize / 2; |
1694 | 0 | } |
1695 | | |
1696 | 0 | int64_t imag_cy; |
1697 | 0 | if (cparams.center_y != static_cast<size_t>(-1)) { |
1698 | 0 | JXL_RETURN_IF_ERROR(cparams.center_y < frame_dim.ysize); |
1699 | 0 | imag_cy = cparams.center_y; |
1700 | 0 | } else { |
1701 | 0 | imag_cy = frame_dim.ysize / 2; |
1702 | 0 | } |
1703 | | |
1704 | | // The center of the group containing the center of the image. |
1705 | 0 | int64_t cx = (imag_cx / group_dim) * group_dim + group_dim / 2; |
1706 | 0 | int64_t cy = (imag_cy / group_dim) * group_dim + group_dim / 2; |
1707 | | // This identifies in what area of the central group the center of the image |
1708 | | // lies in. |
1709 | 0 | double direction = -std::atan2(imag_cy - cy, imag_cx - cx); |
1710 | | // This identifies the side of the central group the center of the image |
1711 | | // lies closest to. This can take values 0, 1, 2, 3 corresponding to left, |
1712 | | // bottom, right, top. |
1713 | 0 | int64_t side = std::fmod((direction + 5 * kPi / 4), 2 * kPi) * 2 / kPi; |
1714 | 0 | auto get_distance_from_center = [&](size_t gid) { |
1715 | 0 | Rect r = frame_dim.GroupRect(gid); |
1716 | 0 | int64_t gcx = r.x0() + group_dim / 2; |
1717 | 0 | int64_t gcy = r.y0() + group_dim / 2; |
1718 | 0 | int64_t dx = gcx - cx; |
1719 | 0 | int64_t dy = gcy - cy; |
1720 | | // The angle is determined by taking atan2 and adding an appropriate |
1721 | | // starting point depending on the side we want to start on. |
1722 | 0 | double angle = std::remainder( |
1723 | 0 | std::atan2(dy, dx) + kPi / 4 + side * (kPi / 2), 2 * kPi); |
1724 | | // Concentric squares in clockwise order. |
1725 | 0 | return std::make_pair(std::max(std::abs(dx), std::abs(dy)), angle); |
1726 | 0 | }; |
1727 | 0 | std::sort(ac_group_order.begin(), ac_group_order.end(), |
1728 | 0 | [&](coeff_order_t a, coeff_order_t b) { |
1729 | 0 | return get_distance_from_center(a) < get_distance_from_center(b); |
1730 | 0 | }); |
1731 | 0 | std::vector<coeff_order_t> inv_ac_group_order(ac_group_order.size(), 0); |
1732 | 0 | for (size_t i = 0; i < ac_group_order.size(); i++) { |
1733 | 0 | inv_ac_group_order[ac_group_order[i]] = i; |
1734 | 0 | } |
1735 | 0 | for (size_t i = 0; i < num_passes; i++) { |
1736 | 0 | size_t pass_start = permutation->size(); |
1737 | 0 | for (coeff_order_t v : inv_ac_group_order) { |
1738 | 0 | permutation->push_back(pass_start + v); |
1739 | 0 | } |
1740 | 0 | } |
1741 | 0 | std::vector<std::unique_ptr<BitWriter>> new_group_codes(group_codes->size()); |
1742 | 0 | for (size_t i = 0; i < permutation->size(); i++) { |
1743 | 0 | new_group_codes[(*permutation)[i]] = std::move((*group_codes)[i]); |
1744 | 0 | } |
1745 | 0 | group_codes->swap(new_group_codes); |
1746 | 0 | return true; |
1747 | 0 | } |
1748 | | |
1749 | | bool CanDoStreamingEncoding(const CompressParams& cparams, |
1750 | | const FrameInfo& frame_info, |
1751 | | const CodecMetadata& metadata, |
1752 | 283 | const JxlEncoderChunkedFrameAdapter& frame_data) { |
1753 | 283 | if (cparams.buffering == 0) { |
1754 | 0 | return false; |
1755 | 0 | } |
1756 | 283 | if (cparams.buffering == -1) { |
1757 | 283 | if (cparams.speed_tier < SpeedTier::kTortoise) return false; |
1758 | 283 | if (cparams.speed_tier < SpeedTier::kSquirrel && |
1759 | 283 | cparams.butteraugli_distance > 0.5f) { |
1760 | 0 | return false; |
1761 | 0 | } |
1762 | 283 | if (cparams.speed_tier == SpeedTier::kSquirrel && |
1763 | 283 | cparams.butteraugli_distance >= 3.f) { |
1764 | 0 | return false; |
1765 | 0 | } |
1766 | 283 | } |
1767 | | |
1768 | | // TODO(veluca): handle different values of `buffering`. |
1769 | 283 | if (frame_data.xsize <= 2048 && frame_data.ysize <= 2048) { |
1770 | 283 | return false; |
1771 | 283 | } |
1772 | 0 | if (frame_data.IsJPEG()) { |
1773 | 0 | return false; |
1774 | 0 | } |
1775 | 0 | if (cparams.noise == Override::kOn || cparams.patches == Override::kOn) { |
1776 | 0 | return false; |
1777 | 0 | } |
1778 | 0 | if (cparams.progressive_dc != 0 || frame_info.dc_level != 0) { |
1779 | 0 | return false; |
1780 | 0 | } |
1781 | 0 | if (cparams.custom_progressive_mode || |
1782 | 0 | cparams.qprogressive_mode == Override::kOn || |
1783 | 0 | cparams.progressive_mode == Override::kOn) { |
1784 | 0 | return false; |
1785 | 0 | } |
1786 | 0 | if (cparams.resampling != 1 || cparams.ec_resampling != 1) { |
1787 | 0 | return false; |
1788 | 0 | } |
1789 | 0 | if (cparams.lossy_palette) { |
1790 | 0 | return false; |
1791 | 0 | } |
1792 | 0 | if (cparams.max_error_mode) { |
1793 | 0 | return false; |
1794 | 0 | } |
1795 | | // Progressive lossless uses Local MA trees, but requires a full |
1796 | | // buffer to compress well, so no special check. |
1797 | 0 | if (!cparams.ModularPartIsLossless() || cparams.responsive > 0) { |
1798 | 0 | if (metadata.m.num_extra_channels > 0 || cparams.modular_mode) { |
1799 | 0 | return false; |
1800 | 0 | } |
1801 | 0 | } |
1802 | 0 | ColorTransform ok_color_transform = |
1803 | 0 | cparams.modular_mode ? ColorTransform::kNone : ColorTransform::kXYB; |
1804 | 0 | if (cparams.color_transform != ok_color_transform) { |
1805 | 0 | return false; |
1806 | 0 | } |
1807 | 0 | return true; |
1808 | 0 | } |
1809 | | |
1810 | | Status ComputePermutationForStreaming(size_t xsize, size_t ysize, |
1811 | | size_t group_size, size_t num_passes, |
1812 | | std::vector<coeff_order_t>& permutation, |
1813 | 0 | std::vector<size_t>& dc_group_order) { |
1814 | | // This is only valid in VarDCT mode, otherwise there can be group shift. |
1815 | 0 | const size_t dc_group_size = group_size * kBlockDim; |
1816 | 0 | const size_t group_xsize = DivCeil(xsize, group_size); |
1817 | 0 | const size_t group_ysize = DivCeil(ysize, group_size); |
1818 | 0 | const size_t dc_group_xsize = DivCeil(xsize, dc_group_size); |
1819 | 0 | const size_t dc_group_ysize = DivCeil(ysize, dc_group_size); |
1820 | 0 | const size_t num_groups = group_xsize * group_ysize; |
1821 | 0 | const size_t num_dc_groups = dc_group_xsize * dc_group_ysize; |
1822 | 0 | const size_t num_sections = 2 + num_dc_groups + num_passes * num_groups; |
1823 | 0 | permutation.resize(num_sections); |
1824 | 0 | size_t new_ix = 0; |
1825 | | // DC Global is first |
1826 | 0 | permutation[0] = new_ix++; |
1827 | | // TODO(szabadka) Change the dc group order to center-first. |
1828 | 0 | for (size_t dc_y = 0; dc_y < dc_group_ysize; ++dc_y) { |
1829 | 0 | for (size_t dc_x = 0; dc_x < dc_group_xsize; ++dc_x) { |
1830 | 0 | size_t dc_ix = dc_y * dc_group_xsize + dc_x; |
1831 | 0 | dc_group_order.push_back(dc_ix); |
1832 | 0 | permutation[1 + dc_ix] = new_ix++; |
1833 | 0 | size_t ac_y0 = dc_y * kBlockDim; |
1834 | 0 | size_t ac_x0 = dc_x * kBlockDim; |
1835 | 0 | size_t ac_y1 = std::min<size_t>(group_ysize, ac_y0 + kBlockDim); |
1836 | 0 | size_t ac_x1 = std::min<size_t>(group_xsize, ac_x0 + kBlockDim); |
1837 | 0 | for (size_t pass = 0; pass < num_passes; ++pass) { |
1838 | 0 | for (size_t ac_y = ac_y0; ac_y < ac_y1; ++ac_y) { |
1839 | 0 | for (size_t ac_x = ac_x0; ac_x < ac_x1; ++ac_x) { |
1840 | 0 | size_t group_ix = ac_y * group_xsize + ac_x; |
1841 | 0 | size_t old_ix = |
1842 | 0 | AcGroupIndex(pass, group_ix, num_groups, num_dc_groups); |
1843 | 0 | permutation[old_ix] = new_ix++; |
1844 | 0 | } |
1845 | 0 | } |
1846 | 0 | } |
1847 | 0 | } |
1848 | 0 | } |
1849 | | // AC Global is last |
1850 | 0 | permutation[1 + num_dc_groups] = new_ix++; |
1851 | 0 | JXL_ENSURE(new_ix == num_sections); |
1852 | 0 | return true; |
1853 | 0 | } |
1854 | | |
1855 | | constexpr size_t kGroupSizeOffset[4] = { |
1856 | | static_cast<size_t>(0), |
1857 | | static_cast<size_t>(1024), |
1858 | | static_cast<size_t>(17408), |
1859 | | static_cast<size_t>(4211712), |
1860 | | }; |
1861 | | constexpr size_t kTOCBits[4] = {12, 16, 24, 32}; |
1862 | | |
1863 | 0 | size_t TOCBucket(size_t group_size) { |
1864 | 0 | size_t bucket = 0; |
1865 | 0 | while (bucket < 3 && group_size >= kGroupSizeOffset[bucket + 1]) ++bucket; |
1866 | 0 | return bucket; |
1867 | 0 | } |
1868 | | |
1869 | 0 | size_t TOCSize(const std::vector<size_t>& group_sizes) { |
1870 | 0 | size_t toc_bits = 0; |
1871 | 0 | for (size_t group_size : group_sizes) { |
1872 | 0 | toc_bits += kTOCBits[TOCBucket(group_size)]; |
1873 | 0 | } |
1874 | 0 | return (toc_bits + 7) / 8; |
1875 | 0 | } |
1876 | | |
1877 | | StatusOr<PaddedBytes> EncodeTOC(JxlMemoryManager* memory_manager, |
1878 | | const std::vector<size_t>& group_sizes, |
1879 | 0 | AuxOut* aux_out) { |
1880 | 0 | BitWriter writer{memory_manager}; |
1881 | 0 | JXL_RETURN_IF_ERROR(writer.WithMaxBits( |
1882 | 0 | 32 * group_sizes.size(), LayerType::Toc, aux_out, [&]() -> Status { |
1883 | 0 | for (size_t group_size : group_sizes) { |
1884 | 0 | JXL_RETURN_IF_ERROR(U32Coder::Write(kTocDist, group_size, &writer)); |
1885 | 0 | } |
1886 | 0 | writer.ZeroPadToByte(); // before first group |
1887 | 0 | return true; |
1888 | 0 | })); |
1889 | 0 | return std::move(writer).TakeBytes(); |
1890 | 0 | } |
1891 | | |
1892 | | Status ComputeGroupDataOffset(size_t frame_header_size, size_t dc_global_size, |
1893 | | size_t num_sections, size_t& min_dc_global_size, |
1894 | 0 | size_t& group_offset) { |
1895 | 0 | size_t max_toc_bits = (num_sections - 1) * 32; |
1896 | 0 | size_t min_toc_bits = (num_sections - 1) * 12; |
1897 | 0 | size_t max_padding = (max_toc_bits - min_toc_bits + 7) / 8; |
1898 | 0 | min_dc_global_size = dc_global_size; |
1899 | 0 | size_t dc_global_bucket = TOCBucket(min_dc_global_size); |
1900 | 0 | while (TOCBucket(min_dc_global_size + max_padding) > dc_global_bucket) { |
1901 | 0 | dc_global_bucket = TOCBucket(min_dc_global_size + max_padding); |
1902 | 0 | min_dc_global_size = kGroupSizeOffset[dc_global_bucket]; |
1903 | 0 | } |
1904 | 0 | JXL_ENSURE(TOCBucket(min_dc_global_size) == dc_global_bucket); |
1905 | 0 | JXL_ENSURE(TOCBucket(min_dc_global_size + max_padding) == dc_global_bucket); |
1906 | 0 | max_toc_bits += kTOCBits[dc_global_bucket]; |
1907 | 0 | size_t max_toc_size = (max_toc_bits + 7) / 8; |
1908 | 0 | group_offset = frame_header_size + max_toc_size + min_dc_global_size; |
1909 | 0 | return true; |
1910 | 0 | } |
1911 | | |
1912 | | size_t ComputeDcGlobalPadding(const std::vector<size_t>& group_sizes, |
1913 | | size_t frame_header_size, |
1914 | | size_t group_data_offset, |
1915 | 0 | size_t min_dc_global_size) { |
1916 | 0 | std::vector<size_t> new_group_sizes = group_sizes; |
1917 | 0 | new_group_sizes[0] = min_dc_global_size; |
1918 | 0 | size_t toc_size = TOCSize(new_group_sizes); |
1919 | 0 | size_t actual_offset = frame_header_size + toc_size + group_sizes[0]; |
1920 | 0 | return group_data_offset - actual_offset; |
1921 | 0 | } |
1922 | | |
1923 | | Status OutputGroups(std::vector<std::unique_ptr<BitWriter>>&& group_codes, |
1924 | | std::vector<size_t>* group_sizes, |
1925 | 0 | JxlEncoderOutputProcessorWrapper* output_processor) { |
1926 | 0 | JXL_ENSURE(group_codes.size() >= 4); |
1927 | 0 | { |
1928 | 0 | PaddedBytes dc_group = std::move(*group_codes[1]).TakeBytes(); |
1929 | 0 | group_sizes->push_back(dc_group.size()); |
1930 | 0 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_group)); |
1931 | 0 | } |
1932 | 0 | for (size_t i = 3; i < group_codes.size(); ++i) { |
1933 | 0 | PaddedBytes ac_group = std::move(*group_codes[i]).TakeBytes(); |
1934 | 0 | group_sizes->push_back(ac_group.size()); |
1935 | 0 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_group)); |
1936 | 0 | } |
1937 | 0 | return true; |
1938 | 0 | } |
1939 | | |
1940 | 0 | void RemoveUnusedHistograms(EntropyEncodingData& codes) { |
1941 | 0 | std::vector<int> remap(256, -1); |
1942 | 0 | std::vector<uint8_t> inv_remap; |
1943 | 0 | for (uint8_t& context : codes.context_map) { |
1944 | 0 | const uint8_t histo_ix = context; |
1945 | 0 | if (remap[histo_ix] == -1) { |
1946 | 0 | remap[histo_ix] = inv_remap.size(); |
1947 | 0 | inv_remap.push_back(histo_ix); |
1948 | 0 | } |
1949 | 0 | context = remap[histo_ix]; |
1950 | 0 | } |
1951 | 0 | EntropyEncodingData new_codes; |
1952 | 0 | new_codes.use_prefix_code = codes.use_prefix_code; |
1953 | 0 | new_codes.lz77 = codes.lz77; |
1954 | 0 | new_codes.context_map = std::move(codes.context_map); |
1955 | 0 | for (uint8_t histo_idx : inv_remap) { |
1956 | 0 | new_codes.encoding_info.emplace_back( |
1957 | 0 | std::move(codes.encoding_info[histo_idx])); |
1958 | 0 | new_codes.uint_config.emplace_back(codes.uint_config[histo_idx]); |
1959 | 0 | new_codes.encoded_histograms.emplace_back( |
1960 | 0 | std::move(codes.encoded_histograms[histo_idx])); |
1961 | 0 | } |
1962 | 0 | codes = std::move(new_codes); |
1963 | 0 | } |
1964 | | |
1965 | | Status OutputAcGlobal(PassesEncoderState& enc_state, |
1966 | | const FrameDimensions& frame_dim, |
1967 | | std::vector<size_t>* group_sizes, |
1968 | | JxlEncoderOutputProcessorWrapper* output_processor, |
1969 | 0 | AuxOut* aux_out) { |
1970 | 0 | JXL_ENSURE(frame_dim.num_groups > 1); |
1971 | 0 | JxlMemoryManager* memory_manager = enc_state.memory_manager(); |
1972 | 0 | BitWriter writer{memory_manager}; |
1973 | 0 | { |
1974 | 0 | size_t num_histo_bits = CeilLog2Nonzero(frame_dim.num_groups); |
1975 | 0 | JXL_RETURN_IF_ERROR( |
1976 | 0 | writer.WithMaxBits(num_histo_bits + 1, LayerType::Ac, aux_out, [&] { |
1977 | 0 | writer.Write(1, 1); // default dequant matrices |
1978 | 0 | writer.Write(num_histo_bits, frame_dim.num_dc_groups - 1); |
1979 | 0 | return true; |
1980 | 0 | })); |
1981 | 0 | } |
1982 | 0 | const PassesSharedState& shared = enc_state.shared; |
1983 | 0 | for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) { |
1984 | | // Encode coefficient orders. |
1985 | 0 | size_t order_bits = 0; |
1986 | 0 | JXL_RETURN_IF_ERROR( |
1987 | 0 | U32Coder::CanEncode(kOrderEnc, enc_state.used_orders[i], &order_bits)); |
1988 | 0 | JXL_RETURN_IF_ERROR( |
1989 | 0 | writer.WithMaxBits(order_bits, LayerType::Order, aux_out, [&] { |
1990 | 0 | return U32Coder::Write(kOrderEnc, enc_state.used_orders[i], &writer); |
1991 | 0 | })); |
1992 | 0 | JXL_RETURN_IF_ERROR( |
1993 | 0 | EncodeCoeffOrders(enc_state.used_orders[i], |
1994 | 0 | &shared.coeff_orders[i * shared.coeff_order_size], |
1995 | 0 | &writer, LayerType::Order, aux_out)); |
1996 | | // Fix up context map and entropy codes to remove any fix histograms that |
1997 | | // were not selected by clustering. |
1998 | 0 | RemoveUnusedHistograms(enc_state.passes[i].codes); |
1999 | 0 | JXL_RETURN_IF_ERROR(EncodeHistograms(enc_state.passes[i].codes, &writer, |
2000 | 0 | LayerType::Ac, aux_out)); |
2001 | 0 | } |
2002 | 0 | JXL_RETURN_IF_ERROR(writer.WithMaxBits(8, LayerType::Ac, aux_out, [&] { |
2003 | 0 | writer.ZeroPadToByte(); // end of group. |
2004 | 0 | return true; |
2005 | 0 | })); |
2006 | 0 | PaddedBytes ac_global = std::move(writer).TakeBytes(); |
2007 | 0 | group_sizes->push_back(ac_global.size()); |
2008 | 0 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_global)); |
2009 | 0 | return true; |
2010 | 0 | } |
2011 | | |
2012 | | JXL_NOINLINE Status EncodeFrameStreaming( |
2013 | | JxlMemoryManager* memory_manager, const CompressParams& cparams, |
2014 | | const FrameInfo& frame_info, const CodecMetadata* metadata, |
2015 | | JxlEncoderChunkedFrameAdapter& frame_data, const JxlCmsInterface& cms, |
2016 | | ThreadPool* pool, JxlEncoderOutputProcessorWrapper* output_processor, |
2017 | 0 | AuxOut* aux_out) { |
2018 | 0 | auto enc_state = jxl::make_unique<PassesEncoderState>(memory_manager); |
2019 | 0 | SetProgressiveMode(cparams, &enc_state->progressive_splitter); |
2020 | 0 | FrameHeader frame_header(metadata); |
2021 | 0 | std::unique_ptr<jpeg::JPEGData> jpeg_data; |
2022 | 0 | if (frame_data.IsJPEG()) { |
2023 | 0 | jpeg_data = frame_data.TakeJPEGData(); |
2024 | 0 | JXL_ENSURE(jpeg_data); |
2025 | 0 | } |
2026 | 0 | JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize, |
2027 | 0 | cparams, enc_state->progressive_splitter, |
2028 | 0 | frame_info, jpeg_data.get(), true, |
2029 | 0 | &frame_header)); |
2030 | 0 | const size_t num_passes = enc_state->progressive_splitter.GetNumPasses(); |
2031 | 0 | JXL_ASSIGN_OR_RETURN( |
2032 | 0 | auto enc_modular, |
2033 | 0 | ModularFrameEncoder::Create(memory_manager, frame_header, cparams, true)); |
2034 | 0 | std::vector<coeff_order_t> permutation; |
2035 | 0 | std::vector<size_t> dc_group_order; |
2036 | 0 | size_t group_size = frame_header.ToFrameDimensions().group_dim; |
2037 | 0 | JXL_RETURN_IF_ERROR(ComputePermutationForStreaming( |
2038 | 0 | frame_data.xsize, frame_data.ysize, group_size, num_passes, permutation, |
2039 | 0 | dc_group_order)); |
2040 | 0 | enc_state->shared.num_histograms = dc_group_order.size(); |
2041 | 0 | size_t dc_group_size = group_size * kBlockDim; |
2042 | 0 | size_t dc_group_xsize = DivCeil(frame_data.xsize, dc_group_size); |
2043 | 0 | size_t min_dc_global_size = 0; |
2044 | 0 | size_t group_data_offset = 0; |
2045 | 0 | PaddedBytes frame_header_bytes{memory_manager}; |
2046 | 0 | PaddedBytes dc_global_bytes{memory_manager}; |
2047 | 0 | std::vector<size_t> group_sizes; |
2048 | 0 | size_t start_pos = output_processor->CurrentPosition(); |
2049 | 0 | for (size_t i = 0; i < dc_group_order.size(); ++i) { |
2050 | 0 | size_t dc_ix = dc_group_order[i]; |
2051 | 0 | size_t dc_y = dc_ix / dc_group_xsize; |
2052 | 0 | size_t dc_x = dc_ix % dc_group_xsize; |
2053 | 0 | size_t y0 = dc_y * dc_group_size; |
2054 | 0 | size_t x0 = dc_x * dc_group_size; |
2055 | 0 | size_t ysize = std::min<size_t>(dc_group_size, frame_data.ysize - y0); |
2056 | 0 | size_t xsize = std::min<size_t>(dc_group_size, frame_data.xsize - x0); |
2057 | 0 | size_t group_xsize = DivCeil(xsize, group_size); |
2058 | 0 | size_t group_ysize = DivCeil(ysize, group_size); |
2059 | 0 | JXL_DEBUG_V(2, |
2060 | 0 | "Encoding DC group #%" PRIuS " dc_y = %" PRIuS " dc_x = %" PRIuS |
2061 | 0 | " (x0, y0) = (%" PRIuS ", %" PRIuS ") (xsize, ysize) = (%" PRIuS |
2062 | 0 | ", %" PRIuS ")", |
2063 | 0 | dc_ix, dc_y, dc_x, x0, y0, xsize, ysize); |
2064 | 0 | enc_state->streaming_mode = true; |
2065 | 0 | enc_state->initialize_global_state = (i == 0); |
2066 | 0 | enc_state->dc_group_index = dc_ix; |
2067 | 0 | enc_state->histogram_idx = |
2068 | 0 | std::vector<size_t>(group_xsize * group_ysize, i); |
2069 | 0 | std::vector<std::unique_ptr<BitWriter>> group_codes; |
2070 | 0 | JXL_RETURN_IF_ERROR(ComputeEncodingData( |
2071 | 0 | cparams, frame_info, metadata, frame_data, jpeg_data.get(), x0, y0, |
2072 | 0 | xsize, ysize, cms, pool, frame_header, *enc_modular, *enc_state, |
2073 | 0 | &group_codes, aux_out)); |
2074 | 0 | JXL_ENSURE(enc_state->special_frames.empty()); |
2075 | 0 | if (i == 0) { |
2076 | 0 | BitWriter writer{memory_manager}; |
2077 | 0 | JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out)); |
2078 | 0 | JXL_RETURN_IF_ERROR( |
2079 | 0 | writer.WithMaxBits(8, LayerType::Header, aux_out, [&]() -> Status { |
2080 | 0 | writer.Write(1, 1); // write permutation |
2081 | 0 | JXL_RETURN_IF_ERROR(EncodePermutation( |
2082 | 0 | permutation.data(), /*skip=*/0, permutation.size(), &writer, |
2083 | 0 | LayerType::Header, aux_out)); |
2084 | 0 | writer.ZeroPadToByte(); |
2085 | 0 | return true; |
2086 | 0 | })); |
2087 | 0 | frame_header_bytes = std::move(writer).TakeBytes(); |
2088 | 0 | dc_global_bytes = std::move(*group_codes[0]).TakeBytes(); |
2089 | 0 | JXL_RETURN_IF_ERROR(ComputeGroupDataOffset( |
2090 | 0 | frame_header_bytes.size(), dc_global_bytes.size(), permutation.size(), |
2091 | 0 | min_dc_global_size, group_data_offset)); |
2092 | 0 | JXL_DEBUG_V(2, "Frame header size: %" PRIuS, frame_header_bytes.size()); |
2093 | 0 | JXL_DEBUG_V(2, "DC global size: %" PRIuS ", min size for TOC: %" PRIuS, |
2094 | 0 | dc_global_bytes.size(), min_dc_global_size); |
2095 | 0 | JXL_DEBUG_V(2, "Num groups: %" PRIuS " group data offset: %" PRIuS, |
2096 | 0 | permutation.size(), group_data_offset); |
2097 | 0 | group_sizes.push_back(dc_global_bytes.size()); |
2098 | 0 | JXL_RETURN_IF_ERROR( |
2099 | 0 | output_processor->Seek(start_pos + group_data_offset)); |
2100 | 0 | } |
2101 | 0 | JXL_RETURN_IF_ERROR( |
2102 | 0 | OutputGroups(std::move(group_codes), &group_sizes, output_processor)); |
2103 | 0 | } |
2104 | 0 | if (frame_header.encoding == FrameEncoding::kVarDCT) { |
2105 | 0 | JXL_RETURN_IF_ERROR( |
2106 | 0 | OutputAcGlobal(*enc_state, frame_header.ToFrameDimensions(), |
2107 | 0 | &group_sizes, output_processor, aux_out)); |
2108 | 0 | } else { |
2109 | 0 | group_sizes.push_back(0); |
2110 | 0 | } |
2111 | 0 | JXL_ENSURE(group_sizes.size() == permutation.size()); |
2112 | 0 | size_t end_pos = output_processor->CurrentPosition(); |
2113 | 0 | JXL_RETURN_IF_ERROR(output_processor->Seek(start_pos)); |
2114 | 0 | size_t padding_size = |
2115 | 0 | ComputeDcGlobalPadding(group_sizes, frame_header_bytes.size(), |
2116 | 0 | group_data_offset, min_dc_global_size); |
2117 | 0 | group_sizes[0] += padding_size; |
2118 | 0 | JXL_ASSIGN_OR_RETURN(PaddedBytes toc_bytes, |
2119 | 0 | EncodeTOC(memory_manager, group_sizes, aux_out)); |
2120 | 0 | std::vector<uint8_t> padding_bytes(padding_size); |
2121 | 0 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_header_bytes)); |
2122 | 0 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, toc_bytes)); |
2123 | 0 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_global_bytes)); |
2124 | 0 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, padding_bytes)); |
2125 | 0 | JXL_DEBUG_V(2, "TOC size: %" PRIuS " padding bytes after DC global: %" PRIuS, |
2126 | 0 | toc_bytes.size(), padding_size); |
2127 | 0 | JXL_ENSURE(output_processor->CurrentPosition() == |
2128 | 0 | start_pos + group_data_offset); |
2129 | 0 | JXL_RETURN_IF_ERROR(output_processor->Seek(end_pos)); |
2130 | 0 | return true; |
2131 | 0 | } |
2132 | | |
2133 | | Status EncodeFrameOneShot(JxlMemoryManager* memory_manager, |
2134 | | const CompressParams& cparams, |
2135 | | const FrameInfo& frame_info, |
2136 | | const CodecMetadata* metadata, |
2137 | | JxlEncoderChunkedFrameAdapter& frame_data, |
2138 | | const JxlCmsInterface& cms, ThreadPool* pool, |
2139 | | JxlEncoderOutputProcessorWrapper* output_processor, |
2140 | 283 | AuxOut* aux_out) { |
2141 | 283 | auto enc_state = jxl::make_unique<PassesEncoderState>(memory_manager); |
2142 | 283 | SetProgressiveMode(cparams, &enc_state->progressive_splitter); |
2143 | 283 | FrameHeader frame_header(metadata); |
2144 | 283 | std::unique_ptr<jpeg::JPEGData> jpeg_data; |
2145 | 283 | if (frame_data.IsJPEG()) { |
2146 | 0 | jpeg_data = frame_data.TakeJPEGData(); |
2147 | 0 | JXL_ENSURE(jpeg_data); |
2148 | 0 | } |
2149 | 283 | JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize, |
2150 | 283 | cparams, enc_state->progressive_splitter, |
2151 | 283 | frame_info, jpeg_data.get(), false, |
2152 | 283 | &frame_header)); |
2153 | 283 | const size_t num_passes = enc_state->progressive_splitter.GetNumPasses(); |
2154 | 283 | JXL_ASSIGN_OR_RETURN(auto enc_modular, |
2155 | 283 | ModularFrameEncoder::Create(memory_manager, frame_header, |
2156 | 283 | cparams, false)); |
2157 | 283 | std::vector<std::unique_ptr<BitWriter>> group_codes; |
2158 | 283 | JXL_RETURN_IF_ERROR(ComputeEncodingData( |
2159 | 283 | cparams, frame_info, metadata, frame_data, jpeg_data.get(), 0, 0, |
2160 | 283 | frame_data.xsize, frame_data.ysize, cms, pool, frame_header, *enc_modular, |
2161 | 283 | *enc_state, &group_codes, aux_out)); |
2162 | | |
2163 | 283 | BitWriter writer{memory_manager}; |
2164 | 283 | JXL_RETURN_IF_ERROR(writer.AppendByteAligned(enc_state->special_frames)); |
2165 | 283 | JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out)); |
2166 | | |
2167 | 283 | std::vector<coeff_order_t> permutation; |
2168 | 283 | JXL_RETURN_IF_ERROR(PermuteGroups(cparams, enc_state->shared.frame_dim, |
2169 | 283 | num_passes, &permutation, &group_codes)); |
2170 | | |
2171 | 283 | JXL_RETURN_IF_ERROR( |
2172 | 283 | WriteGroupOffsets(group_codes, permutation, &writer, aux_out)); |
2173 | | |
2174 | 283 | JXL_RETURN_IF_ERROR(writer.AppendByteAligned(group_codes)); |
2175 | 283 | PaddedBytes frame_bytes = std::move(writer).TakeBytes(); |
2176 | 283 | JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_bytes)); |
2177 | | |
2178 | 283 | return true; |
2179 | 283 | } |
2180 | | |
2181 | | } // namespace |
2182 | | |
2183 | | std::vector<CompressParams> TectonicPlateSettingsLessPalette( |
2184 | 0 | const CompressParams& cparams_orig) { |
2185 | 0 | std::vector<CompressParams> all_params; |
2186 | 0 | CompressParams cparams_attempt = cparams_orig; |
2187 | 0 | cparams_attempt.speed_tier = SpeedTier::kGlacier; |
2188 | |
|
2189 | 0 | cparams_attempt.options.max_properties = 4; |
2190 | 0 | cparams_attempt.options.nb_repeats = 1.0f; |
2191 | 0 | cparams_attempt.modular_group_size_shift = 0; |
2192 | 0 | cparams_attempt.channel_colors_percent = 0; |
2193 | 0 | cparams_attempt.options.predictor = Predictor::Variable; |
2194 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2195 | 0 | cparams_attempt.palette_colors = 1024; |
2196 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2197 | 0 | cparams_attempt.patches = Override::kDefault; |
2198 | 0 | all_params.push_back(cparams_attempt); |
2199 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2200 | 0 | cparams_attempt.modular_group_size_shift = 1; |
2201 | 0 | cparams_attempt.palette_colors = 0; |
2202 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 0; |
2203 | 0 | all_params.push_back(cparams_attempt); |
2204 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2205 | 0 | cparams_attempt.modular_group_size_shift = 2; |
2206 | 0 | all_params.push_back(cparams_attempt); |
2207 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2208 | 0 | cparams_attempt.patches = Override::kOff; |
2209 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2210 | 0 | all_params.push_back(cparams_attempt); |
2211 | 0 | cparams_attempt.palette_colors = 1024; |
2212 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2213 | 0 | all_params.push_back(cparams_attempt); |
2214 | 0 | cparams_attempt.patches = Override::kDefault; |
2215 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2216 | 0 | all_params.push_back(cparams_attempt); |
2217 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2218 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 0; |
2219 | 0 | all_params.push_back(cparams_attempt); |
2220 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2221 | 0 | cparams_attempt.options.nb_repeats = 0.9f; |
2222 | 0 | cparams_attempt.modular_group_size_shift = 2; |
2223 | 0 | all_params.push_back(cparams_attempt); |
2224 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2225 | 0 | cparams_attempt.palette_colors = 0; |
2226 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2227 | 0 | all_params.push_back(cparams_attempt); |
2228 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2229 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 0; |
2230 | 0 | all_params.push_back(cparams_attempt); |
2231 | 0 | cparams_attempt.palette_colors = 1024; |
2232 | 0 | cparams_attempt.options.nb_repeats = 0.95f; |
2233 | 0 | cparams_attempt.modular_group_size_shift = 1; |
2234 | 0 | cparams_attempt.channel_colors_percent = 0; |
2235 | 0 | all_params.push_back(cparams_attempt); |
2236 | 0 | cparams_attempt.modular_group_size_shift = 2; |
2237 | 0 | cparams_attempt.palette_colors = 0; |
2238 | 0 | all_params.push_back(cparams_attempt); |
2239 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2240 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2241 | 0 | all_params.push_back(cparams_attempt); |
2242 | 0 | cparams_attempt.palette_colors = 1024; |
2243 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2244 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2245 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2246 | 0 | all_params.push_back(cparams_attempt); |
2247 | 0 | cparams_attempt.palette_colors = 0; |
2248 | 0 | cparams_attempt.patches = Override::kOff; |
2249 | 0 | all_params.push_back(cparams_attempt); |
2250 | 0 | cparams_attempt.patches = Override::kDefault; |
2251 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2252 | 0 | all_params.push_back(cparams_attempt); |
2253 | 0 | cparams_attempt.palette_colors = 1024; |
2254 | 0 | cparams_attempt.patches = Override::kOff; |
2255 | 0 | all_params.push_back(cparams_attempt); |
2256 | 0 | cparams_attempt.options.nb_repeats = 0.5f; |
2257 | 0 | cparams_attempt.patches = Override::kDefault; |
2258 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2259 | 0 | all_params.push_back(cparams_attempt); |
2260 | 0 | cparams_attempt.options.predictor = Predictor::Zero; |
2261 | 0 | cparams_attempt.options.nb_repeats = 0; |
2262 | 0 | cparams_attempt.channel_colors_percent = 0; |
2263 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 0; |
2264 | 0 | cparams_attempt.patches = Override::kOff; |
2265 | 0 | all_params.push_back(cparams_attempt); |
2266 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2267 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2268 | 0 | cparams_attempt.options.nb_repeats = 1.0f; |
2269 | 0 | cparams_attempt.palette_colors = 0; |
2270 | 0 | all_params.push_back(cparams_attempt); |
2271 | 0 | cparams_attempt.patches = Override::kDefault; |
2272 | 0 | cparams_attempt.options.predictor = Predictor::Best; |
2273 | 0 | all_params.push_back(cparams_attempt); |
2274 | 0 | cparams_attempt.options.nb_repeats = 0.9f; |
2275 | 0 | cparams_attempt.patches = Override::kOff; |
2276 | 0 | all_params.push_back(cparams_attempt); |
2277 | 0 | cparams_attempt.palette_colors = 1024; |
2278 | 0 | cparams_attempt.patches = Override::kDefault; |
2279 | 0 | cparams_attempt.options.predictor = Predictor::Weighted; |
2280 | 0 | cparams_attempt.options.nb_repeats = 1.0f; |
2281 | 0 | all_params.push_back(cparams_attempt); |
2282 | 0 | cparams_attempt.options.nb_repeats = 0.95f; |
2283 | 0 | cparams_attempt.modular_group_size_shift = 2; |
2284 | 0 | cparams_attempt.palette_colors = 0; |
2285 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 0; |
2286 | 0 | all_params.push_back(cparams_attempt); |
2287 | 0 | return all_params; |
2288 | 0 | } |
2289 | | |
2290 | | std::vector<CompressParams> TectonicPlateSettingsMorePalette( |
2291 | 0 | const CompressParams& cparams_orig) { |
2292 | 0 | std::vector<CompressParams> all_params; |
2293 | 0 | CompressParams cparams_attempt = cparams_orig; |
2294 | 0 | cparams_attempt.speed_tier = SpeedTier::kGlacier; |
2295 | |
|
2296 | 0 | cparams_attempt.options.max_properties = 4; |
2297 | 0 | cparams_attempt.options.nb_repeats = 1.0f; |
2298 | 0 | cparams_attempt.modular_group_size_shift = 0; |
2299 | 0 | cparams_attempt.palette_colors = 70000; |
2300 | 0 | cparams_attempt.options.predictor = Predictor::Variable; |
2301 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2302 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2303 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2304 | 0 | cparams_attempt.patches = Override::kDefault; |
2305 | 0 | all_params.push_back(cparams_attempt); |
2306 | 0 | cparams_attempt.modular_group_size_shift = 2; |
2307 | 0 | cparams_attempt.channel_colors_percent = 0; |
2308 | 0 | cparams_attempt.patches = Override::kOff; |
2309 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2310 | 0 | all_params.push_back(cparams_attempt); |
2311 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2312 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2313 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2314 | 0 | all_params.push_back(cparams_attempt); |
2315 | 0 | cparams_attempt.options.nb_repeats = 0.9f; |
2316 | 0 | all_params.push_back(cparams_attempt); |
2317 | 0 | cparams_attempt.patches = Override::kDefault; |
2318 | 0 | cparams_attempt.options.nb_repeats = 0.95f; |
2319 | 0 | cparams_attempt.modular_group_size_shift = 0; |
2320 | 0 | all_params.push_back(cparams_attempt); |
2321 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2322 | 0 | all_params.push_back(cparams_attempt); |
2323 | 0 | cparams_attempt.patches = Override::kOff; |
2324 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2325 | 0 | all_params.push_back(cparams_attempt); |
2326 | 0 | cparams_attempt.options.nb_repeats = 0.5f; |
2327 | 0 | all_params.push_back(cparams_attempt); |
2328 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2329 | 0 | cparams_attempt.options.predictor = Predictor::Zero; |
2330 | 0 | cparams_attempt.options.nb_repeats = 0; |
2331 | 0 | all_params.push_back(cparams_attempt); |
2332 | 0 | cparams_attempt.patches = Override::kDefault; |
2333 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 0; |
2334 | 0 | all_params.push_back(cparams_attempt); |
2335 | 0 | cparams_attempt.options.nb_repeats = 0.01f; |
2336 | 0 | cparams_attempt.palette_colors = 0; |
2337 | 0 | cparams_attempt.patches = Override::kOff; |
2338 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2339 | 0 | all_params.push_back(cparams_attempt); |
2340 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2341 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2342 | 0 | cparams_attempt.palette_colors = 70000; |
2343 | 0 | all_params.push_back(cparams_attempt); |
2344 | 0 | cparams_attempt.options.nb_repeats = 1.0f; |
2345 | 0 | cparams_attempt.modular_group_size_shift = 0; |
2346 | 0 | cparams_attempt.channel_colors_percent = 0; |
2347 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 0; |
2348 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2349 | 0 | all_params.push_back(cparams_attempt); |
2350 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2351 | 0 | cparams_attempt.modular_group_size_shift = 1; |
2352 | 0 | all_params.push_back(cparams_attempt); |
2353 | 0 | cparams_attempt.modular_group_size_shift = 2; |
2354 | 0 | all_params.push_back(cparams_attempt); |
2355 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2356 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2357 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2358 | 0 | all_params.push_back(cparams_attempt); |
2359 | 0 | cparams_attempt.options.nb_repeats = 0.5f; |
2360 | 0 | cparams_attempt.modular_group_size_shift = 1; |
2361 | 0 | cparams_attempt.channel_colors_percent = 0; |
2362 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2363 | 0 | all_params.push_back(cparams_attempt); |
2364 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2365 | 0 | cparams_attempt.modular_group_size_shift = 2; |
2366 | 0 | all_params.push_back(cparams_attempt); |
2367 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2368 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2369 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2370 | 0 | all_params.push_back(cparams_attempt); |
2371 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2372 | 0 | cparams_attempt.options.predictor = Predictor::Select; |
2373 | 0 | cparams_attempt.options.nb_repeats = 1.0f; |
2374 | 0 | all_params.push_back(cparams_attempt); |
2375 | 0 | return all_params; |
2376 | 0 | } |
2377 | | |
2378 | | Status EncodeFrame(JxlMemoryManager* memory_manager, |
2379 | | const CompressParams& cparams_orig, |
2380 | | const FrameInfo& frame_info, const CodecMetadata* metadata, |
2381 | | JxlEncoderChunkedFrameAdapter& frame_data, |
2382 | | const JxlCmsInterface& cms, ThreadPool* pool, |
2383 | | JxlEncoderOutputProcessorWrapper* output_processor, |
2384 | 283 | AuxOut* aux_out) { |
2385 | 283 | CompressParams cparams = cparams_orig; |
2386 | 283 | if (cparams.speed_tier == SpeedTier::kTectonicPlate && |
2387 | 283 | !cparams.IsLossless()) { |
2388 | 0 | cparams.speed_tier = SpeedTier::kGlacier; |
2389 | 0 | } |
2390 | | // Lightning mode is handled externally, so switch to Thunder mode to handle |
2391 | | // potentially weird cases. |
2392 | 283 | if (cparams.speed_tier == SpeedTier::kLightning) { |
2393 | 0 | cparams.speed_tier = SpeedTier::kThunder; |
2394 | 0 | } |
2395 | 283 | if (cparams.speed_tier == SpeedTier::kTectonicPlate) { |
2396 | | // Test palette performance to inform later trials. |
2397 | 0 | std::vector<CompressParams> all_params; |
2398 | 0 | CompressParams cparams_attempt = cparams_orig; |
2399 | 0 | cparams_attempt.speed_tier = SpeedTier::kGlacier; |
2400 | |
|
2401 | 0 | cparams_attempt.options.max_properties = 4; |
2402 | 0 | cparams_attempt.options.nb_repeats = 1.0f; |
2403 | 0 | cparams_attempt.modular_group_size_shift = 3; |
2404 | 0 | cparams_attempt.palette_colors = 0; |
2405 | 0 | cparams_attempt.options.predictor = Predictor::Variable; |
2406 | 0 | cparams_attempt.channel_colors_percent = 80.f; |
2407 | 0 | cparams_attempt.channel_colors_pre_transform_percent = 95.f; |
2408 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kDefault; |
2409 | 0 | cparams_attempt.patches = Override::kDefault; |
2410 | 0 | all_params.push_back(cparams_attempt); |
2411 | 0 | cparams_attempt.options.predictor = Predictor::Zero; |
2412 | 0 | cparams_attempt.options.nb_repeats = 0.01f; |
2413 | 0 | cparams_attempt.palette_colors = 70000; |
2414 | 0 | cparams_attempt.patches = Override::kOff; |
2415 | 0 | cparams_attempt.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
2416 | 0 | all_params.push_back(cparams_attempt); |
2417 | |
|
2418 | 0 | std::vector<size_t> size; |
2419 | 0 | size.resize(all_params.size()); |
2420 | |
|
2421 | 0 | const auto process_variant = [&](size_t task, size_t) -> Status { |
2422 | 0 | JxlEncoderOutputProcessorWrapper local_output(memory_manager); |
2423 | 0 | JXL_RETURN_IF_ERROR(EncodeFrame(memory_manager, all_params[task], |
2424 | 0 | frame_info, metadata, frame_data, cms, |
2425 | 0 | nullptr, &local_output, aux_out)); |
2426 | 0 | size[task] = local_output.CurrentPosition(); |
2427 | 0 | return true; |
2428 | 0 | }; |
2429 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, all_params.size(), |
2430 | 0 | ThreadPool::NoInit, process_variant, |
2431 | 0 | "Compress kTectonicPlate")); |
2432 | | |
2433 | 0 | std::vector<CompressParams> all_params_test = all_params; |
2434 | 0 | std::vector<size_t> size_test = size; |
2435 | 0 | size_t best_idx_test = 0; |
2436 | |
|
2437 | 0 | if (size_test[0] <= size_test[1]) { |
2438 | 0 | all_params = TectonicPlateSettingsLessPalette(cparams_orig); |
2439 | 0 | } else { |
2440 | 0 | best_idx_test = 1; |
2441 | 0 | all_params = TectonicPlateSettingsMorePalette(cparams_orig); |
2442 | 0 | } |
2443 | |
|
2444 | 0 | size.clear(); |
2445 | 0 | size.resize(all_params.size()); |
2446 | |
|
2447 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, all_params.size(), |
2448 | 0 | ThreadPool::NoInit, process_variant, |
2449 | 0 | "Compress kTectonicPlate")); |
2450 | | |
2451 | 0 | size_t best_idx = 0; |
2452 | 0 | for (size_t i = 1; i < all_params.size(); i++) { |
2453 | 0 | if (size[best_idx] > size[i]) { |
2454 | 0 | best_idx = i; |
2455 | 0 | } |
2456 | 0 | } |
2457 | 0 | if (size[best_idx] < size_test[best_idx_test]) { |
2458 | 0 | cparams = all_params[best_idx]; |
2459 | 0 | } else { |
2460 | 0 | cparams = all_params_test[best_idx_test]; |
2461 | 0 | } |
2462 | 0 | } |
2463 | | |
2464 | 283 | JXL_RETURN_IF_ERROR(ParamsPostInit(&cparams)); |
2465 | | |
2466 | 283 | if (cparams.butteraugli_distance < 0) { |
2467 | 0 | return JXL_FAILURE("Expected non-negative distance"); |
2468 | 0 | } |
2469 | | |
2470 | 283 | if (cparams.progressive_dc < 0) { |
2471 | 186 | if (cparams.progressive_dc != -1) { |
2472 | 0 | return JXL_FAILURE("Invalid progressive DC setting value (%d)", |
2473 | 0 | cparams.progressive_dc); |
2474 | 0 | } |
2475 | 186 | cparams.progressive_dc = 0; |
2476 | 186 | } |
2477 | 283 | if (cparams.ec_resampling < cparams.resampling) { |
2478 | 0 | cparams.ec_resampling = cparams.resampling; |
2479 | 0 | } |
2480 | 283 | if (cparams.resampling > 1 || frame_info.is_preview) { |
2481 | 0 | cparams.progressive_dc = 0; |
2482 | 0 | } |
2483 | | |
2484 | 283 | if (frame_info.dc_level + cparams.progressive_dc > 4) { |
2485 | 0 | return JXL_FAILURE("Too many levels of progressive DC"); |
2486 | 0 | } |
2487 | | |
2488 | 283 | if (cparams.modular_mode == false && |
2489 | 283 | cparams.butteraugli_distance < kMinButteraugliDistance) { |
2490 | 0 | return JXL_FAILURE("Butteraugli distance is too low (%f)", |
2491 | 0 | cparams.butteraugli_distance); |
2492 | 0 | } |
2493 | | |
2494 | 283 | if (frame_data.IsJPEG()) { |
2495 | 0 | cparams.gaborish = Override::kOff; |
2496 | 0 | cparams.epf = 0; |
2497 | 0 | cparams.modular_mode = false; |
2498 | 0 | } |
2499 | | |
2500 | 283 | if (frame_data.xsize == 0 || frame_data.ysize == 0) { |
2501 | 0 | return JXL_FAILURE("Empty image"); |
2502 | 0 | } |
2503 | | |
2504 | | // Assert that this metadata is correctly set up for the compression params, |
2505 | | // this should have been done by enc_file.cc |
2506 | 283 | JXL_ENSURE(metadata->m.xyb_encoded == |
2507 | 283 | (cparams.color_transform == ColorTransform::kXYB)); |
2508 | | |
2509 | 283 | if (frame_data.IsJPEG() && cparams.color_transform == ColorTransform::kXYB) { |
2510 | 0 | return JXL_FAILURE("Can't add JPEG frame to XYB codestream"); |
2511 | 0 | } |
2512 | | |
2513 | 283 | if (CanDoStreamingEncoding(cparams, frame_info, *metadata, frame_data)) { |
2514 | 0 | return EncodeFrameStreaming(memory_manager, cparams, frame_info, metadata, |
2515 | 0 | frame_data, cms, pool, output_processor, |
2516 | 0 | aux_out); |
2517 | 283 | } else { |
2518 | 283 | return EncodeFrameOneShot(memory_manager, cparams, frame_info, metadata, |
2519 | 283 | frame_data, cms, pool, output_processor, aux_out); |
2520 | 283 | } |
2521 | 283 | } |
2522 | | |
2523 | | Status EncodeFrame(JxlMemoryManager* memory_manager, |
2524 | | const CompressParams& cparams_orig, |
2525 | | const FrameInfo& frame_info, const CodecMetadata* metadata, |
2526 | | ImageBundle& ib, const JxlCmsInterface& cms, |
2527 | 97 | ThreadPool* pool, BitWriter* writer, AuxOut* aux_out) { |
2528 | 97 | JxlEncoderChunkedFrameAdapter frame_data(ib.xsize(), ib.ysize(), |
2529 | 97 | ib.extra_channels().size()); |
2530 | 97 | std::vector<uint8_t> color; |
2531 | 97 | if (ib.IsJPEG()) { |
2532 | 0 | frame_data.SetJPEGData(std::move(ib.jpeg_data)); |
2533 | 97 | } else { |
2534 | 97 | uint32_t num_channels = |
2535 | 97 | ib.IsGray() && frame_info.ib_needs_color_transform ? 1 : 3; |
2536 | 97 | size_t stride = ib.xsize() * num_channels * 4; |
2537 | 97 | color.resize(ib.ysize() * stride); |
2538 | 97 | JXL_RETURN_IF_ERROR(ConvertToExternal( |
2539 | 97 | ib, /*bits_per_sample=*/32, /*float_out=*/true, num_channels, |
2540 | 97 | JXL_NATIVE_ENDIAN, stride, pool, color.data(), color.size(), |
2541 | 97 | /*out_callback=*/{}, Orientation::kIdentity)); |
2542 | 97 | JxlPixelFormat format{num_channels, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0}; |
2543 | 97 | frame_data.SetFromBuffer(0, color.data(), color.size(), format); |
2544 | 97 | } |
2545 | 97 | for (size_t ec = 0; ec < ib.extra_channels().size(); ++ec) { |
2546 | 0 | JxlPixelFormat ec_format{1, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0}; |
2547 | 0 | size_t ec_stride = ib.xsize() * 4; |
2548 | 0 | std::vector<uint8_t> ec_data(ib.ysize() * ec_stride); |
2549 | 0 | const ImageF* channel = &ib.extra_channels()[ec]; |
2550 | 0 | JXL_RETURN_IF_ERROR(ConvertChannelsToExternal( |
2551 | 0 | &channel, 1, |
2552 | 0 | /*bits_per_sample=*/32, |
2553 | 0 | /*float_out=*/true, JXL_NATIVE_ENDIAN, ec_stride, pool, ec_data.data(), |
2554 | 0 | ec_data.size(), /*out_callback=*/{}, Orientation::kIdentity)); |
2555 | 0 | frame_data.SetFromBuffer(1 + ec, ec_data.data(), ec_data.size(), ec_format); |
2556 | 0 | } |
2557 | 97 | FrameInfo fi = frame_info; |
2558 | 97 | fi.origin = ib.origin; |
2559 | 97 | fi.blend = ib.blend; |
2560 | 97 | fi.blendmode = ib.blendmode; |
2561 | 97 | fi.duration = ib.duration; |
2562 | 97 | fi.timecode = ib.timecode; |
2563 | 97 | fi.name = ib.name; |
2564 | 97 | JxlEncoderOutputProcessorWrapper output_processor(memory_manager); |
2565 | 97 | JXL_RETURN_IF_ERROR(EncodeFrame(memory_manager, cparams_orig, fi, metadata, |
2566 | 97 | frame_data, cms, pool, &output_processor, |
2567 | 97 | aux_out)); |
2568 | 97 | JXL_RETURN_IF_ERROR(output_processor.SetFinalizedPosition()); |
2569 | 97 | std::vector<uint8_t> output; |
2570 | 97 | JXL_RETURN_IF_ERROR(output_processor.CopyOutput(output)); |
2571 | 97 | JXL_RETURN_IF_ERROR(writer->AppendByteAligned(Bytes(output))); |
2572 | 97 | return true; |
2573 | 97 | } |
2574 | | |
2575 | | } // namespace jxl |