Coverage Report

Created: 2025-06-16 07:00

/src/libjxl/lib/jxl/enc_modular.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/enc_modular.h"
7
8
#include <jxl/cms_interface.h>
9
#include <jxl/memory_manager.h>
10
#include <jxl/types.h>
11
12
#include <algorithm>
13
#include <array>
14
#include <cmath>
15
#include <cstddef>
16
#include <cstdint>
17
#include <cstdlib>
18
#include <cstring>
19
#include <limits>
20
#include <memory>
21
#include <tuple>
22
#include <utility>
23
#include <vector>
24
25
#include "lib/jxl/ac_strategy.h"
26
#include "lib/jxl/base/bits.h"
27
#include "lib/jxl/base/common.h"
28
#include "lib/jxl/base/compiler_specific.h"
29
#include "lib/jxl/base/data_parallel.h"
30
#include "lib/jxl/base/printf_macros.h"
31
#include "lib/jxl/base/rect.h"
32
#include "lib/jxl/base/status.h"
33
#include "lib/jxl/chroma_from_luma.h"
34
#include "lib/jxl/common.h"
35
#include "lib/jxl/compressed_dc.h"
36
#include "lib/jxl/dec_ans.h"
37
#include "lib/jxl/dec_modular.h"
38
#include "lib/jxl/enc_ans.h"
39
#include "lib/jxl/enc_ans_params.h"
40
#include "lib/jxl/enc_aux_out.h"
41
#include "lib/jxl/enc_bit_writer.h"
42
#include "lib/jxl/enc_cache.h"
43
#include "lib/jxl/enc_fields.h"
44
#include "lib/jxl/enc_gaborish.h"
45
#include "lib/jxl/enc_params.h"
46
#include "lib/jxl/enc_patch_dictionary.h"
47
#include "lib/jxl/enc_quant_weights.h"
48
#include "lib/jxl/fields.h"
49
#include "lib/jxl/frame_dimensions.h"
50
#include "lib/jxl/frame_header.h"
51
#include "lib/jxl/image.h"
52
#include "lib/jxl/image_metadata.h"
53
#include "lib/jxl/image_ops.h"
54
#include "lib/jxl/modular/encoding/context_predict.h"
55
#include "lib/jxl/modular/encoding/dec_ma.h"
56
#include "lib/jxl/modular/encoding/enc_encoding.h"
57
#include "lib/jxl/modular/encoding/enc_ma.h"
58
#include "lib/jxl/modular/encoding/encoding.h"
59
#include "lib/jxl/modular/encoding/ma_common.h"
60
#include "lib/jxl/modular/modular_image.h"
61
#include "lib/jxl/modular/options.h"
62
#include "lib/jxl/modular/transform/enc_transform.h"
63
#include "lib/jxl/modular/transform/transform.h"
64
#include "lib/jxl/pack_signed.h"
65
#include "lib/jxl/passes_state.h"
66
#include "lib/jxl/quant_weights.h"
67
#include "modular/options.h"
68
69
namespace jxl {
70
71
namespace {
72
// constexpr bool kPrintTree = false;
73
74
// Squeeze default quantization factors
75
// these quantization factors are for -Q 50  (other qualities simply scale the
76
// factors; things are rounded down and obviously cannot get below 1)
77
const float squeeze_quality_factor =
78
    0.35;  // for easy tweaking of the quality range (decrease this number for
79
           // higher quality)
80
const float squeeze_luma_factor =
81
    1.1;  // for easy tweaking of the balance between luma (or anything
82
          // non-chroma) and chroma (decrease this number for higher quality
83
          // luma)
84
const float squeeze_quality_factor_xyb = 4.8f;
85
const float squeeze_xyb_qtable[3][16] = {
86
    {163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16,
87
     0.08, 0.04, 0.02, 0.01, 0.005},  // Y
88
    {1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5,
89
     0.5},  // X
90
    {2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5,
91
     0.5},  // B-Y
92
};
93
94
const float squeeze_luma_qtable[16] = {163.84, 81.92, 40.96, 20.48, 10.24, 5.12,
95
                                       2.56,   1.28,  0.64,  0.32,  0.16,  0.08,
96
                                       0.04,   0.02,  0.01,  0.005};
97
// for 8-bit input, the range of YCoCg chroma is -255..255 so basically this
98
// does 4:2:0 subsampling (two most fine grained layers get quantized away)
99
const float squeeze_chroma_qtable[16] = {
100
    1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5};
101
102
// Merges the trees in `trees` using nodes that decide on stream_id, as defined
103
// by `tree_splits`.
104
Status MergeTrees(const std::vector<Tree>& trees,
105
                  const std::vector<size_t>& tree_splits, size_t begin,
106
683
                  size_t end, Tree* tree) {
107
683
  JXL_ENSURE(trees.size() + 1 == tree_splits.size());
108
683
  JXL_ENSURE(end > begin);
109
683
  JXL_ENSURE(end <= trees.size());
110
683
  if (end == begin + 1) {
111
    // Insert the tree, adding the opportune offset to all child nodes.
112
    // This will make the leaf IDs wrong, but subsequent roundtripping will fix
113
    // them.
114
483
    size_t sz = tree->size();
115
483
    tree->insert(tree->end(), trees[begin].begin(), trees[begin].end());
116
14.9k
    for (size_t i = sz; i < tree->size(); i++) {
117
14.4k
      (*tree)[i].lchild += sz;
118
14.4k
      (*tree)[i].rchild += sz;
119
14.4k
    }
120
483
    return true;
121
483
  }
122
200
  size_t mid = (begin + end) / 2;
123
200
  size_t splitval = tree_splits[mid] - 1;
124
200
  size_t cur = tree->size();
125
200
  tree->emplace_back(1 /*stream_id*/, splitval, 0, 0, Predictor::Zero, 0, 1);
126
200
  (*tree)[cur].lchild = tree->size();
127
200
  JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, mid, end, tree));
128
200
  (*tree)[cur].rchild = tree->size();
129
200
  JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, begin, mid, tree));
130
200
  return true;
131
200
}
132
133
291
void QuantizeChannel(Channel& ch, const int q) {
134
291
  if (q == 1) return;
135
0
  for (size_t y = 0; y < ch.plane.ysize(); y++) {
136
0
    pixel_type* row = ch.plane.Row(y);
137
0
    for (size_t x = 0; x < ch.plane.xsize(); x++) {
138
0
      if (row[x] < 0) {
139
0
        row[x] = -((-row[x] + q / 2) / q) * q;
140
0
      } else {
141
0
        row[x] = ((row[x] + q / 2) / q) * q;
142
0
      }
143
0
    }
144
0
  }
145
0
}
146
147
// convert binary32 float that corresponds to custom [bits]-bit float (with
148
// [exp_bits] exponent bits) to a [bits]-bit integer representation that should
149
// fit in pixel_type
150
Status float_to_int(const float* const row_in, pixel_type* const row_out,
151
                    size_t xsize, unsigned int bits, unsigned int exp_bits,
152
12.6k
                    bool fp, double dfactor) {
153
12.6k
  JXL_ENSURE(sizeof(pixel_type) * 8 >= bits);
154
12.6k
  if (!fp) {
155
12.5k
    if (bits > 22) {
156
0
      for (size_t x = 0; x < xsize; ++x) {
157
0
        row_out[x] = row_in[x] * dfactor + (row_in[x] < 0 ? -0.5 : 0.5);
158
0
      }
159
12.5k
    } else {
160
12.5k
      float factor = dfactor;
161
1.03M
      for (size_t x = 0; x < xsize; ++x) {
162
1.01M
        row_out[x] = row_in[x] * factor + (row_in[x] < 0 ? -0.5f : 0.5f);
163
1.01M
      }
164
12.5k
    }
165
12.5k
    return true;
166
12.5k
  }
167
96
  if (bits == 32 && fp) {
168
96
    JXL_ENSURE(exp_bits == 8);
169
96
    memcpy(static_cast<void*>(row_out), static_cast<const void*>(row_in),
170
96
           4 * xsize);
171
96
    return true;
172
96
  }
173
174
0
  JXL_ENSURE(bits > 0);
175
0
  int exp_bias = (1 << (exp_bits - 1)) - 1;
176
0
  int max_exp = (1 << exp_bits) - 1;
177
0
  uint32_t sign = (1u << (bits - 1));
178
0
  int mant_bits = bits - exp_bits - 1;
179
0
  int mant_shift = 23 - mant_bits;
180
0
  for (size_t x = 0; x < xsize; ++x) {
181
0
    uint32_t f;
182
0
    memcpy(&f, &row_in[x], 4);
183
0
    int signbit = (f >> 31);
184
0
    f &= 0x7fffffff;
185
0
    if (f == 0) {
186
0
      row_out[x] = (signbit ? sign : 0);
187
0
      continue;
188
0
    }
189
0
    int exp = (f >> 23) - 127;
190
0
    if (exp == 128) return JXL_FAILURE("Inf/NaN not allowed");
191
0
    int mantissa = (f & 0x007fffff);
192
    // broke up the binary32 into its parts, now reassemble into
193
    // arbitrary float
194
0
    exp += exp_bias;
195
0
    if (exp < 0) {  // will become a subnormal number
196
      // add implicit leading 1 to mantissa
197
0
      mantissa |= 0x00800000;
198
0
      if (exp < -mant_bits) {
199
0
        return JXL_FAILURE(
200
0
            "Invalid float number: %g cannot be represented with %i "
201
0
            "exp_bits and %i mant_bits (exp %i)",
202
0
            row_in[x], exp_bits, mant_bits, exp);
203
0
      }
204
0
      mantissa >>= 1 - exp;
205
0
      exp = 0;
206
0
    }
207
    // exp should be representable in exp_bits, otherwise input was
208
    // invalid
209
0
    if (exp > max_exp) return JXL_FAILURE("Invalid float exponent");
210
0
    if (mantissa & ((1 << mant_shift) - 1)) {
211
0
      return JXL_FAILURE("%g is losing precision (mant: %x)", row_in[x],
212
0
                         mantissa);
213
0
    }
214
0
    mantissa >>= mant_shift;
215
0
    f = (signbit ? sign : 0);
216
0
    f |= (exp << mant_bits);
217
0
    f |= mantissa;
218
0
    row_out[x] = static_cast<pixel_type>(f);
219
0
  }
220
0
  return true;
221
0
}
222
223
0
float EstimateWPCost(const Image& img, size_t i) {
224
0
  size_t extra_bits = 0;
225
0
  float histo_cost = 0;
226
0
  HybridUintConfig config;
227
0
  int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31,
228
0
                       -23,  -15,  -11,  -7,   -4,   -3,  -1,  0,   1,
229
0
                       3,    5,    7,    11,   15,   23,  31,  47,  63,
230
0
                       95,   127,  191,  255,  392,  500};
231
0
  constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
232
0
  Histogram histo[nc] = {};
233
0
  weighted::Header wp_header;
234
0
  PredictorMode(i, &wp_header);
235
0
  for (const Channel& ch : img.channel) {
236
0
    const intptr_t onerow = ch.plane.PixelsPerRow();
237
0
    weighted::State wp_state(wp_header, ch.w, ch.h);
238
0
    Properties properties(1);
239
0
    for (size_t y = 0; y < ch.h; y++) {
240
0
      const pixel_type* JXL_RESTRICT r = ch.Row(y);
241
0
      for (size_t x = 0; x < ch.w; x++) {
242
0
        size_t offset = 0;
243
0
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
244
0
        pixel_type_w top = (y ? *(r + x - onerow) : left);
245
0
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
246
0
        pixel_type_w topright =
247
0
            (x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top);
248
0
        pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
249
0
        pixel_type guess = wp_state.Predict</*compute_properties=*/true>(
250
0
            x, y, ch.w, top, left, topright, topleft, toptop, &properties,
251
0
            offset);
252
0
        size_t ctx = 0;
253
0
        for (int c : cutoffs) {
254
0
          ctx += (c >= properties[0]) ? 1 : 0;
255
0
        }
256
0
        pixel_type res = r[x] - guess;
257
0
        uint32_t token;
258
0
        uint32_t nbits;
259
0
        uint32_t bits;
260
0
        config.Encode(PackSigned(res), &token, &nbits, &bits);
261
0
        histo[ctx].Add(token);
262
0
        extra_bits += nbits;
263
0
        wp_state.UpdateErrors(r[x], x, y, ch.w);
264
0
      }
265
0
    }
266
0
    for (auto& h : histo) {
267
0
      histo_cost += h.ShannonEntropy();
268
0
      h.Clear();
269
0
    }
270
0
  }
271
0
  return histo_cost + extra_bits;
272
0
}
273
274
14
float EstimateCost(const Image& img) {
275
  // TODO(veluca): consider SIMDfication of this code.
276
14
  size_t extra_bits = 0;
277
14
  float histo_cost = 0;
278
14
  HybridUintConfig config;
279
14
  uint32_t cutoffs[] = {0,  1,  3,  5,   7,   11,  15,  23, 31,
280
14
                        47, 63, 95, 127, 191, 255, 392, 500};
281
14
  constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
282
14
  Histogram histo[nc] = {};
283
14
  for (const Channel& ch : img.channel) {
284
14
    const intptr_t onerow = ch.plane.PixelsPerRow();
285
370
    for (size_t y = 0; y < ch.h; y++) {
286
356
      const pixel_type* JXL_RESTRICT r = ch.Row(y);
287
19.2k
      for (size_t x = 0; x < ch.w; x++) {
288
18.8k
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
289
18.8k
        pixel_type_w top = (y ? *(r + x - onerow) : left);
290
18.8k
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
291
18.8k
        size_t max_diff =
292
18.8k
            std::max({left, top, topleft}) - std::min({left, top, topleft});
293
18.8k
        size_t ctx = 0;
294
320k
        for (uint32_t c : cutoffs) {
295
320k
          ctx += (c > max_diff) ? 1 : 0;
296
320k
        }
297
18.8k
        pixel_type res = r[x] - ClampedGradient(top, left, topleft);
298
18.8k
        uint32_t token;
299
18.8k
        uint32_t nbits;
300
18.8k
        uint32_t bits;
301
18.8k
        config.Encode(PackSigned(res), &token, &nbits, &bits);
302
18.8k
        histo[ctx].Add(token);
303
18.8k
        extra_bits += nbits;
304
18.8k
      }
305
356
    }
306
252
    for (auto& h : histo) {
307
252
      histo_cost += h.ShannonEntropy();
308
252
      h.Clear();
309
252
    }
310
14
  }
311
14
  return histo_cost + extra_bits;
312
14
}
313
314
bool do_transform(Image& image, const Transform& tr,
315
                  const weighted::Header& wp_header,
316
14
                  jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) {
317
14
  Transform t = tr;
318
14
  bool did_it = true;
319
14
  if (force_jxlart) {
320
0
    if (!t.MetaApply(image)) return false;
321
14
  } else {
322
14
    did_it = TransformForward(t, image, wp_header, pool);
323
14
  }
324
14
  if (did_it) image.transform.push_back(t);
325
14
  return did_it;
326
14
}
327
328
bool maybe_do_transform(Image& image, const Transform& tr,
329
                        const CompressParams& cparams,
330
                        const weighted::Header& wp_header, float cost_before,
331
                        jxl::ThreadPool* pool = nullptr,
332
14
                        bool force_jxlart = false) {
333
14
  if (force_jxlart || cparams.speed_tier >= SpeedTier::kSquirrel) {
334
14
    return do_transform(image, tr, wp_header, pool, force_jxlart);
335
14
  }
336
0
  bool did_it = do_transform(image, tr, wp_header, pool);
337
0
  if (did_it) {
338
0
    float cost_after = EstimateCost(image);
339
0
    JXL_DEBUG_V(7, "Cost before: %f  cost after: %f", cost_before, cost_after);
340
0
    if (cost_after > cost_before) {
341
0
      Transform t = image.transform.back();
342
0
      JXL_RETURN_IF_ERROR(t.Inverse(image, wp_header, pool));
343
0
      image.transform.pop_back();
344
0
      did_it = false;
345
0
    }
346
0
  }
347
0
  return did_it;
348
0
}
349
350
void try_palettes(Image& gi, int& max_bitdepth, int& maxval,
351
                  const CompressParams& cparams_, float channel_colors_percent,
352
111
                  jxl::ThreadPool* pool = nullptr) {
353
111
  float cost_before = 0.f;
354
111
  size_t did_palette = 0;
355
111
  float nb_pixels = gi.channel[0].w * gi.channel[0].h;
356
111
  int nb_chans = gi.channel.size() - gi.nb_meta_channels;
357
  // arbitrary estimate: 4.8 bpp for 8-bit RGB
358
111
  float arbitrary_bpp_estimate = 0.2f * gi.bitdepth * nb_chans;
359
360
111
  if (cparams_.palette_colors != 0 || cparams_.lossy_palette) {
361
    // when not estimating, assume some arbitrary bpp
362
14
    cost_before = cparams_.speed_tier <= SpeedTier::kSquirrel
363
14
                      ? EstimateCost(gi)
364
14
                      : nb_pixels * arbitrary_bpp_estimate;
365
    // all-channel palette (e.g. RGBA)
366
14
    if (nb_chans > 1) {
367
0
      Transform maybe_palette(TransformId::kPalette);
368
0
      maybe_palette.begin_c = gi.nb_meta_channels;
369
0
      maybe_palette.num_c = nb_chans;
370
      // Heuristic choice of max colors for a palette:
371
      // max_colors = nb_pixels * estimated_bpp_without_palette * 0.0005 +
372
      //              + nb_pixels / 128 + 128
373
      //       (estimated_bpp_without_palette = cost_before / nb_pixels)
374
      // Rationale: small image with large palette is not effective;
375
      // also if the entropy (estimated bpp) is low (e.g. mostly solid/gradient
376
      // areas), palette is less useful and may even be counterproductive.
377
0
      maybe_palette.nb_colors = std::min(
378
0
          static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
379
0
          std::abs(cparams_.palette_colors));
380
0
      maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
381
0
      maybe_palette.lossy_palette =
382
0
          (cparams_.lossy_palette && maybe_palette.num_c == 3);
383
0
      if (maybe_palette.lossy_palette) {
384
0
        maybe_palette.predictor = Predictor::Average4;
385
0
      }
386
      // TODO(veluca): use a custom weighted header if using the weighted
387
      // predictor.
388
0
      if (maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(),
389
0
                             cost_before, pool, cparams_.options.zero_tokens)) {
390
0
        did_palette = 1;
391
0
      };
392
0
    }
393
    // all-minus-one-channel palette (RGB with separate alpha, or CMY with
394
    // separate K)
395
14
    if (!did_palette && nb_chans > 3) {
396
0
      Transform maybe_palette_3(TransformId::kPalette);
397
0
      maybe_palette_3.begin_c = gi.nb_meta_channels;
398
0
      maybe_palette_3.num_c = nb_chans - 1;
399
0
      maybe_palette_3.nb_colors = std::min(
400
0
          static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
401
0
          std::abs(cparams_.palette_colors));
402
0
      maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
403
0
      maybe_palette_3.lossy_palette = cparams_.lossy_palette;
404
0
      if (maybe_palette_3.lossy_palette) {
405
0
        maybe_palette_3.predictor = Predictor::Average4;
406
0
      }
407
0
      if (maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(),
408
0
                             cost_before, pool, cparams_.options.zero_tokens)) {
409
0
        did_palette = 1;
410
0
      }
411
0
    }
412
14
  }
413
414
111
  if (channel_colors_percent > 0) {
415
    // single channel palette (like FLIF's ChannelCompact)
416
14
    size_t nb_channels = gi.channel.size() - gi.nb_meta_channels - did_palette;
417
14
    int orig_bitdepth = max_bitdepth;
418
14
    max_bitdepth = 0;
419
14
    if (nb_channels > 0 && (did_palette || cost_before == 0)) {
420
3
      cost_before =
421
3
          cparams_.speed_tier < SpeedTier::kSquirrel ? EstimateCost(gi) : 0;
422
3
    }
423
28
    for (size_t i = did_palette; i < nb_channels + did_palette; i++) {
424
14
      int32_t min;
425
14
      int32_t max;
426
14
      compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
427
14
      int64_t colors = static_cast<int64_t>(max) - min + 1;
428
14
      JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
429
14
      Transform maybe_palette_1(TransformId::kPalette);
430
14
      maybe_palette_1.begin_c = i + gi.nb_meta_channels;
431
14
      maybe_palette_1.num_c = 1;
432
      // simple heuristic: if less than X percent of the values in the range
433
      // actually occur, it is probably worth it to do a compaction
434
      // (but only if the channel palette is less than 6% the size of the
435
      // image itself)
436
14
      maybe_palette_1.nb_colors =
437
14
          std::min(static_cast<int>(nb_pixels / 16),
438
14
                   static_cast<int>(channel_colors_percent / 100. * colors));
439
14
      if (maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(),
440
14
                             cost_before, pool)) {
441
        // effective bit depth is lower, adjust quantization accordingly
442
1
        compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
443
1
        if (max < maxval) maxval = max;
444
1
        int ch_bitdepth =
445
1
            (max > 0 ? CeilLog2Nonzero(static_cast<uint32_t>(max)) : 0);
446
1
        if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth;
447
13
      } else {
448
13
        max_bitdepth = orig_bitdepth;
449
13
      }
450
14
    }
451
14
  }
452
111
}
453
454
}  // namespace
455
456
StatusOr<std::unique_ptr<ModularFrameEncoder>> ModularFrameEncoder::Create(
457
    JxlMemoryManager* memory_manager, const FrameHeader& frame_header,
458
283
    const CompressParams& cparams_orig, bool streaming_mode) {
459
283
  auto self = std::unique_ptr<ModularFrameEncoder>(
460
283
      new ModularFrameEncoder(memory_manager));
461
283
  JXL_RETURN_IF_ERROR(self->Init(frame_header, cparams_orig, streaming_mode));
462
283
  return self;
463
283
}
464
465
ModularFrameEncoder::ModularFrameEncoder(JxlMemoryManager* memory_manager)
466
283
    : memory_manager_(memory_manager) {}
467
468
Status ModularFrameEncoder::Init(const FrameHeader& frame_header,
469
                                 const CompressParams& cparams_orig,
470
283
                                 bool streaming_mode) {
471
283
  frame_dim_ = frame_header.ToFrameDimensions();
472
283
  cparams_ = cparams_orig;
473
474
283
  size_t num_streams =
475
283
      ModularStreamId::Num(frame_dim_, frame_header.passes.num_passes);
476
477
  // Progressive lossless only benefits from levels 2 and higher
478
  // Lower levels of faster decoding can outperform higher tiers
479
  // depending on the PC
480
283
  if (cparams_.responsive == 1 && cparams_.IsLossless() &&
481
283
      cparams_.decoding_speed_tier == 1) {
482
0
    cparams_.decoding_speed_tier = 2;
483
0
  }
484
283
  if (cparams_.responsive == 1 && cparams_.IsLossless()) {
485
    // RCT selection seems bugged with Squeeze, YCoCg works well.
486
0
    if (cparams_.colorspace < 0) {
487
0
      cparams_.colorspace = 6;
488
0
    }
489
0
  }
490
491
283
  if (cparams_.ModularPartIsLossless()) {
492
186
    switch (cparams_.decoding_speed_tier) {
493
186
      case 0:
494
186
        cparams_.options.fast_decode_multiplier = 1.001f;
495
186
        break;
496
0
      case 1:  // No Weighted predictor
497
0
        cparams_.options.fast_decode_multiplier = 1.005f;
498
0
        cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP;
499
0
        break;
500
0
      case 2: {  // No Weighted predictor and Group size 0 defined in
501
                 // enc_frame.cc
502
0
        cparams_.options.fast_decode_multiplier = 1.015f;
503
0
        cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP;
504
0
        break;
505
0
      }
506
0
      case 3: {  // Gradient only, Group size 0, and Fast MA tree
507
0
        cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly;
508
0
        cparams_.options.predictor = Predictor::Gradient;
509
0
        break;
510
0
      }
511
0
      default: {  // Gradient only, Group size 0, and No MA tree
512
0
        cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly;
513
0
        cparams_.options.predictor = Predictor::Gradient;
514
0
        cparams_.options.nb_repeats = 0;
515
        // Disabling MA Trees sometimes doesn't increase decode speed
516
        // depending on PC
517
0
        break;
518
0
      }
519
186
    }
520
186
  }
521
522
6.91k
  for (size_t i = 0; i < num_streams; ++i) {
523
6.63k
    stream_images_.emplace_back(memory_manager_);
524
6.63k
  }
525
526
  // use a sensible default if nothing explicit is specified:
527
  // Squeeze for lossy, no squeeze for lossless
528
283
  if (cparams_.responsive < 0) {
529
186
    if (cparams_.ModularPartIsLossless()) {
530
186
      cparams_.responsive = 0;
531
186
    } else {
532
0
      cparams_.responsive = 1;
533
0
    }
534
186
  }
535
536
283
  cparams_.options.splitting_heuristics_node_threshold =
537
283
      75 + 14 * static_cast<int>(cparams_.speed_tier) +
538
283
      10 * cparams_.decoding_speed_tier;
539
540
283
  {
541
    // Set properties.
542
283
    std::vector<uint32_t> prop_order;
543
283
    if (cparams_.responsive) {
544
      // Properties in order of their likelihood of being useful for Squeeze
545
      // residuals.
546
0
      prop_order = {0, 1, 4, 5, 6, 7, 8, 15, 9, 10, 11, 12, 13, 14, 2, 3};
547
283
    } else {
548
      // Same, but for the non-Squeeze case.
549
283
      prop_order = {0, 1, 15, 9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 7, 8};
550
      // if few groups, don't use group as a property
551
283
      if (num_streams < 30 && cparams_.speed_tier > SpeedTier::kTortoise &&
552
283
          cparams_orig.ModularPartIsLossless()) {
553
185
        prop_order.erase(prop_order.begin() + 1);
554
185
      }
555
283
    }
556
283
    int max_properties = std::min<int>(
557
283
        cparams_.options.max_properties,
558
283
        static_cast<int>(
559
283
            frame_header.nonserialized_metadata->m.num_extra_channels) +
560
283
            (frame_header.encoding == FrameEncoding::kModular ? 2 : -1));
561
283
    switch (cparams_.speed_tier) {
562
0
      case SpeedTier::kHare:
563
0
        cparams_.options.splitting_heuristics_properties.assign(
564
0
            prop_order.begin(), prop_order.begin() + 4);
565
0
        cparams_.options.max_property_values = 24;
566
0
        break;
567
0
      case SpeedTier::kWombat:
568
0
        cparams_.options.splitting_heuristics_properties.assign(
569
0
            prop_order.begin(), prop_order.begin() + 5);
570
0
        cparams_.options.max_property_values = 32;
571
0
        break;
572
283
      case SpeedTier::kSquirrel:
573
283
        cparams_.options.splitting_heuristics_properties.assign(
574
283
            prop_order.begin(), prop_order.begin() + 7);
575
283
        cparams_.options.max_property_values = 48;
576
283
        break;
577
0
      case SpeedTier::kKitten:
578
0
        cparams_.options.splitting_heuristics_properties.assign(
579
0
            prop_order.begin(), prop_order.begin() + 10);
580
0
        cparams_.options.max_property_values = 96;
581
0
        break;
582
0
      case SpeedTier::kGlacier:
583
0
      case SpeedTier::kTortoise:
584
0
        cparams_.options.splitting_heuristics_properties = prop_order;
585
0
        cparams_.options.max_property_values = 256;
586
0
        break;
587
0
      default:
588
0
        cparams_.options.splitting_heuristics_properties.assign(
589
0
            prop_order.begin(), prop_order.begin() + 3);
590
0
        cparams_.options.max_property_values = 16;
591
0
        break;
592
283
    }
593
283
    if (cparams_.speed_tier > SpeedTier::kTortoise) {
594
      // Gradient in previous channels.
595
283
      for (int i = 0; i < max_properties; i++) {
596
0
        cparams_.options.splitting_heuristics_properties.push_back(
597
0
            kNumNonrefProperties + i * 4 + 3);
598
0
      }
599
283
    } else {
600
      // All the extra properties in Tortoise mode.
601
0
      for (int i = 0; i < max_properties * 4; i++) {
602
0
        cparams_.options.splitting_heuristics_properties.push_back(
603
0
            kNumNonrefProperties + i);
604
0
      }
605
0
    }
606
283
  }
607
608
283
  if ((cparams_.options.predictor == Predictor::Average0 ||
609
283
       cparams_.options.predictor == Predictor::Average1 ||
610
283
       cparams_.options.predictor == Predictor::Average2 ||
611
283
       cparams_.options.predictor == Predictor::Average3 ||
612
283
       cparams_.options.predictor == Predictor::Average4 ||
613
283
       cparams_.options.predictor == Predictor::Weighted) &&
614
283
      !cparams_.ModularPartIsLossless()) {
615
    // Lossy + Average/Weighted predictors does not work, so switch to default
616
    // predictors.
617
0
    cparams_.options.predictor = kUndefinedPredictor;
618
0
  }
619
620
283
  if (cparams_.options.predictor == kUndefinedPredictor) {
621
    // no explicit predictor(s) given, set a good default
622
186
    if ((cparams_.speed_tier <= SpeedTier::kGlacier ||
623
186
         cparams_.modular_mode == false) &&
624
186
        cparams_.IsLossless() && cparams_.responsive == JXL_FALSE) {
625
      // TODO(veluca): allow all predictors that don't break residual
626
      // multipliers in lossy mode.
627
0
      cparams_.options.predictor = Predictor::Variable;
628
186
    } else if (cparams_.responsive || cparams_.lossy_palette) {
629
      // zero predictor for Squeeze residues and lossy palette indices
630
      // TODO: Try adding 'Squeezed' predictor set, with the most
631
      // common predictors used by Variable in squeezed images, including none.
632
0
      cparams_.options.predictor = Predictor::Zero;
633
186
    } else if (!cparams_.IsLossless()) {
634
      // If not responsive and lossy. TODO(veluca): use near_lossless instead?
635
186
      cparams_.options.predictor = Predictor::Gradient;
636
186
    } else if (cparams_.speed_tier < SpeedTier::kFalcon) {
637
      // try median and weighted predictor for anything else
638
0
      cparams_.options.predictor = Predictor::Best;
639
0
    } else if (cparams_.speed_tier == SpeedTier::kFalcon) {
640
      // just weighted predictor in falcon mode
641
0
      cparams_.options.predictor = Predictor::Weighted;
642
0
    } else if (cparams_.speed_tier > SpeedTier::kFalcon) {
643
      // just gradient predictor in thunder mode
644
0
      cparams_.options.predictor = Predictor::Gradient;
645
0
    }
646
186
  } else {
647
97
    if (cparams_.lossy_palette) cparams_.options.predictor = Predictor::Zero;
648
97
  }
649
283
  if (!cparams_.ModularPartIsLossless()) {
650
97
    if (cparams_.options.predictor == Predictor::Weighted ||
651
97
        cparams_.options.predictor == Predictor::Variable ||
652
97
        cparams_.options.predictor == Predictor::Best)
653
0
      cparams_.options.predictor = Predictor::Zero;
654
97
  }
655
283
  tree_splits_.push_back(0);
656
283
  if (cparams_.modular_mode == false) {
657
186
    JXL_ASSIGN_OR_RETURN(ModularStreamId qt0, ModularStreamId::QuantTable(0));
658
186
    cparams_.options.fast_decode_multiplier = 1.0f;
659
186
    tree_splits_.push_back(ModularStreamId::VarDCTDC(0).ID(frame_dim_));
660
186
    tree_splits_.push_back(ModularStreamId::ModularDC(0).ID(frame_dim_));
661
186
    tree_splits_.push_back(ModularStreamId::ACMetadata(0).ID(frame_dim_));
662
186
    tree_splits_.push_back(qt0.ID(frame_dim_));
663
186
    tree_splits_.push_back(ModularStreamId::ModularAC(0, 0).ID(frame_dim_));
664
186
    ac_metadata_size.resize(frame_dim_.num_dc_groups);
665
186
    extra_dc_precision.resize(frame_dim_.num_dc_groups);
666
186
  }
667
283
  tree_splits_.push_back(num_streams);
668
283
  cparams_.options.max_chan_size = frame_dim_.group_dim;
669
283
  cparams_.options.group_dim = frame_dim_.group_dim;
670
671
  // TODO(veluca): figure out how to use different predictor sets per channel.
672
283
  stream_options_.resize(num_streams, cparams_.options);
673
674
283
  stream_options_[0] = cparams_.options;
675
283
  if (cparams_.speed_tier == SpeedTier::kFalcon) {
676
0
    stream_options_[0].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
677
283
  } else if (cparams_.speed_tier == SpeedTier::kThunder) {
678
0
    stream_options_[0].tree_kind = ModularOptions::TreeKind::kGradientFixedDC;
679
0
  }
680
283
  stream_options_[0].histogram_params =
681
283
      HistogramParams::ForModular(cparams_, {}, streaming_mode);
682
283
  return true;
683
283
}
684
685
Status ModularFrameEncoder::ComputeEncodingData(
686
    const FrameHeader& frame_header, const ImageMetadata& metadata,
687
    Image3F* JXL_RESTRICT color, const std::vector<ImageF>& extra_channels,
688
    const Rect& group_rect, const FrameDimensions& patch_dim,
689
    const Rect& frame_area_rect, PassesEncoderState* JXL_RESTRICT enc_state,
690
    const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out,
691
111
    bool do_color) {
692
111
  JxlMemoryManager* memory_manager = enc_state->memory_manager();
693
111
  JXL_DEBUG_V(6, "Computing modular encoding data for frame %s",
694
111
              frame_header.DebugString().c_str());
695
696
111
  bool groupwise = enc_state->streaming_mode;
697
698
111
  if (do_color && frame_header.loop_filter.gab && !groupwise) {
699
0
    float w = 0.9908511000000001f;
700
0
    float weights[3] = {w, w, w};
701
0
    JXL_RETURN_IF_ERROR(GaborishInverse(color, Rect(*color), weights, pool));
702
0
  }
703
704
111
  if (do_color && metadata.bit_depth.bits_per_sample <= 16 &&
705
111
      cparams_.speed_tier < SpeedTier::kCheetah &&
706
111
      cparams_.decoding_speed_tier < 2 && !groupwise) {
707
97
    JXL_RETURN_IF_ERROR(FindBestPatchDictionary(
708
97
        *color, enc_state, cms, nullptr, aux_out,
709
97
        cparams_.color_transform == ColorTransform::kXYB));
710
97
    JXL_RETURN_IF_ERROR(PatchDictionaryEncoder::SubtractFrom(
711
97
        enc_state->shared.image_features.patches, color));
712
97
  }
713
714
111
  if (cparams_.custom_splines.HasAny()) {
715
0
    PassesSharedState& shared = enc_state->shared;
716
0
    ImageFeatures& image_features = shared.image_features;
717
0
    image_features.splines = cparams_.custom_splines;
718
0
  }
719
720
  // Convert ImageBundle to modular Image object
721
111
  const size_t xsize = patch_dim.xsize;
722
111
  const size_t ysize = patch_dim.ysize;
723
724
111
  int nb_chans = 3;
725
111
  if (metadata.color_encoding.IsGray() &&
726
111
      cparams_.color_transform == ColorTransform::kNone) {
727
0
    nb_chans = 1;
728
0
  }
729
111
  if (!do_color) nb_chans = 0;
730
731
111
  nb_chans += extra_channels.size();
732
733
111
  bool fp = metadata.bit_depth.floating_point_sample &&
734
111
            cparams_.color_transform != ColorTransform::kXYB;
735
736
  // bits_per_sample is just metadata for XYB images.
737
111
  if (metadata.bit_depth.bits_per_sample >= 32 && do_color &&
738
111
      cparams_.color_transform != ColorTransform::kXYB) {
739
0
    if (metadata.bit_depth.bits_per_sample == 32 && fp == false) {
740
0
      return JXL_FAILURE("uint32_t not supported in enc_modular");
741
0
    } else if (metadata.bit_depth.bits_per_sample > 32) {
742
0
      return JXL_FAILURE("bits_per_sample > 32 not supported");
743
0
    }
744
0
  }
745
746
  // in the non-float case, there is an implicit 0 sign bit
747
111
  int max_bitdepth =
748
111
      do_color ? metadata.bit_depth.bits_per_sample + (fp ? 0 : 1) : 0;
749
111
  Image& gi = stream_images_[0];
750
111
  JXL_ASSIGN_OR_RETURN(
751
111
      gi, Image::Create(memory_manager, xsize, ysize,
752
111
                        metadata.bit_depth.bits_per_sample, nb_chans));
753
111
  int c = 0;
754
111
  if (cparams_.color_transform == ColorTransform::kXYB &&
755
111
      cparams_.modular_mode == true) {
756
97
    float enc_factors[3] = {65536.0f, 4096.0f, 4096.0f};
757
97
    if (cparams_.butteraugli_distance > 0 && !cparams_.responsive) {
758
      // quantize XYB here and then treat it as a lossless image
759
97
      enc_factors[0] *= 1.f / (1.f + 23.f * cparams_.butteraugli_distance);
760
97
      enc_factors[1] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
761
97
      enc_factors[2] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
762
97
      cparams_.butteraugli_distance = 0;
763
97
    }
764
97
    if (cparams_.manual_xyb_factors.size() == 3) {
765
0
      JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC(
766
0
          memory_manager, &enc_state->shared.matrices,
767
0
          cparams_.manual_xyb_factors.data()));
768
      // TODO(jon): update max_bitdepth in this case
769
97
    } else {
770
97
      JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC(
771
97
          memory_manager, &enc_state->shared.matrices, enc_factors));
772
97
      max_bitdepth = 12;
773
97
    }
774
97
  }
775
111
  pixel_type maxval = gi.bitdepth < 32 ? (1u << gi.bitdepth) - 1 : 0;
776
111
  if (do_color) {
777
388
    for (; c < 3; c++) {
778
291
      if (metadata.color_encoding.IsGray() &&
779
291
          cparams_.color_transform == ColorTransform::kNone &&
780
291
          c != (cparams_.color_transform == ColorTransform::kXYB ? 1 : 0))
781
0
        continue;
782
291
      int c_out = c;
783
      // XYB is encoded as YX(B-Y)
784
291
      if (cparams_.color_transform == ColorTransform::kXYB && c < 2)
785
194
        c_out = 1 - c_out;
786
291
      double factor = maxval;
787
291
      if (cparams_.color_transform == ColorTransform::kXYB)
788
291
        factor = enc_state->shared.matrices.InvDCQuant(c);
789
291
      if (c == 2 && cparams_.color_transform == ColorTransform::kXYB) {
790
97
        JXL_ENSURE(!fp);
791
6.26k
        for (size_t y = 0; y < ysize; ++y) {
792
6.16k
          const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y);
793
6.16k
          pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
794
6.16k
          pixel_type* const JXL_RESTRICT row_Y = gi.channel[0].Row(y);
795
512k
          for (size_t x = 0; x < xsize; ++x) {
796
            // TODO(eustas): check if std::roundf is appropriate
797
506k
            row_out[x] = row_in[x] * factor + 0.5f;
798
506k
            row_out[x] -= row_Y[x];
799
506k
          }
800
6.16k
        }
801
194
      } else {
802
194
        int bits = metadata.bit_depth.bits_per_sample;
803
194
        int exp_bits = metadata.bit_depth.exponent_bits_per_sample;
804
194
        gi.channel[c_out].hshift = frame_header.chroma_subsampling.HShift(c);
805
194
        gi.channel[c_out].vshift = frame_header.chroma_subsampling.VShift(c);
806
194
        size_t xsize_shifted = DivCeil(xsize, 1 << gi.channel[c_out].hshift);
807
194
        size_t ysize_shifted = DivCeil(ysize, 1 << gi.channel[c_out].vshift);
808
194
        JXL_RETURN_IF_ERROR(
809
194
            gi.channel[c_out].shrink(xsize_shifted, ysize_shifted));
810
194
        const auto process_row = [&](const int task,
811
12.3k
                                     const int thread) -> Status {
812
12.3k
          const size_t y = task;
813
12.3k
          const float* const JXL_RESTRICT row_in =
814
12.3k
              color->PlaneRow(c, y + group_rect.y0()) + group_rect.x0();
815
12.3k
          pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
816
12.3k
          JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out, xsize_shifted, bits,
817
12.3k
                                           exp_bits, fp, factor));
818
12.3k
          return true;
819
12.3k
        };
820
194
        JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, ysize_shifted,
821
194
                                      ThreadPool::NoInit, process_row,
822
194
                                      "float2int"));
823
194
      }
824
291
    }
825
97
    if (metadata.color_encoding.IsGray() &&
826
97
        cparams_.color_transform == ColorTransform::kNone)
827
0
      c = 1;
828
97
  }
829
830
125
  for (size_t ec = 0; ec < extra_channels.size(); ec++, c++) {
831
14
    const ExtraChannelInfo& eci = metadata.extra_channel_info[ec];
832
14
    size_t ecups = frame_header.extra_channel_upsampling[ec];
833
14
    JXL_RETURN_IF_ERROR(
834
14
        gi.channel[c].shrink(DivCeil(patch_dim.xsize_upsampled, ecups),
835
14
                             DivCeil(patch_dim.ysize_upsampled, ecups)));
836
14
    gi.channel[c].hshift = gi.channel[c].vshift =
837
14
        CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling);
838
839
14
    int bits = eci.bit_depth.bits_per_sample;
840
14
    int exp_bits = eci.bit_depth.exponent_bits_per_sample;
841
14
    bool ec_fp = eci.bit_depth.floating_point_sample;
842
14
    double factor = (ec_fp ? 1 : ((1u << eci.bit_depth.bits_per_sample) - 1));
843
14
    if (bits + (ec_fp ? 0 : 1) > max_bitdepth) {
844
14
      max_bitdepth = bits + (ec_fp ? 0 : 1);
845
14
    }
846
356
    const auto process_row = [&](const int task, const int thread) -> Status {
847
356
      const size_t y = task;
848
356
      const float* const JXL_RESTRICT row_in =
849
356
          extra_channels[ec].Row(y + group_rect.y0()) + group_rect.x0();
850
356
      pixel_type* const JXL_RESTRICT row_out = gi.channel[c].Row(y);
851
356
      JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out,
852
356
                                       gi.channel[c].plane.xsize(), bits,
853
356
                                       exp_bits, ec_fp, factor));
854
356
      return true;
855
356
    };
856
14
    JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, gi.channel[c].plane.ysize(),
857
14
                                  ThreadPool::NoInit, process_row,
858
14
                                  "float2int"));
859
14
  }
860
111
  JXL_ENSURE(c == nb_chans);
861
862
111
  int level_max_bitdepth = (cparams_.level == 5 ? 16 : 32);
863
111
  if (max_bitdepth > level_max_bitdepth) {
864
0
    return JXL_FAILURE(
865
0
        "Bitdepth too high for level %i (need %i bits, have only %i in this "
866
0
        "level)",
867
0
        cparams_.level, max_bitdepth, level_max_bitdepth);
868
0
  }
869
870
  // Set options and apply transformations
871
111
  if (!cparams_.ModularPartIsLossless()) {
872
97
    if (cparams_.palette_colors != 0) {
873
97
      JXL_DEBUG_V(3, "Lossy encode, not doing palette transforms");
874
97
    }
875
97
    if (cparams_.color_transform == ColorTransform::kXYB) {
876
97
      cparams_.channel_colors_pre_transform_percent = 0;
877
97
    }
878
97
    cparams_.channel_colors_percent = 0;
879
97
    cparams_.palette_colors = 0;
880
97
    cparams_.lossy_palette = false;
881
97
  }
882
883
  // Global palette transforms
884
111
  float channel_colors_percent = 0;
885
111
  if (!cparams_.lossy_palette &&
886
111
      (cparams_.speed_tier <= SpeedTier::kThunder ||
887
111
       (do_color && metadata.bit_depth.bits_per_sample > 8))) {
888
111
    channel_colors_percent = cparams_.channel_colors_pre_transform_percent;
889
111
  }
890
111
  if (!groupwise) {
891
111
    try_palettes(gi, max_bitdepth, maxval, cparams_, channel_colors_percent,
892
111
                 pool);
893
111
  }
894
895
  // don't do an RCT if we're short on bits
896
111
  if (cparams_.color_transform == ColorTransform::kNone && do_color &&
897
111
      gi.channel.size() - gi.nb_meta_channels >= 3 &&
898
111
      max_bitdepth + 1 < level_max_bitdepth) {
899
0
    if (cparams_.colorspace < 0 && (!cparams_.ModularPartIsLossless() ||
900
0
                                    cparams_.speed_tier > SpeedTier::kHare)) {
901
0
      Transform ycocg{TransformId::kRCT};
902
0
      ycocg.rct_type = 6;
903
0
      ycocg.begin_c = gi.nb_meta_channels;
904
0
      do_transform(gi, ycocg, weighted::Header(), pool);
905
0
      max_bitdepth++;
906
0
    } else if (cparams_.colorspace > 0) {
907
0
      Transform sg(TransformId::kRCT);
908
0
      sg.begin_c = gi.nb_meta_channels;
909
0
      sg.rct_type = cparams_.colorspace;
910
0
      do_transform(gi, sg, weighted::Header(), pool);
911
0
      max_bitdepth++;
912
0
    }
913
0
  }
914
915
111
  if (cparams_.move_to_front_from_channel > 0) {
916
0
    for (size_t tgt = 0;
917
0
         tgt + cparams_.move_to_front_from_channel < gi.channel.size(); tgt++) {
918
0
      size_t pos = cparams_.move_to_front_from_channel;
919
0
      while (pos > 0) {
920
0
        Transform move(TransformId::kRCT);
921
0
        if (pos == 1) {
922
0
          move.begin_c = tgt;
923
0
          move.rct_type = 28;  // RGB -> GRB
924
0
          pos -= 1;
925
0
        } else {
926
0
          move.begin_c = tgt + pos - 2;
927
0
          move.rct_type = 14;  // RGB -> BRG
928
0
          pos -= 2;
929
0
        }
930
0
        do_transform(gi, move, weighted::Header(), pool);
931
0
      }
932
0
    }
933
0
  }
934
935
  // don't do squeeze if we don't have some spare bits
936
111
  if (!groupwise && cparams_.responsive && !gi.channel.empty() &&
937
111
      max_bitdepth + 2 < level_max_bitdepth) {
938
0
    Transform t(TransformId::kSqueeze);
939
0
    do_transform(gi, t, weighted::Header(), pool);
940
0
    max_bitdepth += 2;
941
0
  }
942
943
111
  if (max_bitdepth + 1 > level_max_bitdepth) {
944
    // force no group RCTs if we don't have a spare bit
945
4
    cparams_.colorspace = 0;
946
4
  }
947
111
  JXL_ENSURE(max_bitdepth <= level_max_bitdepth);
948
949
111
  if (!cparams_.ModularPartIsLossless()) {
950
97
    quants_.resize(gi.channel.size(), 1);
951
97
    float quantizer = 0.25f;
952
97
    if (!cparams_.responsive) {
953
97
      JXL_DEBUG_V(1,
954
97
                  "Warning: lossy compression without Squeeze "
955
97
                  "transform is just color quantization.");
956
97
      quantizer *= 0.1f;
957
97
    }
958
97
    float bitdepth_correction = 1.f;
959
97
    if (cparams_.color_transform != ColorTransform::kXYB) {
960
0
      bitdepth_correction = maxval / 255.f;
961
0
    }
962
97
    std::vector<float> quantizers;
963
388
    for (size_t i = 0; i < 3; i++) {
964
291
      float dist = cparams_.butteraugli_distance;
965
291
      quantizers.push_back(quantizer * dist * bitdepth_correction);
966
291
    }
967
97
    for (size_t i = 0; i < extra_channels.size(); i++) {
968
0
      int ec_bitdepth =
969
0
          metadata.extra_channel_info[i].bit_depth.bits_per_sample;
970
0
      pixel_type ec_maxval = ec_bitdepth < 32 ? (1u << ec_bitdepth) - 1 : 0;
971
0
      bitdepth_correction = ec_maxval / 255.f;
972
0
      float dist = 0;
973
0
      if (i < cparams_.ec_distance.size()) dist = cparams_.ec_distance[i];
974
0
      if (dist < 0) dist = cparams_.butteraugli_distance;
975
0
      quantizers.push_back(quantizer * dist * bitdepth_correction);
976
0
    }
977
97
    if (cparams_.options.nb_repeats == 0) {
978
0
      return JXL_FAILURE("nb_repeats = 0 not supported with modular lossy!");
979
0
    }
980
388
    for (uint32_t i = gi.nb_meta_channels; i < gi.channel.size(); i++) {
981
291
      Channel& ch = gi.channel[i];
982
291
      int shift = ch.hshift + ch.vshift;  // number of pixel halvings
983
291
      if (shift > 16) shift = 16;
984
291
      if (shift > 0) shift--;
985
291
      int q;
986
      // assuming default Squeeze here
987
291
      int component =
988
291
          (do_color ? 0 : 3) + ((i - gi.nb_meta_channels) % nb_chans);
989
      // last 4 channels are final chroma residuals
990
291
      if (nb_chans > 2 && i >= gi.channel.size() - 4 && cparams_.responsive) {
991
0
        component = 1;
992
0
      }
993
291
      if (cparams_.color_transform == ColorTransform::kXYB && component < 3) {
994
291
        q = quantizers[component] * squeeze_quality_factor_xyb *
995
291
            squeeze_xyb_qtable[component][shift];
996
291
      } else {
997
0
        if (cparams_.colorspace != 0 && component > 0 && component < 3) {
998
0
          q = quantizers[component] * squeeze_quality_factor *
999
0
              squeeze_chroma_qtable[shift];
1000
0
        } else {
1001
0
          q = quantizers[component] * squeeze_quality_factor *
1002
0
              squeeze_luma_factor * squeeze_luma_qtable[shift];
1003
0
        }
1004
0
      }
1005
291
      if (q < 1) q = 1;
1006
291
      QuantizeChannel(gi.channel[i], q);
1007
291
      quants_[i] = q;
1008
291
    }
1009
97
  }
1010
1011
  // Fill other groups.
1012
  // DC
1013
222
  for (size_t group_id = 0; group_id < patch_dim.num_dc_groups; group_id++) {
1014
111
    const size_t rgx = group_id % patch_dim.xsize_dc_groups;
1015
111
    const size_t rgy = group_id / patch_dim.xsize_dc_groups;
1016
111
    const Rect rect(rgx * patch_dim.dc_group_dim, rgy * patch_dim.dc_group_dim,
1017
111
                    patch_dim.dc_group_dim, patch_dim.dc_group_dim);
1018
111
    size_t gx = rgx + frame_area_rect.x0() / 2048;
1019
111
    size_t gy = rgy + frame_area_rect.y0() / 2048;
1020
111
    size_t real_group_id = gy * frame_dim_.xsize_dc_groups + gx;
1021
    // minShift==3 because (frame_dim.dc_group_dim >> 3) == frame_dim.group_dim
1022
    // maxShift==1000 is infinity
1023
111
    stream_params_.push_back(
1024
111
        GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(real_group_id)});
1025
111
  }
1026
  // AC global -> nothing.
1027
  // AC
1028
222
  for (size_t group_id = 0; group_id < patch_dim.num_groups; group_id++) {
1029
111
    const size_t rgx = group_id % patch_dim.xsize_groups;
1030
111
    const size_t rgy = group_id / patch_dim.xsize_groups;
1031
111
    const Rect mrect(rgx * patch_dim.group_dim, rgy * patch_dim.group_dim,
1032
111
                     patch_dim.group_dim, patch_dim.group_dim);
1033
111
    size_t gx = rgx + frame_area_rect.x0() / (frame_dim_.group_dim);
1034
111
    size_t gy = rgy + frame_area_rect.y0() / (frame_dim_.group_dim);
1035
111
    size_t real_group_id = gy * frame_dim_.xsize_groups + gx;
1036
222
    for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses();
1037
111
         i++) {
1038
111
      int maxShift;
1039
111
      int minShift;
1040
111
      frame_header.passes.GetDownsamplingBracket(i, minShift, maxShift);
1041
111
      stream_params_.push_back(
1042
111
          GroupParams{mrect, minShift, maxShift,
1043
111
                      ModularStreamId::ModularAC(real_group_id, i)});
1044
111
    }
1045
111
  }
1046
  // if there's only one group, everything ends up in GlobalModular
1047
  // in that case, also try RCTs/WP params for the one group
1048
111
  if (stream_params_.size() == 2) {
1049
111
    stream_params_.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000,
1050
111
                                         ModularStreamId::Global()});
1051
111
  }
1052
111
  gi_channel_.resize(stream_images_.size());
1053
1054
111
  const auto process_row = [&](const uint32_t i,
1055
333
                               size_t /* thread */) -> Status {
1056
333
    size_t stream = stream_params_[i].id.ID(frame_dim_);
1057
333
    if (stream != 0) {
1058
222
      stream_options_[stream] = stream_options_[0];
1059
222
    }
1060
333
    JXL_RETURN_IF_ERROR(PrepareStreamParams(
1061
333
        stream_params_[i].rect, cparams_, stream_params_[i].minShift,
1062
333
        stream_params_[i].maxShift, stream_params_[i].id, do_color, groupwise));
1063
333
    return true;
1064
333
  };
1065
111
  JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, stream_params_.size(),
1066
111
                                ThreadPool::NoInit, process_row,
1067
111
                                "ChooseParams"));
1068
111
  {
1069
    // Clear out channels that have been copied to groups.
1070
111
    Image& full_image = stream_images_[0];
1071
111
    size_t ch = full_image.nb_meta_channels;
1072
416
    for (; ch < full_image.channel.size(); ch++) {
1073
305
      Channel& fc = full_image.channel[ch];
1074
305
      if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
1075
305
    }
1076
111
    for (; ch < full_image.channel.size(); ch++) {
1077
      // TODO(eustas): shrink / assign channel to keep size consistency
1078
0
      full_image.channel[ch].plane = ImageI();
1079
0
    }
1080
111
  }
1081
1082
111
  JXL_RETURN_IF_ERROR(ValidateChannelDimensions(gi, stream_options_[0]));
1083
111
  return true;
1084
111
}
1085
1086
283
Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) {
1087
283
  std::vector<ModularMultiplierInfo> multiplier_info;
1088
283
  if (!quants_.empty()) {
1089
2.23k
    for (uint32_t stream_id = 0; stream_id < stream_images_.size();
1090
2.13k
         stream_id++) {
1091
      // skip non-modular stream_ids
1092
2.13k
      if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
1093
97
      const Image& image = stream_images_[stream_id];
1094
97
      const ModularOptions& options = stream_options_[stream_id];
1095
388
      for (uint32_t i = image.nb_meta_channels; i < image.channel.size(); i++) {
1096
291
        if (image.channel[i].w > options.max_chan_size ||
1097
291
            image.channel[i].h > options.max_chan_size) {
1098
0
          continue;
1099
0
        }
1100
291
        if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
1101
291
        size_t ch_id = stream_id == 0
1102
291
                           ? i
1103
291
                           : gi_channel_[stream_id][i - image.nb_meta_channels];
1104
291
        uint32_t q = quants_[ch_id];
1105
        // Inform the tree splitting heuristics that each channel in each group
1106
        // used this quantization factor. This will produce a tree with the
1107
        // given multipliers.
1108
291
        if (multiplier_info.empty() ||
1109
291
            multiplier_info.back().range[1][0] != stream_id ||
1110
291
            multiplier_info.back().multiplier != q) {
1111
97
          StaticPropRange range;
1112
97
          range[0] = {{i, i + 1}};
1113
97
          range[1] = {{stream_id, stream_id + 1}};
1114
97
          multiplier_info.push_back({range, q});
1115
194
        } else {
1116
          // Previous channel in the same group had the same quantization
1117
          // factor. Don't provide two different ranges, as that creates
1118
          // unnecessary nodes.
1119
194
          multiplier_info.back().range[0][1] = i + 1;
1120
194
        }
1121
291
      }
1122
97
    }
1123
    // Merge group+channel settings that have the same channels and quantization
1124
    // factors, to avoid unnecessary nodes.
1125
97
    std::sort(multiplier_info.begin(), multiplier_info.end(),
1126
97
              [](ModularMultiplierInfo a, ModularMultiplierInfo b) {
1127
0
                return std::make_tuple(a.range, a.multiplier) <
1128
0
                       std::make_tuple(b.range, b.multiplier);
1129
0
              });
1130
97
    size_t new_num = 1;
1131
97
    for (size_t i = 1; i < multiplier_info.size(); i++) {
1132
0
      ModularMultiplierInfo& prev = multiplier_info[new_num - 1];
1133
0
      ModularMultiplierInfo& cur = multiplier_info[i];
1134
0
      if (prev.range[0] == cur.range[0] && prev.multiplier == cur.multiplier &&
1135
0
          prev.range[1][1] == cur.range[1][0]) {
1136
0
        prev.range[1][1] = cur.range[1][1];
1137
0
      } else {
1138
0
        multiplier_info[new_num++] = multiplier_info[i];
1139
0
      }
1140
0
    }
1141
97
    multiplier_info.resize(new_num);
1142
97
  }
1143
1144
283
  if (!cparams_.custom_fixed_tree.empty()) {
1145
0
    tree_ = cparams_.custom_fixed_tree;
1146
283
  } else if (cparams_.speed_tier < SpeedTier::kFalcon ||
1147
283
             !cparams_.modular_mode) {
1148
    // Avoid creating a tree with leaves that don't correspond to any pixels.
1149
283
    std::vector<size_t> useful_splits;
1150
283
    useful_splits.reserve(tree_splits_.size());
1151
1.49k
    for (size_t chunk = 0; chunk < tree_splits_.size() - 1; chunk++) {
1152
1.21k
      bool has_pixels = false;
1153
1.21k
      size_t start = tree_splits_[chunk];
1154
1.21k
      size_t stop = tree_splits_[chunk + 1];
1155
7.84k
      for (size_t i = start; i < stop; i++) {
1156
6.63k
        if (!stream_images_[i].empty()) has_pixels = true;
1157
6.63k
      }
1158
1.21k
      if (has_pixels) {
1159
483
        useful_splits.push_back(tree_splits_[chunk]);
1160
483
      }
1161
1.21k
    }
1162
    // Don't do anything if modular mode does not have any pixels in this image
1163
283
    if (useful_splits.empty()) return true;
1164
283
    useful_splits.push_back(tree_splits_.back());
1165
1166
283
    std::vector<Tree> trees(useful_splits.size() - 1);
1167
283
    const auto process_chunk = [&](const uint32_t chunk,
1168
483
                                   size_t /* thread */) -> Status {
1169
      // TODO(veluca): parallelize more.
1170
483
      uint32_t start = useful_splits[chunk];
1171
483
      uint32_t stop = useful_splits[chunk + 1];
1172
483
      while (start < stop && stream_images_[start].empty()) ++start;
1173
6.46k
      while (start < stop && stream_images_[stop - 1].empty()) --stop;
1174
1175
483
      if (stream_options_[start].tree_kind ==
1176
483
          ModularOptions::TreeKind::kLearn) {
1177
111
        JXL_ASSIGN_OR_RETURN(
1178
111
            trees[chunk],
1179
111
            LearnTree(stream_images_.data(), stream_options_.data(), start,
1180
111
                      stop, multiplier_info));
1181
372
      } else {
1182
372
        size_t total_pixels = 0;
1183
744
        for (size_t i = start; i < stop; i++) {
1184
1.30k
          for (const Channel& ch : stream_images_[i].channel) {
1185
1.30k
            total_pixels += ch.w * ch.h;
1186
1.30k
          }
1187
372
        }
1188
372
        total_pixels = std::max<size_t>(total_pixels, 1);
1189
1190
372
        trees[chunk] = PredefinedTree(stream_options_[start].tree_kind,
1191
372
                                      total_pixels, 8, 0);
1192
372
      }
1193
483
      return true;
1194
483
    };
1195
283
    JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, useful_splits.size() - 1,
1196
283
                                  ThreadPool::NoInit, process_chunk,
1197
283
                                  "LearnTrees"));
1198
283
    tree_.clear();
1199
283
    JXL_RETURN_IF_ERROR(
1200
283
        MergeTrees(trees, useful_splits, 0, useful_splits.size() - 1, &tree_));
1201
283
  } else {
1202
    // Fixed tree.
1203
0
    size_t total_pixels = 0;
1204
0
    int max_bitdepth = 0;
1205
0
    for (const Image& img : stream_images_) {
1206
0
      max_bitdepth = std::max(max_bitdepth, img.bitdepth);
1207
0
      for (const Channel& ch : img.channel) {
1208
0
        total_pixels += ch.w * ch.h;
1209
0
      }
1210
0
    }
1211
0
    if (cparams_.speed_tier <= SpeedTier::kFalcon) {
1212
0
      tree_ = PredefinedTree(ModularOptions::TreeKind::kWPFixedDC, total_pixels,
1213
0
                             max_bitdepth, stream_options_[0].max_properties);
1214
0
    } else if (cparams_.speed_tier <= SpeedTier::kThunder) {
1215
0
      tree_ = PredefinedTree(ModularOptions::TreeKind::kGradientFixedDC,
1216
0
                             total_pixels, max_bitdepth,
1217
0
                             stream_options_[0].max_properties);
1218
0
    } else {
1219
0
      tree_ = {PropertyDecisionNode::Leaf(Predictor::Gradient)};
1220
0
    }
1221
0
  }
1222
283
  tree_tokens_.resize(1);
1223
283
  tree_tokens_[0].clear();
1224
283
  Tree decoded_tree;
1225
283
  JXL_RETURN_IF_ERROR(TokenizeTree(tree_, tree_tokens_.data(), &decoded_tree));
1226
283
  JXL_ENSURE(tree_.size() == decoded_tree.size());
1227
283
  tree_ = std::move(decoded_tree);
1228
1229
  /* TODO(szabadka) Add text output callback to cparams
1230
  if (kPrintTree && WantDebugOutput(aux_out)) {
1231
    if (frame_header.dc_level > 0) {
1232
      PrintTree(tree_, aux_out->debug_prefix + "/dc_frame_level" +
1233
                           std::to_string(frame_header.dc_level) + "_tree");
1234
    } else {
1235
      PrintTree(tree_, aux_out->debug_prefix + "/global_tree");
1236
    }
1237
  } */
1238
283
  return true;
1239
283
}
1240
1241
283
Status ModularFrameEncoder::ComputeTokens(ThreadPool* pool) {
1242
283
  size_t num_streams = stream_images_.size();
1243
283
  stream_headers_.resize(num_streams);
1244
283
  tokens_.resize(num_streams);
1245
283
  image_widths_.resize(num_streams);
1246
283
  const auto process_stream = [&](const uint32_t stream_id,
1247
6.63k
                                  size_t /* thread */) -> Status {
1248
6.63k
    tokens_[stream_id].clear();
1249
6.63k
    JXL_RETURN_IF_ERROR(
1250
6.63k
        ModularCompress(stream_images_[stream_id], stream_options_[stream_id],
1251
6.63k
                        stream_id, tree_, stream_headers_[stream_id],
1252
6.63k
                        tokens_[stream_id], &image_widths_[stream_id]));
1253
6.63k
    return true;
1254
6.63k
  };
1255
283
  JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_streams, ThreadPool::NoInit,
1256
283
                                process_stream, "ComputeTokens"));
1257
283
  return true;
1258
283
}
1259
1260
Status ModularFrameEncoder::EncodeGlobalInfo(bool streaming_mode,
1261
                                             BitWriter* writer,
1262
283
                                             AuxOut* aux_out) {
1263
283
  JxlMemoryManager* memory_manager = writer->memory_manager();
1264
283
  bool skip_rest = false;
1265
283
  JXL_RETURN_IF_ERROR(
1266
283
      writer->WithMaxBits(1, LayerType::ModularTree, aux_out, [&] {
1267
        // If we are using brotli, or not using modular mode.
1268
283
        if (tree_tokens_.empty() || tree_tokens_[0].empty()) {
1269
283
          writer->Write(1, 0);
1270
283
          skip_rest = true;
1271
283
        } else {
1272
283
          writer->Write(1, 1);
1273
283
        }
1274
283
        return true;
1275
283
      }));
1276
283
  if (skip_rest) return true;
1277
1278
  // Write tree
1279
283
  HistogramParams params =
1280
283
      HistogramParams::ForModular(cparams_, extra_dc_precision, streaming_mode);
1281
283
  {
1282
283
    EntropyEncodingData tree_code;
1283
283
    JXL_ASSIGN_OR_RETURN(
1284
283
        size_t cost, BuildAndEncodeHistograms(
1285
283
                         memory_manager, params, kNumTreeContexts, tree_tokens_,
1286
283
                         &tree_code, writer, LayerType::ModularTree, aux_out));
1287
283
    (void)cost;
1288
283
    JXL_RETURN_IF_ERROR(WriteTokens(tree_tokens_[0], tree_code, 0, writer,
1289
283
                                    LayerType::ModularTree, aux_out));
1290
283
  }
1291
283
  params.streaming_mode = streaming_mode;
1292
283
  params.add_missing_symbols = streaming_mode;
1293
283
  params.image_widths = image_widths_;
1294
  // Write histograms.
1295
283
  JXL_ASSIGN_OR_RETURN(
1296
283
      size_t cost, BuildAndEncodeHistograms(
1297
283
                       memory_manager, params, (tree_.size() + 1) / 2, tokens_,
1298
283
                       &code_, writer, LayerType::ModularGlobal, aux_out));
1299
283
  (void)cost;
1300
283
  return true;
1301
283
}
1302
1303
Status ModularFrameEncoder::EncodeStream(BitWriter* writer, AuxOut* aux_out,
1304
                                         LayerType layer,
1305
1.63k
                                         const ModularStreamId& stream) {
1306
1.63k
  size_t stream_id = stream.ID(frame_dim_);
1307
1.63k
  if (stream_images_[stream_id].channel.empty()) {
1308
1.14k
    JXL_DEBUG_V(10, "Modular stream %" PRIuS " is empty.", stream_id);
1309
1.14k
    return true;  // Image with no channels, header never gets decoded.
1310
1.14k
  }
1311
483
  if (tokens_.empty()) {
1312
0
    JXL_RETURN_IF_ERROR(ModularGenericCompress(
1313
0
        stream_images_[stream_id], stream_options_[stream_id], *writer, aux_out,
1314
0
        layer, stream_id));
1315
483
  } else {
1316
483
    JXL_RETURN_IF_ERROR(
1317
483
        Bundle::Write(stream_headers_[stream_id], writer, layer, aux_out));
1318
483
    JXL_RETURN_IF_ERROR(
1319
483
        WriteTokens(tokens_[stream_id], code_, 0, writer, layer, aux_out));
1320
483
  }
1321
483
  return true;
1322
483
}
1323
1324
0
void ModularFrameEncoder::ClearStreamData(const ModularStreamId& stream) {
1325
0
  size_t stream_id = stream.ID(frame_dim_);
1326
0
  Image empty_image(stream_images_[stream_id].memory_manager());
1327
0
  std::swap(stream_images_[stream_id], empty_image);
1328
0
}
1329
1330
0
void ModularFrameEncoder::ClearModularStreamData() {
1331
0
  for (const auto& group : stream_params_) {
1332
0
    ClearStreamData(group.id);
1333
0
  }
1334
0
  stream_params_.clear();
1335
0
}
1336
1337
size_t ModularFrameEncoder::ComputeStreamingAbsoluteAcGroupId(
1338
    size_t dc_group_id, size_t ac_group_id,
1339
0
    const FrameDimensions& patch_dim) const {
1340
0
  size_t dc_group_x = dc_group_id % frame_dim_.xsize_dc_groups;
1341
0
  size_t dc_group_y = dc_group_id / frame_dim_.xsize_dc_groups;
1342
0
  size_t ac_group_x = ac_group_id % patch_dim.xsize_groups;
1343
0
  size_t ac_group_y = ac_group_id / patch_dim.xsize_groups;
1344
0
  return (dc_group_x * 8 + ac_group_x) +
1345
0
         (dc_group_y * 8 + ac_group_y) * frame_dim_.xsize_groups;
1346
0
}
1347
1348
Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
1349
                                                const CompressParams& cparams,
1350
                                                int minShift, int maxShift,
1351
                                                const ModularStreamId& stream,
1352
333
                                                bool do_color, bool groupwise) {
1353
333
  size_t stream_id = stream.ID(frame_dim_);
1354
333
  if (stream_id == 0 && frame_dim_.num_groups != 1) {
1355
    // If we have multiple groups, then the stream with ID 0 holds the full
1356
    // image and we do not want to apply transforms or in general change the
1357
    // pixel values.
1358
0
    return true;
1359
0
  }
1360
333
  Image& full_image = stream_images_[0];
1361
333
  JxlMemoryManager* memory_manager = full_image.memory_manager();
1362
333
  const size_t xsize = rect.xsize();
1363
333
  const size_t ysize = rect.ysize();
1364
333
  Image& gi = stream_images_[stream_id];
1365
333
  if (stream_id > 0) {
1366
222
    JXL_ASSIGN_OR_RETURN(gi, Image::Create(memory_manager, xsize, ysize,
1367
222
                                           full_image.bitdepth, 0));
1368
    // start at the first bigger-than-frame_dim.group_dim non-metachannel
1369
222
    size_t c = full_image.nb_meta_channels;
1370
222
    if (!groupwise) {
1371
832
      for (; c < full_image.channel.size(); c++) {
1372
610
        Channel& fc = full_image.channel[c];
1373
610
        if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
1374
610
      }
1375
222
    }
1376
222
    for (; c < full_image.channel.size(); c++) {
1377
0
      Channel& fc = full_image.channel[c];
1378
0
      int shift = std::min(fc.hshift, fc.vshift);
1379
0
      if (shift > maxShift) continue;
1380
0
      if (shift < minShift) continue;
1381
0
      Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift,
1382
0
             rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h);
1383
0
      if (r.xsize() == 0 || r.ysize() == 0) continue;
1384
0
      gi_channel_[stream_id].push_back(c);
1385
0
      JXL_ASSIGN_OR_RETURN(
1386
0
          Channel gc, Channel::Create(memory_manager, r.xsize(), r.ysize()));
1387
0
      gc.hshift = fc.hshift;
1388
0
      gc.vshift = fc.vshift;
1389
0
      for (size_t y = 0; y < r.ysize(); ++y) {
1390
0
        memcpy(gc.Row(y), r.ConstRow(fc.plane, y),
1391
0
               r.xsize() * sizeof(pixel_type));
1392
0
      }
1393
0
      gi.channel.emplace_back(std::move(gc));
1394
0
    }
1395
1396
222
    if (gi.channel.empty()) return true;
1397
    // Do some per-group transforms
1398
1399
    // Local palette transforms
1400
    // TODO(veluca): make this work with quantize-after-prediction in lossy
1401
    // mode.
1402
0
    if (cparams.butteraugli_distance == 0.f && !cparams.lossy_palette &&
1403
0
        cparams.speed_tier < SpeedTier::kCheetah) {
1404
0
      int max_bitdepth = 0, maxval = 0;  // don't care about that here
1405
0
      float channel_color_percent = 0;
1406
0
      if (!(cparams.responsive &&
1407
0
            (cparams.decoding_speed_tier >= 1 || cparams.IsLossless()))) {
1408
0
        channel_color_percent = cparams.channel_colors_percent;
1409
0
      }
1410
0
      try_palettes(gi, max_bitdepth, maxval, cparams, channel_color_percent);
1411
0
    }
1412
0
  }
1413
1414
  // lossless and no specific color transform specified: try Nothing, YCoCg,
1415
  // and 17 RCTs
1416
111
  if (cparams.color_transform == ColorTransform::kNone &&
1417
111
      cparams.IsLossless() && cparams.colorspace < 0 &&
1418
111
      gi.channel.size() - gi.nb_meta_channels >= 3 &&
1419
111
      cparams.responsive == JXL_FALSE && do_color &&
1420
111
      cparams.speed_tier <= SpeedTier::kHare) {
1421
0
    Transform sg(TransformId::kRCT);
1422
0
    sg.begin_c = gi.nb_meta_channels;
1423
0
    size_t nb_rcts_to_try = 0;
1424
0
    switch (cparams.speed_tier) {
1425
0
      case SpeedTier::kLightning:
1426
0
      case SpeedTier::kThunder:
1427
0
      case SpeedTier::kFalcon:
1428
0
      case SpeedTier::kCheetah:
1429
0
        nb_rcts_to_try = 0;  // Just do global YCoCg
1430
0
        break;
1431
0
      case SpeedTier::kHare:
1432
0
        nb_rcts_to_try = 4;
1433
0
        break;
1434
0
      case SpeedTier::kWombat:
1435
0
        nb_rcts_to_try = 5;
1436
0
        break;
1437
0
      case SpeedTier::kSquirrel:
1438
0
        nb_rcts_to_try = 7;
1439
0
        break;
1440
0
      case SpeedTier::kKitten:
1441
0
        nb_rcts_to_try = 9;
1442
0
        break;
1443
0
      case SpeedTier::kTectonicPlate:
1444
0
      case SpeedTier::kGlacier:
1445
0
      case SpeedTier::kTortoise:
1446
0
        nb_rcts_to_try = 19;
1447
0
        break;
1448
0
    }
1449
0
    float best_cost = std::numeric_limits<float>::max();
1450
0
    size_t best_rct = 0;
1451
    // These should be 19 actually different transforms; the remaining ones
1452
    // are equivalent to one of these (note that the first two are do-nothing
1453
    // and YCoCg) modulo channel reordering (which only matters in the case of
1454
    // MA-with-prev-channels-properties) and/or sign (e.g. RmG vs GmR)
1455
0
    for (int i : {0 * 7 + 0, 0 * 7 + 6, 0 * 7 + 5, 1 * 7 + 3, 3 * 7 + 5,
1456
0
                  5 * 7 + 5, 1 * 7 + 5, 2 * 7 + 5, 1 * 7 + 1, 0 * 7 + 4,
1457
0
                  1 * 7 + 2, 2 * 7 + 1, 2 * 7 + 2, 2 * 7 + 3, 4 * 7 + 4,
1458
0
                  4 * 7 + 5, 0 * 7 + 2, 0 * 7 + 1, 0 * 7 + 3}) {
1459
0
      if (nb_rcts_to_try == 0) break;
1460
0
      sg.rct_type = i;
1461
0
      nb_rcts_to_try--;
1462
0
      if (do_transform(gi, sg, weighted::Header())) {
1463
0
        float cost = EstimateCost(gi);
1464
0
        if (cost < best_cost) {
1465
0
          best_rct = i;
1466
0
          best_cost = cost;
1467
0
        }
1468
0
        Transform t = gi.transform.back();
1469
0
        JXL_RETURN_IF_ERROR(t.Inverse(gi, weighted::Header(), nullptr));
1470
0
        gi.transform.pop_back();
1471
0
      }
1472
0
    }
1473
    // Apply the best RCT to the image for future encoding.
1474
0
    sg.rct_type = best_rct;
1475
0
    do_transform(gi, sg, weighted::Header());
1476
111
  } else {
1477
    // No need to try anything, just use the default options.
1478
111
  }
1479
111
  size_t nb_wp_modes = 1;
1480
111
  if (cparams.speed_tier <= SpeedTier::kTortoise) {
1481
0
    nb_wp_modes = 5;
1482
111
  } else if (cparams.speed_tier <= SpeedTier::kKitten) {
1483
0
    nb_wp_modes = 2;
1484
0
  }
1485
111
  if (nb_wp_modes > 1 &&
1486
111
      (stream_options_[stream_id].predictor == Predictor::Weighted ||
1487
0
       stream_options_[stream_id].predictor == Predictor::Best ||
1488
0
       stream_options_[stream_id].predictor == Predictor::Variable)) {
1489
0
    float best_cost = std::numeric_limits<float>::max();
1490
0
    stream_options_[stream_id].wp_mode = 0;
1491
0
    for (size_t i = 0; i < nb_wp_modes; i++) {
1492
0
      float cost = EstimateWPCost(gi, i);
1493
0
      if (cost < best_cost) {
1494
0
        best_cost = cost;
1495
0
        stream_options_[stream_id].wp_mode = i;
1496
0
      }
1497
0
    }
1498
0
  }
1499
111
  return true;
1500
111
}
1501
1502
constexpr float q_deadzone = 0.62f;
1503
int QuantizeWP(const int32_t* qrow, size_t onerow, size_t c, size_t x, size_t y,
1504
               size_t w, weighted::State* wp_state, float value,
1505
1.19M
               float inv_factor) {
1506
1.19M
  float svalue = value * inv_factor;
1507
1.19M
  PredictionResult pred =
1508
1.19M
      PredictNoTreeWP(w, qrow + x, onerow, x, y, Predictor::Weighted, wp_state);
1509
1.19M
  svalue -= pred.guess;
1510
1.19M
  if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
1511
1.19M
  int residual = std::round(svalue);
1512
1.19M
  if (residual > 2 || residual < -2) residual = std::round(svalue * 0.5f) * 2;
1513
1.19M
  return residual + pred.guess;
1514
1.19M
}
1515
1516
int QuantizeGradient(const int32_t* qrow, size_t onerow, size_t c, size_t x,
1517
0
                     size_t y, size_t w, float value, float inv_factor) {
1518
0
  float svalue = value * inv_factor;
1519
0
  PredictionResult pred =
1520
0
      PredictNoTreeNoWP(w, qrow + x, onerow, x, y, Predictor::Gradient);
1521
0
  svalue -= pred.guess;
1522
0
  if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
1523
0
  int residual = std::round(svalue);
1524
0
  if (residual > 2 || residual < -2) residual = std::round(svalue * 0.5f) * 2;
1525
0
  return residual + pred.guess;
1526
0
}
1527
1528
Status ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
1529
                                        const Image3F& dc, const Rect& r,
1530
                                        size_t group_index, bool nl_dc,
1531
                                        PassesEncoderState* enc_state,
1532
186
                                        bool jpeg_transcode) {
1533
186
  JxlMemoryManager* memory_manager = dc.memory_manager();
1534
186
  extra_dc_precision[group_index] = nl_dc ? 1 : 0;
1535
186
  float mul = 1 << extra_dc_precision[group_index];
1536
1537
186
  size_t stream_id = ModularStreamId::VarDCTDC(group_index).ID(frame_dim_);
1538
186
  stream_options_[stream_id].max_chan_size = 0xFFFFFF;
1539
186
  stream_options_[stream_id].predictor = Predictor::Weighted;
1540
186
  stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kWPOnly;
1541
186
  if (cparams_.speed_tier >= SpeedTier::kSquirrel) {
1542
186
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
1543
186
  }
1544
186
  if (cparams_.speed_tier < SpeedTier::kSquirrel && !nl_dc) {
1545
0
    stream_options_[stream_id].predictor =
1546
0
        (cparams_.speed_tier < SpeedTier::kKitten ? Predictor::Variable
1547
0
                                                  : Predictor::Best);
1548
0
    stream_options_[stream_id].wp_tree_mode =
1549
0
        ModularOptions::TreeMode::kDefault;
1550
0
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
1551
0
  }
1552
186
  if (cparams_.decoding_speed_tier >= 1) {
1553
0
    stream_options_[stream_id].tree_kind =
1554
0
        ModularOptions::TreeKind::kGradientFixedDC;
1555
0
  }
1556
186
  stream_options_[stream_id].histogram_params =
1557
186
      stream_options_[0].histogram_params;
1558
1559
186
  JXL_ASSIGN_OR_RETURN(
1560
186
      stream_images_[stream_id],
1561
186
      Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 3));
1562
186
  const ColorCorrelation& color_correlation = enc_state->shared.cmap.base();
1563
186
  if (nl_dc && stream_options_[stream_id].tree_kind ==
1564
186
                   ModularOptions::TreeKind::kGradientFixedDC) {
1565
0
    JXL_ENSURE(frame_header.chroma_subsampling.Is444());
1566
0
    for (size_t c : {1, 0, 2}) {
1567
0
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1568
0
      float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
1569
0
      float cfl_factor = color_correlation.DCFactors()[c];
1570
0
      for (size_t y = 0; y < r.ysize(); y++) {
1571
0
        int32_t* quant_row =
1572
0
            stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
1573
0
        size_t stride = stream_images_[stream_id]
1574
0
                            .channel[c < 2 ? c ^ 1 : c]
1575
0
                            .plane.PixelsPerRow();
1576
0
        const float* row = r.ConstPlaneRow(dc, c, y);
1577
0
        if (c == 1) {
1578
0
          for (size_t x = 0; x < r.xsize(); x++) {
1579
0
            quant_row[x] = QuantizeGradient(quant_row, stride, c, x, y,
1580
0
                                            r.xsize(), row[x], inv_factor);
1581
0
          }
1582
0
        } else {
1583
0
          int32_t* quant_row_y =
1584
0
              stream_images_[stream_id].channel[0].plane.Row(y);
1585
0
          for (size_t x = 0; x < r.xsize(); x++) {
1586
0
            quant_row[x] = QuantizeGradient(
1587
0
                quant_row, stride, c, x, y, r.xsize(),
1588
0
                row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor);
1589
0
          }
1590
0
        }
1591
0
      }
1592
0
    }
1593
186
  } else if (nl_dc) {
1594
186
    JXL_ENSURE(frame_header.chroma_subsampling.Is444());
1595
558
    for (size_t c : {1, 0, 2}) {
1596
558
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1597
558
      float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
1598
558
      float cfl_factor = color_correlation.DCFactors()[c];
1599
558
      weighted::Header header;
1600
558
      weighted::State wp_state(header, r.xsize(), r.ysize());
1601
22.5k
      for (size_t y = 0; y < r.ysize(); y++) {
1602
21.9k
        int32_t* quant_row =
1603
21.9k
            stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
1604
21.9k
        size_t stride = stream_images_[stream_id]
1605
21.9k
                            .channel[c < 2 ? c ^ 1 : c]
1606
21.9k
                            .plane.PixelsPerRow();
1607
21.9k
        const float* row = r.ConstPlaneRow(dc, c, y);
1608
21.9k
        if (c == 1) {
1609
405k
          for (size_t x = 0; x < r.xsize(); x++) {
1610
398k
            quant_row[x] = QuantizeWP(quant_row, stride, c, x, y, r.xsize(),
1611
398k
                                      &wp_state, row[x], inv_factor);
1612
398k
            wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
1613
398k
          }
1614
14.6k
        } else {
1615
14.6k
          int32_t* quant_row_y =
1616
14.6k
              stream_images_[stream_id].channel[0].plane.Row(y);
1617
810k
          for (size_t x = 0; x < r.xsize(); x++) {
1618
796k
            quant_row[x] = QuantizeWP(
1619
796k
                quant_row, stride, c, x, y, r.xsize(), &wp_state,
1620
796k
                row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor);
1621
796k
            wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
1622
796k
          }
1623
14.6k
        }
1624
21.9k
      }
1625
558
    }
1626
186
  } else if (frame_header.chroma_subsampling.Is444()) {
1627
0
    for (size_t c : {1, 0, 2}) {
1628
0
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1629
0
      float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
1630
0
      float cfl_factor = color_correlation.DCFactors()[c];
1631
0
      for (size_t y = 0; y < r.ysize(); y++) {
1632
0
        int32_t* quant_row =
1633
0
            stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
1634
0
        const float* row = r.ConstPlaneRow(dc, c, y);
1635
0
        if (c == 1) {
1636
0
          for (size_t x = 0; x < r.xsize(); x++) {
1637
0
            quant_row[x] = std::round(row[x] * inv_factor);
1638
0
          }
1639
0
        } else {
1640
0
          int32_t* quant_row_y =
1641
0
              stream_images_[stream_id].channel[0].plane.Row(y);
1642
0
          for (size_t x = 0; x < r.xsize(); x++) {
1643
0
            quant_row[x] =
1644
0
                std::round((row[x] - quant_row_y[x] * (y_factor * cfl_factor)) *
1645
0
                           inv_factor);
1646
0
          }
1647
0
        }
1648
0
      }
1649
0
    }
1650
0
  } else {
1651
0
    for (size_t c : {1, 0, 2}) {
1652
0
      Rect rect(r.x0() >> frame_header.chroma_subsampling.HShift(c),
1653
0
                r.y0() >> frame_header.chroma_subsampling.VShift(c),
1654
0
                r.xsize() >> frame_header.chroma_subsampling.HShift(c),
1655
0
                r.ysize() >> frame_header.chroma_subsampling.VShift(c));
1656
0
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1657
0
      size_t ys = rect.ysize();
1658
0
      size_t xs = rect.xsize();
1659
0
      Channel& ch = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c];
1660
0
      ch.w = xs;
1661
0
      ch.h = ys;
1662
0
      JXL_RETURN_IF_ERROR(ch.shrink());
1663
0
      for (size_t y = 0; y < ys; y++) {
1664
0
        int32_t* quant_row = ch.plane.Row(y);
1665
0
        const float* row = rect.ConstPlaneRow(dc, c, y);
1666
0
        for (size_t x = 0; x < xs; x++) {
1667
0
          quant_row[x] = std::round(row[x] * inv_factor);
1668
0
        }
1669
0
      }
1670
0
    }
1671
0
  }
1672
1673
186
  DequantDC(r, &enc_state->shared.dc_storage, &enc_state->shared.quant_dc,
1674
186
            stream_images_[stream_id], enc_state->shared.quantizer.MulDC(),
1675
186
            1.0 / mul, color_correlation.DCFactors(),
1676
186
            frame_header.chroma_subsampling, enc_state->shared.block_ctx_map);
1677
186
  return true;
1678
186
}
1679
1680
Status ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index,
1681
                                          bool jpeg_transcode,
1682
186
                                          PassesEncoderState* enc_state) {
1683
186
  JxlMemoryManager* memory_manager = enc_state->memory_manager();
1684
186
  size_t stream_id = ModularStreamId::ACMetadata(group_index).ID(frame_dim_);
1685
186
  stream_options_[stream_id].max_chan_size = 0xFFFFFF;
1686
186
  if (stream_options_[stream_id].predictor != Predictor::Weighted) {
1687
186
    stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP;
1688
186
  }
1689
186
  if (jpeg_transcode) {
1690
0
    stream_options_[stream_id].tree_kind =
1691
0
        ModularOptions::TreeKind::kJpegTranscodeACMeta;
1692
186
  } else if (cparams_.speed_tier >= SpeedTier::kFalcon) {
1693
0
    stream_options_[stream_id].tree_kind =
1694
0
        ModularOptions::TreeKind::kFalconACMeta;
1695
186
  } else if (cparams_.speed_tier > SpeedTier::kKitten) {
1696
186
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kACMeta;
1697
186
  }
1698
  // If we are using a non-constant CfL field, and are in a slow enough mode,
1699
  // re-enable tree computation for it.
1700
186
  if (cparams_.speed_tier < SpeedTier::kSquirrel &&
1701
186
      cparams_.force_cfl_jpeg_recompression) {
1702
0
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
1703
0
  }
1704
186
  stream_options_[stream_id].histogram_params =
1705
186
      stream_options_[0].histogram_params;
1706
  // YToX, YToB, ACS + QF, EPF
1707
186
  Image& image = stream_images_[stream_id];
1708
186
  JXL_ASSIGN_OR_RETURN(
1709
186
      image, Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 4));
1710
186
  static_assert(kColorTileDimInBlocks == 8, "Color tile size changed");
1711
186
  Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3);
1712
186
  JXL_ASSIGN_OR_RETURN(
1713
186
      image.channel[0],
1714
186
      Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3));
1715
186
  JXL_ASSIGN_OR_RETURN(
1716
186
      image.channel[1],
1717
186
      Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3));
1718
186
  JXL_ASSIGN_OR_RETURN(
1719
186
      image.channel[2],
1720
186
      Channel::Create(memory_manager, r.xsize() * r.ysize(), 2, 0, 0));
1721
186
  JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytox_map,
1722
186
                                           Rect(image.channel[0].plane),
1723
186
                                           &image.channel[0].plane));
1724
186
  JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytob_map,
1725
186
                                           Rect(image.channel[1].plane),
1726
186
                                           &image.channel[1].plane));
1727
186
  size_t num = 0;
1728
7.51k
  for (size_t y = 0; y < r.ysize(); y++) {
1729
7.32k
    AcStrategyRow row_acs = enc_state->shared.ac_strategy.ConstRow(r, y);
1730
7.32k
    const int32_t* row_qf = r.ConstRow(enc_state->shared.raw_quant_field, y);
1731
7.32k
    const uint8_t* row_epf = r.ConstRow(enc_state->shared.epf_sharpness, y);
1732
7.32k
    int32_t* out_acs = image.channel[2].plane.Row(0);
1733
7.32k
    int32_t* out_qf = image.channel[2].plane.Row(1);
1734
7.32k
    int32_t* row_out_epf = image.channel[3].plane.Row(y);
1735
405k
    for (size_t x = 0; x < r.xsize(); x++) {
1736
398k
      row_out_epf[x] = row_epf[x];
1737
398k
      if (!row_acs[x].IsFirstBlock()) continue;
1738
241k
      out_acs[num] = row_acs[x].RawStrategy();
1739
241k
      out_qf[num] = row_qf[x] - 1;
1740
241k
      num++;
1741
241k
    }
1742
7.32k
  }
1743
186
  image.channel[2].w = num;
1744
186
  ac_metadata_size[group_index] = num;
1745
186
  return true;
1746
186
}
1747
1748
Status ModularFrameEncoder::EncodeQuantTable(
1749
    JxlMemoryManager* memory_manager, size_t size_x, size_t size_y,
1750
    BitWriter* writer, const QuantEncoding& encoding, size_t idx,
1751
0
    ModularFrameEncoder* modular_frame_encoder) {
1752
0
  JXL_ENSURE(encoding.qraw.qtable);
1753
0
  JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size());
1754
0
  JXL_ENSURE(idx < kNumQuantTables);
1755
0
  int* qtable = encoding.qraw.qtable->data();
1756
0
  JXL_RETURN_IF_ERROR(F16Coder::Write(encoding.qraw.qtable_den, writer));
1757
0
  if (modular_frame_encoder) {
1758
0
    JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx));
1759
0
    JXL_RETURN_IF_ERROR(modular_frame_encoder->EncodeStream(
1760
0
        writer, nullptr, LayerType::Header, qt));
1761
0
    return true;
1762
0
  }
1763
0
  JXL_ASSIGN_OR_RETURN(Image image,
1764
0
                       Image::Create(memory_manager, size_x, size_y, 8, 3));
1765
0
  for (size_t c = 0; c < 3; c++) {
1766
0
    for (size_t y = 0; y < size_y; y++) {
1767
0
      int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
1768
0
      for (size_t x = 0; x < size_x; x++) {
1769
0
        row[x] = qtable[c * size_x * size_y + y * size_x + x];
1770
0
      }
1771
0
    }
1772
0
  }
1773
0
  ModularOptions cfopts;
1774
0
  JXL_RETURN_IF_ERROR(ModularGenericCompress(image, cfopts, *writer));
1775
0
  return true;
1776
0
}
1777
1778
Status ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y,
1779
                                          const QuantEncoding& encoding,
1780
0
                                          size_t idx) {
1781
0
  JXL_ENSURE(idx < kNumQuantTables);
1782
0
  JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx));
1783
0
  size_t stream_id = qt.ID(frame_dim_);
1784
0
  JXL_ENSURE(encoding.qraw.qtable);
1785
0
  JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size());
1786
0
  int* qtable = encoding.qraw.qtable->data();
1787
0
  Image& image = stream_images_[stream_id];
1788
0
  JxlMemoryManager* memory_manager = image.memory_manager();
1789
0
  JXL_ASSIGN_OR_RETURN(image,
1790
0
                       Image::Create(memory_manager, size_x, size_y, 8, 3));
1791
0
  for (size_t c = 0; c < 3; c++) {
1792
0
    for (size_t y = 0; y < size_y; y++) {
1793
0
      int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
1794
0
      for (size_t x = 0; x < size_x; x++) {
1795
0
        row[x] = qtable[c * size_x * size_y + y * size_x + x];
1796
0
      }
1797
0
    }
1798
0
  }
1799
0
  return true;
1800
0
}
1801
}  // namespace jxl