Coverage Report

Created: 2025-06-16 07:00

/src/libjxl/lib/jxl/enc_optimize.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
// Utility functions for optimizing multi-dimensional nonlinear functions.
7
8
#ifndef LIB_JXL_OPTIMIZE_H_
9
#define LIB_JXL_OPTIMIZE_H_
10
11
#include <cmath>
12
#include <cstdio>
13
14
#include "lib/jxl/base/status.h"
15
16
namespace jxl {
17
namespace optimize {
18
19
// An array type of numeric values that supports math operations with operator-,
20
// operator+, etc.
21
template <typename T, size_t N>
22
class Array {
23
 public:
24
  Array() = default;
25
  explicit Array(T v) {
26
    for (size_t i = 0; i < N; i++) v_[i] = v;
27
  }
28
29
0
  size_t size() const { return N; }
30
31
0
  T& operator[](size_t index) {
32
0
    JXL_DASSERT(index < N);
33
0
    return v_[index];
34
0
  }
35
0
  T operator[](size_t index) const {
36
0
    JXL_DASSERT(index < N);
37
0
    return v_[index];
38
0
  }
39
40
 private:
41
  // The values used by this Array.
42
  T v_[N];
43
};
44
45
template <typename T, size_t N>
46
0
Array<T, N> operator+(const Array<T, N>& x, const Array<T, N>& y) {
47
0
  Array<T, N> z;
48
0
  for (size_t i = 0; i < N; ++i) {
49
0
    z[i] = x[i] + y[i];
50
0
  }
51
0
  return z;
52
0
}
53
54
template <typename T, size_t N>
55
0
Array<T, N> operator-(const Array<T, N>& x, const Array<T, N>& y) {
56
0
  Array<T, N> z;
57
0
  for (size_t i = 0; i < N; ++i) {
58
0
    z[i] = x[i] - y[i];
59
0
  }
60
0
  return z;
61
0
}
62
63
template <typename T, size_t N>
64
0
Array<T, N> operator*(T v, const Array<T, N>& x) {
65
0
  Array<T, N> y;
66
0
  for (size_t i = 0; i < N; ++i) {
67
0
    y[i] = v * x[i];
68
0
  }
69
0
  return y;
70
0
}
71
72
template <typename T, size_t N>
73
0
T operator*(const Array<T, N>& x, const Array<T, N>& y) {
74
0
  T r = 0.0;
75
0
  for (size_t i = 0; i < N; ++i) {
76
0
    r += x[i] * y[i];
77
0
  }
78
0
  return r;
79
0
}
80
81
// Implementation of the Scaled Conjugate Gradient method described in the
82
// following paper:
83
//   Moller, M. "A Scaled Conjugate Gradient Algorithm for Fast Supervised
84
//   Learning", Neural Networks, Vol. 6. pp. 525-533, 1993
85
//   http://sci2s.ugr.es/keel/pdf/algorithm/articulo/moller1990.pdf
86
//
87
// The Function template parameter is a class that has the following method:
88
//
89
//   // Returns the value of the function at point w and sets *df to be the
90
//   // negative gradient vector of the function at point w.
91
//   double Compute(const optimize::Array<T, N>& w,
92
//                  optimize::Array<T, N>* df) const;
93
//
94
// Returns a vector w, such that |df(w)| < grad_norm_threshold.
95
template <typename T, size_t N, typename Function>
96
Array<T, N> OptimizeWithScaledConjugateGradientMethod(
97
    const Function& f, const Array<T, N>& w0, const T grad_norm_threshold,
98
0
    size_t max_iters) {
99
0
  const size_t n = w0.size();
100
0
  const T rsq_threshold = grad_norm_threshold * grad_norm_threshold;
101
0
  const T sigma0 = static_cast<T>(0.0001);
102
0
  const T l_min = static_cast<T>(1.0e-15);
103
0
  const T l_max = static_cast<T>(1.0e15);
104
105
0
  Array<T, N> w = w0;
106
0
  Array<T, N> wp;
107
0
  Array<T, N> r;
108
0
  Array<T, N> rt;
109
0
  Array<T, N> e;
110
0
  Array<T, N> p;
111
0
  T psq;
112
0
  T fp;
113
0
  T D;
114
0
  T d;
115
0
  T m;
116
0
  T a;
117
0
  T b;
118
0
  T s;
119
0
  T t;
120
121
0
  T fw = f.Compute(w, &r);
122
0
  T rsq = r * r;
123
0
  e = r;
124
0
  p = r;
125
0
  T l = static_cast<T>(1.0);
126
0
  bool success = true;
127
0
  size_t n_success = 0;
128
0
  size_t k = 0;
129
130
0
  while (k++ < max_iters) {
131
0
    if (success) {
132
0
      m = -(p * r);
133
0
      if (m >= 0) {
134
0
        p = r;
135
0
        m = -(p * r);
136
0
      }
137
0
      psq = p * p;
138
0
      s = sigma0 / std::sqrt(psq);
139
0
      f.Compute(w + (s * p), &rt);
140
0
      t = (p * (r - rt)) / s;
141
0
    }
142
143
0
    d = t + l * psq;
144
0
    if (d <= 0) {
145
0
      d = l * psq;
146
0
      l = l - t / psq;
147
0
    }
148
149
0
    a = -m / d;
150
0
    wp = w + a * p;
151
0
    fp = f.Compute(wp, &rt);
152
153
0
    D = 2.0 * (fp - fw) / (a * m);
154
0
    if (D >= 0.0) {
155
0
      success = true;
156
0
      n_success++;
157
0
      w = wp;
158
0
    } else {
159
0
      success = false;
160
0
    }
161
162
0
    if (success) {
163
0
      e = r;
164
0
      r = rt;
165
0
      rsq = r * r;
166
0
      fw = fp;
167
0
      if (rsq <= rsq_threshold) {
168
0
        break;
169
0
      }
170
0
    }
171
172
0
    if (D < 0.25) {
173
0
      l = std::min(4.0 * l, l_max);
174
0
    } else if (D > 0.75) {
175
0
      l = std::max(0.25 * l, l_min);
176
0
    }
177
178
0
    if ((n_success % n) == 0) {
179
0
      p = r;
180
0
      l = 1.0;
181
0
    } else if (success) {
182
0
      b = ((e - r) * r) / m;
183
0
      p = b * p + r;
184
0
    }
185
0
  }
186
187
0
  return w;
188
0
}
189
190
}  // namespace optimize
191
}  // namespace jxl
192
193
#endif  // LIB_JXL_OPTIMIZE_H_