Line | Count | Source (jump to first uncovered line) |
1 | | /* png.c - location for general purpose libpng functions |
2 | | * |
3 | | * Copyright (c) 2018-2025 Cosmin Truta |
4 | | * Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson |
5 | | * Copyright (c) 1996-1997 Andreas Dilger |
6 | | * Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc. |
7 | | * |
8 | | * This code is released under the libpng license. |
9 | | * For conditions of distribution and use, see the disclaimer |
10 | | * and license in png.h |
11 | | */ |
12 | | |
13 | | #include "pngpriv.h" |
14 | | |
15 | | /* Generate a compiler error if there is an old png.h in the search path. */ |
16 | | typedef png_libpng_version_1_6_50_git Your_png_h_is_not_version_1_6_50_git; |
17 | | |
18 | | /* Sanity check the chunks definitions - PNG_KNOWN_CHUNKS from pngpriv.h and the |
19 | | * corresponding macro definitions. This causes a compile time failure if |
20 | | * something is wrong but generates no code. |
21 | | * |
22 | | * (1) The first check is that the PNG_CHUNK(cHNK, index) 'index' values must |
23 | | * increment from 0 to the last value. |
24 | | */ |
25 | | #define PNG_CHUNK(cHNK, index) != (index) || ((index)+1) |
26 | | |
27 | | #if 0 PNG_KNOWN_CHUNKS < 0 |
28 | | # error PNG_KNOWN_CHUNKS chunk definitions are not in order |
29 | | #endif |
30 | | |
31 | | #undef PNG_CHUNK |
32 | | |
33 | | /* (2) The chunk name macros, png_cHNK, must all be valid and defined. Since |
34 | | * this is a preprocessor test undefined pp-tokens come out as zero and will |
35 | | * fail this test. |
36 | | */ |
37 | | #define PNG_CHUNK(cHNK, index) !PNG_CHUNK_NAME_VALID(png_ ## cHNK) || |
38 | | |
39 | | #if PNG_KNOWN_CHUNKS 0 |
40 | | # error png_cHNK not defined for some known cHNK |
41 | | #endif |
42 | | |
43 | | #undef PNG_CHUNK |
44 | | |
45 | | /* Tells libpng that we have already handled the first "num_bytes" bytes |
46 | | * of the PNG file signature. If the PNG data is embedded into another |
47 | | * stream we can set num_bytes = 8 so that libpng will not attempt to read |
48 | | * or write any of the magic bytes before it starts on the IHDR. |
49 | | */ |
50 | | |
51 | | #ifdef PNG_READ_SUPPORTED |
52 | | void PNGAPI |
53 | | png_set_sig_bytes(png_structrp png_ptr, int num_bytes) |
54 | 97.7k | { |
55 | 97.7k | unsigned int nb = (unsigned int)num_bytes; |
56 | | |
57 | 97.7k | png_debug(1, "in png_set_sig_bytes"); |
58 | | |
59 | 97.7k | if (png_ptr == NULL) |
60 | 0 | return; |
61 | | |
62 | 97.7k | if (num_bytes < 0) |
63 | 0 | nb = 0; |
64 | | |
65 | 97.7k | if (nb > 8) |
66 | 0 | png_error(png_ptr, "Too many bytes for PNG signature"); |
67 | | |
68 | 97.7k | png_ptr->sig_bytes = (png_byte)nb; |
69 | 97.7k | } |
70 | | |
71 | | /* Checks whether the supplied bytes match the PNG signature. We allow |
72 | | * checking less than the full 8-byte signature so that those apps that |
73 | | * already read the first few bytes of a file to determine the file type |
74 | | * can simply check the remaining bytes for extra assurance. Returns |
75 | | * an integer less than, equal to, or greater than zero if sig is found, |
76 | | * respectively, to be less than, to match, or be greater than the correct |
77 | | * PNG signature (this is the same behavior as strcmp, memcmp, etc). |
78 | | */ |
79 | | int PNGAPI |
80 | | png_sig_cmp(png_const_bytep sig, size_t start, size_t num_to_check) |
81 | 0 | { |
82 | 0 | static const png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; |
83 | |
|
84 | 0 | if (num_to_check > 8) |
85 | 0 | num_to_check = 8; |
86 | | |
87 | 0 | else if (num_to_check < 1) |
88 | 0 | return -1; |
89 | | |
90 | 0 | if (start > 7) |
91 | 0 | return -1; |
92 | | |
93 | 0 | if (start + num_to_check > 8) |
94 | 0 | num_to_check = 8 - start; |
95 | |
|
96 | 0 | return memcmp(&sig[start], &png_signature[start], num_to_check); |
97 | 0 | } |
98 | | |
99 | | #endif /* READ */ |
100 | | |
101 | | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
102 | | /* Function to allocate memory for zlib */ |
103 | | PNG_FUNCTION(voidpf /* PRIVATE */, |
104 | | png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED) |
105 | 151k | { |
106 | 151k | png_alloc_size_t num_bytes = size; |
107 | | |
108 | 151k | if (png_ptr == NULL) |
109 | 0 | return NULL; |
110 | | |
111 | 151k | if (items >= (~(png_alloc_size_t)0)/size) |
112 | 0 | { |
113 | 0 | png_warning (png_voidcast(png_structrp, png_ptr), |
114 | 0 | "Potential overflow in png_zalloc()"); |
115 | 0 | return NULL; |
116 | 0 | } |
117 | | |
118 | 151k | num_bytes *= items; |
119 | 151k | return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes); |
120 | 151k | } |
121 | | |
122 | | /* Function to free memory for zlib */ |
123 | | void /* PRIVATE */ |
124 | | png_zfree(voidpf png_ptr, voidpf ptr) |
125 | 151k | { |
126 | 151k | png_free(png_voidcast(png_const_structrp,png_ptr), ptr); |
127 | 151k | } |
128 | | |
129 | | /* Reset the CRC variable to 32 bits of 1's. Care must be taken |
130 | | * in case CRC is > 32 bits to leave the top bits 0. |
131 | | */ |
132 | | void /* PRIVATE */ |
133 | | png_reset_crc(png_structrp png_ptr) |
134 | 830k | { |
135 | | /* The cast is safe because the crc is a 32-bit value. */ |
136 | 830k | png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); |
137 | 830k | } |
138 | | |
139 | | /* Calculate the CRC over a section of data. We can only pass as |
140 | | * much data to this routine as the largest single buffer size. We |
141 | | * also check that this data will actually be used before going to the |
142 | | * trouble of calculating it. |
143 | | */ |
144 | | void /* PRIVATE */ |
145 | | png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, size_t length) |
146 | 1.58M | { |
147 | 1.58M | int need_crc = 1; |
148 | | |
149 | 1.58M | if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0) |
150 | 1.06M | { |
151 | 1.06M | if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == |
152 | 1.06M | (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) |
153 | 0 | need_crc = 0; |
154 | 1.06M | } |
155 | | |
156 | 520k | else /* critical */ |
157 | 520k | { |
158 | 520k | if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0) |
159 | 0 | need_crc = 0; |
160 | 520k | } |
161 | | |
162 | | /* 'uLong' is defined in zlib.h as unsigned long; this means that on some |
163 | | * systems it is a 64-bit value. crc32, however, returns 32 bits so the |
164 | | * following cast is safe. 'uInt' may be no more than 16 bits, so it is |
165 | | * necessary to perform a loop here. |
166 | | */ |
167 | 1.58M | if (need_crc != 0 && length > 0) |
168 | 1.58M | { |
169 | 1.58M | uLong crc = png_ptr->crc; /* Should never issue a warning */ |
170 | | |
171 | 1.58M | do |
172 | 1.58M | { |
173 | 1.58M | uInt safe_length = (uInt)length; |
174 | 1.58M | #ifndef __COVERITY__ |
175 | 1.58M | if (safe_length == 0) |
176 | 0 | safe_length = (uInt)-1; /* evil, but safe */ |
177 | 1.58M | #endif |
178 | | |
179 | 1.58M | crc = crc32(crc, ptr, safe_length); |
180 | | |
181 | | /* The following should never issue compiler warnings; if they do the |
182 | | * target system has characteristics that will probably violate other |
183 | | * assumptions within the libpng code. |
184 | | */ |
185 | 1.58M | ptr += safe_length; |
186 | 1.58M | length -= safe_length; |
187 | 1.58M | } |
188 | 1.58M | while (length > 0); |
189 | | |
190 | | /* And the following is always safe because the crc is only 32 bits. */ |
191 | 1.58M | png_ptr->crc = (png_uint_32)crc; |
192 | 1.58M | } |
193 | 1.58M | } |
194 | | |
195 | | /* Check a user supplied version number, called from both read and write |
196 | | * functions that create a png_struct. |
197 | | */ |
198 | | int |
199 | | png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver) |
200 | 99.5k | { |
201 | | /* Libpng versions 1.0.0 and later are binary compatible if the version |
202 | | * string matches through the second '.'; we must recompile any |
203 | | * applications that use any older library version. |
204 | | */ |
205 | | |
206 | 99.5k | if (user_png_ver != NULL) |
207 | 99.5k | { |
208 | 99.5k | int i = -1; |
209 | 99.5k | int found_dots = 0; |
210 | | |
211 | 99.5k | do |
212 | 398k | { |
213 | 398k | i++; |
214 | 398k | if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i]) |
215 | 0 | png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; |
216 | 398k | if (user_png_ver[i] == '.') |
217 | 199k | found_dots++; |
218 | 398k | } while (found_dots < 2 && user_png_ver[i] != 0 && |
219 | 398k | PNG_LIBPNG_VER_STRING[i] != 0); |
220 | 99.5k | } |
221 | | |
222 | 0 | else |
223 | 0 | png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; |
224 | | |
225 | 99.5k | if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0) |
226 | 0 | { |
227 | 0 | #ifdef PNG_WARNINGS_SUPPORTED |
228 | 0 | size_t pos = 0; |
229 | 0 | char m[128]; |
230 | |
|
231 | 0 | pos = png_safecat(m, (sizeof m), pos, |
232 | 0 | "Application built with libpng-"); |
233 | 0 | pos = png_safecat(m, (sizeof m), pos, user_png_ver); |
234 | 0 | pos = png_safecat(m, (sizeof m), pos, " but running with "); |
235 | 0 | pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING); |
236 | 0 | PNG_UNUSED(pos) |
237 | |
|
238 | 0 | png_warning(png_ptr, m); |
239 | 0 | #endif |
240 | |
|
241 | | #ifdef PNG_ERROR_NUMBERS_SUPPORTED |
242 | | png_ptr->flags = 0; |
243 | | #endif |
244 | |
|
245 | 0 | return 0; |
246 | 0 | } |
247 | | |
248 | | /* Success return. */ |
249 | 99.5k | return 1; |
250 | 99.5k | } |
251 | | |
252 | | /* Generic function to create a png_struct for either read or write - this |
253 | | * contains the common initialization. |
254 | | */ |
255 | | PNG_FUNCTION(png_structp /* PRIVATE */, |
256 | | png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr, |
257 | | png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, |
258 | | png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED) |
259 | 99.5k | { |
260 | 99.5k | png_struct create_struct; |
261 | 99.5k | # ifdef PNG_SETJMP_SUPPORTED |
262 | 99.5k | jmp_buf create_jmp_buf; |
263 | 99.5k | # endif |
264 | | |
265 | | /* This temporary stack-allocated structure is used to provide a place to |
266 | | * build enough context to allow the user provided memory allocator (if any) |
267 | | * to be called. |
268 | | */ |
269 | 99.5k | memset(&create_struct, 0, (sizeof create_struct)); |
270 | | |
271 | 99.5k | # ifdef PNG_USER_LIMITS_SUPPORTED |
272 | 99.5k | create_struct.user_width_max = PNG_USER_WIDTH_MAX; |
273 | 99.5k | create_struct.user_height_max = PNG_USER_HEIGHT_MAX; |
274 | | |
275 | 99.5k | # ifdef PNG_USER_CHUNK_CACHE_MAX |
276 | 99.5k | create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX; |
277 | 99.5k | # endif |
278 | | |
279 | 99.5k | # if PNG_USER_CHUNK_MALLOC_MAX > 0 /* default to compile-time limit */ |
280 | 99.5k | create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX; |
281 | | |
282 | | /* No compile-time limit, so initialize to the system limit: */ |
283 | | # elif defined PNG_MAX_MALLOC_64K /* legacy system limit */ |
284 | | create_struct.user_chunk_malloc_max = 65536U; |
285 | | |
286 | | # else /* modern system limit SIZE_MAX (C99) */ |
287 | | create_struct.user_chunk_malloc_max = PNG_SIZE_MAX; |
288 | | # endif |
289 | 99.5k | # endif |
290 | | |
291 | | /* The following two API calls simply set fields in png_struct, so it is safe |
292 | | * to do them now even though error handling is not yet set up. |
293 | | */ |
294 | 99.5k | # ifdef PNG_USER_MEM_SUPPORTED |
295 | 99.5k | png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn); |
296 | | # else |
297 | | PNG_UNUSED(mem_ptr) |
298 | | PNG_UNUSED(malloc_fn) |
299 | | PNG_UNUSED(free_fn) |
300 | | # endif |
301 | | |
302 | | /* (*error_fn) can return control to the caller after the error_ptr is set, |
303 | | * this will result in a memory leak unless the error_fn does something |
304 | | * extremely sophisticated. The design lacks merit but is implicit in the |
305 | | * API. |
306 | | */ |
307 | 99.5k | png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn); |
308 | | |
309 | 99.5k | # ifdef PNG_SETJMP_SUPPORTED |
310 | 99.5k | if (!setjmp(create_jmp_buf)) |
311 | 99.5k | # endif |
312 | 99.5k | { |
313 | 99.5k | # ifdef PNG_SETJMP_SUPPORTED |
314 | | /* Temporarily fake out the longjmp information until we have |
315 | | * successfully completed this function. This only works if we have |
316 | | * setjmp() support compiled in, but it is safe - this stuff should |
317 | | * never happen. |
318 | | */ |
319 | 99.5k | create_struct.jmp_buf_ptr = &create_jmp_buf; |
320 | 99.5k | create_struct.jmp_buf_size = 0; /*stack allocation*/ |
321 | 99.5k | create_struct.longjmp_fn = longjmp; |
322 | 99.5k | # endif |
323 | | /* Call the general version checker (shared with read and write code): |
324 | | */ |
325 | 99.5k | if (png_user_version_check(&create_struct, user_png_ver) != 0) |
326 | 99.5k | { |
327 | 99.5k | png_structrp png_ptr = png_voidcast(png_structrp, |
328 | 99.5k | png_malloc_warn(&create_struct, (sizeof *png_ptr))); |
329 | | |
330 | 99.5k | if (png_ptr != NULL) |
331 | 99.5k | { |
332 | | /* png_ptr->zstream holds a back-pointer to the png_struct, so |
333 | | * this can only be done now: |
334 | | */ |
335 | 99.5k | create_struct.zstream.zalloc = png_zalloc; |
336 | 99.5k | create_struct.zstream.zfree = png_zfree; |
337 | 99.5k | create_struct.zstream.opaque = png_ptr; |
338 | | |
339 | 99.5k | # ifdef PNG_SETJMP_SUPPORTED |
340 | | /* Eliminate the local error handling: */ |
341 | 99.5k | create_struct.jmp_buf_ptr = NULL; |
342 | 99.5k | create_struct.jmp_buf_size = 0; |
343 | 99.5k | create_struct.longjmp_fn = 0; |
344 | 99.5k | # endif |
345 | | |
346 | 99.5k | *png_ptr = create_struct; |
347 | | |
348 | | /* This is the successful return point */ |
349 | 99.5k | return png_ptr; |
350 | 99.5k | } |
351 | 99.5k | } |
352 | 99.5k | } |
353 | | |
354 | | /* A longjmp because of a bug in the application storage allocator or a |
355 | | * simple failure to allocate the png_struct. |
356 | | */ |
357 | 0 | return NULL; |
358 | 99.5k | } |
359 | | |
360 | | /* Allocate the memory for an info_struct for the application. */ |
361 | | PNG_FUNCTION(png_infop,PNGAPI |
362 | | png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED) |
363 | 196k | { |
364 | 196k | png_inforp info_ptr; |
365 | | |
366 | 196k | png_debug(1, "in png_create_info_struct"); |
367 | | |
368 | 196k | if (png_ptr == NULL) |
369 | 0 | return NULL; |
370 | | |
371 | | /* Use the internal API that does not (or at least should not) error out, so |
372 | | * that this call always returns ok. The application typically sets up the |
373 | | * error handling *after* creating the info_struct because this is the way it |
374 | | * has always been done in 'example.c'. |
375 | | */ |
376 | 196k | info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr, |
377 | 196k | (sizeof *info_ptr))); |
378 | | |
379 | 196k | if (info_ptr != NULL) |
380 | 196k | memset(info_ptr, 0, (sizeof *info_ptr)); |
381 | | |
382 | 196k | return info_ptr; |
383 | 196k | } |
384 | | |
385 | | /* This function frees the memory associated with a single info struct. |
386 | | * Normally, one would use either png_destroy_read_struct() or |
387 | | * png_destroy_write_struct() to free an info struct, but this may be |
388 | | * useful for some applications. From libpng 1.6.0 this function is also used |
389 | | * internally to implement the png_info release part of the 'struct' destroy |
390 | | * APIs. This ensures that all possible approaches free the same data (all of |
391 | | * it). |
392 | | */ |
393 | | void PNGAPI |
394 | | png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr) |
395 | 196k | { |
396 | 196k | png_inforp info_ptr = NULL; |
397 | | |
398 | 196k | png_debug(1, "in png_destroy_info_struct"); |
399 | | |
400 | 196k | if (png_ptr == NULL) |
401 | 0 | return; |
402 | | |
403 | 196k | if (info_ptr_ptr != NULL) |
404 | 196k | info_ptr = *info_ptr_ptr; |
405 | | |
406 | 196k | if (info_ptr != NULL) |
407 | 196k | { |
408 | | /* Do this first in case of an error below; if the app implements its own |
409 | | * memory management this can lead to png_free calling png_error, which |
410 | | * will abort this routine and return control to the app error handler. |
411 | | * An infinite loop may result if it then tries to free the same info |
412 | | * ptr. |
413 | | */ |
414 | 196k | *info_ptr_ptr = NULL; |
415 | | |
416 | 196k | png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); |
417 | 196k | memset(info_ptr, 0, (sizeof *info_ptr)); |
418 | 196k | png_free(png_ptr, info_ptr); |
419 | 196k | } |
420 | 196k | } |
421 | | |
422 | | /* Initialize the info structure. This is now an internal function (0.89) |
423 | | * and applications using it are urged to use png_create_info_struct() |
424 | | * instead. Use deprecated in 1.6.0, internal use removed (used internally it |
425 | | * is just a memset). |
426 | | * |
427 | | * NOTE: it is almost inconceivable that this API is used because it bypasses |
428 | | * the user-memory mechanism and the user error handling/warning mechanisms in |
429 | | * those cases where it does anything other than a memset. |
430 | | */ |
431 | | PNG_FUNCTION(void,PNGAPI |
432 | | png_info_init_3,(png_infopp ptr_ptr, size_t png_info_struct_size), |
433 | | PNG_DEPRECATED) |
434 | 0 | { |
435 | 0 | png_inforp info_ptr = *ptr_ptr; |
436 | |
|
437 | 0 | png_debug(1, "in png_info_init_3"); |
438 | |
|
439 | 0 | if (info_ptr == NULL) |
440 | 0 | return; |
441 | | |
442 | 0 | if ((sizeof (png_info)) > png_info_struct_size) |
443 | 0 | { |
444 | 0 | *ptr_ptr = NULL; |
445 | | /* The following line is why this API should not be used: */ |
446 | 0 | free(info_ptr); |
447 | 0 | info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL, |
448 | 0 | (sizeof *info_ptr))); |
449 | 0 | if (info_ptr == NULL) |
450 | 0 | return; |
451 | 0 | *ptr_ptr = info_ptr; |
452 | 0 | } |
453 | | |
454 | | /* Set everything to 0 */ |
455 | 0 | memset(info_ptr, 0, (sizeof *info_ptr)); |
456 | 0 | } |
457 | | |
458 | | void PNGAPI |
459 | | png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr, |
460 | | int freer, png_uint_32 mask) |
461 | 0 | { |
462 | 0 | png_debug(1, "in png_data_freer"); |
463 | |
|
464 | 0 | if (png_ptr == NULL || info_ptr == NULL) |
465 | 0 | return; |
466 | | |
467 | 0 | if (freer == PNG_DESTROY_WILL_FREE_DATA) |
468 | 0 | info_ptr->free_me |= mask; |
469 | | |
470 | 0 | else if (freer == PNG_USER_WILL_FREE_DATA) |
471 | 0 | info_ptr->free_me &= ~mask; |
472 | | |
473 | 0 | else |
474 | 0 | png_error(png_ptr, "Unknown freer parameter in png_data_freer"); |
475 | 0 | } |
476 | | |
477 | | void PNGAPI |
478 | | png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask, |
479 | | int num) |
480 | 206k | { |
481 | 206k | png_debug(1, "in png_free_data"); |
482 | | |
483 | 206k | if (png_ptr == NULL || info_ptr == NULL) |
484 | 0 | return; |
485 | | |
486 | 206k | #ifdef PNG_TEXT_SUPPORTED |
487 | | /* Free text item num or (if num == -1) all text items */ |
488 | 206k | if (info_ptr->text != NULL && |
489 | 206k | ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0) |
490 | 3.79k | { |
491 | 3.79k | if (num != -1) |
492 | 0 | { |
493 | 0 | png_free(png_ptr, info_ptr->text[num].key); |
494 | 0 | info_ptr->text[num].key = NULL; |
495 | 0 | } |
496 | | |
497 | 3.79k | else |
498 | 3.79k | { |
499 | 3.79k | int i; |
500 | | |
501 | 57.9k | for (i = 0; i < info_ptr->num_text; i++) |
502 | 54.1k | png_free(png_ptr, info_ptr->text[i].key); |
503 | | |
504 | 3.79k | png_free(png_ptr, info_ptr->text); |
505 | 3.79k | info_ptr->text = NULL; |
506 | 3.79k | info_ptr->num_text = 0; |
507 | 3.79k | info_ptr->max_text = 0; |
508 | 3.79k | } |
509 | 3.79k | } |
510 | 206k | #endif |
511 | | |
512 | 206k | #ifdef PNG_tRNS_SUPPORTED |
513 | | /* Free any tRNS entry */ |
514 | 206k | if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0) |
515 | 1.63k | { |
516 | 1.63k | info_ptr->valid &= ~PNG_INFO_tRNS; |
517 | 1.63k | png_free(png_ptr, info_ptr->trans_alpha); |
518 | 1.63k | info_ptr->trans_alpha = NULL; |
519 | 1.63k | info_ptr->num_trans = 0; |
520 | 1.63k | } |
521 | 206k | #endif |
522 | | |
523 | 206k | #ifdef PNG_sCAL_SUPPORTED |
524 | | /* Free any sCAL entry */ |
525 | 206k | if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0) |
526 | 0 | { |
527 | 0 | png_free(png_ptr, info_ptr->scal_s_width); |
528 | 0 | png_free(png_ptr, info_ptr->scal_s_height); |
529 | 0 | info_ptr->scal_s_width = NULL; |
530 | 0 | info_ptr->scal_s_height = NULL; |
531 | 0 | info_ptr->valid &= ~PNG_INFO_sCAL; |
532 | 0 | } |
533 | 206k | #endif |
534 | | |
535 | 206k | #ifdef PNG_pCAL_SUPPORTED |
536 | | /* Free any pCAL entry */ |
537 | 206k | if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0) |
538 | 0 | { |
539 | 0 | png_free(png_ptr, info_ptr->pcal_purpose); |
540 | 0 | png_free(png_ptr, info_ptr->pcal_units); |
541 | 0 | info_ptr->pcal_purpose = NULL; |
542 | 0 | info_ptr->pcal_units = NULL; |
543 | |
|
544 | 0 | if (info_ptr->pcal_params != NULL) |
545 | 0 | { |
546 | 0 | int i; |
547 | |
|
548 | 0 | for (i = 0; i < info_ptr->pcal_nparams; i++) |
549 | 0 | png_free(png_ptr, info_ptr->pcal_params[i]); |
550 | |
|
551 | 0 | png_free(png_ptr, info_ptr->pcal_params); |
552 | 0 | info_ptr->pcal_params = NULL; |
553 | 0 | } |
554 | 0 | info_ptr->valid &= ~PNG_INFO_pCAL; |
555 | 0 | } |
556 | 206k | #endif |
557 | | |
558 | 206k | #ifdef PNG_iCCP_SUPPORTED |
559 | | /* Free any profile entry */ |
560 | 206k | if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0) |
561 | 4.62k | { |
562 | 4.62k | png_free(png_ptr, info_ptr->iccp_name); |
563 | 4.62k | png_free(png_ptr, info_ptr->iccp_profile); |
564 | 4.62k | info_ptr->iccp_name = NULL; |
565 | 4.62k | info_ptr->iccp_profile = NULL; |
566 | 4.62k | info_ptr->valid &= ~PNG_INFO_iCCP; |
567 | 4.62k | } |
568 | 206k | #endif |
569 | | |
570 | 206k | #ifdef PNG_sPLT_SUPPORTED |
571 | | /* Free a given sPLT entry, or (if num == -1) all sPLT entries */ |
572 | 206k | if (info_ptr->splt_palettes != NULL && |
573 | 206k | ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0) |
574 | 0 | { |
575 | 0 | if (num != -1) |
576 | 0 | { |
577 | 0 | png_free(png_ptr, info_ptr->splt_palettes[num].name); |
578 | 0 | png_free(png_ptr, info_ptr->splt_palettes[num].entries); |
579 | 0 | info_ptr->splt_palettes[num].name = NULL; |
580 | 0 | info_ptr->splt_palettes[num].entries = NULL; |
581 | 0 | } |
582 | | |
583 | 0 | else |
584 | 0 | { |
585 | 0 | int i; |
586 | |
|
587 | 0 | for (i = 0; i < info_ptr->splt_palettes_num; i++) |
588 | 0 | { |
589 | 0 | png_free(png_ptr, info_ptr->splt_palettes[i].name); |
590 | 0 | png_free(png_ptr, info_ptr->splt_palettes[i].entries); |
591 | 0 | } |
592 | |
|
593 | 0 | png_free(png_ptr, info_ptr->splt_palettes); |
594 | 0 | info_ptr->splt_palettes = NULL; |
595 | 0 | info_ptr->splt_palettes_num = 0; |
596 | 0 | info_ptr->valid &= ~PNG_INFO_sPLT; |
597 | 0 | } |
598 | 0 | } |
599 | 206k | #endif |
600 | | |
601 | 206k | #ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED |
602 | 206k | if (info_ptr->unknown_chunks != NULL && |
603 | 206k | ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0) |
604 | 13.6k | { |
605 | 13.6k | if (num != -1) |
606 | 0 | { |
607 | 0 | png_free(png_ptr, info_ptr->unknown_chunks[num].data); |
608 | 0 | info_ptr->unknown_chunks[num].data = NULL; |
609 | 0 | } |
610 | | |
611 | 13.6k | else |
612 | 13.6k | { |
613 | 13.6k | int i; |
614 | | |
615 | 95.6k | for (i = 0; i < info_ptr->unknown_chunks_num; i++) |
616 | 81.9k | png_free(png_ptr, info_ptr->unknown_chunks[i].data); |
617 | | |
618 | 13.6k | png_free(png_ptr, info_ptr->unknown_chunks); |
619 | 13.6k | info_ptr->unknown_chunks = NULL; |
620 | 13.6k | info_ptr->unknown_chunks_num = 0; |
621 | 13.6k | } |
622 | 13.6k | } |
623 | 206k | #endif |
624 | | |
625 | 206k | #ifdef PNG_eXIf_SUPPORTED |
626 | | /* Free any eXIf entry */ |
627 | 206k | if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0) |
628 | 11 | { |
629 | 11 | if (info_ptr->exif) |
630 | 11 | { |
631 | 11 | png_free(png_ptr, info_ptr->exif); |
632 | 11 | info_ptr->exif = NULL; |
633 | 11 | } |
634 | 11 | info_ptr->valid &= ~PNG_INFO_eXIf; |
635 | 11 | } |
636 | 206k | #endif |
637 | | |
638 | 206k | #ifdef PNG_hIST_SUPPORTED |
639 | | /* Free any hIST entry */ |
640 | 206k | if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0) |
641 | 0 | { |
642 | 0 | png_free(png_ptr, info_ptr->hist); |
643 | 0 | info_ptr->hist = NULL; |
644 | 0 | info_ptr->valid &= ~PNG_INFO_hIST; |
645 | 0 | } |
646 | 206k | #endif |
647 | | |
648 | | /* Free any PLTE entry that was internally allocated */ |
649 | 206k | if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0) |
650 | 2.89k | { |
651 | 2.89k | png_free(png_ptr, info_ptr->palette); |
652 | 2.89k | info_ptr->palette = NULL; |
653 | 2.89k | info_ptr->valid &= ~PNG_INFO_PLTE; |
654 | 2.89k | info_ptr->num_palette = 0; |
655 | 2.89k | } |
656 | | |
657 | 206k | #ifdef PNG_INFO_IMAGE_SUPPORTED |
658 | | /* Free any image bits attached to the info structure */ |
659 | 206k | if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0) |
660 | 0 | { |
661 | 0 | if (info_ptr->row_pointers != NULL) |
662 | 0 | { |
663 | 0 | png_uint_32 row; |
664 | 0 | for (row = 0; row < info_ptr->height; row++) |
665 | 0 | png_free(png_ptr, info_ptr->row_pointers[row]); |
666 | |
|
667 | 0 | png_free(png_ptr, info_ptr->row_pointers); |
668 | 0 | info_ptr->row_pointers = NULL; |
669 | 0 | } |
670 | 0 | info_ptr->valid &= ~PNG_INFO_IDAT; |
671 | 0 | } |
672 | 206k | #endif |
673 | | |
674 | 206k | if (num != -1) |
675 | 9.32k | mask &= ~PNG_FREE_MUL; |
676 | | |
677 | 206k | info_ptr->free_me &= ~mask; |
678 | 206k | } |
679 | | #endif /* READ || WRITE */ |
680 | | |
681 | | /* This function returns a pointer to the io_ptr associated with the user |
682 | | * functions. The application should free any memory associated with this |
683 | | * pointer before png_write_destroy() or png_read_destroy() are called. |
684 | | */ |
685 | | png_voidp PNGAPI |
686 | | png_get_io_ptr(png_const_structrp png_ptr) |
687 | 2.42M | { |
688 | 2.42M | if (png_ptr == NULL) |
689 | 0 | return NULL; |
690 | | |
691 | 2.42M | return png_ptr->io_ptr; |
692 | 2.42M | } |
693 | | |
694 | | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
695 | | # ifdef PNG_STDIO_SUPPORTED |
696 | | /* Initialize the default input/output functions for the PNG file. If you |
697 | | * use your own read or write routines, you can call either png_set_read_fn() |
698 | | * or png_set_write_fn() instead of png_init_io(). If you have defined |
699 | | * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a |
700 | | * function of your own because "FILE *" isn't necessarily available. |
701 | | */ |
702 | | void PNGAPI |
703 | | png_init_io(png_structrp png_ptr, FILE *fp) |
704 | 0 | { |
705 | 0 | png_debug(1, "in png_init_io"); |
706 | |
|
707 | 0 | if (png_ptr == NULL) |
708 | 0 | return; |
709 | | |
710 | 0 | png_ptr->io_ptr = (png_voidp)fp; |
711 | 0 | } |
712 | | # endif |
713 | | |
714 | | # ifdef PNG_SAVE_INT_32_SUPPORTED |
715 | | /* PNG signed integers are saved in 32-bit 2's complement format. ANSI C-90 |
716 | | * defines a cast of a signed integer to an unsigned integer either to preserve |
717 | | * the value, if it is positive, or to calculate: |
718 | | * |
719 | | * (UNSIGNED_MAX+1) + integer |
720 | | * |
721 | | * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the |
722 | | * negative integral value is added the result will be an unsigned value |
723 | | * corresponding to the 2's complement representation. |
724 | | */ |
725 | | void PNGAPI |
726 | | png_save_int_32(png_bytep buf, png_int_32 i) |
727 | 5.92k | { |
728 | 5.92k | png_save_uint_32(buf, (png_uint_32)i); |
729 | 5.92k | } |
730 | | # endif |
731 | | |
732 | | # ifdef PNG_TIME_RFC1123_SUPPORTED |
733 | | /* Convert the supplied time into an RFC 1123 string suitable for use in |
734 | | * a "Creation Time" or other text-based time string. |
735 | | */ |
736 | | int PNGAPI |
737 | | png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime) |
738 | 0 | { |
739 | 0 | static const char short_months[12][4] = |
740 | 0 | {"Jan", "Feb", "Mar", "Apr", "May", "Jun", |
741 | 0 | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; |
742 | |
|
743 | 0 | if (out == NULL) |
744 | 0 | return 0; |
745 | | |
746 | 0 | if (ptime->year > 9999 /* RFC1123 limitation */ || |
747 | 0 | ptime->month == 0 || ptime->month > 12 || |
748 | 0 | ptime->day == 0 || ptime->day > 31 || |
749 | 0 | ptime->hour > 23 || ptime->minute > 59 || |
750 | 0 | ptime->second > 60) |
751 | 0 | return 0; |
752 | | |
753 | 0 | { |
754 | 0 | size_t pos = 0; |
755 | 0 | char number_buf[5] = {0, 0, 0, 0, 0}; /* enough for a four-digit year */ |
756 | |
|
757 | 0 | # define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string)) |
758 | 0 | # define APPEND_NUMBER(format, value)\ |
759 | 0 | APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) |
760 | 0 | # define APPEND(ch) if (pos < 28) out[pos++] = (ch) |
761 | |
|
762 | 0 | APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day); |
763 | 0 | APPEND(' '); |
764 | 0 | APPEND_STRING(short_months[(ptime->month - 1)]); |
765 | 0 | APPEND(' '); |
766 | 0 | APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); |
767 | 0 | APPEND(' '); |
768 | 0 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour); |
769 | 0 | APPEND(':'); |
770 | 0 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute); |
771 | 0 | APPEND(':'); |
772 | 0 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second); |
773 | 0 | APPEND_STRING(" +0000"); /* This reliably terminates the buffer */ |
774 | 0 | PNG_UNUSED (pos) |
775 | |
|
776 | 0 | # undef APPEND |
777 | 0 | # undef APPEND_NUMBER |
778 | 0 | # undef APPEND_STRING |
779 | 0 | } |
780 | |
|
781 | 0 | return 1; |
782 | 0 | } |
783 | | |
784 | | # if PNG_LIBPNG_VER < 10700 |
785 | | /* To do: remove the following from libpng-1.7 */ |
786 | | /* Original API that uses a private buffer in png_struct. |
787 | | * Deprecated because it causes png_struct to carry a spurious temporary |
788 | | * buffer (png_struct::time_buffer), better to have the caller pass this in. |
789 | | */ |
790 | | png_const_charp PNGAPI |
791 | | png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime) |
792 | 0 | { |
793 | 0 | if (png_ptr != NULL) |
794 | 0 | { |
795 | | /* The only failure above if png_ptr != NULL is from an invalid ptime */ |
796 | 0 | if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0) |
797 | 0 | png_warning(png_ptr, "Ignoring invalid time value"); |
798 | | |
799 | 0 | else |
800 | 0 | return png_ptr->time_buffer; |
801 | 0 | } |
802 | | |
803 | 0 | return NULL; |
804 | 0 | } |
805 | | # endif /* LIBPNG_VER < 10700 */ |
806 | | # endif /* TIME_RFC1123 */ |
807 | | |
808 | | #endif /* READ || WRITE */ |
809 | | |
810 | | png_const_charp PNGAPI |
811 | | png_get_copyright(png_const_structrp png_ptr) |
812 | 0 | { |
813 | 0 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
814 | | #ifdef PNG_STRING_COPYRIGHT |
815 | | return PNG_STRING_COPYRIGHT |
816 | | #else |
817 | 0 | return PNG_STRING_NEWLINE \ |
818 | 0 | "libpng version 1.6.50.git" PNG_STRING_NEWLINE \ |
819 | 0 | "Copyright (c) 2018-2025 Cosmin Truta" PNG_STRING_NEWLINE \ |
820 | 0 | "Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson" \ |
821 | 0 | PNG_STRING_NEWLINE \ |
822 | 0 | "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ |
823 | 0 | "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ |
824 | 0 | PNG_STRING_NEWLINE; |
825 | 0 | #endif |
826 | 0 | } |
827 | | |
828 | | /* The following return the library version as a short string in the |
829 | | * format 1.0.0 through 99.99.99zz. To get the version of *.h files |
830 | | * used with your application, print out PNG_LIBPNG_VER_STRING, which |
831 | | * is defined in png.h. |
832 | | * Note: now there is no difference between png_get_libpng_ver() and |
833 | | * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, |
834 | | * it is guaranteed that png.c uses the correct version of png.h. |
835 | | */ |
836 | | png_const_charp PNGAPI |
837 | | png_get_libpng_ver(png_const_structrp png_ptr) |
838 | 0 | { |
839 | | /* Version of *.c files used when building libpng */ |
840 | 0 | return png_get_header_ver(png_ptr); |
841 | 0 | } |
842 | | |
843 | | png_const_charp PNGAPI |
844 | | png_get_header_ver(png_const_structrp png_ptr) |
845 | 22 | { |
846 | | /* Version of *.h files used when building libpng */ |
847 | 22 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
848 | 22 | return PNG_LIBPNG_VER_STRING; |
849 | 22 | } |
850 | | |
851 | | png_const_charp PNGAPI |
852 | | png_get_header_version(png_const_structrp png_ptr) |
853 | 0 | { |
854 | | /* Returns longer string containing both version and date */ |
855 | 0 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
856 | 0 | #ifdef __STDC__ |
857 | 0 | return PNG_HEADER_VERSION_STRING |
858 | | # ifndef PNG_READ_SUPPORTED |
859 | | " (NO READ SUPPORT)" |
860 | | # endif |
861 | 0 | PNG_STRING_NEWLINE; |
862 | | #else |
863 | | return PNG_HEADER_VERSION_STRING; |
864 | | #endif |
865 | 0 | } |
866 | | |
867 | | #ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED |
868 | | /* NOTE: this routine is not used internally! */ |
869 | | /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth |
870 | | * large of png_color. This lets grayscale images be treated as |
871 | | * paletted. Most useful for gamma correction and simplification |
872 | | * of code. This API is not used internally. |
873 | | */ |
874 | | void PNGAPI |
875 | | png_build_grayscale_palette(int bit_depth, png_colorp palette) |
876 | 0 | { |
877 | 0 | int num_palette; |
878 | 0 | int color_inc; |
879 | 0 | int i; |
880 | 0 | int v; |
881 | |
|
882 | 0 | png_debug(1, "in png_do_build_grayscale_palette"); |
883 | |
|
884 | 0 | if (palette == NULL) |
885 | 0 | return; |
886 | | |
887 | 0 | switch (bit_depth) |
888 | 0 | { |
889 | 0 | case 1: |
890 | 0 | num_palette = 2; |
891 | 0 | color_inc = 0xff; |
892 | 0 | break; |
893 | | |
894 | 0 | case 2: |
895 | 0 | num_palette = 4; |
896 | 0 | color_inc = 0x55; |
897 | 0 | break; |
898 | | |
899 | 0 | case 4: |
900 | 0 | num_palette = 16; |
901 | 0 | color_inc = 0x11; |
902 | 0 | break; |
903 | | |
904 | 0 | case 8: |
905 | 0 | num_palette = 256; |
906 | 0 | color_inc = 1; |
907 | 0 | break; |
908 | | |
909 | 0 | default: |
910 | 0 | num_palette = 0; |
911 | 0 | color_inc = 0; |
912 | 0 | break; |
913 | 0 | } |
914 | | |
915 | 0 | for (i = 0, v = 0; i < num_palette; i++, v += color_inc) |
916 | 0 | { |
917 | 0 | palette[i].red = (png_byte)(v & 0xff); |
918 | 0 | palette[i].green = (png_byte)(v & 0xff); |
919 | 0 | palette[i].blue = (png_byte)(v & 0xff); |
920 | 0 | } |
921 | 0 | } |
922 | | #endif |
923 | | |
924 | | #ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED |
925 | | int PNGAPI |
926 | | png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name) |
927 | 652k | { |
928 | | /* Check chunk_name and return "keep" value if it's on the list, else 0 */ |
929 | 652k | png_const_bytep p, p_end; |
930 | | |
931 | 652k | if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0) |
932 | 0 | return PNG_HANDLE_CHUNK_AS_DEFAULT; |
933 | | |
934 | 652k | p_end = png_ptr->chunk_list; |
935 | 652k | p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ |
936 | | |
937 | | /* The code is the fifth byte after each four byte string. Historically this |
938 | | * code was always searched from the end of the list, this is no longer |
939 | | * necessary because the 'set' routine handles duplicate entries correctly. |
940 | | */ |
941 | 652k | do /* num_chunk_list > 0, so at least one */ |
942 | 4.05M | { |
943 | 4.05M | p -= 5; |
944 | | |
945 | 4.05M | if (memcmp(chunk_name, p, 4) == 0) |
946 | 175k | return p[4]; |
947 | 4.05M | } |
948 | 3.88M | while (p > p_end); |
949 | | |
950 | | /* This means that known chunks should be processed and unknown chunks should |
951 | | * be handled according to the value of png_ptr->unknown_default; this can be |
952 | | * confusing because, as a result, there are two levels of defaulting for |
953 | | * unknown chunks. |
954 | | */ |
955 | 476k | return PNG_HANDLE_CHUNK_AS_DEFAULT; |
956 | 652k | } |
957 | | |
958 | | #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\ |
959 | | defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED) |
960 | | int /* PRIVATE */ |
961 | | png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name) |
962 | 652k | { |
963 | 652k | png_byte chunk_string[5]; |
964 | | |
965 | 652k | PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); |
966 | 652k | return png_handle_as_unknown(png_ptr, chunk_string); |
967 | 652k | } |
968 | | #endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */ |
969 | | #endif /* SET_UNKNOWN_CHUNKS */ |
970 | | |
971 | | #ifdef PNG_READ_SUPPORTED |
972 | | /* This function, added to libpng-1.0.6g, is untested. */ |
973 | | int PNGAPI |
974 | | png_reset_zstream(png_structrp png_ptr) |
975 | 0 | { |
976 | 0 | if (png_ptr == NULL) |
977 | 0 | return Z_STREAM_ERROR; |
978 | | |
979 | | /* WARNING: this resets the window bits to the maximum! */ |
980 | 0 | return inflateReset(&png_ptr->zstream); |
981 | 0 | } |
982 | | #endif /* READ */ |
983 | | |
984 | | /* This function was added to libpng-1.0.7 */ |
985 | | png_uint_32 PNGAPI |
986 | | png_access_version_number(void) |
987 | 0 | { |
988 | | /* Version of *.c files used when building libpng */ |
989 | 0 | return (png_uint_32)PNG_LIBPNG_VER; |
990 | 0 | } |
991 | | |
992 | | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
993 | | /* Ensure that png_ptr->zstream.msg holds some appropriate error message string. |
994 | | * If it doesn't 'ret' is used to set it to something appropriate, even in cases |
995 | | * like Z_OK or Z_STREAM_END where the error code is apparently a success code. |
996 | | */ |
997 | | void /* PRIVATE */ |
998 | | png_zstream_error(png_structrp png_ptr, int ret) |
999 | 131k | { |
1000 | | /* Translate 'ret' into an appropriate error string, priority is given to the |
1001 | | * one in zstream if set. This always returns a string, even in cases like |
1002 | | * Z_OK or Z_STREAM_END where the error code is a success code. |
1003 | | */ |
1004 | 131k | if (png_ptr->zstream.msg == NULL) switch (ret) |
1005 | 48.3k | { |
1006 | 0 | default: |
1007 | 32.8k | case Z_OK: |
1008 | 32.8k | png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code"); |
1009 | 32.8k | break; |
1010 | | |
1011 | 11.4k | case Z_STREAM_END: |
1012 | | /* Normal exit */ |
1013 | 11.4k | png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream"); |
1014 | 11.4k | break; |
1015 | | |
1016 | 1.01k | case Z_NEED_DICT: |
1017 | | /* This means the deflate stream did not have a dictionary; this |
1018 | | * indicates a bogus PNG. |
1019 | | */ |
1020 | 1.01k | png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary"); |
1021 | 1.01k | break; |
1022 | | |
1023 | 0 | case Z_ERRNO: |
1024 | | /* gz APIs only: should not happen */ |
1025 | 0 | png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error"); |
1026 | 0 | break; |
1027 | | |
1028 | 0 | case Z_STREAM_ERROR: |
1029 | | /* internal libpng error */ |
1030 | 0 | png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib"); |
1031 | 0 | break; |
1032 | | |
1033 | 0 | case Z_DATA_ERROR: |
1034 | 0 | png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream"); |
1035 | 0 | break; |
1036 | | |
1037 | 0 | case Z_MEM_ERROR: |
1038 | 0 | png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory"); |
1039 | 0 | break; |
1040 | | |
1041 | 3.01k | case Z_BUF_ERROR: |
1042 | | /* End of input or output; not a problem if the caller is doing |
1043 | | * incremental read or write. |
1044 | | */ |
1045 | 3.01k | png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated"); |
1046 | 3.01k | break; |
1047 | | |
1048 | 0 | case Z_VERSION_ERROR: |
1049 | 0 | png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version"); |
1050 | 0 | break; |
1051 | | |
1052 | 0 | case PNG_UNEXPECTED_ZLIB_RETURN: |
1053 | | /* Compile errors here mean that zlib now uses the value co-opted in |
1054 | | * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above |
1055 | | * and change pngpriv.h. Note that this message is "... return", |
1056 | | * whereas the default/Z_OK one is "... return code". |
1057 | | */ |
1058 | 0 | png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return"); |
1059 | 0 | break; |
1060 | 48.3k | } |
1061 | 131k | } |
1062 | | |
1063 | | #ifdef PNG_COLORSPACE_SUPPORTED |
1064 | | static png_int_32 |
1065 | | png_fp_add(png_int_32 addend0, png_int_32 addend1, int *error) |
1066 | 0 | { |
1067 | | /* Safely add two fixed point values setting an error flag and returning 0.5 |
1068 | | * on overflow. |
1069 | | * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore |
1070 | | * relying on addition of two positive values producing a negative one is not |
1071 | | * safe. |
1072 | | */ |
1073 | 0 | if (addend0 > 0) |
1074 | 0 | { |
1075 | 0 | if (0x7fffffff - addend0 >= addend1) |
1076 | 0 | return addend0+addend1; |
1077 | 0 | } |
1078 | 0 | else if (addend0 < 0) |
1079 | 0 | { |
1080 | 0 | if (-0x7fffffff - addend0 <= addend1) |
1081 | 0 | return addend0+addend1; |
1082 | 0 | } |
1083 | 0 | else |
1084 | 0 | return addend1; |
1085 | | |
1086 | 0 | *error = 1; |
1087 | 0 | return PNG_FP_1/2; |
1088 | 0 | } |
1089 | | |
1090 | | static png_int_32 |
1091 | | png_fp_sub(png_int_32 addend0, png_int_32 addend1, int *error) |
1092 | 0 | { |
1093 | | /* As above but calculate addend0-addend1. */ |
1094 | 0 | if (addend1 > 0) |
1095 | 0 | { |
1096 | 0 | if (-0x7fffffff + addend1 <= addend0) |
1097 | 0 | return addend0-addend1; |
1098 | 0 | } |
1099 | 0 | else if (addend1 < 0) |
1100 | 0 | { |
1101 | 0 | if (0x7fffffff + addend1 >= addend0) |
1102 | 0 | return addend0-addend1; |
1103 | 0 | } |
1104 | 0 | else |
1105 | 0 | return addend0; |
1106 | | |
1107 | 0 | *error = 1; |
1108 | 0 | return PNG_FP_1/2; |
1109 | 0 | } |
1110 | | |
1111 | | static int |
1112 | | png_safe_add(png_int_32 *addend0_and_result, png_int_32 addend1, |
1113 | | png_int_32 addend2) |
1114 | 0 | { |
1115 | | /* Safely add three integers. Returns 0 on success, 1 on overflow. Does not |
1116 | | * set the result on overflow. |
1117 | | */ |
1118 | 0 | int error = 0; |
1119 | 0 | int result = png_fp_add(*addend0_and_result, |
1120 | 0 | png_fp_add(addend1, addend2, &error), |
1121 | 0 | &error); |
1122 | 0 | if (!error) *addend0_and_result = result; |
1123 | 0 | return error; |
1124 | 0 | } |
1125 | | |
1126 | | /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for |
1127 | | * cHRM, as opposed to using chromaticities. These internal APIs return |
1128 | | * non-zero on a parameter error. The X, Y and Z values are required to be |
1129 | | * positive and less than 1.0. |
1130 | | */ |
1131 | | int /* PRIVATE */ |
1132 | | png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ) |
1133 | 0 | { |
1134 | | /* NOTE: returns 0 on success, 1 means error. */ |
1135 | 0 | png_int_32 d, dred, dgreen, dblue, dwhite, whiteX, whiteY; |
1136 | | |
1137 | | /* 'd' in each of the blocks below is just X+Y+Z for each component, |
1138 | | * x, y and z are X,Y,Z/(X+Y+Z). |
1139 | | */ |
1140 | 0 | d = XYZ->red_X; |
1141 | 0 | if (png_safe_add(&d, XYZ->red_Y, XYZ->red_Z)) |
1142 | 0 | return 1; |
1143 | 0 | dred = d; |
1144 | 0 | if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, dred) == 0) |
1145 | 0 | return 1; |
1146 | 0 | if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, dred) == 0) |
1147 | 0 | return 1; |
1148 | | |
1149 | 0 | d = XYZ->green_X; |
1150 | 0 | if (png_safe_add(&d, XYZ->green_Y, XYZ->green_Z)) |
1151 | 0 | return 1; |
1152 | 0 | dgreen = d; |
1153 | 0 | if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, dgreen) == 0) |
1154 | 0 | return 1; |
1155 | 0 | if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, dgreen) == 0) |
1156 | 0 | return 1; |
1157 | | |
1158 | 0 | d = XYZ->blue_X; |
1159 | 0 | if (png_safe_add(&d, XYZ->blue_Y, XYZ->blue_Z)) |
1160 | 0 | return 1; |
1161 | 0 | dblue = d; |
1162 | 0 | if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, dblue) == 0) |
1163 | 0 | return 1; |
1164 | 0 | if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, dblue) == 0) |
1165 | 0 | return 1; |
1166 | | |
1167 | | /* The reference white is simply the sum of the end-point (X,Y,Z) vectors so |
1168 | | * the fillowing calculates (X+Y+Z) of the reference white (media white, |
1169 | | * encoding white) itself: |
1170 | | */ |
1171 | 0 | d = dblue; |
1172 | 0 | if (png_safe_add(&d, dred, dgreen)) |
1173 | 0 | return 1; |
1174 | 0 | dwhite = d; |
1175 | | |
1176 | | /* Find the white X,Y values from the sum of the red, green and blue X,Y |
1177 | | * values. |
1178 | | */ |
1179 | 0 | d = XYZ->red_X; |
1180 | 0 | if (png_safe_add(&d, XYZ->green_X, XYZ->blue_X)) |
1181 | 0 | return 1; |
1182 | 0 | whiteX = d; |
1183 | |
|
1184 | 0 | d = XYZ->red_Y; |
1185 | 0 | if (png_safe_add(&d, XYZ->green_Y, XYZ->blue_Y)) |
1186 | 0 | return 1; |
1187 | 0 | whiteY = d; |
1188 | |
|
1189 | 0 | if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0) |
1190 | 0 | return 1; |
1191 | 0 | if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0) |
1192 | 0 | return 1; |
1193 | | |
1194 | 0 | return 0; |
1195 | 0 | } |
1196 | | |
1197 | | int /* PRIVATE */ |
1198 | | png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) |
1199 | 0 | { |
1200 | | /* NOTE: returns 0 on success, 1 means error. */ |
1201 | 0 | png_fixed_point red_inverse, green_inverse, blue_scale; |
1202 | 0 | png_fixed_point left, right, denominator; |
1203 | | |
1204 | | /* Check xy and, implicitly, z. Note that wide gamut color spaces typically |
1205 | | * have end points with 0 tristimulus values (these are impossible end |
1206 | | * points, but they are used to cover the possible colors). We check |
1207 | | * xy->whitey against 5, not 0, to avoid a possible integer overflow. |
1208 | | * |
1209 | | * The limits here will *not* accept ACES AP0, where bluey is -7700 |
1210 | | * (-0.0770) because the PNG spec itself requires the xy values to be |
1211 | | * unsigned. whitey is also required to be 5 or more to avoid overflow. |
1212 | | * |
1213 | | * Instead the upper limits have been relaxed to accomodate ACES AP1 where |
1214 | | * redz ends up as -600 (-0.006). ProPhotoRGB was already "in range." |
1215 | | * The new limit accomodates the AP0 and AP1 ranges for z but not AP0 redy. |
1216 | | */ |
1217 | 0 | const png_fixed_point fpLimit = PNG_FP_1+(PNG_FP_1/10); |
1218 | 0 | if (xy->redx < 0 || xy->redx > fpLimit) return 1; |
1219 | 0 | if (xy->redy < 0 || xy->redy > fpLimit-xy->redx) return 1; |
1220 | 0 | if (xy->greenx < 0 || xy->greenx > fpLimit) return 1; |
1221 | 0 | if (xy->greeny < 0 || xy->greeny > fpLimit-xy->greenx) return 1; |
1222 | 0 | if (xy->bluex < 0 || xy->bluex > fpLimit) return 1; |
1223 | 0 | if (xy->bluey < 0 || xy->bluey > fpLimit-xy->bluex) return 1; |
1224 | 0 | if (xy->whitex < 0 || xy->whitex > fpLimit) return 1; |
1225 | 0 | if (xy->whitey < 5 || xy->whitey > fpLimit-xy->whitex) return 1; |
1226 | | |
1227 | | /* The reverse calculation is more difficult because the original tristimulus |
1228 | | * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 |
1229 | | * derived values were recorded in the cHRM chunk; |
1230 | | * (red,green,blue,white)x(x,y). This loses one degree of freedom and |
1231 | | * therefore an arbitrary ninth value has to be introduced to undo the |
1232 | | * original transformations. |
1233 | | * |
1234 | | * Think of the original end-points as points in (X,Y,Z) space. The |
1235 | | * chromaticity values (c) have the property: |
1236 | | * |
1237 | | * C |
1238 | | * c = --------- |
1239 | | * X + Y + Z |
1240 | | * |
1241 | | * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the |
1242 | | * three chromaticity values (x,y,z) for each end-point obey the |
1243 | | * relationship: |
1244 | | * |
1245 | | * x + y + z = 1 |
1246 | | * |
1247 | | * This describes the plane in (X,Y,Z) space that intersects each axis at the |
1248 | | * value 1.0; call this the chromaticity plane. Thus the chromaticity |
1249 | | * calculation has scaled each end-point so that it is on the x+y+z=1 plane |
1250 | | * and chromaticity is the intersection of the vector from the origin to the |
1251 | | * (X,Y,Z) value with the chromaticity plane. |
1252 | | * |
1253 | | * To fully invert the chromaticity calculation we would need the three |
1254 | | * end-point scale factors, (red-scale, green-scale, blue-scale), but these |
1255 | | * were not recorded. Instead we calculated the reference white (X,Y,Z) and |
1256 | | * recorded the chromaticity of this. The reference white (X,Y,Z) would have |
1257 | | * given all three of the scale factors since: |
1258 | | * |
1259 | | * color-C = color-c * color-scale |
1260 | | * white-C = red-C + green-C + blue-C |
1261 | | * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale |
1262 | | * |
1263 | | * But cHRM records only white-x and white-y, so we have lost the white scale |
1264 | | * factor: |
1265 | | * |
1266 | | * white-C = white-c*white-scale |
1267 | | * |
1268 | | * To handle this the inverse transformation makes an arbitrary assumption |
1269 | | * about white-scale: |
1270 | | * |
1271 | | * Assume: white-Y = 1.0 |
1272 | | * Hence: white-scale = 1/white-y |
1273 | | * Or: red-Y + green-Y + blue-Y = 1.0 |
1274 | | * |
1275 | | * Notice the last statement of the assumption gives an equation in three of |
1276 | | * the nine values we want to calculate. 8 more equations come from the |
1277 | | * above routine as summarised at the top above (the chromaticity |
1278 | | * calculation): |
1279 | | * |
1280 | | * Given: color-x = color-X / (color-X + color-Y + color-Z) |
1281 | | * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 |
1282 | | * |
1283 | | * This is 9 simultaneous equations in the 9 variables "color-C" and can be |
1284 | | * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix |
1285 | | * determinants, however this is not as bad as it seems because only 28 of |
1286 | | * the total of 90 terms in the various matrices are non-zero. Nevertheless |
1287 | | * Cramer's rule is notoriously numerically unstable because the determinant |
1288 | | * calculation involves the difference of large, but similar, numbers. It is |
1289 | | * difficult to be sure that the calculation is stable for real world values |
1290 | | * and it is certain that it becomes unstable where the end points are close |
1291 | | * together. |
1292 | | * |
1293 | | * So this code uses the perhaps slightly less optimal but more |
1294 | | * understandable and totally obvious approach of calculating color-scale. |
1295 | | * |
1296 | | * This algorithm depends on the precision in white-scale and that is |
1297 | | * (1/white-y), so we can immediately see that as white-y approaches 0 the |
1298 | | * accuracy inherent in the cHRM chunk drops off substantially. |
1299 | | * |
1300 | | * libpng arithmetic: a simple inversion of the above equations |
1301 | | * ------------------------------------------------------------ |
1302 | | * |
1303 | | * white_scale = 1/white-y |
1304 | | * white-X = white-x * white-scale |
1305 | | * white-Y = 1.0 |
1306 | | * white-Z = (1 - white-x - white-y) * white_scale |
1307 | | * |
1308 | | * white-C = red-C + green-C + blue-C |
1309 | | * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale |
1310 | | * |
1311 | | * This gives us three equations in (red-scale,green-scale,blue-scale) where |
1312 | | * all the coefficients are now known: |
1313 | | * |
1314 | | * red-x*red-scale + green-x*green-scale + blue-x*blue-scale |
1315 | | * = white-x/white-y |
1316 | | * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 |
1317 | | * red-z*red-scale + green-z*green-scale + blue-z*blue-scale |
1318 | | * = (1 - white-x - white-y)/white-y |
1319 | | * |
1320 | | * In the last equation color-z is (1 - color-x - color-y) so we can add all |
1321 | | * three equations together to get an alternative third: |
1322 | | * |
1323 | | * red-scale + green-scale + blue-scale = 1/white-y = white-scale |
1324 | | * |
1325 | | * So now we have a Cramer's rule solution where the determinants are just |
1326 | | * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve |
1327 | | * multiplication of three coefficients so we can't guarantee to avoid |
1328 | | * overflow in the libpng fixed point representation. Using Cramer's rule in |
1329 | | * floating point is probably a good choice here, but it's not an option for |
1330 | | * fixed point. Instead proceed to simplify the first two equations by |
1331 | | * eliminating what is likely to be the largest value, blue-scale: |
1332 | | * |
1333 | | * blue-scale = white-scale - red-scale - green-scale |
1334 | | * |
1335 | | * Hence: |
1336 | | * |
1337 | | * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = |
1338 | | * (white-x - blue-x)*white-scale |
1339 | | * |
1340 | | * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = |
1341 | | * 1 - blue-y*white-scale |
1342 | | * |
1343 | | * And now we can trivially solve for (red-scale,green-scale): |
1344 | | * |
1345 | | * green-scale = |
1346 | | * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale |
1347 | | * ----------------------------------------------------------- |
1348 | | * green-x - blue-x |
1349 | | * |
1350 | | * red-scale = |
1351 | | * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale |
1352 | | * --------------------------------------------------------- |
1353 | | * red-y - blue-y |
1354 | | * |
1355 | | * Hence: |
1356 | | * |
1357 | | * red-scale = |
1358 | | * ( (green-x - blue-x) * (white-y - blue-y) - |
1359 | | * (green-y - blue-y) * (white-x - blue-x) ) / white-y |
1360 | | * ------------------------------------------------------------------------- |
1361 | | * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) |
1362 | | * |
1363 | | * green-scale = |
1364 | | * ( (red-y - blue-y) * (white-x - blue-x) - |
1365 | | * (red-x - blue-x) * (white-y - blue-y) ) / white-y |
1366 | | * ------------------------------------------------------------------------- |
1367 | | * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) |
1368 | | * |
1369 | | * Accuracy: |
1370 | | * The input values have 5 decimal digits of accuracy. |
1371 | | * |
1372 | | * In the previous implementation the values were all in the range 0 < value |
1373 | | * < 1, so simple products are in the same range but may need up to 10 |
1374 | | * decimal digits to preserve the original precision and avoid underflow. |
1375 | | * Because we are using a 32-bit signed representation we cannot match this; |
1376 | | * the best is a little over 9 decimal digits, less than 10. |
1377 | | * |
1378 | | * This range has now been extended to allow values up to 1.1, or 110,000 in |
1379 | | * fixed point. |
1380 | | * |
1381 | | * The approach used here is to preserve the maximum precision within the |
1382 | | * signed representation. Because the red-scale calculation above uses the |
1383 | | * difference between two products of values that must be in the range |
1384 | | * -1.1..+1.1 it is sufficient to divide the product by 8; |
1385 | | * ceil(121,000/32767*2). The factor is irrelevant in the calculation |
1386 | | * because it is applied to both numerator and denominator. |
1387 | | * |
1388 | | * Note that the values of the differences of the products of the |
1389 | | * chromaticities in the above equations tend to be small, for example for |
1390 | | * the sRGB chromaticities they are: |
1391 | | * |
1392 | | * red numerator: -0.04751 |
1393 | | * green numerator: -0.08788 |
1394 | | * denominator: -0.2241 (without white-y multiplication) |
1395 | | * |
1396 | | * The resultant Y coefficients from the chromaticities of some widely used |
1397 | | * color space definitions are (to 15 decimal places): |
1398 | | * |
1399 | | * sRGB |
1400 | | * 0.212639005871510 0.715168678767756 0.072192315360734 |
1401 | | * Kodak ProPhoto |
1402 | | * 0.288071128229293 0.711843217810102 0.000085653960605 |
1403 | | * Adobe RGB |
1404 | | * 0.297344975250536 0.627363566255466 0.075291458493998 |
1405 | | * Adobe Wide Gamut RGB |
1406 | | * 0.258728243040113 0.724682314948566 0.016589442011321 |
1407 | | */ |
1408 | 0 | { |
1409 | 0 | int error = 0; |
1410 | | |
1411 | | /* By the argument above overflow should be impossible here, however the |
1412 | | * code now simply returns a failure code. The xy subtracts in the |
1413 | | * arguments to png_muldiv are *not* checked for overflow because the |
1414 | | * checks at the start guarantee they are in the range 0..110000 and |
1415 | | * png_fixed_point is a 32-bit signed number. |
1416 | | */ |
1417 | 0 | if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 8) == 0) |
1418 | 0 | return 1; |
1419 | 0 | if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 8) == |
1420 | 0 | 0) |
1421 | 0 | return 1; |
1422 | 0 | denominator = png_fp_sub(left, right, &error); |
1423 | 0 | if (error) return 1; |
1424 | | |
1425 | | /* Now find the red numerator. */ |
1426 | 0 | if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 8) == 0) |
1427 | 0 | return 1; |
1428 | 0 | if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 8) == |
1429 | 0 | 0) |
1430 | 0 | return 1; |
1431 | | |
1432 | | /* Overflow is possible here and it indicates an extreme set of PNG cHRM |
1433 | | * chunk values. This calculation actually returns the reciprocal of the |
1434 | | * scale value because this allows us to delay the multiplication of |
1435 | | * white-y into the denominator, which tends to produce a small number. |
1436 | | */ |
1437 | 0 | if (png_muldiv(&red_inverse, xy->whitey, denominator, |
1438 | 0 | png_fp_sub(left, right, &error)) == 0 || error || |
1439 | 0 | red_inverse <= xy->whitey /* r+g+b scales = white scale */) |
1440 | 0 | return 1; |
1441 | | |
1442 | | /* Similarly for green_inverse: */ |
1443 | 0 | if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 8) == 0) |
1444 | 0 | return 1; |
1445 | 0 | if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 8) == 0) |
1446 | 0 | return 1; |
1447 | 0 | if (png_muldiv(&green_inverse, xy->whitey, denominator, |
1448 | 0 | png_fp_sub(left, right, &error)) == 0 || error || |
1449 | 0 | green_inverse <= xy->whitey) |
1450 | 0 | return 1; |
1451 | | |
1452 | | /* And the blue scale, the checks above guarantee this can't overflow but |
1453 | | * it can still produce 0 for extreme cHRM values. |
1454 | | */ |
1455 | 0 | blue_scale = png_fp_sub(png_fp_sub(png_reciprocal(xy->whitey), |
1456 | 0 | png_reciprocal(red_inverse), &error), |
1457 | 0 | png_reciprocal(green_inverse), &error); |
1458 | 0 | if (error || blue_scale <= 0) |
1459 | 0 | return 1; |
1460 | 0 | } |
1461 | | |
1462 | | /* And fill in the png_XYZ. Again the subtracts are safe because of the |
1463 | | * checks on the xy values at the start (the subtracts just calculate the |
1464 | | * corresponding z values.) |
1465 | | */ |
1466 | 0 | if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0) |
1467 | 0 | return 1; |
1468 | 0 | if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0) |
1469 | 0 | return 1; |
1470 | 0 | if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1, |
1471 | 0 | red_inverse) == 0) |
1472 | 0 | return 1; |
1473 | | |
1474 | 0 | if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0) |
1475 | 0 | return 1; |
1476 | 0 | if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0) |
1477 | 0 | return 1; |
1478 | 0 | if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1, |
1479 | 0 | green_inverse) == 0) |
1480 | 0 | return 1; |
1481 | | |
1482 | 0 | if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0) |
1483 | 0 | return 1; |
1484 | 0 | if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0) |
1485 | 0 | return 1; |
1486 | 0 | if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale, |
1487 | 0 | PNG_FP_1) == 0) |
1488 | 0 | return 1; |
1489 | | |
1490 | 0 | return 0; /*success*/ |
1491 | 0 | } |
1492 | | #endif /* COLORSPACE */ |
1493 | | |
1494 | | #ifdef PNG_READ_iCCP_SUPPORTED |
1495 | | /* Error message generation */ |
1496 | | static char |
1497 | | png_icc_tag_char(png_uint_32 byte) |
1498 | 75.4k | { |
1499 | 75.4k | byte &= 0xff; |
1500 | 75.4k | if (byte >= 32 && byte <= 126) |
1501 | 75.4k | return (char)byte; |
1502 | 0 | else |
1503 | 0 | return '?'; |
1504 | 75.4k | } |
1505 | | |
1506 | | static void |
1507 | | png_icc_tag_name(char *name, png_uint_32 tag) |
1508 | 18.8k | { |
1509 | 18.8k | name[0] = '\''; |
1510 | 18.8k | name[1] = png_icc_tag_char(tag >> 24); |
1511 | 18.8k | name[2] = png_icc_tag_char(tag >> 16); |
1512 | 18.8k | name[3] = png_icc_tag_char(tag >> 8); |
1513 | 18.8k | name[4] = png_icc_tag_char(tag ); |
1514 | 18.8k | name[5] = '\''; |
1515 | 18.8k | } |
1516 | | |
1517 | | static int |
1518 | | is_ICC_signature_char(png_alloc_size_t it) |
1519 | 409k | { |
1520 | 409k | return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) || |
1521 | 409k | (it >= 97 && it <= 122); |
1522 | 409k | } |
1523 | | |
1524 | | static int |
1525 | | is_ICC_signature(png_alloc_size_t it) |
1526 | 289k | { |
1527 | 289k | return is_ICC_signature_char(it >> 24) /* checks all the top bits */ && |
1528 | 289k | is_ICC_signature_char((it >> 16) & 0xff) && |
1529 | 289k | is_ICC_signature_char((it >> 8) & 0xff) && |
1530 | 289k | is_ICC_signature_char(it & 0xff); |
1531 | 289k | } |
1532 | | |
1533 | | static int |
1534 | | png_icc_profile_error(png_const_structrp png_ptr, png_const_charp name, |
1535 | | png_alloc_size_t value, png_const_charp reason) |
1536 | 289k | { |
1537 | 289k | size_t pos; |
1538 | 289k | char message[196]; /* see below for calculation */ |
1539 | | |
1540 | 289k | pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */ |
1541 | 289k | pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */ |
1542 | 289k | pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */ |
1543 | 289k | if (is_ICC_signature(value) != 0) |
1544 | 18.8k | { |
1545 | | /* So 'value' is at most 4 bytes and the following cast is safe */ |
1546 | 18.8k | png_icc_tag_name(message+pos, (png_uint_32)value); |
1547 | 18.8k | pos += 6; /* total +8; less than the else clause */ |
1548 | 18.8k | message[pos++] = ':'; |
1549 | 18.8k | message[pos++] = ' '; |
1550 | 18.8k | } |
1551 | 270k | # ifdef PNG_WARNINGS_SUPPORTED |
1552 | 270k | else |
1553 | 270k | { |
1554 | 270k | char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114 */ |
1555 | | |
1556 | 270k | pos = png_safecat(message, (sizeof message), pos, |
1557 | 270k | png_format_number(number, number+(sizeof number), |
1558 | 270k | PNG_NUMBER_FORMAT_x, value)); |
1559 | 270k | pos = png_safecat(message, (sizeof message), pos, "h: "); /* +2 = 116 */ |
1560 | 270k | } |
1561 | 289k | # endif |
1562 | | /* The 'reason' is an arbitrary message, allow +79 maximum 195 */ |
1563 | 289k | pos = png_safecat(message, (sizeof message), pos, reason); |
1564 | 289k | PNG_UNUSED(pos) |
1565 | | |
1566 | 289k | png_chunk_benign_error(png_ptr, message); |
1567 | | |
1568 | 289k | return 0; |
1569 | 289k | } |
1570 | | |
1571 | | /* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value |
1572 | | * is XYZ(0.9642,1.0,0.8249), which scales to: |
1573 | | * |
1574 | | * (63189.8112, 65536, 54060.6464) |
1575 | | */ |
1576 | | static const png_byte D50_nCIEXYZ[12] = |
1577 | | { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d }; |
1578 | | |
1579 | | static int /* bool */ |
1580 | | icc_check_length(png_const_structrp png_ptr, png_const_charp name, |
1581 | | png_uint_32 profile_length) |
1582 | 36.1k | { |
1583 | 36.1k | if (profile_length < 132) |
1584 | 643 | return png_icc_profile_error(png_ptr, name, profile_length, "too short"); |
1585 | 35.4k | return 1; |
1586 | 36.1k | } |
1587 | | |
1588 | | int /* PRIVATE */ |
1589 | | png_icc_check_length(png_const_structrp png_ptr, png_const_charp name, |
1590 | | png_uint_32 profile_length) |
1591 | 36.1k | { |
1592 | 36.1k | if (!icc_check_length(png_ptr, name, profile_length)) |
1593 | 643 | return 0; |
1594 | | |
1595 | | /* This needs to be here because the 'normal' check is in |
1596 | | * png_decompress_chunk, yet this happens after the attempt to |
1597 | | * png_malloc_base the required data. We only need this on read; on write |
1598 | | * the caller supplies the profile buffer so libpng doesn't allocate it. See |
1599 | | * the call to icc_check_length below (the write case). |
1600 | | */ |
1601 | 35.4k | if (profile_length > png_chunk_max(png_ptr)) |
1602 | 1.07k | return png_icc_profile_error(png_ptr, name, profile_length, |
1603 | 1.07k | "profile too long"); |
1604 | | |
1605 | 34.4k | return 1; |
1606 | 35.4k | } |
1607 | | |
1608 | | int /* PRIVATE */ |
1609 | | png_icc_check_header(png_const_structrp png_ptr, png_const_charp name, |
1610 | | png_uint_32 profile_length, |
1611 | | png_const_bytep profile/* first 132 bytes only */, int color_type) |
1612 | 34.4k | { |
1613 | 34.4k | png_uint_32 temp; |
1614 | | |
1615 | | /* Length check; this cannot be ignored in this code because profile_length |
1616 | | * is used later to check the tag table, so even if the profile seems over |
1617 | | * long profile_length from the caller must be correct. The caller can fix |
1618 | | * this up on read or write by just passing in the profile header length. |
1619 | | */ |
1620 | 34.4k | temp = png_get_uint_32(profile); |
1621 | 34.4k | if (temp != profile_length) |
1622 | 0 | return png_icc_profile_error(png_ptr, name, temp, |
1623 | 0 | "length does not match profile"); |
1624 | | |
1625 | 34.4k | temp = (png_uint_32) (*(profile+8)); |
1626 | 34.4k | if (temp > 3 && (profile_length & 3)) |
1627 | 683 | return png_icc_profile_error(png_ptr, name, profile_length, |
1628 | 683 | "invalid length"); |
1629 | | |
1630 | 33.7k | temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */ |
1631 | 33.7k | if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */ |
1632 | 33.7k | profile_length < 132+12*temp) /* truncated tag table */ |
1633 | 3.10k | return png_icc_profile_error(png_ptr, name, temp, |
1634 | 3.10k | "tag count too large"); |
1635 | | |
1636 | | /* The 'intent' must be valid or we can't store it, ICC limits the intent to |
1637 | | * 16 bits. |
1638 | | */ |
1639 | 30.6k | temp = png_get_uint_32(profile+64); |
1640 | 30.6k | if (temp >= 0xffff) /* The ICC limit */ |
1641 | 1.03k | return png_icc_profile_error(png_ptr, name, temp, |
1642 | 1.03k | "invalid rendering intent"); |
1643 | | |
1644 | | /* This is just a warning because the profile may be valid in future |
1645 | | * versions. |
1646 | | */ |
1647 | 29.5k | if (temp >= PNG_sRGB_INTENT_LAST) |
1648 | 9.71k | (void)png_icc_profile_error(png_ptr, name, temp, |
1649 | 9.71k | "intent outside defined range"); |
1650 | | |
1651 | | /* At this point the tag table can't be checked because it hasn't necessarily |
1652 | | * been loaded; however, various header fields can be checked. These checks |
1653 | | * are for values permitted by the PNG spec in an ICC profile; the PNG spec |
1654 | | * restricts the profiles that can be passed in an iCCP chunk (they must be |
1655 | | * appropriate to processing PNG data!) |
1656 | | */ |
1657 | | |
1658 | | /* Data checks (could be skipped). These checks must be independent of the |
1659 | | * version number; however, the version number doesn't accommodate changes in |
1660 | | * the header fields (just the known tags and the interpretation of the |
1661 | | * data.) |
1662 | | */ |
1663 | 29.5k | temp = png_get_uint_32(profile+36); /* signature 'ascp' */ |
1664 | 29.5k | if (temp != 0x61637370) |
1665 | 1.70k | return png_icc_profile_error(png_ptr, name, temp, |
1666 | 1.70k | "invalid signature"); |
1667 | | |
1668 | | /* Currently the PCS illuminant/adopted white point (the computational |
1669 | | * white point) are required to be D50, |
1670 | | * however the profile contains a record of the illuminant so perhaps ICC |
1671 | | * expects to be able to change this in the future (despite the rationale in |
1672 | | * the introduction for using a fixed PCS adopted white.) Consequently the |
1673 | | * following is just a warning. |
1674 | | */ |
1675 | 27.8k | if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0) |
1676 | 26.2k | (void)png_icc_profile_error(png_ptr, name, 0/*no tag value*/, |
1677 | 26.2k | "PCS illuminant is not D50"); |
1678 | | |
1679 | | /* The PNG spec requires this: |
1680 | | * "If the iCCP chunk is present, the image samples conform to the colour |
1681 | | * space represented by the embedded ICC profile as defined by the |
1682 | | * International Color Consortium [ICC]. The colour space of the ICC profile |
1683 | | * shall be an RGB colour space for colour images (PNG colour types 2, 3, and |
1684 | | * 6), or a greyscale colour space for greyscale images (PNG colour types 0 |
1685 | | * and 4)." |
1686 | | * |
1687 | | * This checking code ensures the embedded profile (on either read or write) |
1688 | | * conforms to the specification requirements. Notice that an ICC 'gray' |
1689 | | * color-space profile contains the information to transform the monochrome |
1690 | | * data to XYZ or L*a*b (according to which PCS the profile uses) and this |
1691 | | * should be used in preference to the standard libpng K channel replication |
1692 | | * into R, G and B channels. |
1693 | | * |
1694 | | * Previously it was suggested that an RGB profile on grayscale data could be |
1695 | | * handled. However it it is clear that using an RGB profile in this context |
1696 | | * must be an error - there is no specification of what it means. Thus it is |
1697 | | * almost certainly more correct to ignore the profile. |
1698 | | */ |
1699 | 27.8k | temp = png_get_uint_32(profile+16); /* data colour space field */ |
1700 | 27.8k | switch (temp) |
1701 | 27.8k | { |
1702 | 11.8k | case 0x52474220: /* 'RGB ' */ |
1703 | 11.8k | if ((color_type & PNG_COLOR_MASK_COLOR) == 0) |
1704 | 703 | return png_icc_profile_error(png_ptr, name, temp, |
1705 | 703 | "RGB color space not permitted on grayscale PNG"); |
1706 | 11.1k | break; |
1707 | | |
1708 | 13.8k | case 0x47524159: /* 'GRAY' */ |
1709 | 13.8k | if ((color_type & PNG_COLOR_MASK_COLOR) != 0) |
1710 | 528 | return png_icc_profile_error(png_ptr, name, temp, |
1711 | 528 | "Gray color space not permitted on RGB PNG"); |
1712 | 13.2k | break; |
1713 | | |
1714 | 13.2k | default: |
1715 | 2.23k | return png_icc_profile_error(png_ptr, name, temp, |
1716 | 2.23k | "invalid ICC profile color space"); |
1717 | 27.8k | } |
1718 | | |
1719 | | /* It is up to the application to check that the profile class matches the |
1720 | | * application requirements; the spec provides no guidance, but it's pretty |
1721 | | * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer |
1722 | | * ('prtr') or 'spac' (for generic color spaces). Issue a warning in these |
1723 | | * cases. Issue an error for device link or abstract profiles - these don't |
1724 | | * contain the records necessary to transform the color-space to anything |
1725 | | * other than the target device (and not even that for an abstract profile). |
1726 | | * Profiles of these classes may not be embedded in images. |
1727 | | */ |
1728 | 24.4k | temp = png_get_uint_32(profile+12); /* profile/device class */ |
1729 | 24.4k | switch (temp) |
1730 | 24.4k | { |
1731 | 1.46k | case 0x73636e72: /* 'scnr' */ |
1732 | 3.23k | case 0x6d6e7472: /* 'mntr' */ |
1733 | 4.78k | case 0x70727472: /* 'prtr' */ |
1734 | 5.75k | case 0x73706163: /* 'spac' */ |
1735 | | /* All supported */ |
1736 | 5.75k | break; |
1737 | | |
1738 | 95 | case 0x61627374: /* 'abst' */ |
1739 | | /* May not be embedded in an image */ |
1740 | 95 | return png_icc_profile_error(png_ptr, name, temp, |
1741 | 95 | "invalid embedded Abstract ICC profile"); |
1742 | | |
1743 | 151 | case 0x6c696e6b: /* 'link' */ |
1744 | | /* DeviceLink profiles cannot be interpreted in a non-device specific |
1745 | | * fashion, if an app uses the AToB0Tag in the profile the results are |
1746 | | * undefined unless the result is sent to the intended device, |
1747 | | * therefore a DeviceLink profile should not be found embedded in a |
1748 | | * PNG. |
1749 | | */ |
1750 | 151 | return png_icc_profile_error(png_ptr, name, temp, |
1751 | 151 | "unexpected DeviceLink ICC profile class"); |
1752 | | |
1753 | 343 | case 0x6e6d636c: /* 'nmcl' */ |
1754 | | /* A NamedColor profile is also device specific, however it doesn't |
1755 | | * contain an AToB0 tag that is open to misinterpretation. Almost |
1756 | | * certainly it will fail the tests below. |
1757 | | */ |
1758 | 343 | (void)png_icc_profile_error(png_ptr, name, temp, |
1759 | 343 | "unexpected NamedColor ICC profile class"); |
1760 | 343 | break; |
1761 | | |
1762 | 18.0k | default: |
1763 | | /* To allow for future enhancements to the profile accept unrecognized |
1764 | | * profile classes with a warning, these then hit the test below on the |
1765 | | * tag content to ensure they are backward compatible with one of the |
1766 | | * understood profiles. |
1767 | | */ |
1768 | 18.0k | (void)png_icc_profile_error(png_ptr, name, temp, |
1769 | 18.0k | "unrecognized ICC profile class"); |
1770 | 18.0k | break; |
1771 | 24.4k | } |
1772 | | |
1773 | | /* For any profile other than a device link one the PCS must be encoded |
1774 | | * either in XYZ or Lab. |
1775 | | */ |
1776 | 24.1k | temp = png_get_uint_32(profile+20); |
1777 | 24.1k | switch (temp) |
1778 | 24.1k | { |
1779 | 15.0k | case 0x58595a20: /* 'XYZ ' */ |
1780 | 20.7k | case 0x4c616220: /* 'Lab ' */ |
1781 | 20.7k | break; |
1782 | | |
1783 | 3.41k | default: |
1784 | 3.41k | return png_icc_profile_error(png_ptr, name, temp, |
1785 | 3.41k | "unexpected ICC PCS encoding"); |
1786 | 24.1k | } |
1787 | | |
1788 | 20.7k | return 1; |
1789 | 24.1k | } |
1790 | | |
1791 | | int /* PRIVATE */ |
1792 | | png_icc_check_tag_table(png_const_structrp png_ptr, png_const_charp name, |
1793 | | png_uint_32 profile_length, |
1794 | | png_const_bytep profile /* header plus whole tag table */) |
1795 | 18.6k | { |
1796 | 18.6k | png_uint_32 tag_count = png_get_uint_32(profile+128); |
1797 | 18.6k | png_uint_32 itag; |
1798 | 18.6k | png_const_bytep tag = profile+132; /* The first tag */ |
1799 | | |
1800 | | /* First scan all the tags in the table and add bits to the icc_info value |
1801 | | * (temporarily in 'tags'). |
1802 | | */ |
1803 | 379k | for (itag=0; itag < tag_count; ++itag, tag += 12) |
1804 | 363k | { |
1805 | 363k | png_uint_32 tag_id = png_get_uint_32(tag+0); |
1806 | 363k | png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */ |
1807 | 363k | png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */ |
1808 | | |
1809 | | /* The ICC specification does not exclude zero length tags, therefore the |
1810 | | * start might actually be anywhere if there is no data, but this would be |
1811 | | * a clear abuse of the intent of the standard so the start is checked for |
1812 | | * being in range. All defined tag types have an 8 byte header - a 4 byte |
1813 | | * type signature then 0. |
1814 | | */ |
1815 | | |
1816 | | /* This is a hard error; potentially it can cause read outside the |
1817 | | * profile. |
1818 | | */ |
1819 | 363k | if (tag_start > profile_length || tag_length > profile_length - tag_start) |
1820 | 2.43k | return png_icc_profile_error(png_ptr, name, tag_id, |
1821 | 2.43k | "ICC profile tag outside profile"); |
1822 | | |
1823 | 360k | if ((tag_start & 3) != 0) |
1824 | 217k | { |
1825 | | /* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is |
1826 | | * only a warning here because libpng does not care about the |
1827 | | * alignment. |
1828 | | */ |
1829 | 217k | (void)png_icc_profile_error(png_ptr, name, tag_id, |
1830 | 217k | "ICC profile tag start not a multiple of 4"); |
1831 | 217k | } |
1832 | 360k | } |
1833 | | |
1834 | 16.2k | return 1; /* success, maybe with warnings */ |
1835 | 18.6k | } |
1836 | | #endif /* READ_iCCP */ |
1837 | | |
1838 | | #ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED |
1839 | | #if (defined PNG_READ_mDCV_SUPPORTED) || (defined PNG_READ_cHRM_SUPPORTED) |
1840 | | static int |
1841 | | have_chromaticities(png_const_structrp png_ptr) |
1842 | 0 | { |
1843 | | /* Handle new PNGv3 chunks and the precedence rules to determine whether |
1844 | | * png_struct::chromaticities must be processed. Only required for RGB to |
1845 | | * gray. |
1846 | | * |
1847 | | * mDCV: this is the mastering colour space and it is independent of the |
1848 | | * encoding so it needs to be used regardless of the encoded space. |
1849 | | * |
1850 | | * cICP: first in priority but not yet implemented - the chromaticities come |
1851 | | * from the 'primaries'. |
1852 | | * |
1853 | | * iCCP: not supported by libpng (so ignored) |
1854 | | * |
1855 | | * sRGB: the defaults match sRGB |
1856 | | * |
1857 | | * cHRM: calculate the coefficients |
1858 | | */ |
1859 | 0 | # ifdef PNG_READ_mDCV_SUPPORTED |
1860 | 0 | if (png_has_chunk(png_ptr, mDCV)) |
1861 | 0 | return 1; |
1862 | 0 | # define check_chromaticities 1 |
1863 | 0 | # endif /*mDCV*/ |
1864 | | |
1865 | 0 | # ifdef PNG_READ_sRGB_SUPPORTED |
1866 | 0 | if (png_has_chunk(png_ptr, sRGB)) |
1867 | 0 | return 0; |
1868 | 0 | # endif /*sRGB*/ |
1869 | | |
1870 | 0 | # ifdef PNG_READ_cHRM_SUPPORTED |
1871 | 0 | if (png_has_chunk(png_ptr, cHRM)) |
1872 | 0 | return 1; |
1873 | 0 | # define check_chromaticities 1 |
1874 | 0 | # endif /*cHRM*/ |
1875 | | |
1876 | 0 | return 0; /* sRGB defaults */ |
1877 | 0 | } |
1878 | | #endif /* READ_mDCV || READ_cHRM */ |
1879 | | |
1880 | | void /* PRIVATE */ |
1881 | | png_set_rgb_coefficients(png_structrp png_ptr) |
1882 | 0 | { |
1883 | | /* Set the rgb_to_gray coefficients from the colorspace if available. Note |
1884 | | * that '_set' means that png_rgb_to_gray was called **and** it successfully |
1885 | | * set up the coefficients. |
1886 | | */ |
1887 | 0 | if (png_ptr->rgb_to_gray_coefficients_set == 0) |
1888 | 0 | { |
1889 | 0 | # if check_chromaticities |
1890 | 0 | png_XYZ xyz; |
1891 | |
|
1892 | 0 | if (have_chromaticities(png_ptr) && |
1893 | 0 | png_XYZ_from_xy(&xyz, &png_ptr->chromaticities) == 0) |
1894 | 0 | { |
1895 | | /* png_set_rgb_to_gray has not set the coefficients, get them from the |
1896 | | * Y * values of the colorspace colorants. |
1897 | | */ |
1898 | 0 | png_fixed_point r = xyz.red_Y; |
1899 | 0 | png_fixed_point g = xyz.green_Y; |
1900 | 0 | png_fixed_point b = xyz.blue_Y; |
1901 | 0 | png_fixed_point total = r+g+b; |
1902 | |
|
1903 | 0 | if (total > 0 && |
1904 | 0 | r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 && |
1905 | 0 | g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 && |
1906 | 0 | b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 && |
1907 | 0 | r+g+b <= 32769) |
1908 | 0 | { |
1909 | | /* We allow 0 coefficients here. r+g+b may be 32769 if two or |
1910 | | * all of the coefficients were rounded up. Handle this by |
1911 | | * reducing the *largest* coefficient by 1; this matches the |
1912 | | * approach used for the default coefficients in pngrtran.c |
1913 | | */ |
1914 | 0 | int add = 0; |
1915 | |
|
1916 | 0 | if (r+g+b > 32768) |
1917 | 0 | add = -1; |
1918 | 0 | else if (r+g+b < 32768) |
1919 | 0 | add = 1; |
1920 | |
|
1921 | 0 | if (add != 0) |
1922 | 0 | { |
1923 | 0 | if (g >= r && g >= b) |
1924 | 0 | g += add; |
1925 | 0 | else if (r >= g && r >= b) |
1926 | 0 | r += add; |
1927 | 0 | else |
1928 | 0 | b += add; |
1929 | 0 | } |
1930 | | |
1931 | | /* Check for an internal error. */ |
1932 | 0 | if (r+g+b != 32768) |
1933 | 0 | png_error(png_ptr, |
1934 | 0 | "internal error handling cHRM coefficients"); |
1935 | | |
1936 | 0 | else |
1937 | 0 | { |
1938 | 0 | png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r; |
1939 | 0 | png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g; |
1940 | 0 | } |
1941 | 0 | } |
1942 | 0 | } |
1943 | 0 | else |
1944 | 0 | # endif /* check_chromaticities */ |
1945 | 0 | { |
1946 | | /* Use the historical REC 709 (etc) values: */ |
1947 | 0 | png_ptr->rgb_to_gray_red_coeff = 6968; |
1948 | 0 | png_ptr->rgb_to_gray_green_coeff = 23434; |
1949 | | /* png_ptr->rgb_to_gray_blue_coeff = 2366; */ |
1950 | 0 | } |
1951 | 0 | } |
1952 | 0 | } |
1953 | | #endif /* READ_RGB_TO_GRAY */ |
1954 | | |
1955 | | void /* PRIVATE */ |
1956 | | png_check_IHDR(png_const_structrp png_ptr, |
1957 | | png_uint_32 width, png_uint_32 height, int bit_depth, |
1958 | | int color_type, int interlace_type, int compression_type, |
1959 | | int filter_type) |
1960 | 131k | { |
1961 | 131k | int error = 0; |
1962 | | |
1963 | | /* Check for width and height valid values */ |
1964 | 131k | if (width == 0) |
1965 | 20 | { |
1966 | 20 | png_warning(png_ptr, "Image width is zero in IHDR"); |
1967 | 20 | error = 1; |
1968 | 20 | } |
1969 | | |
1970 | 131k | if (width > PNG_UINT_31_MAX) |
1971 | 0 | { |
1972 | 0 | png_warning(png_ptr, "Invalid image width in IHDR"); |
1973 | 0 | error = 1; |
1974 | 0 | } |
1975 | | |
1976 | | /* The bit mask on the first line below must be at least as big as a |
1977 | | * png_uint_32. "~7U" is not adequate on 16-bit systems because it will |
1978 | | * be an unsigned 16-bit value. Casting to (png_alloc_size_t) makes the |
1979 | | * type of the result at least as bit (in bits) as the RHS of the > operator |
1980 | | * which also avoids a common warning on 64-bit systems that the comparison |
1981 | | * of (png_uint_32) against the constant value on the RHS will always be |
1982 | | * false. |
1983 | | */ |
1984 | 131k | if (((width + 7) & ~(png_alloc_size_t)7) > |
1985 | 131k | (((PNG_SIZE_MAX |
1986 | 131k | - 48 /* big_row_buf hack */ |
1987 | 131k | - 1) /* filter byte */ |
1988 | 131k | / 8) /* 8-byte RGBA pixels */ |
1989 | 131k | - 1)) /* extra max_pixel_depth pad */ |
1990 | 0 | { |
1991 | | /* The size of the row must be within the limits of this architecture. |
1992 | | * Because the read code can perform arbitrary transformations the |
1993 | | * maximum size is checked here. Because the code in png_read_start_row |
1994 | | * adds extra space "for safety's sake" in several places a conservative |
1995 | | * limit is used here. |
1996 | | * |
1997 | | * NOTE: it would be far better to check the size that is actually used, |
1998 | | * but the effect in the real world is minor and the changes are more |
1999 | | * extensive, therefore much more dangerous and much more difficult to |
2000 | | * write in a way that avoids compiler warnings. |
2001 | | */ |
2002 | 0 | png_warning(png_ptr, "Image width is too large for this architecture"); |
2003 | 0 | error = 1; |
2004 | 0 | } |
2005 | | |
2006 | 131k | #ifdef PNG_SET_USER_LIMITS_SUPPORTED |
2007 | 131k | if (width > png_ptr->user_width_max) |
2008 | | #else |
2009 | | if (width > PNG_USER_WIDTH_MAX) |
2010 | | #endif |
2011 | 165 | { |
2012 | 165 | png_warning(png_ptr, "Image width exceeds user limit in IHDR"); |
2013 | 165 | error = 1; |
2014 | 165 | } |
2015 | | |
2016 | 131k | if (height == 0) |
2017 | 19 | { |
2018 | 19 | png_warning(png_ptr, "Image height is zero in IHDR"); |
2019 | 19 | error = 1; |
2020 | 19 | } |
2021 | | |
2022 | 131k | if (height > PNG_UINT_31_MAX) |
2023 | 0 | { |
2024 | 0 | png_warning(png_ptr, "Invalid image height in IHDR"); |
2025 | 0 | error = 1; |
2026 | 0 | } |
2027 | | |
2028 | 131k | #ifdef PNG_SET_USER_LIMITS_SUPPORTED |
2029 | 131k | if (height > png_ptr->user_height_max) |
2030 | | #else |
2031 | | if (height > PNG_USER_HEIGHT_MAX) |
2032 | | #endif |
2033 | 234 | { |
2034 | 234 | png_warning(png_ptr, "Image height exceeds user limit in IHDR"); |
2035 | 234 | error = 1; |
2036 | 234 | } |
2037 | | |
2038 | | /* Check other values */ |
2039 | 131k | if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && |
2040 | 131k | bit_depth != 8 && bit_depth != 16) |
2041 | 286 | { |
2042 | 286 | png_warning(png_ptr, "Invalid bit depth in IHDR"); |
2043 | 286 | error = 1; |
2044 | 286 | } |
2045 | | |
2046 | 131k | if (color_type < 0 || color_type == 1 || |
2047 | 131k | color_type == 5 || color_type > 6) |
2048 | 217 | { |
2049 | 217 | png_warning(png_ptr, "Invalid color type in IHDR"); |
2050 | 217 | error = 1; |
2051 | 217 | } |
2052 | | |
2053 | 131k | if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || |
2054 | 131k | ((color_type == PNG_COLOR_TYPE_RGB || |
2055 | 131k | color_type == PNG_COLOR_TYPE_GRAY_ALPHA || |
2056 | 131k | color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) |
2057 | 29 | { |
2058 | 29 | png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR"); |
2059 | 29 | error = 1; |
2060 | 29 | } |
2061 | | |
2062 | 131k | if (interlace_type >= PNG_INTERLACE_LAST) |
2063 | 183 | { |
2064 | 183 | png_warning(png_ptr, "Unknown interlace method in IHDR"); |
2065 | 183 | error = 1; |
2066 | 183 | } |
2067 | | |
2068 | 131k | if (compression_type != PNG_COMPRESSION_TYPE_BASE) |
2069 | 205 | { |
2070 | 205 | png_warning(png_ptr, "Unknown compression method in IHDR"); |
2071 | 205 | error = 1; |
2072 | 205 | } |
2073 | | |
2074 | 131k | #ifdef PNG_MNG_FEATURES_SUPPORTED |
2075 | | /* Accept filter_method 64 (intrapixel differencing) only if |
2076 | | * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and |
2077 | | * 2. Libpng did not read a PNG signature (this filter_method is only |
2078 | | * used in PNG datastreams that are embedded in MNG datastreams) and |
2079 | | * 3. The application called png_permit_mng_features with a mask that |
2080 | | * included PNG_FLAG_MNG_FILTER_64 and |
2081 | | * 4. The filter_method is 64 and |
2082 | | * 5. The color_type is RGB or RGBA |
2083 | | */ |
2084 | 131k | if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 && |
2085 | 131k | png_ptr->mng_features_permitted != 0) |
2086 | 0 | png_warning(png_ptr, "MNG features are not allowed in a PNG datastream"); |
2087 | | |
2088 | 131k | if (filter_type != PNG_FILTER_TYPE_BASE) |
2089 | 203 | { |
2090 | 203 | if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 && |
2091 | 203 | (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && |
2092 | 203 | ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) && |
2093 | 203 | (color_type == PNG_COLOR_TYPE_RGB || |
2094 | 1 | color_type == PNG_COLOR_TYPE_RGB_ALPHA))) |
2095 | 203 | { |
2096 | 203 | png_warning(png_ptr, "Unknown filter method in IHDR"); |
2097 | 203 | error = 1; |
2098 | 203 | } |
2099 | | |
2100 | 203 | if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0) |
2101 | 0 | { |
2102 | 0 | png_warning(png_ptr, "Invalid filter method in IHDR"); |
2103 | 0 | error = 1; |
2104 | 0 | } |
2105 | 203 | } |
2106 | | |
2107 | | #else |
2108 | | if (filter_type != PNG_FILTER_TYPE_BASE) |
2109 | | { |
2110 | | png_warning(png_ptr, "Unknown filter method in IHDR"); |
2111 | | error = 1; |
2112 | | } |
2113 | | #endif |
2114 | | |
2115 | 131k | if (error == 1) |
2116 | 346 | png_error(png_ptr, "Invalid IHDR data"); |
2117 | 131k | } |
2118 | | |
2119 | | #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED) |
2120 | | /* ASCII to fp functions */ |
2121 | | /* Check an ASCII formatted floating point value, see the more detailed |
2122 | | * comments in pngpriv.h |
2123 | | */ |
2124 | | /* The following is used internally to preserve the sticky flags */ |
2125 | 0 | #define png_fp_add(state, flags) ((state) |= (flags)) |
2126 | 0 | #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) |
2127 | | |
2128 | | int /* PRIVATE */ |
2129 | | png_check_fp_number(png_const_charp string, size_t size, int *statep, |
2130 | | size_t *whereami) |
2131 | 0 | { |
2132 | 0 | int state = *statep; |
2133 | 0 | size_t i = *whereami; |
2134 | |
|
2135 | 0 | while (i < size) |
2136 | 0 | { |
2137 | 0 | int type; |
2138 | | /* First find the type of the next character */ |
2139 | 0 | switch (string[i]) |
2140 | 0 | { |
2141 | 0 | case 43: type = PNG_FP_SAW_SIGN; break; |
2142 | 0 | case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; |
2143 | 0 | case 46: type = PNG_FP_SAW_DOT; break; |
2144 | 0 | case 48: type = PNG_FP_SAW_DIGIT; break; |
2145 | 0 | case 49: case 50: case 51: case 52: |
2146 | 0 | case 53: case 54: case 55: case 56: |
2147 | 0 | case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; |
2148 | 0 | case 69: |
2149 | 0 | case 101: type = PNG_FP_SAW_E; break; |
2150 | 0 | default: goto PNG_FP_End; |
2151 | 0 | } |
2152 | | |
2153 | | /* Now deal with this type according to the current |
2154 | | * state, the type is arranged to not overlap the |
2155 | | * bits of the PNG_FP_STATE. |
2156 | | */ |
2157 | 0 | switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) |
2158 | 0 | { |
2159 | 0 | case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: |
2160 | 0 | if ((state & PNG_FP_SAW_ANY) != 0) |
2161 | 0 | goto PNG_FP_End; /* not a part of the number */ |
2162 | | |
2163 | 0 | png_fp_add(state, type); |
2164 | 0 | break; |
2165 | | |
2166 | 0 | case PNG_FP_INTEGER + PNG_FP_SAW_DOT: |
2167 | | /* Ok as trailer, ok as lead of fraction. */ |
2168 | 0 | if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */ |
2169 | 0 | goto PNG_FP_End; |
2170 | | |
2171 | 0 | else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */ |
2172 | 0 | png_fp_add(state, type); |
2173 | | |
2174 | 0 | else |
2175 | 0 | png_fp_set(state, PNG_FP_FRACTION | type); |
2176 | | |
2177 | 0 | break; |
2178 | | |
2179 | 0 | case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: |
2180 | 0 | if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */ |
2181 | 0 | png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); |
2182 | |
|
2183 | 0 | png_fp_add(state, type | PNG_FP_WAS_VALID); |
2184 | |
|
2185 | 0 | break; |
2186 | | |
2187 | 0 | case PNG_FP_INTEGER + PNG_FP_SAW_E: |
2188 | 0 | if ((state & PNG_FP_SAW_DIGIT) == 0) |
2189 | 0 | goto PNG_FP_End; |
2190 | | |
2191 | 0 | png_fp_set(state, PNG_FP_EXPONENT); |
2192 | |
|
2193 | 0 | break; |
2194 | | |
2195 | | /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: |
2196 | | goto PNG_FP_End; ** no sign in fraction */ |
2197 | | |
2198 | | /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: |
2199 | | goto PNG_FP_End; ** Because SAW_DOT is always set */ |
2200 | | |
2201 | 0 | case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: |
2202 | 0 | png_fp_add(state, type | PNG_FP_WAS_VALID); |
2203 | 0 | break; |
2204 | | |
2205 | 0 | case PNG_FP_FRACTION + PNG_FP_SAW_E: |
2206 | | /* This is correct because the trailing '.' on an |
2207 | | * integer is handled above - so we can only get here |
2208 | | * with the sequence ".E" (with no preceding digits). |
2209 | | */ |
2210 | 0 | if ((state & PNG_FP_SAW_DIGIT) == 0) |
2211 | 0 | goto PNG_FP_End; |
2212 | | |
2213 | 0 | png_fp_set(state, PNG_FP_EXPONENT); |
2214 | |
|
2215 | 0 | break; |
2216 | | |
2217 | 0 | case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: |
2218 | 0 | if ((state & PNG_FP_SAW_ANY) != 0) |
2219 | 0 | goto PNG_FP_End; /* not a part of the number */ |
2220 | | |
2221 | 0 | png_fp_add(state, PNG_FP_SAW_SIGN); |
2222 | |
|
2223 | 0 | break; |
2224 | | |
2225 | | /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: |
2226 | | goto PNG_FP_End; */ |
2227 | | |
2228 | 0 | case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: |
2229 | 0 | png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); |
2230 | |
|
2231 | 0 | break; |
2232 | | |
2233 | | /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: |
2234 | | goto PNG_FP_End; */ |
2235 | | |
2236 | 0 | default: goto PNG_FP_End; /* I.e. break 2 */ |
2237 | 0 | } |
2238 | | |
2239 | | /* The character seems ok, continue. */ |
2240 | 0 | ++i; |
2241 | 0 | } |
2242 | | |
2243 | 0 | PNG_FP_End: |
2244 | | /* Here at the end, update the state and return the correct |
2245 | | * return code. |
2246 | | */ |
2247 | 0 | *statep = state; |
2248 | 0 | *whereami = i; |
2249 | |
|
2250 | 0 | return (state & PNG_FP_SAW_DIGIT) != 0; |
2251 | 0 | } |
2252 | | |
2253 | | |
2254 | | /* The same but for a complete string. */ |
2255 | | int |
2256 | | png_check_fp_string(png_const_charp string, size_t size) |
2257 | 0 | { |
2258 | 0 | int state=0; |
2259 | 0 | size_t char_index=0; |
2260 | |
|
2261 | 0 | if (png_check_fp_number(string, size, &state, &char_index) != 0 && |
2262 | 0 | (char_index == size || string[char_index] == 0)) |
2263 | 0 | return state /* must be non-zero - see above */; |
2264 | | |
2265 | 0 | return 0; /* i.e. fail */ |
2266 | 0 | } |
2267 | | #endif /* pCAL || sCAL */ |
2268 | | |
2269 | | #ifdef PNG_sCAL_SUPPORTED |
2270 | | # ifdef PNG_FLOATING_POINT_SUPPORTED |
2271 | | /* Utility used below - a simple accurate power of ten from an integral |
2272 | | * exponent. |
2273 | | */ |
2274 | | static double |
2275 | | png_pow10(int power) |
2276 | 0 | { |
2277 | 0 | int recip = 0; |
2278 | 0 | double d = 1; |
2279 | | |
2280 | | /* Handle negative exponent with a reciprocal at the end because |
2281 | | * 10 is exact whereas .1 is inexact in base 2 |
2282 | | */ |
2283 | 0 | if (power < 0) |
2284 | 0 | { |
2285 | 0 | if (power < DBL_MIN_10_EXP) return 0; |
2286 | 0 | recip = 1; power = -power; |
2287 | 0 | } |
2288 | | |
2289 | 0 | if (power > 0) |
2290 | 0 | { |
2291 | | /* Decompose power bitwise. */ |
2292 | 0 | double mult = 10; |
2293 | 0 | do |
2294 | 0 | { |
2295 | 0 | if (power & 1) d *= mult; |
2296 | 0 | mult *= mult; |
2297 | 0 | power >>= 1; |
2298 | 0 | } |
2299 | 0 | while (power > 0); |
2300 | |
|
2301 | 0 | if (recip != 0) d = 1/d; |
2302 | 0 | } |
2303 | | /* else power is 0 and d is 1 */ |
2304 | |
|
2305 | 0 | return d; |
2306 | 0 | } |
2307 | | |
2308 | | /* Function to format a floating point value in ASCII with a given |
2309 | | * precision. |
2310 | | */ |
2311 | | void /* PRIVATE */ |
2312 | | png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, size_t size, |
2313 | | double fp, unsigned int precision) |
2314 | 0 | { |
2315 | | /* We use standard functions from math.h, but not printf because |
2316 | | * that would require stdio. The caller must supply a buffer of |
2317 | | * sufficient size or we will png_error. The tests on size and |
2318 | | * the space in ascii[] consumed are indicated below. |
2319 | | */ |
2320 | 0 | if (precision < 1) |
2321 | 0 | precision = DBL_DIG; |
2322 | | |
2323 | | /* Enforce the limit of the implementation precision too. */ |
2324 | 0 | if (precision > DBL_DIG+1) |
2325 | 0 | precision = DBL_DIG+1; |
2326 | | |
2327 | | /* Basic sanity checks */ |
2328 | 0 | if (size >= precision+5) /* See the requirements below. */ |
2329 | 0 | { |
2330 | 0 | if (fp < 0) |
2331 | 0 | { |
2332 | 0 | fp = -fp; |
2333 | 0 | *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ |
2334 | 0 | --size; |
2335 | 0 | } |
2336 | |
|
2337 | 0 | if (fp >= DBL_MIN && fp <= DBL_MAX) |
2338 | 0 | { |
2339 | 0 | int exp_b10; /* A base 10 exponent */ |
2340 | 0 | double base; /* 10^exp_b10 */ |
2341 | | |
2342 | | /* First extract a base 10 exponent of the number, |
2343 | | * the calculation below rounds down when converting |
2344 | | * from base 2 to base 10 (multiply by log10(2) - |
2345 | | * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to |
2346 | | * be increased. Note that the arithmetic shift |
2347 | | * performs a floor() unlike C arithmetic - using a |
2348 | | * C multiply would break the following for negative |
2349 | | * exponents. |
2350 | | */ |
2351 | 0 | (void)frexp(fp, &exp_b10); /* exponent to base 2 */ |
2352 | |
|
2353 | 0 | exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */ |
2354 | | |
2355 | | /* Avoid underflow here. */ |
2356 | 0 | base = png_pow10(exp_b10); /* May underflow */ |
2357 | |
|
2358 | 0 | while (base < DBL_MIN || base < fp) |
2359 | 0 | { |
2360 | | /* And this may overflow. */ |
2361 | 0 | double test = png_pow10(exp_b10+1); |
2362 | |
|
2363 | 0 | if (test <= DBL_MAX) |
2364 | 0 | { |
2365 | 0 | ++exp_b10; base = test; |
2366 | 0 | } |
2367 | | |
2368 | 0 | else |
2369 | 0 | break; |
2370 | 0 | } |
2371 | | |
2372 | | /* Normalize fp and correct exp_b10, after this fp is in the |
2373 | | * range [.1,1) and exp_b10 is both the exponent and the digit |
2374 | | * *before* which the decimal point should be inserted |
2375 | | * (starting with 0 for the first digit). Note that this |
2376 | | * works even if 10^exp_b10 is out of range because of the |
2377 | | * test on DBL_MAX above. |
2378 | | */ |
2379 | 0 | fp /= base; |
2380 | 0 | while (fp >= 1) |
2381 | 0 | { |
2382 | 0 | fp /= 10; ++exp_b10; |
2383 | 0 | } |
2384 | | |
2385 | | /* Because of the code above fp may, at this point, be |
2386 | | * less than .1, this is ok because the code below can |
2387 | | * handle the leading zeros this generates, so no attempt |
2388 | | * is made to correct that here. |
2389 | | */ |
2390 | |
|
2391 | 0 | { |
2392 | 0 | unsigned int czero, clead, cdigits; |
2393 | 0 | char exponent[10]; |
2394 | | |
2395 | | /* Allow up to two leading zeros - this will not lengthen |
2396 | | * the number compared to using E-n. |
2397 | | */ |
2398 | 0 | if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */ |
2399 | 0 | { |
2400 | 0 | czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */ |
2401 | 0 | exp_b10 = 0; /* Dot added below before first output. */ |
2402 | 0 | } |
2403 | 0 | else |
2404 | 0 | czero = 0; /* No zeros to add */ |
2405 | | |
2406 | | /* Generate the digit list, stripping trailing zeros and |
2407 | | * inserting a '.' before a digit if the exponent is 0. |
2408 | | */ |
2409 | 0 | clead = czero; /* Count of leading zeros */ |
2410 | 0 | cdigits = 0; /* Count of digits in list. */ |
2411 | |
|
2412 | 0 | do |
2413 | 0 | { |
2414 | 0 | double d; |
2415 | |
|
2416 | 0 | fp *= 10; |
2417 | | /* Use modf here, not floor and subtract, so that |
2418 | | * the separation is done in one step. At the end |
2419 | | * of the loop don't break the number into parts so |
2420 | | * that the final digit is rounded. |
2421 | | */ |
2422 | 0 | if (cdigits+czero+1 < precision+clead) |
2423 | 0 | fp = modf(fp, &d); |
2424 | | |
2425 | 0 | else |
2426 | 0 | { |
2427 | 0 | d = floor(fp + .5); |
2428 | |
|
2429 | 0 | if (d > 9) |
2430 | 0 | { |
2431 | | /* Rounding up to 10, handle that here. */ |
2432 | 0 | if (czero > 0) |
2433 | 0 | { |
2434 | 0 | --czero; d = 1; |
2435 | 0 | if (cdigits == 0) --clead; |
2436 | 0 | } |
2437 | 0 | else |
2438 | 0 | { |
2439 | 0 | while (cdigits > 0 && d > 9) |
2440 | 0 | { |
2441 | 0 | int ch = *--ascii; |
2442 | |
|
2443 | 0 | if (exp_b10 != (-1)) |
2444 | 0 | ++exp_b10; |
2445 | | |
2446 | 0 | else if (ch == 46) |
2447 | 0 | { |
2448 | 0 | ch = *--ascii; ++size; |
2449 | | /* Advance exp_b10 to '1', so that the |
2450 | | * decimal point happens after the |
2451 | | * previous digit. |
2452 | | */ |
2453 | 0 | exp_b10 = 1; |
2454 | 0 | } |
2455 | |
|
2456 | 0 | --cdigits; |
2457 | 0 | d = ch - 47; /* I.e. 1+(ch-48) */ |
2458 | 0 | } |
2459 | | |
2460 | | /* Did we reach the beginning? If so adjust the |
2461 | | * exponent but take into account the leading |
2462 | | * decimal point. |
2463 | | */ |
2464 | 0 | if (d > 9) /* cdigits == 0 */ |
2465 | 0 | { |
2466 | 0 | if (exp_b10 == (-1)) |
2467 | 0 | { |
2468 | | /* Leading decimal point (plus zeros?), if |
2469 | | * we lose the decimal point here it must |
2470 | | * be reentered below. |
2471 | | */ |
2472 | 0 | int ch = *--ascii; |
2473 | |
|
2474 | 0 | if (ch == 46) |
2475 | 0 | { |
2476 | 0 | ++size; exp_b10 = 1; |
2477 | 0 | } |
2478 | | |
2479 | | /* Else lost a leading zero, so 'exp_b10' is |
2480 | | * still ok at (-1) |
2481 | | */ |
2482 | 0 | } |
2483 | 0 | else |
2484 | 0 | ++exp_b10; |
2485 | | |
2486 | | /* In all cases we output a '1' */ |
2487 | 0 | d = 1; |
2488 | 0 | } |
2489 | 0 | } |
2490 | 0 | } |
2491 | 0 | fp = 0; /* Guarantees termination below. */ |
2492 | 0 | } |
2493 | |
|
2494 | 0 | if (d == 0) |
2495 | 0 | { |
2496 | 0 | ++czero; |
2497 | 0 | if (cdigits == 0) ++clead; |
2498 | 0 | } |
2499 | 0 | else |
2500 | 0 | { |
2501 | | /* Included embedded zeros in the digit count. */ |
2502 | 0 | cdigits += czero - clead; |
2503 | 0 | clead = 0; |
2504 | |
|
2505 | 0 | while (czero > 0) |
2506 | 0 | { |
2507 | | /* exp_b10 == (-1) means we just output the decimal |
2508 | | * place - after the DP don't adjust 'exp_b10' any |
2509 | | * more! |
2510 | | */ |
2511 | 0 | if (exp_b10 != (-1)) |
2512 | 0 | { |
2513 | 0 | if (exp_b10 == 0) |
2514 | 0 | { |
2515 | 0 | *ascii++ = 46; --size; |
2516 | 0 | } |
2517 | | /* PLUS 1: TOTAL 4 */ |
2518 | 0 | --exp_b10; |
2519 | 0 | } |
2520 | 0 | *ascii++ = 48; --czero; |
2521 | 0 | } |
2522 | |
|
2523 | 0 | if (exp_b10 != (-1)) |
2524 | 0 | { |
2525 | 0 | if (exp_b10 == 0) |
2526 | 0 | { |
2527 | 0 | *ascii++ = 46; --size; /* counted above */ |
2528 | 0 | } |
2529 | |
|
2530 | 0 | --exp_b10; |
2531 | 0 | } |
2532 | 0 | *ascii++ = (char)(48 + (int)d); ++cdigits; |
2533 | 0 | } |
2534 | 0 | } |
2535 | 0 | while (cdigits+czero < precision+clead && fp > DBL_MIN); |
2536 | | |
2537 | | /* The total output count (max) is now 4+precision */ |
2538 | | |
2539 | | /* Check for an exponent, if we don't need one we are |
2540 | | * done and just need to terminate the string. At this |
2541 | | * point, exp_b10==(-1) is effectively a flag: it got |
2542 | | * to '-1' because of the decrement, after outputting |
2543 | | * the decimal point above. (The exponent required is |
2544 | | * *not* -1.) |
2545 | | */ |
2546 | 0 | if (exp_b10 >= (-1) && exp_b10 <= 2) |
2547 | 0 | { |
2548 | | /* The following only happens if we didn't output the |
2549 | | * leading zeros above for negative exponent, so this |
2550 | | * doesn't add to the digit requirement. Note that the |
2551 | | * two zeros here can only be output if the two leading |
2552 | | * zeros were *not* output, so this doesn't increase |
2553 | | * the output count. |
2554 | | */ |
2555 | 0 | while (exp_b10-- > 0) *ascii++ = 48; |
2556 | |
|
2557 | 0 | *ascii = 0; |
2558 | | |
2559 | | /* Total buffer requirement (including the '\0') is |
2560 | | * 5+precision - see check at the start. |
2561 | | */ |
2562 | 0 | return; |
2563 | 0 | } |
2564 | | |
2565 | | /* Here if an exponent is required, adjust size for |
2566 | | * the digits we output but did not count. The total |
2567 | | * digit output here so far is at most 1+precision - no |
2568 | | * decimal point and no leading or trailing zeros have |
2569 | | * been output. |
2570 | | */ |
2571 | 0 | size -= cdigits; |
2572 | |
|
2573 | 0 | *ascii++ = 69; --size; /* 'E': PLUS 1 TOTAL 2+precision */ |
2574 | | |
2575 | | /* The following use of an unsigned temporary avoids ambiguities in |
2576 | | * the signed arithmetic on exp_b10 and permits GCC at least to do |
2577 | | * better optimization. |
2578 | | */ |
2579 | 0 | { |
2580 | 0 | unsigned int uexp_b10; |
2581 | |
|
2582 | 0 | if (exp_b10 < 0) |
2583 | 0 | { |
2584 | 0 | *ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */ |
2585 | 0 | uexp_b10 = 0U-exp_b10; |
2586 | 0 | } |
2587 | | |
2588 | 0 | else |
2589 | 0 | uexp_b10 = 0U+exp_b10; |
2590 | |
|
2591 | 0 | cdigits = 0; |
2592 | |
|
2593 | 0 | while (uexp_b10 > 0) |
2594 | 0 | { |
2595 | 0 | exponent[cdigits++] = (char)(48 + uexp_b10 % 10); |
2596 | 0 | uexp_b10 /= 10; |
2597 | 0 | } |
2598 | 0 | } |
2599 | | |
2600 | | /* Need another size check here for the exponent digits, so |
2601 | | * this need not be considered above. |
2602 | | */ |
2603 | 0 | if (size > cdigits) |
2604 | 0 | { |
2605 | 0 | while (cdigits > 0) *ascii++ = exponent[--cdigits]; |
2606 | |
|
2607 | 0 | *ascii = 0; |
2608 | |
|
2609 | 0 | return; |
2610 | 0 | } |
2611 | 0 | } |
2612 | 0 | } |
2613 | 0 | else if (!(fp >= DBL_MIN)) |
2614 | 0 | { |
2615 | 0 | *ascii++ = 48; /* '0' */ |
2616 | 0 | *ascii = 0; |
2617 | 0 | return; |
2618 | 0 | } |
2619 | 0 | else |
2620 | 0 | { |
2621 | 0 | *ascii++ = 105; /* 'i' */ |
2622 | 0 | *ascii++ = 110; /* 'n' */ |
2623 | 0 | *ascii++ = 102; /* 'f' */ |
2624 | 0 | *ascii = 0; |
2625 | 0 | return; |
2626 | 0 | } |
2627 | 0 | } |
2628 | | |
2629 | | /* Here on buffer too small. */ |
2630 | 0 | png_error(png_ptr, "ASCII conversion buffer too small"); |
2631 | 0 | } |
2632 | | # endif /* FLOATING_POINT */ |
2633 | | |
2634 | | # ifdef PNG_FIXED_POINT_SUPPORTED |
2635 | | /* Function to format a fixed point value in ASCII. |
2636 | | */ |
2637 | | void /* PRIVATE */ |
2638 | | png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii, |
2639 | | size_t size, png_fixed_point fp) |
2640 | 0 | { |
2641 | | /* Require space for 10 decimal digits, a decimal point, a minus sign and a |
2642 | | * trailing \0, 13 characters: |
2643 | | */ |
2644 | 0 | if (size > 12) |
2645 | 0 | { |
2646 | 0 | png_uint_32 num; |
2647 | | |
2648 | | /* Avoid overflow here on the minimum integer. */ |
2649 | 0 | if (fp < 0) |
2650 | 0 | { |
2651 | 0 | *ascii++ = 45; num = (png_uint_32)(-fp); |
2652 | 0 | } |
2653 | 0 | else |
2654 | 0 | num = (png_uint_32)fp; |
2655 | |
|
2656 | 0 | if (num <= 0x80000000) /* else overflowed */ |
2657 | 0 | { |
2658 | 0 | unsigned int ndigits = 0, first = 16 /* flag value */; |
2659 | 0 | char digits[10] = {0}; |
2660 | |
|
2661 | 0 | while (num) |
2662 | 0 | { |
2663 | | /* Split the low digit off num: */ |
2664 | 0 | unsigned int tmp = num/10; |
2665 | 0 | num -= tmp*10; |
2666 | 0 | digits[ndigits++] = (char)(48 + num); |
2667 | | /* Record the first non-zero digit, note that this is a number |
2668 | | * starting at 1, it's not actually the array index. |
2669 | | */ |
2670 | 0 | if (first == 16 && num > 0) |
2671 | 0 | first = ndigits; |
2672 | 0 | num = tmp; |
2673 | 0 | } |
2674 | |
|
2675 | 0 | if (ndigits > 0) |
2676 | 0 | { |
2677 | 0 | while (ndigits > 5) *ascii++ = digits[--ndigits]; |
2678 | | /* The remaining digits are fractional digits, ndigits is '5' or |
2679 | | * smaller at this point. It is certainly not zero. Check for a |
2680 | | * non-zero fractional digit: |
2681 | | */ |
2682 | 0 | if (first <= 5) |
2683 | 0 | { |
2684 | 0 | unsigned int i; |
2685 | 0 | *ascii++ = 46; /* decimal point */ |
2686 | | /* ndigits may be <5 for small numbers, output leading zeros |
2687 | | * then ndigits digits to first: |
2688 | | */ |
2689 | 0 | i = 5; |
2690 | 0 | while (ndigits < i) |
2691 | 0 | { |
2692 | 0 | *ascii++ = 48; --i; |
2693 | 0 | } |
2694 | 0 | while (ndigits >= first) *ascii++ = digits[--ndigits]; |
2695 | | /* Don't output the trailing zeros! */ |
2696 | 0 | } |
2697 | 0 | } |
2698 | 0 | else |
2699 | 0 | *ascii++ = 48; |
2700 | | |
2701 | | /* And null terminate the string: */ |
2702 | 0 | *ascii = 0; |
2703 | 0 | return; |
2704 | 0 | } |
2705 | 0 | } |
2706 | | |
2707 | | /* Here on buffer too small. */ |
2708 | 0 | png_error(png_ptr, "ASCII conversion buffer too small"); |
2709 | 0 | } |
2710 | | # endif /* FIXED_POINT */ |
2711 | | #endif /* SCAL */ |
2712 | | |
2713 | | #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ |
2714 | | !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \ |
2715 | | (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \ |
2716 | | defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
2717 | | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \ |
2718 | | (defined(PNG_sCAL_SUPPORTED) && \ |
2719 | | defined(PNG_FLOATING_ARITHMETIC_SUPPORTED)) |
2720 | | png_fixed_point |
2721 | | png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text) |
2722 | 6.78k | { |
2723 | 6.78k | double r = floor(100000 * fp + .5); |
2724 | | |
2725 | 6.78k | if (r > 2147483647. || r < -2147483648.) |
2726 | 7 | png_fixed_error(png_ptr, text); |
2727 | | |
2728 | | # ifndef PNG_ERROR_TEXT_SUPPORTED |
2729 | | PNG_UNUSED(text) |
2730 | | # endif |
2731 | | |
2732 | 6.77k | return (png_fixed_point)r; |
2733 | 6.78k | } |
2734 | | #endif |
2735 | | |
2736 | | #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ |
2737 | | !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \ |
2738 | | (defined(PNG_cLLI_SUPPORTED) || defined(PNG_mDCV_SUPPORTED)) |
2739 | | png_uint_32 |
2740 | | png_fixed_ITU(png_const_structrp png_ptr, double fp, png_const_charp text) |
2741 | 0 | { |
2742 | 0 | double r = floor(10000 * fp + .5); |
2743 | |
|
2744 | 0 | if (r > 2147483647. || r < 0) |
2745 | 0 | png_fixed_error(png_ptr, text); |
2746 | | |
2747 | | # ifndef PNG_ERROR_TEXT_SUPPORTED |
2748 | | PNG_UNUSED(text) |
2749 | | # endif |
2750 | | |
2751 | 0 | return (png_uint_32)r; |
2752 | 0 | } |
2753 | | #endif |
2754 | | |
2755 | | |
2756 | | #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\ |
2757 | | defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED) |
2758 | | /* muldiv functions */ |
2759 | | /* This API takes signed arguments and rounds the result to the nearest |
2760 | | * integer (or, for a fixed point number - the standard argument - to |
2761 | | * the nearest .00001). Overflow and divide by zero are signalled in |
2762 | | * the result, a boolean - true on success, false on overflow. |
2763 | | */ |
2764 | | int /* PRIVATE */ |
2765 | | png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, |
2766 | | png_int_32 divisor) |
2767 | 0 | { |
2768 | | /* Return a * times / divisor, rounded. */ |
2769 | 0 | if (divisor != 0) |
2770 | 0 | { |
2771 | 0 | if (a == 0 || times == 0) |
2772 | 0 | { |
2773 | 0 | *res = 0; |
2774 | 0 | return 1; |
2775 | 0 | } |
2776 | 0 | else |
2777 | 0 | { |
2778 | 0 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
2779 | 0 | double r = a; |
2780 | 0 | r *= times; |
2781 | 0 | r /= divisor; |
2782 | 0 | r = floor(r+.5); |
2783 | | |
2784 | | /* A png_fixed_point is a 32-bit integer. */ |
2785 | 0 | if (r <= 2147483647. && r >= -2147483648.) |
2786 | 0 | { |
2787 | 0 | *res = (png_fixed_point)r; |
2788 | 0 | return 1; |
2789 | 0 | } |
2790 | | #else |
2791 | | int negative = 0; |
2792 | | png_uint_32 A, T, D; |
2793 | | png_uint_32 s16, s32, s00; |
2794 | | |
2795 | | if (a < 0) |
2796 | | negative = 1, A = -a; |
2797 | | else |
2798 | | A = a; |
2799 | | |
2800 | | if (times < 0) |
2801 | | negative = !negative, T = -times; |
2802 | | else |
2803 | | T = times; |
2804 | | |
2805 | | if (divisor < 0) |
2806 | | negative = !negative, D = -divisor; |
2807 | | else |
2808 | | D = divisor; |
2809 | | |
2810 | | /* Following can't overflow because the arguments only |
2811 | | * have 31 bits each, however the result may be 32 bits. |
2812 | | */ |
2813 | | s16 = (A >> 16) * (T & 0xffff) + |
2814 | | (A & 0xffff) * (T >> 16); |
2815 | | /* Can't overflow because the a*times bit is only 30 |
2816 | | * bits at most. |
2817 | | */ |
2818 | | s32 = (A >> 16) * (T >> 16) + (s16 >> 16); |
2819 | | s00 = (A & 0xffff) * (T & 0xffff); |
2820 | | |
2821 | | s16 = (s16 & 0xffff) << 16; |
2822 | | s00 += s16; |
2823 | | |
2824 | | if (s00 < s16) |
2825 | | ++s32; /* carry */ |
2826 | | |
2827 | | if (s32 < D) /* else overflow */ |
2828 | | { |
2829 | | /* s32.s00 is now the 64-bit product, do a standard |
2830 | | * division, we know that s32 < D, so the maximum |
2831 | | * required shift is 31. |
2832 | | */ |
2833 | | int bitshift = 32; |
2834 | | png_fixed_point result = 0; /* NOTE: signed */ |
2835 | | |
2836 | | while (--bitshift >= 0) |
2837 | | { |
2838 | | png_uint_32 d32, d00; |
2839 | | |
2840 | | if (bitshift > 0) |
2841 | | d32 = D >> (32-bitshift), d00 = D << bitshift; |
2842 | | |
2843 | | else |
2844 | | d32 = 0, d00 = D; |
2845 | | |
2846 | | if (s32 > d32) |
2847 | | { |
2848 | | if (s00 < d00) --s32; /* carry */ |
2849 | | s32 -= d32, s00 -= d00, result += 1<<bitshift; |
2850 | | } |
2851 | | |
2852 | | else |
2853 | | if (s32 == d32 && s00 >= d00) |
2854 | | s32 = 0, s00 -= d00, result += 1<<bitshift; |
2855 | | } |
2856 | | |
2857 | | /* Handle the rounding. */ |
2858 | | if (s00 >= (D >> 1)) |
2859 | | ++result; |
2860 | | |
2861 | | if (negative != 0) |
2862 | | result = -result; |
2863 | | |
2864 | | /* Check for overflow. */ |
2865 | | if ((negative != 0 && result <= 0) || |
2866 | | (negative == 0 && result >= 0)) |
2867 | | { |
2868 | | *res = result; |
2869 | | return 1; |
2870 | | } |
2871 | | } |
2872 | | #endif |
2873 | 0 | } |
2874 | 0 | } |
2875 | | |
2876 | 0 | return 0; |
2877 | 0 | } |
2878 | | |
2879 | | /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */ |
2880 | | png_fixed_point |
2881 | | png_reciprocal(png_fixed_point a) |
2882 | 746 | { |
2883 | 746 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
2884 | 746 | double r = floor(1E10/a+.5); |
2885 | | |
2886 | 746 | if (r <= 2147483647. && r >= -2147483648.) |
2887 | 745 | return (png_fixed_point)r; |
2888 | | #else |
2889 | | png_fixed_point res; |
2890 | | |
2891 | | if (png_muldiv(&res, 100000, 100000, a) != 0) |
2892 | | return res; |
2893 | | #endif |
2894 | | |
2895 | 1 | return 0; /* error/overflow */ |
2896 | 746 | } |
2897 | | #endif /* READ_GAMMA || COLORSPACE || INCH_CONVERSIONS || READ_pHYS */ |
2898 | | |
2899 | | #ifdef PNG_READ_GAMMA_SUPPORTED |
2900 | | /* This is the shared test on whether a gamma value is 'significant' - whether |
2901 | | * it is worth doing gamma correction. |
2902 | | */ |
2903 | | int /* PRIVATE */ |
2904 | | png_gamma_significant(png_fixed_point gamma_val) |
2905 | 51.2k | { |
2906 | | /* sRGB: 1/2.2 == 0.4545(45) |
2907 | | * AdobeRGB: 1/(2+51/256) ~= 0.45471 5dp |
2908 | | * |
2909 | | * So the correction from AdobeRGB to sRGB (output) is: |
2910 | | * |
2911 | | * 2.2/(2+51/256) == 1.00035524 |
2912 | | * |
2913 | | * I.e. vanishly small (<4E-4) but still detectable in 16-bit linear (+/- |
2914 | | * 23). Note that the Adobe choice seems to be something intended to give an |
2915 | | * exact number with 8 binary fractional digits - it is the closest to 2.2 |
2916 | | * that is possible a base 2 .8p representation. |
2917 | | */ |
2918 | 51.2k | return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED || |
2919 | 51.2k | gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; |
2920 | 51.2k | } |
2921 | | |
2922 | | #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED |
2923 | | /* A local convenience routine. */ |
2924 | | static png_fixed_point |
2925 | | png_product2(png_fixed_point a, png_fixed_point b) |
2926 | | { |
2927 | | /* The required result is a * b; the following preserves accuracy. */ |
2928 | | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED /* Should now be unused */ |
2929 | | double r = a * 1E-5; |
2930 | | r *= b; |
2931 | | r = floor(r+.5); |
2932 | | |
2933 | | if (r <= 2147483647. && r >= -2147483648.) |
2934 | | return (png_fixed_point)r; |
2935 | | #else |
2936 | | png_fixed_point res; |
2937 | | |
2938 | | if (png_muldiv(&res, a, b, 100000) != 0) |
2939 | | return res; |
2940 | | #endif |
2941 | | |
2942 | | return 0; /* overflow */ |
2943 | | } |
2944 | | #endif /* FLOATING_ARITHMETIC */ |
2945 | | |
2946 | | png_fixed_point |
2947 | | png_reciprocal2(png_fixed_point a, png_fixed_point b) |
2948 | 0 | { |
2949 | | /* The required result is 1/a * 1/b; the following preserves accuracy. */ |
2950 | 0 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
2951 | 0 | if (a != 0 && b != 0) |
2952 | 0 | { |
2953 | 0 | double r = 1E15/a; |
2954 | 0 | r /= b; |
2955 | 0 | r = floor(r+.5); |
2956 | |
|
2957 | 0 | if (r <= 2147483647. && r >= -2147483648.) |
2958 | 0 | return (png_fixed_point)r; |
2959 | 0 | } |
2960 | | #else |
2961 | | /* This may overflow because the range of png_fixed_point isn't symmetric, |
2962 | | * but this API is only used for the product of file and screen gamma so it |
2963 | | * doesn't matter that the smallest number it can produce is 1/21474, not |
2964 | | * 1/100000 |
2965 | | */ |
2966 | | png_fixed_point res = png_product2(a, b); |
2967 | | |
2968 | | if (res != 0) |
2969 | | return png_reciprocal(res); |
2970 | | #endif |
2971 | | |
2972 | 0 | return 0; /* overflow */ |
2973 | 0 | } |
2974 | | #endif /* READ_GAMMA */ |
2975 | | |
2976 | | #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */ |
2977 | | #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED |
2978 | | /* Fixed point gamma. |
2979 | | * |
2980 | | * The code to calculate the tables used below can be found in the shell script |
2981 | | * contrib/tools/intgamma.sh |
2982 | | * |
2983 | | * To calculate gamma this code implements fast log() and exp() calls using only |
2984 | | * fixed point arithmetic. This code has sufficient precision for either 8-bit |
2985 | | * or 16-bit sample values. |
2986 | | * |
2987 | | * The tables used here were calculated using simple 'bc' programs, but C double |
2988 | | * precision floating point arithmetic would work fine. |
2989 | | * |
2990 | | * 8-bit log table |
2991 | | * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to |
2992 | | * 255, so it's the base 2 logarithm of a normalized 8-bit floating point |
2993 | | * mantissa. The numbers are 32-bit fractions. |
2994 | | */ |
2995 | | static const png_uint_32 |
2996 | | png_8bit_l2[128] = |
2997 | | { |
2998 | | 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, |
2999 | | 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, |
3000 | | 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, |
3001 | | 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U, |
3002 | | 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U, |
3003 | | 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U, |
3004 | | 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U, |
3005 | | 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U, |
3006 | | 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U, |
3007 | | 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U, |
3008 | | 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U, |
3009 | | 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U, |
3010 | | 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U, |
3011 | | 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U, |
3012 | | 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U, |
3013 | | 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U, |
3014 | | 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U, |
3015 | | 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U, |
3016 | | 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U, |
3017 | | 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, |
3018 | | 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, |
3019 | | 24347096U, 0U |
3020 | | |
3021 | | #if 0 |
3022 | | /* The following are the values for 16-bit tables - these work fine for the |
3023 | | * 8-bit conversions but produce very slightly larger errors in the 16-bit |
3024 | | * log (about 1.2 as opposed to 0.7 absolute error in the final value). To |
3025 | | * use these all the shifts below must be adjusted appropriately. |
3026 | | */ |
3027 | | 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, |
3028 | | 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, |
3029 | | 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068, |
3030 | | 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782, |
3031 | | 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887, |
3032 | | 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339, |
3033 | | 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098, |
3034 | | 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132, |
3035 | | 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415, |
3036 | | 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523, |
3037 | | 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495, |
3038 | | 1119, 744, 372 |
3039 | | #endif |
3040 | | }; |
3041 | | |
3042 | | static png_int_32 |
3043 | | png_log8bit(unsigned int x) |
3044 | | { |
3045 | | unsigned int lg2 = 0; |
3046 | | /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log, |
3047 | | * because the log is actually negate that means adding 1. The final |
3048 | | * returned value thus has the range 0 (for 255 input) to 7.994 (for 1 |
3049 | | * input), return -1 for the overflow (log 0) case, - so the result is |
3050 | | * always at most 19 bits. |
3051 | | */ |
3052 | | if ((x &= 0xff) == 0) |
3053 | | return -1; |
3054 | | |
3055 | | if ((x & 0xf0) == 0) |
3056 | | lg2 = 4, x <<= 4; |
3057 | | |
3058 | | if ((x & 0xc0) == 0) |
3059 | | lg2 += 2, x <<= 2; |
3060 | | |
3061 | | if ((x & 0x80) == 0) |
3062 | | lg2 += 1, x <<= 1; |
3063 | | |
3064 | | /* result is at most 19 bits, so this cast is safe: */ |
3065 | | return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); |
3066 | | } |
3067 | | |
3068 | | /* The above gives exact (to 16 binary places) log2 values for 8-bit images, |
3069 | | * for 16-bit images we use the most significant 8 bits of the 16-bit value to |
3070 | | * get an approximation then multiply the approximation by a correction factor |
3071 | | * determined by the remaining up to 8 bits. This requires an additional step |
3072 | | * in the 16-bit case. |
3073 | | * |
3074 | | * We want log2(value/65535), we have log2(v'/255), where: |
3075 | | * |
3076 | | * value = v' * 256 + v'' |
3077 | | * = v' * f |
3078 | | * |
3079 | | * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 |
3080 | | * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less |
3081 | | * than 258. The final factor also needs to correct for the fact that our 8-bit |
3082 | | * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. |
3083 | | * |
3084 | | * This gives a final formula using a calculated value 'x' which is value/v' and |
3085 | | * scaling by 65536 to match the above table: |
3086 | | * |
3087 | | * log2(x/257) * 65536 |
3088 | | * |
3089 | | * Since these numbers are so close to '1' we can use simple linear |
3090 | | * interpolation between the two end values 256/257 (result -368.61) and 258/257 |
3091 | | * (result 367.179). The values used below are scaled by a further 64 to give |
3092 | | * 16-bit precision in the interpolation: |
3093 | | * |
3094 | | * Start (256): -23591 |
3095 | | * Zero (257): 0 |
3096 | | * End (258): 23499 |
3097 | | */ |
3098 | | #ifdef PNG_16BIT_SUPPORTED |
3099 | | static png_int_32 |
3100 | | png_log16bit(png_uint_32 x) |
3101 | | { |
3102 | | unsigned int lg2 = 0; |
3103 | | |
3104 | | /* As above, but now the input has 16 bits. */ |
3105 | | if ((x &= 0xffff) == 0) |
3106 | | return -1; |
3107 | | |
3108 | | if ((x & 0xff00) == 0) |
3109 | | lg2 = 8, x <<= 8; |
3110 | | |
3111 | | if ((x & 0xf000) == 0) |
3112 | | lg2 += 4, x <<= 4; |
3113 | | |
3114 | | if ((x & 0xc000) == 0) |
3115 | | lg2 += 2, x <<= 2; |
3116 | | |
3117 | | if ((x & 0x8000) == 0) |
3118 | | lg2 += 1, x <<= 1; |
3119 | | |
3120 | | /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional |
3121 | | * value. |
3122 | | */ |
3123 | | lg2 <<= 28; |
3124 | | lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4; |
3125 | | |
3126 | | /* Now we need to interpolate the factor, this requires a division by the top |
3127 | | * 8 bits. Do this with maximum precision. |
3128 | | */ |
3129 | | x = ((x << 16) + (x >> 9)) / (x >> 8); |
3130 | | |
3131 | | /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24, |
3132 | | * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly |
3133 | | * 16 bits to interpolate to get the low bits of the result. Round the |
3134 | | * answer. Note that the end point values are scaled by 64 to retain overall |
3135 | | * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust |
3136 | | * the overall scaling by 6-12. Round at every step. |
3137 | | */ |
3138 | | x -= 1U << 24; |
3139 | | |
3140 | | if (x <= 65536U) /* <= '257' */ |
3141 | | lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12); |
3142 | | |
3143 | | else |
3144 | | lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12); |
3145 | | |
3146 | | /* Safe, because the result can't have more than 20 bits: */ |
3147 | | return (png_int_32)((lg2 + 2048) >> 12); |
3148 | | } |
3149 | | #endif /* 16BIT */ |
3150 | | |
3151 | | /* The 'exp()' case must invert the above, taking a 20-bit fixed point |
3152 | | * logarithmic value and returning a 16 or 8-bit number as appropriate. In |
3153 | | * each case only the low 16 bits are relevant - the fraction - since the |
3154 | | * integer bits (the top 4) simply determine a shift. |
3155 | | * |
3156 | | * The worst case is the 16-bit distinction between 65535 and 65534. This |
3157 | | * requires perhaps spurious accuracy in the decoding of the logarithm to |
3158 | | * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance |
3159 | | * of getting this accuracy in practice. |
3160 | | * |
3161 | | * To deal with this the following exp() function works out the exponent of the |
3162 | | * fractional part of the logarithm by using an accurate 32-bit value from the |
3163 | | * top four fractional bits then multiplying in the remaining bits. |
3164 | | */ |
3165 | | static const png_uint_32 |
3166 | | png_32bit_exp[16] = |
3167 | | { |
3168 | | /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ |
3169 | | 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, |
3170 | | 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, |
3171 | | 2553802834U, 2445529972U, 2341847524U, 2242560872U |
3172 | | }; |
3173 | | |
3174 | | /* Adjustment table; provided to explain the numbers in the code below. */ |
3175 | | #if 0 |
3176 | | for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} |
3177 | | 11 44937.64284865548751208448 |
3178 | | 10 45180.98734845585101160448 |
3179 | | 9 45303.31936980687359311872 |
3180 | | 8 45364.65110595323018870784 |
3181 | | 7 45395.35850361789624614912 |
3182 | | 6 45410.72259715102037508096 |
3183 | | 5 45418.40724413220722311168 |
3184 | | 4 45422.25021786898173001728 |
3185 | | 3 45424.17186732298419044352 |
3186 | | 2 45425.13273269940811464704 |
3187 | | 1 45425.61317555035558641664 |
3188 | | 0 45425.85339951654943850496 |
3189 | | #endif |
3190 | | |
3191 | | static png_uint_32 |
3192 | | png_exp(png_fixed_point x) |
3193 | | { |
3194 | | if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ |
3195 | | { |
3196 | | /* Obtain a 4-bit approximation */ |
3197 | | png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f]; |
3198 | | |
3199 | | /* Incorporate the low 12 bits - these decrease the returned value by |
3200 | | * multiplying by a number less than 1 if the bit is set. The multiplier |
3201 | | * is determined by the above table and the shift. Notice that the values |
3202 | | * converge on 45426 and this is used to allow linear interpolation of the |
3203 | | * low bits. |
3204 | | */ |
3205 | | if (x & 0x800) |
3206 | | e -= (((e >> 16) * 44938U) + 16U) >> 5; |
3207 | | |
3208 | | if (x & 0x400) |
3209 | | e -= (((e >> 16) * 45181U) + 32U) >> 6; |
3210 | | |
3211 | | if (x & 0x200) |
3212 | | e -= (((e >> 16) * 45303U) + 64U) >> 7; |
3213 | | |
3214 | | if (x & 0x100) |
3215 | | e -= (((e >> 16) * 45365U) + 128U) >> 8; |
3216 | | |
3217 | | if (x & 0x080) |
3218 | | e -= (((e >> 16) * 45395U) + 256U) >> 9; |
3219 | | |
3220 | | if (x & 0x040) |
3221 | | e -= (((e >> 16) * 45410U) + 512U) >> 10; |
3222 | | |
3223 | | /* And handle the low 6 bits in a single block. */ |
3224 | | e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9; |
3225 | | |
3226 | | /* Handle the upper bits of x. */ |
3227 | | e >>= x >> 16; |
3228 | | return e; |
3229 | | } |
3230 | | |
3231 | | /* Check for overflow */ |
3232 | | if (x <= 0) |
3233 | | return png_32bit_exp[0]; |
3234 | | |
3235 | | /* Else underflow */ |
3236 | | return 0; |
3237 | | } |
3238 | | |
3239 | | static png_byte |
3240 | | png_exp8bit(png_fixed_point lg2) |
3241 | | { |
3242 | | /* Get a 32-bit value: */ |
3243 | | png_uint_32 x = png_exp(lg2); |
3244 | | |
3245 | | /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the |
3246 | | * second, rounding, step can't overflow because of the first, subtraction, |
3247 | | * step. |
3248 | | */ |
3249 | | x -= x >> 8; |
3250 | | return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff); |
3251 | | } |
3252 | | |
3253 | | #ifdef PNG_16BIT_SUPPORTED |
3254 | | static png_uint_16 |
3255 | | png_exp16bit(png_fixed_point lg2) |
3256 | | { |
3257 | | /* Get a 32-bit value: */ |
3258 | | png_uint_32 x = png_exp(lg2); |
3259 | | |
3260 | | /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ |
3261 | | x -= x >> 16; |
3262 | | return (png_uint_16)((x + 32767U) >> 16); |
3263 | | } |
3264 | | #endif /* 16BIT */ |
3265 | | #endif /* FLOATING_ARITHMETIC */ |
3266 | | |
3267 | | png_byte |
3268 | | png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val) |
3269 | 0 | { |
3270 | 0 | if (value > 0 && value < 255) |
3271 | 0 | { |
3272 | 0 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3273 | | /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly |
3274 | | * convert this to a floating point value. This includes values that |
3275 | | * would overflow if 'value' were to be converted to 'int'. |
3276 | | * |
3277 | | * Apparently GCC, however, does an intermediate conversion to (int) |
3278 | | * on some (ARM) but not all (x86) platforms, possibly because of |
3279 | | * hardware FP limitations. (E.g. if the hardware conversion always |
3280 | | * assumes the integer register contains a signed value.) This results |
3281 | | * in ANSI-C undefined behavior for large values. |
3282 | | * |
3283 | | * Other implementations on the same machine might actually be ANSI-C90 |
3284 | | * conformant and therefore compile spurious extra code for the large |
3285 | | * values. |
3286 | | * |
3287 | | * We can be reasonably sure that an unsigned to float conversion |
3288 | | * won't be faster than an int to float one. Therefore this code |
3289 | | * assumes responsibility for the undefined behavior, which it knows |
3290 | | * can't happen because of the check above. |
3291 | | * |
3292 | | * Note the argument to this routine is an (unsigned int) because, on |
3293 | | * 16-bit platforms, it is assigned a value which might be out of |
3294 | | * range for an (int); that would result in undefined behavior in the |
3295 | | * caller if the *argument* ('value') were to be declared (int). |
3296 | | */ |
3297 | 0 | double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5); |
3298 | 0 | return (png_byte)r; |
3299 | | # else |
3300 | | png_int_32 lg2 = png_log8bit(value); |
3301 | | png_fixed_point res; |
3302 | | |
3303 | | if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0) |
3304 | | return png_exp8bit(res); |
3305 | | |
3306 | | /* Overflow. */ |
3307 | | value = 0; |
3308 | | # endif |
3309 | 0 | } |
3310 | | |
3311 | 0 | return (png_byte)(value & 0xff); |
3312 | 0 | } |
3313 | | |
3314 | | #ifdef PNG_16BIT_SUPPORTED |
3315 | | png_uint_16 |
3316 | | png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) |
3317 | 0 | { |
3318 | 0 | if (value > 0 && value < 65535) |
3319 | 0 | { |
3320 | 0 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3321 | | /* The same (unsigned int)->(double) constraints apply here as above, |
3322 | | * however in this case the (unsigned int) to (int) conversion can |
3323 | | * overflow on an ANSI-C90 compliant system so the cast needs to ensure |
3324 | | * that this is not possible. |
3325 | | */ |
3326 | 0 | double r = floor(65535*pow((png_int_32)value/65535., |
3327 | 0 | gamma_val*.00001)+.5); |
3328 | 0 | return (png_uint_16)r; |
3329 | | # else |
3330 | | png_int_32 lg2 = png_log16bit(value); |
3331 | | png_fixed_point res; |
3332 | | |
3333 | | if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0) |
3334 | | return png_exp16bit(res); |
3335 | | |
3336 | | /* Overflow. */ |
3337 | | value = 0; |
3338 | | # endif |
3339 | 0 | } |
3340 | | |
3341 | 0 | return (png_uint_16)value; |
3342 | 0 | } |
3343 | | #endif /* 16BIT */ |
3344 | | |
3345 | | /* This does the right thing based on the bit_depth field of the |
3346 | | * png_struct, interpreting values as 8-bit or 16-bit. While the result |
3347 | | * is nominally a 16-bit value if bit depth is 8 then the result is |
3348 | | * 8-bit (as are the arguments.) |
3349 | | */ |
3350 | | png_uint_16 /* PRIVATE */ |
3351 | | png_gamma_correct(png_structrp png_ptr, unsigned int value, |
3352 | | png_fixed_point gamma_val) |
3353 | 0 | { |
3354 | 0 | if (png_ptr->bit_depth == 8) |
3355 | 0 | return png_gamma_8bit_correct(value, gamma_val); |
3356 | | |
3357 | 0 | #ifdef PNG_16BIT_SUPPORTED |
3358 | 0 | else |
3359 | 0 | return png_gamma_16bit_correct(value, gamma_val); |
3360 | | #else |
3361 | | /* should not reach this */ |
3362 | | return 0; |
3363 | | #endif /* 16BIT */ |
3364 | 0 | } |
3365 | | |
3366 | | #ifdef PNG_16BIT_SUPPORTED |
3367 | | /* Internal function to build a single 16-bit table - the table consists of |
3368 | | * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount |
3369 | | * to shift the input values right (or 16-number_of_signifiant_bits). |
3370 | | * |
3371 | | * The caller is responsible for ensuring that the table gets cleaned up on |
3372 | | * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument |
3373 | | * should be somewhere that will be cleaned. |
3374 | | */ |
3375 | | static void |
3376 | | png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable, |
3377 | | unsigned int shift, png_fixed_point gamma_val) |
3378 | 0 | { |
3379 | | /* Various values derived from 'shift': */ |
3380 | 0 | unsigned int num = 1U << (8U - shift); |
3381 | 0 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3382 | | /* CSE the division and work round wacky GCC warnings (see the comments |
3383 | | * in png_gamma_8bit_correct for where these come from.) |
3384 | | */ |
3385 | 0 | double fmax = 1.0 / (((png_int_32)1 << (16U - shift)) - 1); |
3386 | 0 | #endif |
3387 | 0 | unsigned int max = (1U << (16U - shift)) - 1U; |
3388 | 0 | unsigned int max_by_2 = 1U << (15U - shift); |
3389 | 0 | unsigned int i; |
3390 | |
|
3391 | 0 | png_uint_16pp table = *ptable = |
3392 | 0 | (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); |
3393 | |
|
3394 | 0 | for (i = 0; i < num; i++) |
3395 | 0 | { |
3396 | 0 | png_uint_16p sub_table = table[i] = |
3397 | 0 | (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16))); |
3398 | | |
3399 | | /* The 'threshold' test is repeated here because it can arise for one of |
3400 | | * the 16-bit tables even if the others don't hit it. |
3401 | | */ |
3402 | 0 | if (png_gamma_significant(gamma_val) != 0) |
3403 | 0 | { |
3404 | | /* The old code would overflow at the end and this would cause the |
3405 | | * 'pow' function to return a result >1, resulting in an |
3406 | | * arithmetic error. This code follows the spec exactly; ig is |
3407 | | * the recovered input sample, it always has 8-16 bits. |
3408 | | * |
3409 | | * We want input * 65535/max, rounded, the arithmetic fits in 32 |
3410 | | * bits (unsigned) so long as max <= 32767. |
3411 | | */ |
3412 | 0 | unsigned int j; |
3413 | 0 | for (j = 0; j < 256; j++) |
3414 | 0 | { |
3415 | 0 | png_uint_32 ig = (j << (8-shift)) + i; |
3416 | 0 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3417 | | /* Inline the 'max' scaling operation: */ |
3418 | | /* See png_gamma_8bit_correct for why the cast to (int) is |
3419 | | * required here. |
3420 | | */ |
3421 | 0 | double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5); |
3422 | 0 | sub_table[j] = (png_uint_16)d; |
3423 | | # else |
3424 | | if (shift != 0) |
3425 | | ig = (ig * 65535U + max_by_2)/max; |
3426 | | |
3427 | | sub_table[j] = png_gamma_16bit_correct(ig, gamma_val); |
3428 | | # endif |
3429 | 0 | } |
3430 | 0 | } |
3431 | 0 | else |
3432 | 0 | { |
3433 | | /* We must still build a table, but do it the fast way. */ |
3434 | 0 | unsigned int j; |
3435 | |
|
3436 | 0 | for (j = 0; j < 256; j++) |
3437 | 0 | { |
3438 | 0 | png_uint_32 ig = (j << (8-shift)) + i; |
3439 | |
|
3440 | 0 | if (shift != 0) |
3441 | 0 | ig = (ig * 65535U + max_by_2)/max; |
3442 | |
|
3443 | 0 | sub_table[j] = (png_uint_16)ig; |
3444 | 0 | } |
3445 | 0 | } |
3446 | 0 | } |
3447 | 0 | } |
3448 | | |
3449 | | /* NOTE: this function expects the *inverse* of the overall gamma transformation |
3450 | | * required. |
3451 | | */ |
3452 | | static void |
3453 | | png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable, |
3454 | | unsigned int shift, png_fixed_point gamma_val) |
3455 | 0 | { |
3456 | 0 | unsigned int num = 1U << (8U - shift); |
3457 | 0 | unsigned int max = (1U << (16U - shift))-1U; |
3458 | 0 | unsigned int i; |
3459 | 0 | png_uint_32 last; |
3460 | |
|
3461 | 0 | png_uint_16pp table = *ptable = |
3462 | 0 | (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); |
3463 | | |
3464 | | /* 'num' is the number of tables and also the number of low bits of low |
3465 | | * bits of the input 16-bit value used to select a table. Each table is |
3466 | | * itself indexed by the high 8 bits of the value. |
3467 | | */ |
3468 | 0 | for (i = 0; i < num; i++) |
3469 | 0 | table[i] = (png_uint_16p)png_malloc(png_ptr, |
3470 | 0 | 256 * (sizeof (png_uint_16))); |
3471 | | |
3472 | | /* 'gamma_val' is set to the reciprocal of the value calculated above, so |
3473 | | * pow(out,g) is an *input* value. 'last' is the last input value set. |
3474 | | * |
3475 | | * In the loop 'i' is used to find output values. Since the output is |
3476 | | * 8-bit there are only 256 possible values. The tables are set up to |
3477 | | * select the closest possible output value for each input by finding |
3478 | | * the input value at the boundary between each pair of output values |
3479 | | * and filling the table up to that boundary with the lower output |
3480 | | * value. |
3481 | | * |
3482 | | * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit |
3483 | | * values the code below uses a 16-bit value in i; the values start at |
3484 | | * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last |
3485 | | * entries are filled with 255). Start i at 128 and fill all 'last' |
3486 | | * table entries <= 'max' |
3487 | | */ |
3488 | 0 | last = 0; |
3489 | 0 | for (i = 0; i < 255; ++i) /* 8-bit output value */ |
3490 | 0 | { |
3491 | | /* Find the corresponding maximum input value */ |
3492 | 0 | png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ |
3493 | | |
3494 | | /* Find the boundary value in 16 bits: */ |
3495 | 0 | png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); |
3496 | | |
3497 | | /* Adjust (round) to (16-shift) bits: */ |
3498 | 0 | bound = (bound * max + 32768U)/65535U + 1U; |
3499 | |
|
3500 | 0 | while (last < bound) |
3501 | 0 | { |
3502 | 0 | table[last & (0xffU >> shift)][last >> (8U - shift)] = out; |
3503 | 0 | last++; |
3504 | 0 | } |
3505 | 0 | } |
3506 | | |
3507 | | /* And fill in the final entries. */ |
3508 | 0 | while (last < (num << 8)) |
3509 | 0 | { |
3510 | 0 | table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U; |
3511 | 0 | last++; |
3512 | 0 | } |
3513 | 0 | } |
3514 | | #endif /* 16BIT */ |
3515 | | |
3516 | | /* Build a single 8-bit table: same as the 16-bit case but much simpler (and |
3517 | | * typically much faster). Note that libpng currently does no sBIT processing |
3518 | | * (apparently contrary to the spec) so a 256-entry table is always generated. |
3519 | | */ |
3520 | | static void |
3521 | | png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable, |
3522 | | png_fixed_point gamma_val) |
3523 | 0 | { |
3524 | 0 | unsigned int i; |
3525 | 0 | png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256); |
3526 | |
|
3527 | 0 | if (png_gamma_significant(gamma_val) != 0) |
3528 | 0 | for (i=0; i<256; i++) |
3529 | 0 | table[i] = png_gamma_8bit_correct(i, gamma_val); |
3530 | | |
3531 | 0 | else |
3532 | 0 | for (i=0; i<256; ++i) |
3533 | 0 | table[i] = (png_byte)(i & 0xff); |
3534 | 0 | } |
3535 | | |
3536 | | /* Used from png_read_destroy and below to release the memory used by the gamma |
3537 | | * tables. |
3538 | | */ |
3539 | | void /* PRIVATE */ |
3540 | | png_destroy_gamma_table(png_structrp png_ptr) |
3541 | 97.2k | { |
3542 | 97.2k | png_free(png_ptr, png_ptr->gamma_table); |
3543 | 97.2k | png_ptr->gamma_table = NULL; |
3544 | | |
3545 | 97.2k | #ifdef PNG_16BIT_SUPPORTED |
3546 | 97.2k | if (png_ptr->gamma_16_table != NULL) |
3547 | 0 | { |
3548 | 0 | int i; |
3549 | 0 | int istop = (1 << (8 - png_ptr->gamma_shift)); |
3550 | 0 | for (i = 0; i < istop; i++) |
3551 | 0 | { |
3552 | 0 | png_free(png_ptr, png_ptr->gamma_16_table[i]); |
3553 | 0 | } |
3554 | 0 | png_free(png_ptr, png_ptr->gamma_16_table); |
3555 | 0 | png_ptr->gamma_16_table = NULL; |
3556 | 0 | } |
3557 | 97.2k | #endif /* 16BIT */ |
3558 | | |
3559 | 97.2k | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
3560 | 97.2k | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
3561 | 97.2k | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
3562 | 97.2k | png_free(png_ptr, png_ptr->gamma_from_1); |
3563 | 97.2k | png_ptr->gamma_from_1 = NULL; |
3564 | 97.2k | png_free(png_ptr, png_ptr->gamma_to_1); |
3565 | 97.2k | png_ptr->gamma_to_1 = NULL; |
3566 | | |
3567 | 97.2k | #ifdef PNG_16BIT_SUPPORTED |
3568 | 97.2k | if (png_ptr->gamma_16_from_1 != NULL) |
3569 | 0 | { |
3570 | 0 | int i; |
3571 | 0 | int istop = (1 << (8 - png_ptr->gamma_shift)); |
3572 | 0 | for (i = 0; i < istop; i++) |
3573 | 0 | { |
3574 | 0 | png_free(png_ptr, png_ptr->gamma_16_from_1[i]); |
3575 | 0 | } |
3576 | 0 | png_free(png_ptr, png_ptr->gamma_16_from_1); |
3577 | 0 | png_ptr->gamma_16_from_1 = NULL; |
3578 | 0 | } |
3579 | 97.2k | if (png_ptr->gamma_16_to_1 != NULL) |
3580 | 0 | { |
3581 | 0 | int i; |
3582 | 0 | int istop = (1 << (8 - png_ptr->gamma_shift)); |
3583 | 0 | for (i = 0; i < istop; i++) |
3584 | 0 | { |
3585 | 0 | png_free(png_ptr, png_ptr->gamma_16_to_1[i]); |
3586 | 0 | } |
3587 | 0 | png_free(png_ptr, png_ptr->gamma_16_to_1); |
3588 | 0 | png_ptr->gamma_16_to_1 = NULL; |
3589 | 0 | } |
3590 | 97.2k | #endif /* 16BIT */ |
3591 | 97.2k | #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ |
3592 | 97.2k | } |
3593 | | |
3594 | | /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit |
3595 | | * tables, we don't make a full table if we are reducing to 8-bit in |
3596 | | * the future. Note also how the gamma_16 tables are segmented so that |
3597 | | * we don't need to allocate > 64K chunks for a full 16-bit table. |
3598 | | * |
3599 | | * TODO: move this to pngrtran.c and make it static. Better yet create |
3600 | | * pngcolor.c and put all the PNG_COLORSPACE stuff in there. |
3601 | | */ |
3602 | | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
3603 | | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
3604 | | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
3605 | | # define GAMMA_TRANSFORMS 1 /* #ifdef CSE */ |
3606 | | #else |
3607 | | # define GAMMA_TRANSFORMS 0 |
3608 | | #endif |
3609 | | |
3610 | | void /* PRIVATE */ |
3611 | | png_build_gamma_table(png_structrp png_ptr, int bit_depth) |
3612 | 0 | { |
3613 | 0 | png_fixed_point file_gamma, screen_gamma; |
3614 | 0 | png_fixed_point correction; |
3615 | 0 | # if GAMMA_TRANSFORMS |
3616 | 0 | png_fixed_point file_to_linear, linear_to_screen; |
3617 | 0 | # endif |
3618 | |
|
3619 | 0 | png_debug(1, "in png_build_gamma_table"); |
3620 | | |
3621 | | /* Remove any existing table; this copes with multiple calls to |
3622 | | * png_read_update_info. The warning is because building the gamma tables |
3623 | | * multiple times is a performance hit - it's harmless but the ability to |
3624 | | * call png_read_update_info() multiple times is new in 1.5.6 so it seems |
3625 | | * sensible to warn if the app introduces such a hit. |
3626 | | */ |
3627 | 0 | if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) |
3628 | 0 | { |
3629 | 0 | png_warning(png_ptr, "gamma table being rebuilt"); |
3630 | 0 | png_destroy_gamma_table(png_ptr); |
3631 | 0 | } |
3632 | | |
3633 | | /* The following fields are set, finally, in png_init_read_transformations. |
3634 | | * If file_gamma is 0 (unset) nothing can be done otherwise if screen_gamma |
3635 | | * is 0 (unset) there is no gamma correction but to/from linear is possible. |
3636 | | */ |
3637 | 0 | file_gamma = png_ptr->file_gamma; |
3638 | 0 | screen_gamma = png_ptr->screen_gamma; |
3639 | 0 | # if GAMMA_TRANSFORMS |
3640 | 0 | file_to_linear = png_reciprocal(file_gamma); |
3641 | 0 | # endif |
3642 | |
|
3643 | 0 | if (screen_gamma > 0) |
3644 | 0 | { |
3645 | 0 | # if GAMMA_TRANSFORMS |
3646 | 0 | linear_to_screen = png_reciprocal(screen_gamma); |
3647 | 0 | # endif |
3648 | 0 | correction = png_reciprocal2(screen_gamma, file_gamma); |
3649 | 0 | } |
3650 | 0 | else /* screen gamma unknown */ |
3651 | 0 | { |
3652 | 0 | # if GAMMA_TRANSFORMS |
3653 | 0 | linear_to_screen = file_gamma; |
3654 | 0 | # endif |
3655 | 0 | correction = PNG_FP_1; |
3656 | 0 | } |
3657 | |
|
3658 | 0 | if (bit_depth <= 8) |
3659 | 0 | { |
3660 | 0 | png_build_8bit_table(png_ptr, &png_ptr->gamma_table, correction); |
3661 | |
|
3662 | 0 | #if GAMMA_TRANSFORMS |
3663 | 0 | if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0) |
3664 | 0 | { |
3665 | 0 | png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, file_to_linear); |
3666 | |
|
3667 | 0 | png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1, |
3668 | 0 | linear_to_screen); |
3669 | 0 | } |
3670 | 0 | #endif /* GAMMA_TRANSFORMS */ |
3671 | 0 | } |
3672 | 0 | #ifdef PNG_16BIT_SUPPORTED |
3673 | 0 | else |
3674 | 0 | { |
3675 | 0 | png_byte shift, sig_bit; |
3676 | |
|
3677 | 0 | if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0) |
3678 | 0 | { |
3679 | 0 | sig_bit = png_ptr->sig_bit.red; |
3680 | |
|
3681 | 0 | if (png_ptr->sig_bit.green > sig_bit) |
3682 | 0 | sig_bit = png_ptr->sig_bit.green; |
3683 | |
|
3684 | 0 | if (png_ptr->sig_bit.blue > sig_bit) |
3685 | 0 | sig_bit = png_ptr->sig_bit.blue; |
3686 | 0 | } |
3687 | 0 | else |
3688 | 0 | sig_bit = png_ptr->sig_bit.gray; |
3689 | | |
3690 | | /* 16-bit gamma code uses this equation: |
3691 | | * |
3692 | | * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] |
3693 | | * |
3694 | | * Where 'iv' is the input color value and 'ov' is the output value - |
3695 | | * pow(iv, gamma). |
3696 | | * |
3697 | | * Thus the gamma table consists of up to 256 256-entry tables. The table |
3698 | | * is selected by the (8-gamma_shift) most significant of the low 8 bits |
3699 | | * of the color value then indexed by the upper 8 bits: |
3700 | | * |
3701 | | * table[low bits][high 8 bits] |
3702 | | * |
3703 | | * So the table 'n' corresponds to all those 'iv' of: |
3704 | | * |
3705 | | * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1> |
3706 | | * |
3707 | | */ |
3708 | 0 | if (sig_bit > 0 && sig_bit < 16U) |
3709 | | /* shift == insignificant bits */ |
3710 | 0 | shift = (png_byte)((16U - sig_bit) & 0xff); |
3711 | | |
3712 | 0 | else |
3713 | 0 | shift = 0; /* keep all 16 bits */ |
3714 | |
|
3715 | 0 | if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0) |
3716 | 0 | { |
3717 | | /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively |
3718 | | * the significant bits in the *input* when the output will |
3719 | | * eventually be 8 bits. By default it is 11. |
3720 | | */ |
3721 | 0 | if (shift < (16U - PNG_MAX_GAMMA_8)) |
3722 | 0 | shift = (16U - PNG_MAX_GAMMA_8); |
3723 | 0 | } |
3724 | |
|
3725 | 0 | if (shift > 8U) |
3726 | 0 | shift = 8U; /* Guarantees at least one table! */ |
3727 | |
|
3728 | 0 | png_ptr->gamma_shift = shift; |
3729 | | |
3730 | | /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now |
3731 | | * PNG_COMPOSE). This effectively smashed the background calculation for |
3732 | | * 16-bit output because the 8-bit table assumes the result will be |
3733 | | * reduced to 8 bits. |
3734 | | */ |
3735 | 0 | if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0) |
3736 | 0 | png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, |
3737 | 0 | png_reciprocal(correction)); |
3738 | 0 | else |
3739 | 0 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift, |
3740 | 0 | correction); |
3741 | |
|
3742 | 0 | # if GAMMA_TRANSFORMS |
3743 | 0 | if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0) |
3744 | 0 | { |
3745 | 0 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, |
3746 | 0 | file_to_linear); |
3747 | | |
3748 | | /* Notice that the '16 from 1' table should be full precision, however |
3749 | | * the lookup on this table still uses gamma_shift, so it can't be. |
3750 | | * TODO: fix this. |
3751 | | */ |
3752 | 0 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift, |
3753 | 0 | linear_to_screen); |
3754 | 0 | } |
3755 | 0 | #endif /* GAMMA_TRANSFORMS */ |
3756 | 0 | } |
3757 | 0 | #endif /* 16BIT */ |
3758 | 0 | } |
3759 | | #endif /* READ_GAMMA */ |
3760 | | |
3761 | | /* HARDWARE OR SOFTWARE OPTION SUPPORT */ |
3762 | | #ifdef PNG_SET_OPTION_SUPPORTED |
3763 | | int PNGAPI |
3764 | | png_set_option(png_structrp png_ptr, int option, int onoff) |
3765 | 97.2k | { |
3766 | 97.2k | if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT && |
3767 | 97.2k | (option & 1) == 0) |
3768 | 97.2k | { |
3769 | 97.2k | png_uint_32 mask = 3U << option; |
3770 | 97.2k | png_uint_32 setting = (2U + (onoff != 0)) << option; |
3771 | 97.2k | png_uint_32 current = png_ptr->options; |
3772 | | |
3773 | 97.2k | png_ptr->options = (png_uint_32)((current & ~mask) | setting); |
3774 | | |
3775 | 97.2k | return (int)(current & mask) >> option; |
3776 | 97.2k | } |
3777 | | |
3778 | 0 | return PNG_OPTION_INVALID; |
3779 | 97.2k | } |
3780 | | #endif |
3781 | | |
3782 | | /* sRGB support */ |
3783 | | #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ |
3784 | | defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) |
3785 | | /* sRGB conversion tables; these are machine generated with the code in |
3786 | | * contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the |
3787 | | * specification (see the article at https://en.wikipedia.org/wiki/SRGB) |
3788 | | * is used, not the gamma=1/2.2 approximation use elsewhere in libpng. |
3789 | | * The sRGB to linear table is exact (to the nearest 16-bit linear fraction). |
3790 | | * The inverse (linear to sRGB) table has accuracies as follows: |
3791 | | * |
3792 | | * For all possible (255*65535+1) input values: |
3793 | | * |
3794 | | * error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact |
3795 | | * |
3796 | | * For the input values corresponding to the 65536 16-bit values: |
3797 | | * |
3798 | | * error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact |
3799 | | * |
3800 | | * In all cases the inexact readings are only off by one. |
3801 | | */ |
3802 | | |
3803 | | #ifdef PNG_SIMPLIFIED_READ_SUPPORTED |
3804 | | /* The convert-to-sRGB table is only currently required for read. */ |
3805 | | const png_uint_16 png_sRGB_table[256] = |
3806 | | { |
3807 | | 0,20,40,60,80,99,119,139, |
3808 | | 159,179,199,219,241,264,288,313, |
3809 | | 340,367,396,427,458,491,526,562, |
3810 | | 599,637,677,718,761,805,851,898, |
3811 | | 947,997,1048,1101,1156,1212,1270,1330, |
3812 | | 1391,1453,1517,1583,1651,1720,1790,1863, |
3813 | | 1937,2013,2090,2170,2250,2333,2418,2504, |
3814 | | 2592,2681,2773,2866,2961,3058,3157,3258, |
3815 | | 3360,3464,3570,3678,3788,3900,4014,4129, |
3816 | | 4247,4366,4488,4611,4736,4864,4993,5124, |
3817 | | 5257,5392,5530,5669,5810,5953,6099,6246, |
3818 | | 6395,6547,6700,6856,7014,7174,7335,7500, |
3819 | | 7666,7834,8004,8177,8352,8528,8708,8889, |
3820 | | 9072,9258,9445,9635,9828,10022,10219,10417, |
3821 | | 10619,10822,11028,11235,11446,11658,11873,12090, |
3822 | | 12309,12530,12754,12980,13209,13440,13673,13909, |
3823 | | 14146,14387,14629,14874,15122,15371,15623,15878, |
3824 | | 16135,16394,16656,16920,17187,17456,17727,18001, |
3825 | | 18277,18556,18837,19121,19407,19696,19987,20281, |
3826 | | 20577,20876,21177,21481,21787,22096,22407,22721, |
3827 | | 23038,23357,23678,24002,24329,24658,24990,25325, |
3828 | | 25662,26001,26344,26688,27036,27386,27739,28094, |
3829 | | 28452,28813,29176,29542,29911,30282,30656,31033, |
3830 | | 31412,31794,32179,32567,32957,33350,33745,34143, |
3831 | | 34544,34948,35355,35764,36176,36591,37008,37429, |
3832 | | 37852,38278,38706,39138,39572,40009,40449,40891, |
3833 | | 41337,41785,42236,42690,43147,43606,44069,44534, |
3834 | | 45002,45473,45947,46423,46903,47385,47871,48359, |
3835 | | 48850,49344,49841,50341,50844,51349,51858,52369, |
3836 | | 52884,53401,53921,54445,54971,55500,56032,56567, |
3837 | | 57105,57646,58190,58737,59287,59840,60396,60955, |
3838 | | 61517,62082,62650,63221,63795,64372,64952,65535 |
3839 | | }; |
3840 | | #endif /* SIMPLIFIED_READ */ |
3841 | | |
3842 | | /* The base/delta tables are required for both read and write (but currently |
3843 | | * only the simplified versions.) |
3844 | | */ |
3845 | | const png_uint_16 png_sRGB_base[512] = |
3846 | | { |
3847 | | 128,1782,3383,4644,5675,6564,7357,8074, |
3848 | | 8732,9346,9921,10463,10977,11466,11935,12384, |
3849 | | 12816,13233,13634,14024,14402,14769,15125,15473, |
3850 | | 15812,16142,16466,16781,17090,17393,17690,17981, |
3851 | | 18266,18546,18822,19093,19359,19621,19879,20133, |
3852 | | 20383,20630,20873,21113,21349,21583,21813,22041, |
3853 | | 22265,22487,22707,22923,23138,23350,23559,23767, |
3854 | | 23972,24175,24376,24575,24772,24967,25160,25352, |
3855 | | 25542,25730,25916,26101,26284,26465,26645,26823, |
3856 | | 27000,27176,27350,27523,27695,27865,28034,28201, |
3857 | | 28368,28533,28697,28860,29021,29182,29341,29500, |
3858 | | 29657,29813,29969,30123,30276,30429,30580,30730, |
3859 | | 30880,31028,31176,31323,31469,31614,31758,31902, |
3860 | | 32045,32186,32327,32468,32607,32746,32884,33021, |
3861 | | 33158,33294,33429,33564,33697,33831,33963,34095, |
3862 | | 34226,34357,34486,34616,34744,34873,35000,35127, |
3863 | | 35253,35379,35504,35629,35753,35876,35999,36122, |
3864 | | 36244,36365,36486,36606,36726,36845,36964,37083, |
3865 | | 37201,37318,37435,37551,37668,37783,37898,38013, |
3866 | | 38127,38241,38354,38467,38580,38692,38803,38915, |
3867 | | 39026,39136,39246,39356,39465,39574,39682,39790, |
3868 | | 39898,40005,40112,40219,40325,40431,40537,40642, |
3869 | | 40747,40851,40955,41059,41163,41266,41369,41471, |
3870 | | 41573,41675,41777,41878,41979,42079,42179,42279, |
3871 | | 42379,42478,42577,42676,42775,42873,42971,43068, |
3872 | | 43165,43262,43359,43456,43552,43648,43743,43839, |
3873 | | 43934,44028,44123,44217,44311,44405,44499,44592, |
3874 | | 44685,44778,44870,44962,45054,45146,45238,45329, |
3875 | | 45420,45511,45601,45692,45782,45872,45961,46051, |
3876 | | 46140,46229,46318,46406,46494,46583,46670,46758, |
3877 | | 46846,46933,47020,47107,47193,47280,47366,47452, |
3878 | | 47538,47623,47709,47794,47879,47964,48048,48133, |
3879 | | 48217,48301,48385,48468,48552,48635,48718,48801, |
3880 | | 48884,48966,49048,49131,49213,49294,49376,49458, |
3881 | | 49539,49620,49701,49782,49862,49943,50023,50103, |
3882 | | 50183,50263,50342,50422,50501,50580,50659,50738, |
3883 | | 50816,50895,50973,51051,51129,51207,51285,51362, |
3884 | | 51439,51517,51594,51671,51747,51824,51900,51977, |
3885 | | 52053,52129,52205,52280,52356,52432,52507,52582, |
3886 | | 52657,52732,52807,52881,52956,53030,53104,53178, |
3887 | | 53252,53326,53400,53473,53546,53620,53693,53766, |
3888 | | 53839,53911,53984,54056,54129,54201,54273,54345, |
3889 | | 54417,54489,54560,54632,54703,54774,54845,54916, |
3890 | | 54987,55058,55129,55199,55269,55340,55410,55480, |
3891 | | 55550,55620,55689,55759,55828,55898,55967,56036, |
3892 | | 56105,56174,56243,56311,56380,56448,56517,56585, |
3893 | | 56653,56721,56789,56857,56924,56992,57059,57127, |
3894 | | 57194,57261,57328,57395,57462,57529,57595,57662, |
3895 | | 57728,57795,57861,57927,57993,58059,58125,58191, |
3896 | | 58256,58322,58387,58453,58518,58583,58648,58713, |
3897 | | 58778,58843,58908,58972,59037,59101,59165,59230, |
3898 | | 59294,59358,59422,59486,59549,59613,59677,59740, |
3899 | | 59804,59867,59930,59993,60056,60119,60182,60245, |
3900 | | 60308,60370,60433,60495,60558,60620,60682,60744, |
3901 | | 60806,60868,60930,60992,61054,61115,61177,61238, |
3902 | | 61300,61361,61422,61483,61544,61605,61666,61727, |
3903 | | 61788,61848,61909,61969,62030,62090,62150,62211, |
3904 | | 62271,62331,62391,62450,62510,62570,62630,62689, |
3905 | | 62749,62808,62867,62927,62986,63045,63104,63163, |
3906 | | 63222,63281,63340,63398,63457,63515,63574,63632, |
3907 | | 63691,63749,63807,63865,63923,63981,64039,64097, |
3908 | | 64155,64212,64270,64328,64385,64443,64500,64557, |
3909 | | 64614,64672,64729,64786,64843,64900,64956,65013, |
3910 | | 65070,65126,65183,65239,65296,65352,65409,65465 |
3911 | | }; |
3912 | | |
3913 | | const png_byte png_sRGB_delta[512] = |
3914 | | { |
3915 | | 207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54, |
3916 | | 52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36, |
3917 | | 35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28, |
3918 | | 28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24, |
3919 | | 23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21, |
3920 | | 21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19, |
3921 | | 19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17, |
3922 | | 17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16, |
3923 | | 16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15, |
3924 | | 15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14, |
3925 | | 14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13, |
3926 | | 13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12, |
3927 | | 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, |
3928 | | 12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11, |
3929 | | 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, |
3930 | | 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, |
3931 | | 11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, |
3932 | | 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, |
3933 | | 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, |
3934 | | 10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
3935 | | 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
3936 | | 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
3937 | | 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
3938 | | 9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
3939 | | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
3940 | | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
3941 | | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
3942 | | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
3943 | | 8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7, |
3944 | | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
3945 | | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
3946 | | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 |
3947 | | }; |
3948 | | #endif /* SIMPLIFIED READ/WRITE sRGB support */ |
3949 | | |
3950 | | /* SIMPLIFIED READ/WRITE SUPPORT */ |
3951 | | #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ |
3952 | | defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) |
3953 | | static int |
3954 | | png_image_free_function(png_voidp argument) |
3955 | 0 | { |
3956 | 0 | png_imagep image = png_voidcast(png_imagep, argument); |
3957 | 0 | png_controlp cp = image->opaque; |
3958 | 0 | png_control c; |
3959 | | |
3960 | | /* Double check that we have a png_ptr - it should be impossible to get here |
3961 | | * without one. |
3962 | | */ |
3963 | 0 | if (cp->png_ptr == NULL) |
3964 | 0 | return 0; |
3965 | | |
3966 | | /* First free any data held in the control structure. */ |
3967 | 0 | # ifdef PNG_STDIO_SUPPORTED |
3968 | 0 | if (cp->owned_file != 0) |
3969 | 0 | { |
3970 | 0 | FILE *fp = png_voidcast(FILE *, cp->png_ptr->io_ptr); |
3971 | 0 | cp->owned_file = 0; |
3972 | | |
3973 | | /* Ignore errors here. */ |
3974 | 0 | if (fp != NULL) |
3975 | 0 | { |
3976 | 0 | cp->png_ptr->io_ptr = NULL; |
3977 | 0 | (void)fclose(fp); |
3978 | 0 | } |
3979 | 0 | } |
3980 | 0 | # endif |
3981 | | |
3982 | | /* Copy the control structure so that the original, allocated, version can be |
3983 | | * safely freed. Notice that a png_error here stops the remainder of the |
3984 | | * cleanup, but this is probably fine because that would indicate bad memory |
3985 | | * problems anyway. |
3986 | | */ |
3987 | 0 | c = *cp; |
3988 | 0 | image->opaque = &c; |
3989 | 0 | png_free(c.png_ptr, cp); |
3990 | | |
3991 | | /* Then the structures, calling the correct API. */ |
3992 | 0 | if (c.for_write != 0) |
3993 | 0 | { |
3994 | 0 | # ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED |
3995 | 0 | png_destroy_write_struct(&c.png_ptr, &c.info_ptr); |
3996 | | # else |
3997 | | png_error(c.png_ptr, "simplified write not supported"); |
3998 | | # endif |
3999 | 0 | } |
4000 | 0 | else |
4001 | 0 | { |
4002 | 0 | # ifdef PNG_SIMPLIFIED_READ_SUPPORTED |
4003 | 0 | png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL); |
4004 | | # else |
4005 | | png_error(c.png_ptr, "simplified read not supported"); |
4006 | | # endif |
4007 | 0 | } |
4008 | | |
4009 | | /* Success. */ |
4010 | 0 | return 1; |
4011 | 0 | } |
4012 | | |
4013 | | void PNGAPI |
4014 | | png_image_free(png_imagep image) |
4015 | 0 | { |
4016 | | /* Safely call the real function, but only if doing so is safe at this point |
4017 | | * (if not inside an error handling context). Otherwise assume |
4018 | | * png_safe_execute will call this API after the return. |
4019 | | */ |
4020 | 0 | if (image != NULL && image->opaque != NULL && |
4021 | 0 | image->opaque->error_buf == NULL) |
4022 | 0 | { |
4023 | 0 | png_image_free_function(image); |
4024 | 0 | image->opaque = NULL; |
4025 | 0 | } |
4026 | 0 | } |
4027 | | |
4028 | | int /* PRIVATE */ |
4029 | | png_image_error(png_imagep image, png_const_charp error_message) |
4030 | 0 | { |
4031 | | /* Utility to log an error. */ |
4032 | 0 | png_safecat(image->message, (sizeof image->message), 0, error_message); |
4033 | 0 | image->warning_or_error |= PNG_IMAGE_ERROR; |
4034 | 0 | png_image_free(image); |
4035 | 0 | return 0; |
4036 | 0 | } |
4037 | | |
4038 | | #endif /* SIMPLIFIED READ/WRITE */ |
4039 | | #endif /* READ || WRITE */ |