Coverage Report

Created: 2025-06-16 07:00

/src/libwebp/sharpyuv/sharpyuv.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2022 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Sharp RGB to YUV conversion.
11
//
12
// Author: Skal (pascal.massimino@gmail.com)
13
14
#include "sharpyuv/sharpyuv.h"
15
16
#include <assert.h>
17
#include <limits.h>
18
#include <stddef.h>
19
#include <stdlib.h>
20
#include <string.h>
21
22
#include "sharpyuv/sharpyuv_cpu.h"
23
#include "sharpyuv/sharpyuv_dsp.h"
24
#include "sharpyuv/sharpyuv_gamma.h"
25
#include "src/webp/types.h"
26
27
//------------------------------------------------------------------------------
28
29
0
int SharpYuvGetVersion(void) {
30
0
  return SHARPYUV_VERSION;
31
0
}
32
33
//------------------------------------------------------------------------------
34
// Sharp RGB->YUV conversion
35
36
static const int kNumIterations = 4;
37
38
0
#define YUV_FIX 16  // fixed-point precision for RGB->YUV
39
static const int kYuvHalf = 1 << (YUV_FIX - 1);
40
41
// Max bit depth so that intermediate calculations fit in 16 bits.
42
static const int kMaxBitDepth = 14;
43
44
// Returns the precision shift to use based on the input rgb_bit_depth.
45
0
static int GetPrecisionShift(int rgb_bit_depth) {
46
  // Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove
47
  // bits if needed.
48
0
  return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2
49
0
                                               : (kMaxBitDepth - rgb_bit_depth);
50
0
}
51
52
typedef int16_t fixed_t;      // signed type with extra precision for UV
53
typedef uint16_t fixed_y_t;   // unsigned type with extra precision for W
54
55
//------------------------------------------------------------------------------
56
57
0
static uint8_t clip_8b(fixed_t v) {
58
0
  return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u;
59
0
}
60
61
0
static uint16_t clip(fixed_t v, int max) {
62
0
  return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v;
63
0
}
64
65
0
static fixed_y_t clip_bit_depth(int y, int bit_depth) {
66
0
  const int max = (1 << bit_depth) - 1;
67
0
  return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max;
68
0
}
69
70
//------------------------------------------------------------------------------
71
72
0
static int RGBToGray(int64_t r, int64_t g, int64_t b) {
73
0
  const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf;
74
0
  return (int)(luma >> YUV_FIX);
75
0
}
76
77
static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
78
                          int rgb_bit_depth,
79
0
                          SharpYuvTransferFunctionType transfer_type) {
80
0
  const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
81
0
  const uint32_t A = SharpYuvGammaToLinear(a, bit_depth, transfer_type);
82
0
  const uint32_t B = SharpYuvGammaToLinear(b, bit_depth, transfer_type);
83
0
  const uint32_t C = SharpYuvGammaToLinear(c, bit_depth, transfer_type);
84
0
  const uint32_t D = SharpYuvGammaToLinear(d, bit_depth, transfer_type);
85
0
  return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth,
86
0
                               transfer_type);
87
0
}
88
89
static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w,
90
                                int rgb_bit_depth,
91
0
                                SharpYuvTransferFunctionType transfer_type) {
92
0
  const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
93
0
  int i = 0;
94
0
  do {
95
0
    const uint32_t R =
96
0
        SharpYuvGammaToLinear(src[0 * w + i], bit_depth, transfer_type);
97
0
    const uint32_t G =
98
0
        SharpYuvGammaToLinear(src[1 * w + i], bit_depth, transfer_type);
99
0
    const uint32_t B =
100
0
        SharpYuvGammaToLinear(src[2 * w + i], bit_depth, transfer_type);
101
0
    const uint32_t Y = RGBToGray(R, G, B);
102
0
    dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth, transfer_type);
103
0
  } while (++i < w);
104
0
}
105
106
static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2,
107
                         fixed_t* dst, int uv_w, int rgb_bit_depth,
108
0
                         SharpYuvTransferFunctionType transfer_type) {
109
0
  int i = 0;
110
0
  do {
111
0
    const int r =
112
0
        ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0],
113
0
                  src2[0 * uv_w + 1], rgb_bit_depth, transfer_type);
114
0
    const int g =
115
0
        ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0],
116
0
                  src2[2 * uv_w + 1], rgb_bit_depth, transfer_type);
117
0
    const int b =
118
0
        ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0],
119
0
                  src2[4 * uv_w + 1], rgb_bit_depth, transfer_type);
120
0
    const int W = RGBToGray(r, g, b);
121
0
    dst[0 * uv_w] = (fixed_t)(r - W);
122
0
    dst[1 * uv_w] = (fixed_t)(g - W);
123
0
    dst[2 * uv_w] = (fixed_t)(b - W);
124
0
    dst  += 1;
125
0
    src1 += 2;
126
0
    src2 += 2;
127
0
  } while (++i < uv_w);
128
0
}
129
130
0
static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) {
131
0
  int i = 0;
132
0
  assert(w > 0);
133
0
  do {
134
0
    y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]);
135
0
  } while (++i < w);
136
0
}
137
138
//------------------------------------------------------------------------------
139
140
0
static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) {
141
0
  const int v0 = (A * 3 + B + 2) >> 2;
142
0
  return clip_bit_depth(v0 + W0, bit_depth);
143
0
}
144
145
//------------------------------------------------------------------------------
146
147
0
static WEBP_INLINE int Shift(int v, int shift) {
148
0
  return (shift >= 0) ? (v << shift) : (v >> -shift);
149
0
}
150
151
static void ImportOneRow(const uint8_t* const r_ptr,
152
                         const uint8_t* const g_ptr,
153
                         const uint8_t* const b_ptr,
154
                         int rgb_step,
155
                         int rgb_bit_depth,
156
                         int pic_width,
157
0
                         fixed_y_t* const dst) {
158
  // Convert the rgb_step from a number of bytes to a number of uint8_t or
159
  // uint16_t values depending the bit depth.
160
0
  const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step;
161
0
  int i = 0;
162
0
  const int w = (pic_width + 1) & ~1;
163
0
  do {
164
0
    const int off = i * step;
165
0
    const int shift = GetPrecisionShift(rgb_bit_depth);
166
0
    if (rgb_bit_depth == 8) {
167
0
      dst[i + 0 * w] = Shift(r_ptr[off], shift);
168
0
      dst[i + 1 * w] = Shift(g_ptr[off], shift);
169
0
      dst[i + 2 * w] = Shift(b_ptr[off], shift);
170
0
    } else {
171
0
      dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift);
172
0
      dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift);
173
0
      dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift);
174
0
    }
175
0
  } while (++i < pic_width);
176
0
  if (pic_width & 1) {  // replicate rightmost pixel
177
0
    dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1];
178
0
    dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1];
179
0
    dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1];
180
0
  }
181
0
}
182
183
static void InterpolateTwoRows(const fixed_y_t* const best_y,
184
                               const fixed_t* prev_uv,
185
                               const fixed_t* cur_uv,
186
                               const fixed_t* next_uv,
187
                               int w,
188
                               fixed_y_t* out1,
189
                               fixed_y_t* out2,
190
0
                               int rgb_bit_depth) {
191
0
  const int uv_w = w >> 1;
192
0
  const int len = (w - 1) >> 1;   // length to filter
193
0
  int k = 3;
194
0
  const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
195
0
  while (k-- > 0) {   // process each R/G/B segments in turn
196
    // special boundary case for i==0
197
0
    out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth);
198
0
    out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth);
199
200
0
    SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1,
201
0
                      bit_depth);
202
0
    SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1,
203
0
                      bit_depth);
204
205
    // special boundary case for i == w - 1 when w is even
206
0
    if (!(w & 1)) {
207
0
      out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1],
208
0
                            best_y[w - 1 + 0], bit_depth);
209
0
      out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1],
210
0
                            best_y[w - 1 + w], bit_depth);
211
0
    }
212
0
    out1 += w;
213
0
    out2 += w;
214
0
    prev_uv += uv_w;
215
0
    cur_uv  += uv_w;
216
0
    next_uv += uv_w;
217
0
  }
218
0
}
219
220
static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b,
221
0
                                         const int coeffs[4], int sfix) {
222
0
  const int srounder = 1 << (YUV_FIX + sfix - 1);
223
0
  const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b +
224
0
                   coeffs[3] + srounder;
225
0
  return (luma >> (YUV_FIX + sfix));
226
0
}
227
228
static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv,
229
                            uint8_t* y_ptr, int y_stride, uint8_t* u_ptr,
230
                            int u_stride, uint8_t* v_ptr, int v_stride,
231
                            int rgb_bit_depth,
232
                            int yuv_bit_depth, int width, int height,
233
0
                            const SharpYuvConversionMatrix* yuv_matrix) {
234
0
  int i, j;
235
0
  const fixed_t* const best_uv_base = best_uv;
236
0
  const int w = (width + 1) & ~1;
237
0
  const int h = (height + 1) & ~1;
238
0
  const int uv_w = w >> 1;
239
0
  const int uv_h = h >> 1;
240
0
  const int sfix = GetPrecisionShift(rgb_bit_depth);
241
0
  const int yuv_max = (1 << yuv_bit_depth) - 1;
242
243
0
  best_uv = best_uv_base;
244
0
  j = 0;
245
0
  do {
246
0
    i = 0;
247
0
    do {
248
0
      const int off = (i >> 1);
249
0
      const int W = best_y[i];
250
0
      const int r = best_uv[off + 0 * uv_w] + W;
251
0
      const int g = best_uv[off + 1 * uv_w] + W;
252
0
      const int b = best_uv[off + 2 * uv_w] + W;
253
0
      const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix);
254
0
      if (yuv_bit_depth <= 8) {
255
0
        y_ptr[i] = clip_8b(y);
256
0
      } else {
257
0
        ((uint16_t*)y_ptr)[i] = clip(y, yuv_max);
258
0
      }
259
0
    } while (++i < width);
260
0
    best_y += w;
261
0
    best_uv += (j & 1) * 3 * uv_w;
262
0
    y_ptr += y_stride;
263
0
  } while (++j < height);
264
265
0
  best_uv = best_uv_base;
266
0
  j = 0;
267
0
  do {
268
0
    i = 0;
269
0
    do {
270
      // Note r, g and b values here are off by W, but a constant offset on all
271
      // 3 components doesn't change the value of u and v with a YCbCr matrix.
272
0
      const int r = best_uv[i + 0 * uv_w];
273
0
      const int g = best_uv[i + 1 * uv_w];
274
0
      const int b = best_uv[i + 2 * uv_w];
275
0
      const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix);
276
0
      const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix);
277
0
      if (yuv_bit_depth <= 8) {
278
0
        u_ptr[i] = clip_8b(u);
279
0
        v_ptr[i] = clip_8b(v);
280
0
      } else {
281
0
        ((uint16_t*)u_ptr)[i] = clip(u, yuv_max);
282
0
        ((uint16_t*)v_ptr)[i] = clip(v, yuv_max);
283
0
      }
284
0
    } while (++i < uv_w);
285
0
    best_uv += 3 * uv_w;
286
0
    u_ptr += u_stride;
287
0
    v_ptr += v_stride;
288
0
  } while (++j < uv_h);
289
0
  return 1;
290
0
}
291
292
//------------------------------------------------------------------------------
293
// Main function
294
295
0
static void* SafeMalloc(uint64_t nmemb, size_t size) {
296
0
  const uint64_t total_size = nmemb * (uint64_t)size;
297
0
  if (total_size != (size_t)total_size) return NULL;
298
0
  return malloc((size_t)total_size);
299
0
}
300
301
0
#define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((uint64_t)(W) * (H), sizeof(T)))
302
303
static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr,
304
                            const uint8_t* b_ptr, int rgb_step, int rgb_stride,
305
                            int rgb_bit_depth, uint8_t* y_ptr, int y_stride,
306
                            uint8_t* u_ptr, int u_stride, uint8_t* v_ptr,
307
                            int v_stride, int yuv_bit_depth, int width,
308
                            int height,
309
                            const SharpYuvConversionMatrix* yuv_matrix,
310
0
                            SharpYuvTransferFunctionType transfer_type) {
311
  // we expand the right/bottom border if needed
312
0
  const int w = (width + 1) & ~1;
313
0
  const int h = (height + 1) & ~1;
314
0
  const int uv_w = w >> 1;
315
0
  const int uv_h = h >> 1;
316
0
  const int y_bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
317
0
  uint64_t prev_diff_y_sum = ~0;
318
0
  int j, iter;
319
320
  // TODO(skal): allocate one big memory chunk. But for now, it's easier
321
  // for valgrind debugging to have several chunks.
322
0
  fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t);   // scratch
323
0
  fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t);
324
0
  fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t);
325
0
  fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t);
326
0
  fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
327
0
  fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
328
0
  fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t);
329
0
  fixed_y_t* best_y = best_y_base;
330
0
  fixed_y_t* target_y = target_y_base;
331
0
  fixed_t* best_uv = best_uv_base;
332
0
  fixed_t* target_uv = target_uv_base;
333
0
  const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h);
334
0
  int ok;
335
0
  assert(w > 0);
336
0
  assert(h > 0);
337
338
0
  if (best_y_base == NULL || best_uv_base == NULL ||
339
0
      target_y_base == NULL || target_uv_base == NULL ||
340
0
      best_rgb_y == NULL || best_rgb_uv == NULL ||
341
0
      tmp_buffer == NULL) {
342
0
    ok = 0;
343
0
    goto End;
344
0
  }
345
346
  // Import RGB samples to W/RGB representation.
347
0
  for (j = 0; j < height; j += 2) {
348
0
    const int is_last_row = (j == height - 1);
349
0
    fixed_y_t* const src1 = tmp_buffer + 0 * w;
350
0
    fixed_y_t* const src2 = tmp_buffer + 3 * w;
351
352
    // prepare two rows of input
353
0
    ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width,
354
0
                 src1);
355
0
    if (!is_last_row) {
356
0
      ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride,
357
0
                   rgb_step, rgb_bit_depth, width, src2);
358
0
    } else {
359
0
      memcpy(src2, src1, 3 * w * sizeof(*src2));
360
0
    }
361
0
    StoreGray(src1, best_y + 0, w);
362
0
    StoreGray(src2, best_y + w, w);
363
364
0
    UpdateW(src1, target_y, w, rgb_bit_depth, transfer_type);
365
0
    UpdateW(src2, target_y + w, w, rgb_bit_depth, transfer_type);
366
0
    UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth, transfer_type);
367
0
    memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv));
368
0
    best_y += 2 * w;
369
0
    best_uv += 3 * uv_w;
370
0
    target_y += 2 * w;
371
0
    target_uv += 3 * uv_w;
372
0
    r_ptr += 2 * rgb_stride;
373
0
    g_ptr += 2 * rgb_stride;
374
0
    b_ptr += 2 * rgb_stride;
375
0
  }
376
377
  // Iterate and resolve clipping conflicts.
378
0
  for (iter = 0; iter < kNumIterations; ++iter) {
379
0
    const fixed_t* cur_uv = best_uv_base;
380
0
    const fixed_t* prev_uv = best_uv_base;
381
0
    uint64_t diff_y_sum = 0;
382
383
0
    best_y = best_y_base;
384
0
    best_uv = best_uv_base;
385
0
    target_y = target_y_base;
386
0
    target_uv = target_uv_base;
387
0
    j = 0;
388
0
    do {
389
0
      fixed_y_t* const src1 = tmp_buffer + 0 * w;
390
0
      fixed_y_t* const src2 = tmp_buffer + 3 * w;
391
0
      {
392
0
        const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0);
393
0
        InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w,
394
0
                           src1, src2, rgb_bit_depth);
395
0
        prev_uv = cur_uv;
396
0
        cur_uv = next_uv;
397
0
      }
398
399
0
      UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth, transfer_type);
400
0
      UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth, transfer_type);
401
0
      UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth, transfer_type);
402
403
      // update two rows of Y and one row of RGB
404
0
      diff_y_sum +=
405
0
          SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w, y_bit_depth);
406
0
      SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w);
407
408
0
      best_y += 2 * w;
409
0
      best_uv += 3 * uv_w;
410
0
      target_y += 2 * w;
411
0
      target_uv += 3 * uv_w;
412
0
      j += 2;
413
0
    } while (j < h);
414
    // test exit condition
415
0
    if (iter > 0) {
416
0
      if (diff_y_sum < diff_y_threshold) break;
417
0
      if (diff_y_sum > prev_diff_y_sum) break;
418
0
    }
419
0
    prev_diff_y_sum = diff_y_sum;
420
0
  }
421
422
  // final reconstruction
423
0
  ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr,
424
0
                        u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth,
425
0
                        width, height, yuv_matrix);
426
427
0
 End:
428
0
  free(best_y_base);
429
0
  free(best_uv_base);
430
0
  free(target_y_base);
431
0
  free(target_uv_base);
432
0
  free(best_rgb_y);
433
0
  free(best_rgb_uv);
434
0
  free(tmp_buffer);
435
0
  return ok;
436
0
}
437
438
#undef SAFE_ALLOC
439
440
#if defined(WEBP_USE_THREAD) && !defined(_WIN32)
441
#include <pthread.h>  // NOLINT
442
443
#define LOCK_ACCESS \
444
0
    static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \
445
0
    if (pthread_mutex_lock(&sharpyuv_lock)) return
446
#define UNLOCK_ACCESS_AND_RETURN                  \
447
0
    do {                                          \
448
0
      (void)pthread_mutex_unlock(&sharpyuv_lock); \
449
0
      return;                                     \
450
0
    } while (0)
451
#else  // !(defined(WEBP_USE_THREAD) && !defined(_WIN32))
452
#define LOCK_ACCESS do {} while (0)
453
#define UNLOCK_ACCESS_AND_RETURN return
454
#endif  // defined(WEBP_USE_THREAD) && !defined(_WIN32)
455
456
// Hidden exported init function.
457
// By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed,
458
// users can declare it as extern and call it with an alternate VP8CPUInfo
459
// function.
460
extern VP8CPUInfo SharpYuvGetCPUInfo;
461
SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func);
462
0
void SharpYuvInit(VP8CPUInfo cpu_info_func) {
463
0
  static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used =
464
0
      (VP8CPUInfo)&sharpyuv_last_cpuinfo_used;
465
0
  LOCK_ACCESS;
466
  // Only update SharpYuvGetCPUInfo when called from external code to avoid a
467
  // race on reading the value in SharpYuvConvert().
468
0
  if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) {
469
0
    SharpYuvGetCPUInfo = cpu_info_func;
470
0
  }
471
0
  if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) {
472
0
    UNLOCK_ACCESS_AND_RETURN;
473
0
  }
474
475
0
  SharpYuvInitDsp();
476
0
  SharpYuvInitGammaTables();
477
478
0
  sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo;
479
0
  UNLOCK_ACCESS_AND_RETURN;
480
0
}
481
482
int SharpYuvConvert(const void* r_ptr, const void* g_ptr, const void* b_ptr,
483
                    int rgb_step, int rgb_stride, int rgb_bit_depth,
484
                    void* y_ptr, int y_stride, void* u_ptr, int u_stride,
485
                    void* v_ptr, int v_stride, int yuv_bit_depth, int width,
486
0
                    int height, const SharpYuvConversionMatrix* yuv_matrix) {
487
0
  SharpYuvOptions options;
488
0
  options.yuv_matrix = yuv_matrix;
489
0
  options.transfer_type = kSharpYuvTransferFunctionSrgb;
490
0
  return SharpYuvConvertWithOptions(
491
0
      r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, rgb_bit_depth, y_ptr, y_stride,
492
0
      u_ptr, u_stride, v_ptr, v_stride, yuv_bit_depth, width, height, &options);
493
0
}
494
495
int SharpYuvOptionsInitInternal(const SharpYuvConversionMatrix* yuv_matrix,
496
0
                                SharpYuvOptions* options, int version) {
497
0
  const int major = (version >> 24);
498
0
  const int minor = (version >> 16) & 0xff;
499
0
  if (options == NULL || yuv_matrix == NULL ||
500
0
      (major == SHARPYUV_VERSION_MAJOR && major == 0 &&
501
0
       minor != SHARPYUV_VERSION_MINOR) ||
502
0
      (major != SHARPYUV_VERSION_MAJOR)) {
503
0
    return 0;
504
0
  }
505
0
  options->yuv_matrix = yuv_matrix;
506
0
  options->transfer_type = kSharpYuvTransferFunctionSrgb;
507
0
  return 1;
508
0
}
509
510
int SharpYuvConvertWithOptions(const void* r_ptr, const void* g_ptr,
511
                               const void* b_ptr, int rgb_step, int rgb_stride,
512
                               int rgb_bit_depth, void* y_ptr, int y_stride,
513
                               void* u_ptr, int u_stride, void* v_ptr,
514
                               int v_stride, int yuv_bit_depth, int width,
515
0
                               int height, const SharpYuvOptions* options) {
516
0
  const SharpYuvConversionMatrix* yuv_matrix = options->yuv_matrix;
517
0
  SharpYuvTransferFunctionType transfer_type = options->transfer_type;
518
0
  SharpYuvConversionMatrix scaled_matrix;
519
0
  const int rgb_max = (1 << rgb_bit_depth) - 1;
520
0
  const int rgb_round = 1 << (rgb_bit_depth - 1);
521
0
  const int yuv_max = (1 << yuv_bit_depth) - 1;
522
0
  const int sfix = GetPrecisionShift(rgb_bit_depth);
523
524
0
  if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX ||
525
0
      r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL ||
526
0
      u_ptr == NULL || v_ptr == NULL) {
527
0
    return 0;
528
0
  }
529
0
  if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 &&
530
0
      rgb_bit_depth != 16) {
531
0
    return 0;
532
0
  }
533
0
  if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) {
534
0
    return 0;
535
0
  }
536
0
  if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride % 2 != 0)) {
537
    // Step/stride should be even for uint16_t buffers.
538
0
    return 0;
539
0
  }
540
0
  if (yuv_bit_depth > 8 &&
541
0
      (y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) {
542
    // Stride should be even for uint16_t buffers.
543
0
    return 0;
544
0
  }
545
  // The address of the function pointer is used to avoid a read race.
546
0
  SharpYuvInit((VP8CPUInfo)&SharpYuvGetCPUInfo);
547
548
  // Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the
549
  // rgb->yuv conversion matrix.
550
0
  if (rgb_bit_depth == yuv_bit_depth) {
551
0
    memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix));
552
0
  } else {
553
0
    int i;
554
0
    for (i = 0; i < 3; ++i) {
555
0
      scaled_matrix.rgb_to_y[i] =
556
0
          (yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max;
557
0
      scaled_matrix.rgb_to_u[i] =
558
0
          (yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max;
559
0
      scaled_matrix.rgb_to_v[i] =
560
0
          (yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max;
561
0
    }
562
0
  }
563
  // Also incorporate precision change scaling.
564
0
  scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix);
565
0
  scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix);
566
0
  scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix);
567
568
0
  return DoSharpArgbToYuv(
569
0
      (const uint8_t*)r_ptr, (const uint8_t*)g_ptr, (const uint8_t*)b_ptr,
570
0
      rgb_step, rgb_stride, rgb_bit_depth, (uint8_t*)y_ptr, y_stride,
571
0
      (uint8_t*)u_ptr, u_stride, (uint8_t*)v_ptr, v_stride, yuv_bit_depth,
572
0
      width, height, &scaled_matrix, transfer_type);
573
0
}
574
575
//------------------------------------------------------------------------------