Coverage Report

Created: 2025-06-16 07:00

/src/libwebp/sharpyuv/sharpyuv_gamma.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2022 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Gamma correction utilities.
11
12
#include "sharpyuv/sharpyuv_gamma.h"
13
14
#include <assert.h>
15
#include <float.h>
16
#include <math.h>
17
18
#include "sharpyuv/sharpyuv.h"
19
#include "src/webp/types.h"
20
21
// Gamma correction compensates loss of resolution during chroma subsampling.
22
// Size of pre-computed table for converting from gamma to linear.
23
0
#define GAMMA_TO_LINEAR_TAB_BITS 10
24
0
#define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS)
25
static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2];
26
0
#define LINEAR_TO_GAMMA_TAB_BITS 9
27
0
#define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS)
28
static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2];
29
30
static const double kGammaF = 1. / 0.45;
31
0
#define GAMMA_TO_LINEAR_BITS 16
32
33
static volatile int kGammaTablesSOk = 0;
34
0
void SharpYuvInitGammaTables(void) {
35
0
  assert(GAMMA_TO_LINEAR_BITS <= 16);
36
0
  if (!kGammaTablesSOk) {
37
0
    int v;
38
0
    const double a = 0.09929682680944;
39
0
    const double thresh = 0.018053968510807;
40
0
    const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;
41
    // Precompute gamma to linear table.
42
0
    {
43
0
      const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE;
44
0
      const double a_rec = 1. / (1. + a);
45
0
      for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) {
46
0
        const double g = norm * v;
47
0
        double value;
48
0
        if (g <= thresh * 4.5) {
49
0
          value = g / 4.5;
50
0
        } else {
51
0
          value = pow(a_rec * (g + a), kGammaF);
52
0
        }
53
0
        kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);
54
0
      }
55
      // to prevent small rounding errors to cause read-overflow:
56
0
      kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] =
57
0
          kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE];
58
0
    }
59
    // Precompute linear to gamma table.
60
0
    {
61
0
      const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE;
62
0
      for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) {
63
0
        const double g = scale * v;
64
0
        double value;
65
0
        if (g <= thresh) {
66
0
          value = 4.5 * g;
67
0
        } else {
68
0
          value = (1. + a) * pow(g, 1. / kGammaF) - a;
69
0
        }
70
0
        kLinearToGammaTabS[v] =
71
0
            (uint32_t)(final_scale * value + 0.5);
72
0
      }
73
      // to prevent small rounding errors to cause read-overflow:
74
0
      kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] =
75
0
          kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE];
76
0
    }
77
0
    kGammaTablesSOk = 1;
78
0
  }
79
0
}
80
81
0
static WEBP_INLINE int Shift(int v, int shift) {
82
0
  return (shift >= 0) ? (v << shift) : (v >> -shift);
83
0
}
84
85
static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab,
86
                                                    int tab_pos_shift_right,
87
0
                                                    int tab_value_shift) {
88
0
  const uint32_t tab_pos = Shift(v, -tab_pos_shift_right);
89
  // fractional part, in 'tab_pos_shift' fixed-point precision
90
0
  const uint32_t x = v - (tab_pos << tab_pos_shift_right);  // fractional part
91
  // v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1])
92
0
  const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift);
93
0
  const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift);
94
  // Final interpolation.
95
0
  const uint32_t v2 = (v1 - v0) * x;  // note: v1 >= v0.
96
0
  const int half =
97
0
      (tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0;
98
0
  const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right);
99
0
  return result;
100
0
}
101
102
0
static uint32_t ToLinearSrgb(uint16_t v, int bit_depth) {
103
0
  const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth;
104
0
  if (shift > 0) {
105
0
    return kGammaToLinearTabS[v << shift];
106
0
  }
107
0
  return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0);
108
0
}
109
110
0
static uint16_t FromLinearSrgb(uint32_t value, int bit_depth) {
111
0
  return FixedPointInterpolation(
112
0
      value, kLinearToGammaTabS,
113
0
      (GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS),
114
0
      bit_depth - GAMMA_TO_LINEAR_BITS);
115
0
}
116
117
////////////////////////////////////////////////////////////////////////////////
118
119
#define CLAMP(x, low, high) \
120
0
  (((x) < (low)) ? (low) : (((high) < (x)) ? (high) : (x)))
121
0
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
122
0
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
123
124
0
static WEBP_INLINE float Roundf(float x) {
125
0
  if (x < 0)
126
0
    return (float)ceil((double)(x - 0.5f));
127
0
  else
128
0
    return (float)floor((double)(x + 0.5f));
129
0
}
130
131
0
static WEBP_INLINE float Powf(float base, float exp) {
132
0
  return (float)pow((double)base, (double)exp);
133
0
}
134
135
0
static WEBP_INLINE float Log10f(float x) { return (float)log10((double)x); }
136
137
0
static float ToLinear709(float gamma) {
138
0
  if (gamma < 0.f) {
139
0
    return 0.f;
140
0
  } else if (gamma < 4.5f * 0.018053968510807f) {
141
0
    return gamma / 4.5f;
142
0
  } else if (gamma < 1.f) {
143
0
    return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
144
0
  }
145
0
  return 1.f;
146
0
}
147
148
0
static float FromLinear709(float linear) {
149
0
  if (linear < 0.f) {
150
0
    return 0.f;
151
0
  } else if (linear < 0.018053968510807f) {
152
0
    return linear * 4.5f;
153
0
  } else if (linear < 1.f) {
154
0
    return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
155
0
  }
156
0
  return 1.f;
157
0
}
158
159
0
static float ToLinear470M(float gamma) {
160
0
  return Powf(CLAMP(gamma, 0.f, 1.f), 2.2f);
161
0
}
162
163
0
static float FromLinear470M(float linear) {
164
0
  return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.2f);
165
0
}
166
167
0
static float ToLinear470Bg(float gamma) {
168
0
  return Powf(CLAMP(gamma, 0.f, 1.f), 2.8f);
169
0
}
170
171
0
static float FromLinear470Bg(float linear) {
172
0
  return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.8f);
173
0
}
174
175
0
static float ToLinearSmpte240(float gamma) {
176
0
  if (gamma < 0.f) {
177
0
    return 0.f;
178
0
  } else if (gamma < 4.f * 0.022821585529445f) {
179
0
    return gamma / 4.f;
180
0
  } else if (gamma < 1.f) {
181
0
    return Powf((gamma + 0.111572195921731f) / 1.111572195921731f, 1.f / 0.45f);
182
0
  }
183
0
  return 1.f;
184
0
}
185
186
0
static float FromLinearSmpte240(float linear) {
187
0
  if (linear < 0.f) {
188
0
    return 0.f;
189
0
  } else if (linear < 0.022821585529445f) {
190
0
    return linear * 4.f;
191
0
  } else if (linear < 1.f) {
192
0
    return 1.111572195921731f * Powf(linear, 0.45f) - 0.111572195921731f;
193
0
  }
194
0
  return 1.f;
195
0
}
196
197
0
static float ToLinearLog100(float gamma) {
198
  // The function is non-bijective so choose the middle of [0, 0.01].
199
0
  const float mid_interval = 0.01f / 2.f;
200
0
  return (gamma <= 0.0f) ? mid_interval
201
0
                          : Powf(10.0f, 2.f * (MIN(gamma, 1.f) - 1.0f));
202
0
}
203
204
0
static float FromLinearLog100(float linear) {
205
0
  return (linear < 0.01f) ? 0.0f : 1.0f + Log10f(MIN(linear, 1.f)) / 2.0f;
206
0
}
207
208
0
static float ToLinearLog100Sqrt10(float gamma) {
209
  // The function is non-bijective so choose the middle of [0, 0.00316227766f[.
210
0
  const float mid_interval = 0.00316227766f / 2.f;
211
0
  return (gamma <= 0.0f) ? mid_interval
212
0
                          : Powf(10.0f, 2.5f * (MIN(gamma, 1.f) - 1.0f));
213
0
}
214
215
0
static float FromLinearLog100Sqrt10(float linear) {
216
0
  return (linear < 0.00316227766f) ? 0.0f
217
0
                                  : 1.0f + Log10f(MIN(linear, 1.f)) / 2.5f;
218
0
}
219
220
0
static float ToLinearIec61966(float gamma) {
221
0
  if (gamma <= -4.5f * 0.018053968510807f) {
222
0
    return Powf((-gamma + 0.09929682680944f) / -1.09929682680944f, 1.f / 0.45f);
223
0
  } else if (gamma < 4.5f * 0.018053968510807f) {
224
0
    return gamma / 4.5f;
225
0
  }
226
0
  return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
227
0
}
228
229
0
static float FromLinearIec61966(float linear) {
230
0
  if (linear <= -0.018053968510807f) {
231
0
    return -1.09929682680944f * Powf(-linear, 0.45f) + 0.09929682680944f;
232
0
  } else if (linear < 0.018053968510807f) {
233
0
    return linear * 4.5f;
234
0
  }
235
0
  return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
236
0
}
237
238
0
static float ToLinearBt1361(float gamma) {
239
0
  if (gamma < -0.25f) {
240
0
    return -0.25f;
241
0
  } else if (gamma < 0.f) {
242
0
    return Powf((gamma - 0.02482420670236f) / -0.27482420670236f, 1.f / 0.45f) /
243
0
           -4.f;
244
0
  } else if (gamma < 4.5f * 0.018053968510807f) {
245
0
    return gamma / 4.5f;
246
0
  } else if (gamma < 1.f) {
247
0
    return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
248
0
  }
249
0
  return 1.f;
250
0
}
251
252
0
static float FromLinearBt1361(float linear) {
253
0
  if (linear < -0.25f) {
254
0
    return -0.25f;
255
0
  } else if (linear < 0.f) {
256
0
    return -0.27482420670236f * Powf(-4.f * linear, 0.45f) + 0.02482420670236f;
257
0
  } else if (linear < 0.018053968510807f) {
258
0
    return linear * 4.5f;
259
0
  } else if (linear < 1.f) {
260
0
    return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
261
0
  }
262
0
  return 1.f;
263
0
}
264
265
0
static float ToLinearPq(float gamma) {
266
0
  if (gamma > 0.f) {
267
0
    const float pow_gamma = Powf(gamma, 32.f / 2523.f);
268
0
    const float num = MAX(pow_gamma - 107.f / 128.f, 0.0f);
269
0
    const float den = MAX(2413.f / 128.f - 2392.f / 128.f * pow_gamma, FLT_MIN);
270
0
    return Powf(num / den, 4096.f / 653.f);
271
0
  }
272
0
  return 0.f;
273
0
}
274
275
0
static float FromLinearPq(float linear) {
276
0
  if (linear > 0.f) {
277
0
    const float pow_linear = Powf(linear, 653.f / 4096.f);
278
0
    const float num = 107.f / 128.f + 2413.f / 128.f * pow_linear;
279
0
    const float den = 1.0f + 2392.f / 128.f * pow_linear;
280
0
    return Powf(num / den, 2523.f / 32.f);
281
0
  }
282
0
  return 0.f;
283
0
}
284
285
0
static float ToLinearSmpte428(float gamma) {
286
0
  return Powf(MAX(gamma, 0.f), 2.6f) / 0.91655527974030934f;
287
0
}
288
289
0
static float FromLinearSmpte428(float linear) {
290
0
  return Powf(0.91655527974030934f * MAX(linear, 0.f), 1.f / 2.6f);
291
0
}
292
293
// Conversion in BT.2100 requires RGB info. Simplify to gamma correction here.
294
0
static float ToLinearHlg(float gamma) {
295
0
  if (gamma < 0.f) {
296
0
    return 0.f;
297
0
  } else if (gamma <= 0.5f) {
298
0
    return Powf((gamma * gamma) * (1.f / 3.f), 1.2f);
299
0
  }
300
0
  return Powf((expf((gamma - 0.55991073f) / 0.17883277f) + 0.28466892f) / 12.0f,
301
0
              1.2f);
302
0
}
303
304
0
static float FromLinearHlg(float linear) {
305
0
  linear = Powf(linear, 1.f / 1.2f);
306
0
  if (linear < 0.f) {
307
0
    return 0.f;
308
0
  } else if (linear <= (1.f / 12.f)) {
309
0
    return sqrtf(3.f * linear);
310
0
  }
311
0
  return 0.17883277f * logf(12.f * linear - 0.28466892f) + 0.55991073f;
312
0
}
313
314
uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth,
315
0
                               SharpYuvTransferFunctionType transfer_type) {
316
0
  float v_float, linear;
317
0
  if (transfer_type == kSharpYuvTransferFunctionSrgb) {
318
0
    return ToLinearSrgb(v, bit_depth);
319
0
  }
320
0
  v_float = (float)v / ((1 << bit_depth) - 1);
321
0
  switch (transfer_type) {
322
0
    case kSharpYuvTransferFunctionBt709:
323
0
    case kSharpYuvTransferFunctionBt601:
324
0
    case kSharpYuvTransferFunctionBt2020_10Bit:
325
0
    case kSharpYuvTransferFunctionBt2020_12Bit:
326
0
      linear = ToLinear709(v_float);
327
0
      break;
328
0
    case kSharpYuvTransferFunctionBt470M:
329
0
      linear = ToLinear470M(v_float);
330
0
      break;
331
0
    case kSharpYuvTransferFunctionBt470Bg:
332
0
      linear = ToLinear470Bg(v_float);
333
0
      break;
334
0
    case kSharpYuvTransferFunctionSmpte240:
335
0
      linear = ToLinearSmpte240(v_float);
336
0
      break;
337
0
    case kSharpYuvTransferFunctionLinear:
338
0
      return v;
339
0
    case kSharpYuvTransferFunctionLog100:
340
0
      linear = ToLinearLog100(v_float);
341
0
      break;
342
0
    case kSharpYuvTransferFunctionLog100_Sqrt10:
343
0
      linear = ToLinearLog100Sqrt10(v_float);
344
0
      break;
345
0
    case kSharpYuvTransferFunctionIec61966:
346
0
      linear = ToLinearIec61966(v_float);
347
0
      break;
348
0
    case kSharpYuvTransferFunctionBt1361:
349
0
      linear = ToLinearBt1361(v_float);
350
0
      break;
351
0
    case kSharpYuvTransferFunctionSmpte2084:
352
0
      linear = ToLinearPq(v_float);
353
0
      break;
354
0
    case kSharpYuvTransferFunctionSmpte428:
355
0
      linear = ToLinearSmpte428(v_float);
356
0
      break;
357
0
    case kSharpYuvTransferFunctionHlg:
358
0
      linear = ToLinearHlg(v_float);
359
0
      break;
360
0
    default:
361
0
      assert(0);
362
0
      linear = 0;
363
0
      break;
364
0
  }
365
0
  return (uint32_t)Roundf(linear * ((1 << 16) - 1));
366
0
}
367
368
uint16_t SharpYuvLinearToGamma(uint32_t v, int bit_depth,
369
0
                               SharpYuvTransferFunctionType transfer_type) {
370
0
  float v_float, linear;
371
0
  if (transfer_type == kSharpYuvTransferFunctionSrgb) {
372
0
    return FromLinearSrgb(v, bit_depth);
373
0
  }
374
0
  v_float = (float)v / ((1 << 16) - 1);
375
0
  switch (transfer_type) {
376
0
    case kSharpYuvTransferFunctionBt709:
377
0
    case kSharpYuvTransferFunctionBt601:
378
0
    case kSharpYuvTransferFunctionBt2020_10Bit:
379
0
    case kSharpYuvTransferFunctionBt2020_12Bit:
380
0
      linear = FromLinear709(v_float);
381
0
      break;
382
0
    case kSharpYuvTransferFunctionBt470M:
383
0
      linear = FromLinear470M(v_float);
384
0
      break;
385
0
    case kSharpYuvTransferFunctionBt470Bg:
386
0
      linear = FromLinear470Bg(v_float);
387
0
      break;
388
0
    case kSharpYuvTransferFunctionSmpte240:
389
0
      linear = FromLinearSmpte240(v_float);
390
0
      break;
391
0
    case kSharpYuvTransferFunctionLinear:
392
0
      return v;
393
0
    case kSharpYuvTransferFunctionLog100:
394
0
      linear = FromLinearLog100(v_float);
395
0
      break;
396
0
    case kSharpYuvTransferFunctionLog100_Sqrt10:
397
0
      linear = FromLinearLog100Sqrt10(v_float);
398
0
      break;
399
0
    case kSharpYuvTransferFunctionIec61966:
400
0
      linear = FromLinearIec61966(v_float);
401
0
      break;
402
0
    case kSharpYuvTransferFunctionBt1361:
403
0
      linear = FromLinearBt1361(v_float);
404
0
      break;
405
0
    case kSharpYuvTransferFunctionSmpte2084:
406
0
      linear = FromLinearPq(v_float);
407
0
      break;
408
0
    case kSharpYuvTransferFunctionSmpte428:
409
0
      linear = FromLinearSmpte428(v_float);
410
0
      break;
411
0
    case kSharpYuvTransferFunctionHlg:
412
0
      linear = FromLinearHlg(v_float);
413
0
      break;
414
0
    default:
415
0
      assert(0);
416
0
      linear = 0;
417
0
      break;
418
0
  }
419
0
  return (uint16_t)Roundf(linear * ((1 << bit_depth) - 1));
420
0
}