/src/xz/src/liblzma/common/index.c
Line | Count | Source (jump to first uncovered line) |
1 | | // SPDX-License-Identifier: 0BSD |
2 | | |
3 | | /////////////////////////////////////////////////////////////////////////////// |
4 | | // |
5 | | /// \file index.c |
6 | | /// \brief Handling of .xz Indexes and some other Stream information |
7 | | // |
8 | | // Author: Lasse Collin |
9 | | // |
10 | | /////////////////////////////////////////////////////////////////////////////// |
11 | | |
12 | | #include "common.h" |
13 | | #include "index.h" |
14 | | #include "stream_flags_common.h" |
15 | | |
16 | | |
17 | | /// \brief How many Records to allocate at once |
18 | | /// |
19 | | /// This should be big enough to avoid making lots of tiny allocations |
20 | | /// but small enough to avoid too much unused memory at once. |
21 | 0 | #define INDEX_GROUP_SIZE 512 |
22 | | |
23 | | |
24 | | /// \brief How many Records can be allocated at once at maximum |
25 | 0 | #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record)) |
26 | | |
27 | | |
28 | | /// \brief Base structure for index_stream and index_group structures |
29 | | typedef struct index_tree_node_s index_tree_node; |
30 | | struct index_tree_node_s { |
31 | | /// Uncompressed start offset of this Stream (relative to the |
32 | | /// beginning of the file) or Block (relative to the beginning |
33 | | /// of the Stream) |
34 | | lzma_vli uncompressed_base; |
35 | | |
36 | | /// Compressed start offset of this Stream or Block |
37 | | lzma_vli compressed_base; |
38 | | |
39 | | index_tree_node *parent; |
40 | | index_tree_node *left; |
41 | | index_tree_node *right; |
42 | | }; |
43 | | |
44 | | |
45 | | /// \brief AVL tree to hold index_stream or index_group structures |
46 | | typedef struct { |
47 | | /// Root node |
48 | | index_tree_node *root; |
49 | | |
50 | | /// Leftmost node. Since the tree will be filled sequentially, |
51 | | /// this won't change after the first node has been added to |
52 | | /// the tree. |
53 | | index_tree_node *leftmost; |
54 | | |
55 | | /// The rightmost node in the tree. Since the tree is filled |
56 | | /// sequentially, this is always the node where to add the new data. |
57 | | index_tree_node *rightmost; |
58 | | |
59 | | /// Number of nodes in the tree |
60 | | uint32_t count; |
61 | | |
62 | | } index_tree; |
63 | | |
64 | | |
65 | | typedef struct { |
66 | | lzma_vli uncompressed_sum; |
67 | | lzma_vli unpadded_sum; |
68 | | } index_record; |
69 | | |
70 | | |
71 | | typedef struct { |
72 | | /// Every Record group is part of index_stream.groups tree. |
73 | | index_tree_node node; |
74 | | |
75 | | /// Number of Blocks in this Stream before this group. |
76 | | lzma_vli number_base; |
77 | | |
78 | | /// Number of Records that can be put in records[]. |
79 | | size_t allocated; |
80 | | |
81 | | /// Index of the last Record in use. |
82 | | size_t last; |
83 | | |
84 | | /// The sizes in this array are stored as cumulative sums relative |
85 | | /// to the beginning of the Stream. This makes it possible to |
86 | | /// use binary search in lzma_index_locate(). |
87 | | /// |
88 | | /// Note that the cumulative summing is done specially for |
89 | | /// unpadded_sum: The previous value is rounded up to the next |
90 | | /// multiple of four before adding the Unpadded Size of the new |
91 | | /// Block. The total encoded size of the Blocks in the Stream |
92 | | /// is records[last].unpadded_sum in the last Record group of |
93 | | /// the Stream. |
94 | | /// |
95 | | /// For example, if the Unpadded Sizes are 39, 57, and 81, the |
96 | | /// stored values are 39, 97 (40 + 57), and 181 (100 + 181). |
97 | | /// The total encoded size of these Blocks is 184. |
98 | | /// |
99 | | /// This is a flexible array, because it makes easy to optimize |
100 | | /// memory usage in case someone concatenates many Streams that |
101 | | /// have only one or few Blocks. |
102 | | index_record records[]; |
103 | | |
104 | | } index_group; |
105 | | |
106 | | |
107 | | typedef struct { |
108 | | /// Every index_stream is a node in the tree of Streams. |
109 | | index_tree_node node; |
110 | | |
111 | | /// Number of this Stream (first one is 1) |
112 | | uint32_t number; |
113 | | |
114 | | /// Total number of Blocks before this Stream |
115 | | lzma_vli block_number_base; |
116 | | |
117 | | /// Record groups of this Stream are stored in a tree. |
118 | | /// It's a T-tree with AVL-tree balancing. There are |
119 | | /// INDEX_GROUP_SIZE Records per node by default. |
120 | | /// This keeps the number of memory allocations reasonable |
121 | | /// and finding a Record is fast. |
122 | | index_tree groups; |
123 | | |
124 | | /// Number of Records in this Stream |
125 | | lzma_vli record_count; |
126 | | |
127 | | /// Size of the List of Records field in this Stream. This is used |
128 | | /// together with record_count to calculate the size of the Index |
129 | | /// field and thus the total size of the Stream. |
130 | | lzma_vli index_list_size; |
131 | | |
132 | | /// Stream Flags of this Stream. This is meaningful only if |
133 | | /// the Stream Flags have been told us with lzma_index_stream_flags(). |
134 | | /// Initially stream_flags.version is set to UINT32_MAX to indicate |
135 | | /// that the Stream Flags are unknown. |
136 | | lzma_stream_flags stream_flags; |
137 | | |
138 | | /// Amount of Stream Padding after this Stream. This defaults to |
139 | | /// zero and can be set with lzma_index_stream_padding(). |
140 | | lzma_vli stream_padding; |
141 | | |
142 | | } index_stream; |
143 | | |
144 | | |
145 | | struct lzma_index_s { |
146 | | /// AVL-tree containing the Stream(s). Often there is just one |
147 | | /// Stream, but using a tree keeps lookups fast even when there |
148 | | /// are many concatenated Streams. |
149 | | index_tree streams; |
150 | | |
151 | | /// Uncompressed size of all the Blocks in the Stream(s) |
152 | | lzma_vli uncompressed_size; |
153 | | |
154 | | /// Total size of all the Blocks in the Stream(s) |
155 | | lzma_vli total_size; |
156 | | |
157 | | /// Total number of Records in all Streams in this lzma_index |
158 | | lzma_vli record_count; |
159 | | |
160 | | /// Size of the List of Records field if all the Streams in this |
161 | | /// lzma_index were packed into a single Stream (makes it simpler to |
162 | | /// take many .xz files and combine them into a single Stream). |
163 | | /// |
164 | | /// This value together with record_count is needed to calculate |
165 | | /// Backward Size that is stored into Stream Footer. |
166 | | lzma_vli index_list_size; |
167 | | |
168 | | /// How many Records to allocate at once in lzma_index_append(). |
169 | | /// This defaults to INDEX_GROUP_SIZE but can be overridden with |
170 | | /// lzma_index_prealloc(). |
171 | | size_t prealloc; |
172 | | |
173 | | /// Bitmask indicating what integrity check types have been used |
174 | | /// as set by lzma_index_stream_flags(). The bit of the last Stream |
175 | | /// is not included here, since it is possible to change it by |
176 | | /// calling lzma_index_stream_flags() again. |
177 | | uint32_t checks; |
178 | | }; |
179 | | |
180 | | |
181 | | static void |
182 | | index_tree_init(index_tree *tree) |
183 | 0 | { |
184 | 0 | tree->root = NULL; |
185 | 0 | tree->leftmost = NULL; |
186 | 0 | tree->rightmost = NULL; |
187 | 0 | tree->count = 0; |
188 | 0 | return; |
189 | 0 | } |
190 | | |
191 | | |
192 | | /// Helper for index_tree_end() |
193 | | static void |
194 | | index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator, |
195 | | void (*free_func)(void *node, const lzma_allocator *allocator)) |
196 | 0 | { |
197 | | // The tree won't ever be very huge, so recursion should be fine. |
198 | | // 20 levels in the tree is likely quite a lot already in practice. |
199 | 0 | if (node->left != NULL) |
200 | 0 | index_tree_node_end(node->left, allocator, free_func); |
201 | |
|
202 | 0 | if (node->right != NULL) |
203 | 0 | index_tree_node_end(node->right, allocator, free_func); |
204 | |
|
205 | 0 | free_func(node, allocator); |
206 | 0 | return; |
207 | 0 | } |
208 | | |
209 | | |
210 | | /// Free the memory allocated for a tree. Each node is freed using the |
211 | | /// given free_func which is either &lzma_free or &index_stream_end. |
212 | | /// The latter is used to free the Record groups from each index_stream |
213 | | /// before freeing the index_stream itself. |
214 | | static void |
215 | | index_tree_end(index_tree *tree, const lzma_allocator *allocator, |
216 | | void (*free_func)(void *node, const lzma_allocator *allocator)) |
217 | 0 | { |
218 | 0 | assert(free_func != NULL); |
219 | |
|
220 | 0 | if (tree->root != NULL) |
221 | 0 | index_tree_node_end(tree->root, allocator, free_func); |
222 | |
|
223 | 0 | return; |
224 | 0 | } |
225 | | |
226 | | |
227 | | /// Add a new node to the tree. node->uncompressed_base and |
228 | | /// node->compressed_base must have been set by the caller already. |
229 | | static void |
230 | | index_tree_append(index_tree *tree, index_tree_node *node) |
231 | 0 | { |
232 | 0 | node->parent = tree->rightmost; |
233 | 0 | node->left = NULL; |
234 | 0 | node->right = NULL; |
235 | |
|
236 | 0 | ++tree->count; |
237 | | |
238 | | // Handle the special case of adding the first node. |
239 | 0 | if (tree->root == NULL) { |
240 | 0 | tree->root = node; |
241 | 0 | tree->leftmost = node; |
242 | 0 | tree->rightmost = node; |
243 | 0 | return; |
244 | 0 | } |
245 | | |
246 | | // The tree is always filled sequentially. |
247 | 0 | assert(tree->rightmost->uncompressed_base <= node->uncompressed_base); |
248 | 0 | assert(tree->rightmost->compressed_base < node->compressed_base); |
249 | | |
250 | | // Add the new node after the rightmost node. It's the correct |
251 | | // place due to the reason above. |
252 | 0 | tree->rightmost->right = node; |
253 | 0 | tree->rightmost = node; |
254 | | |
255 | | // Balance the AVL-tree if needed. We don't need to keep the balance |
256 | | // factors in nodes, because we always fill the tree sequentially, |
257 | | // and thus know the state of the tree just by looking at the node |
258 | | // count. From the node count we can calculate how many steps to go |
259 | | // up in the tree to find the rotation root. |
260 | 0 | uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count)); |
261 | 0 | if (up != 0) { |
262 | | // Locate the root node for the rotation. |
263 | 0 | up = ctz32(tree->count) + 2; |
264 | 0 | do { |
265 | 0 | node = node->parent; |
266 | 0 | } while (--up > 0); |
267 | | |
268 | | // Rotate left using node as the rotation root. |
269 | 0 | index_tree_node *pivot = node->right; |
270 | |
|
271 | 0 | if (node->parent == NULL) { |
272 | 0 | tree->root = pivot; |
273 | 0 | } else { |
274 | 0 | assert(node->parent->right == node); |
275 | 0 | node->parent->right = pivot; |
276 | 0 | } |
277 | |
|
278 | 0 | pivot->parent = node->parent; |
279 | |
|
280 | 0 | node->right = pivot->left; |
281 | 0 | if (node->right != NULL) |
282 | 0 | node->right->parent = node; |
283 | |
|
284 | 0 | pivot->left = node; |
285 | 0 | node->parent = pivot; |
286 | 0 | } |
287 | |
|
288 | 0 | return; |
289 | 0 | } |
290 | | |
291 | | |
292 | | /// Get the next node in the tree. Return NULL if there are no more nodes. |
293 | | static void * |
294 | | index_tree_next(const index_tree_node *node) |
295 | 0 | { |
296 | 0 | if (node->right != NULL) { |
297 | 0 | node = node->right; |
298 | 0 | while (node->left != NULL) |
299 | 0 | node = node->left; |
300 | |
|
301 | 0 | return (void *)(node); |
302 | 0 | } |
303 | | |
304 | 0 | while (node->parent != NULL && node->parent->right == node) |
305 | 0 | node = node->parent; |
306 | |
|
307 | 0 | return (void *)(node->parent); |
308 | 0 | } |
309 | | |
310 | | |
311 | | /// Locate a node that contains the given uncompressed offset. It is |
312 | | /// caller's job to check that target is not bigger than the uncompressed |
313 | | /// size of the tree (the last node would be returned in that case still). |
314 | | static void * |
315 | | index_tree_locate(const index_tree *tree, lzma_vli target) |
316 | 0 | { |
317 | 0 | const index_tree_node *result = NULL; |
318 | 0 | const index_tree_node *node = tree->root; |
319 | |
|
320 | 0 | assert(tree->leftmost == NULL |
321 | 0 | || tree->leftmost->uncompressed_base == 0); |
322 | | |
323 | | // Consecutive nodes may have the same uncompressed_base. |
324 | | // We must pick the rightmost one. |
325 | 0 | while (node != NULL) { |
326 | 0 | if (node->uncompressed_base > target) { |
327 | 0 | node = node->left; |
328 | 0 | } else { |
329 | 0 | result = node; |
330 | 0 | node = node->right; |
331 | 0 | } |
332 | 0 | } |
333 | |
|
334 | 0 | return (void *)(result); |
335 | 0 | } |
336 | | |
337 | | |
338 | | /// Allocate and initialize a new Stream using the given base offsets. |
339 | | static index_stream * |
340 | | index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base, |
341 | | uint32_t stream_number, lzma_vli block_number_base, |
342 | | const lzma_allocator *allocator) |
343 | 0 | { |
344 | 0 | index_stream *s = lzma_alloc(sizeof(index_stream), allocator); |
345 | 0 | if (s == NULL) |
346 | 0 | return NULL; |
347 | | |
348 | 0 | s->node.uncompressed_base = uncompressed_base; |
349 | 0 | s->node.compressed_base = compressed_base; |
350 | 0 | s->node.parent = NULL; |
351 | 0 | s->node.left = NULL; |
352 | 0 | s->node.right = NULL; |
353 | |
|
354 | 0 | s->number = stream_number; |
355 | 0 | s->block_number_base = block_number_base; |
356 | |
|
357 | 0 | index_tree_init(&s->groups); |
358 | |
|
359 | 0 | s->record_count = 0; |
360 | 0 | s->index_list_size = 0; |
361 | 0 | s->stream_flags.version = UINT32_MAX; |
362 | 0 | s->stream_padding = 0; |
363 | |
|
364 | 0 | return s; |
365 | 0 | } |
366 | | |
367 | | |
368 | | /// Free the memory allocated for a Stream and its Record groups. |
369 | | static void |
370 | | index_stream_end(void *node, const lzma_allocator *allocator) |
371 | 0 | { |
372 | 0 | index_stream *s = node; |
373 | 0 | index_tree_end(&s->groups, allocator, &lzma_free); |
374 | 0 | lzma_free(s, allocator); |
375 | 0 | return; |
376 | 0 | } |
377 | | |
378 | | |
379 | | static lzma_index * |
380 | | index_init_plain(const lzma_allocator *allocator) |
381 | 0 | { |
382 | 0 | lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator); |
383 | 0 | if (i != NULL) { |
384 | 0 | index_tree_init(&i->streams); |
385 | 0 | i->uncompressed_size = 0; |
386 | 0 | i->total_size = 0; |
387 | 0 | i->record_count = 0; |
388 | 0 | i->index_list_size = 0; |
389 | 0 | i->prealloc = INDEX_GROUP_SIZE; |
390 | 0 | i->checks = 0; |
391 | 0 | } |
392 | |
|
393 | 0 | return i; |
394 | 0 | } |
395 | | |
396 | | |
397 | | extern LZMA_API(lzma_index *) |
398 | | lzma_index_init(const lzma_allocator *allocator) |
399 | 0 | { |
400 | 0 | lzma_index *i = index_init_plain(allocator); |
401 | 0 | if (i == NULL) |
402 | 0 | return NULL; |
403 | | |
404 | 0 | index_stream *s = index_stream_init(0, 0, 1, 0, allocator); |
405 | 0 | if (s == NULL) { |
406 | 0 | lzma_free(i, allocator); |
407 | 0 | return NULL; |
408 | 0 | } |
409 | | |
410 | 0 | index_tree_append(&i->streams, &s->node); |
411 | |
|
412 | 0 | return i; |
413 | 0 | } |
414 | | |
415 | | |
416 | | extern LZMA_API(void) |
417 | | lzma_index_end(lzma_index *i, const lzma_allocator *allocator) |
418 | 0 | { |
419 | | // NOTE: If you modify this function, check also the bottom |
420 | | // of lzma_index_cat(). |
421 | 0 | if (i != NULL) { |
422 | 0 | index_tree_end(&i->streams, allocator, &index_stream_end); |
423 | 0 | lzma_free(i, allocator); |
424 | 0 | } |
425 | |
|
426 | 0 | return; |
427 | 0 | } |
428 | | |
429 | | |
430 | | extern void |
431 | | lzma_index_prealloc(lzma_index *i, lzma_vli records) |
432 | 0 | { |
433 | 0 | if (records > PREALLOC_MAX) |
434 | 0 | records = PREALLOC_MAX; |
435 | |
|
436 | 0 | i->prealloc = (size_t)(records); |
437 | 0 | return; |
438 | 0 | } |
439 | | |
440 | | |
441 | | extern LZMA_API(uint64_t) |
442 | | lzma_index_memusage(lzma_vli streams, lzma_vli blocks) |
443 | 0 | { |
444 | | // This calculates an upper bound that is only a little bit |
445 | | // bigger than the exact maximum memory usage with the given |
446 | | // parameters. |
447 | | |
448 | | // Typical malloc() overhead is 2 * sizeof(void *) but we take |
449 | | // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE |
450 | | // instead would give too inaccurate estimate. |
451 | 0 | const size_t alloc_overhead = 4 * sizeof(void *); |
452 | | |
453 | | // Amount of memory needed for each Stream base structures. |
454 | | // We assume that every Stream has at least one Block and |
455 | | // thus at least one group. |
456 | 0 | const size_t stream_base = sizeof(index_stream) |
457 | 0 | + sizeof(index_group) + 2 * alloc_overhead; |
458 | | |
459 | | // Amount of memory needed per group. |
460 | 0 | const size_t group_base = sizeof(index_group) |
461 | 0 | + INDEX_GROUP_SIZE * sizeof(index_record) |
462 | 0 | + alloc_overhead; |
463 | | |
464 | | // Number of groups. There may actually be more, but that overhead |
465 | | // has been taken into account in stream_base already. |
466 | 0 | const lzma_vli groups |
467 | 0 | = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE; |
468 | | |
469 | | // Memory used by index_stream and index_group structures. |
470 | 0 | const uint64_t streams_mem = streams * stream_base; |
471 | 0 | const uint64_t groups_mem = groups * group_base; |
472 | | |
473 | | // Memory used by the base structure. |
474 | 0 | const uint64_t index_base = sizeof(lzma_index) + alloc_overhead; |
475 | | |
476 | | // Validate the arguments and catch integer overflows. |
477 | | // Maximum number of Streams is "only" UINT32_MAX, because |
478 | | // that limit is used by the tree containing the Streams. |
479 | 0 | const uint64_t limit = UINT64_MAX - index_base; |
480 | 0 | if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX |
481 | 0 | || streams > limit / stream_base |
482 | 0 | || groups > limit / group_base |
483 | 0 | || limit - streams_mem < groups_mem) |
484 | 0 | return UINT64_MAX; |
485 | | |
486 | 0 | return index_base + streams_mem + groups_mem; |
487 | 0 | } |
488 | | |
489 | | |
490 | | extern LZMA_API(uint64_t) |
491 | | lzma_index_memused(const lzma_index *i) |
492 | 0 | { |
493 | 0 | return lzma_index_memusage(i->streams.count, i->record_count); |
494 | 0 | } |
495 | | |
496 | | |
497 | | extern LZMA_API(lzma_vli) |
498 | | lzma_index_block_count(const lzma_index *i) |
499 | 0 | { |
500 | 0 | return i->record_count; |
501 | 0 | } |
502 | | |
503 | | |
504 | | extern LZMA_API(lzma_vli) |
505 | | lzma_index_stream_count(const lzma_index *i) |
506 | 0 | { |
507 | 0 | return i->streams.count; |
508 | 0 | } |
509 | | |
510 | | |
511 | | extern LZMA_API(lzma_vli) |
512 | | lzma_index_size(const lzma_index *i) |
513 | 0 | { |
514 | 0 | return index_size(i->record_count, i->index_list_size); |
515 | 0 | } |
516 | | |
517 | | |
518 | | extern LZMA_API(lzma_vli) |
519 | | lzma_index_total_size(const lzma_index *i) |
520 | 0 | { |
521 | 0 | return i->total_size; |
522 | 0 | } |
523 | | |
524 | | |
525 | | extern LZMA_API(lzma_vli) |
526 | | lzma_index_stream_size(const lzma_index *i) |
527 | 0 | { |
528 | | // Stream Header + Blocks + Index + Stream Footer |
529 | 0 | return LZMA_STREAM_HEADER_SIZE + i->total_size |
530 | 0 | + index_size(i->record_count, i->index_list_size) |
531 | 0 | + LZMA_STREAM_HEADER_SIZE; |
532 | 0 | } |
533 | | |
534 | | |
535 | | static lzma_vli |
536 | | index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum, |
537 | | lzma_vli record_count, lzma_vli index_list_size, |
538 | | lzma_vli stream_padding) |
539 | 0 | { |
540 | | // Earlier Streams and Stream Paddings + Stream Header |
541 | | // + Blocks + Index + Stream Footer + Stream Padding |
542 | | // |
543 | | // This might go over LZMA_VLI_MAX due to too big unpadded_sum |
544 | | // when this function is used in lzma_index_append(). |
545 | 0 | lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE |
546 | 0 | + stream_padding + vli_ceil4(unpadded_sum); |
547 | 0 | if (file_size > LZMA_VLI_MAX) |
548 | 0 | return LZMA_VLI_UNKNOWN; |
549 | | |
550 | | // The same applies here. |
551 | 0 | file_size += index_size(record_count, index_list_size); |
552 | 0 | if (file_size > LZMA_VLI_MAX) |
553 | 0 | return LZMA_VLI_UNKNOWN; |
554 | | |
555 | 0 | return file_size; |
556 | 0 | } |
557 | | |
558 | | |
559 | | extern LZMA_API(lzma_vli) |
560 | | lzma_index_file_size(const lzma_index *i) |
561 | 0 | { |
562 | 0 | const index_stream *s = (const index_stream *)(i->streams.rightmost); |
563 | 0 | const index_group *g = (const index_group *)(s->groups.rightmost); |
564 | 0 | return index_file_size(s->node.compressed_base, |
565 | 0 | g == NULL ? 0 : g->records[g->last].unpadded_sum, |
566 | 0 | s->record_count, s->index_list_size, |
567 | 0 | s->stream_padding); |
568 | 0 | } |
569 | | |
570 | | |
571 | | extern LZMA_API(lzma_vli) |
572 | | lzma_index_uncompressed_size(const lzma_index *i) |
573 | 0 | { |
574 | 0 | return i->uncompressed_size; |
575 | 0 | } |
576 | | |
577 | | |
578 | | extern LZMA_API(uint32_t) |
579 | | lzma_index_checks(const lzma_index *i) |
580 | 0 | { |
581 | 0 | uint32_t checks = i->checks; |
582 | | |
583 | | // Get the type of the Check of the last Stream too. |
584 | 0 | const index_stream *s = (const index_stream *)(i->streams.rightmost); |
585 | 0 | if (s->stream_flags.version != UINT32_MAX) |
586 | 0 | checks |= UINT32_C(1) << s->stream_flags.check; |
587 | |
|
588 | 0 | return checks; |
589 | 0 | } |
590 | | |
591 | | |
592 | | extern uint32_t |
593 | | lzma_index_padding_size(const lzma_index *i) |
594 | 0 | { |
595 | 0 | return (LZMA_VLI_C(4) - index_size_unpadded( |
596 | 0 | i->record_count, i->index_list_size)) & 3; |
597 | 0 | } |
598 | | |
599 | | |
600 | | extern LZMA_API(lzma_ret) |
601 | | lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags) |
602 | 0 | { |
603 | 0 | if (i == NULL || stream_flags == NULL) |
604 | 0 | return LZMA_PROG_ERROR; |
605 | | |
606 | | // Validate the Stream Flags. |
607 | 0 | return_if_error(lzma_stream_flags_compare( |
608 | 0 | stream_flags, stream_flags)); |
609 | | |
610 | 0 | index_stream *s = (index_stream *)(i->streams.rightmost); |
611 | 0 | s->stream_flags = *stream_flags; |
612 | |
|
613 | 0 | return LZMA_OK; |
614 | 0 | } |
615 | | |
616 | | |
617 | | extern LZMA_API(lzma_ret) |
618 | | lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding) |
619 | 0 | { |
620 | 0 | if (i == NULL || stream_padding > LZMA_VLI_MAX |
621 | 0 | || (stream_padding & 3) != 0) |
622 | 0 | return LZMA_PROG_ERROR; |
623 | | |
624 | 0 | index_stream *s = (index_stream *)(i->streams.rightmost); |
625 | | |
626 | | // Check that the new value won't make the file grow too big. |
627 | 0 | const lzma_vli old_stream_padding = s->stream_padding; |
628 | 0 | s->stream_padding = 0; |
629 | 0 | if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) { |
630 | 0 | s->stream_padding = old_stream_padding; |
631 | 0 | return LZMA_DATA_ERROR; |
632 | 0 | } |
633 | | |
634 | 0 | s->stream_padding = stream_padding; |
635 | 0 | return LZMA_OK; |
636 | 0 | } |
637 | | |
638 | | |
639 | | extern LZMA_API(lzma_ret) |
640 | | lzma_index_append(lzma_index *i, const lzma_allocator *allocator, |
641 | | lzma_vli unpadded_size, lzma_vli uncompressed_size) |
642 | 0 | { |
643 | | // Validate. |
644 | 0 | if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN |
645 | 0 | || unpadded_size > UNPADDED_SIZE_MAX |
646 | 0 | || uncompressed_size > LZMA_VLI_MAX) |
647 | 0 | return LZMA_PROG_ERROR; |
648 | | |
649 | 0 | index_stream *s = (index_stream *)(i->streams.rightmost); |
650 | 0 | index_group *g = (index_group *)(s->groups.rightmost); |
651 | |
|
652 | 0 | const lzma_vli compressed_base = g == NULL ? 0 |
653 | 0 | : vli_ceil4(g->records[g->last].unpadded_sum); |
654 | 0 | const lzma_vli uncompressed_base = g == NULL ? 0 |
655 | 0 | : g->records[g->last].uncompressed_sum; |
656 | 0 | const uint32_t index_list_size_add = lzma_vli_size(unpadded_size) |
657 | 0 | + lzma_vli_size(uncompressed_size); |
658 | | |
659 | | // Check that uncompressed size will not overflow. |
660 | 0 | if (uncompressed_base + uncompressed_size > LZMA_VLI_MAX) |
661 | 0 | return LZMA_DATA_ERROR; |
662 | | |
663 | | // Check that the new unpadded sum will not overflow. This is |
664 | | // checked again in index_file_size(), but the unpadded sum is |
665 | | // passed to vli_ceil4() which expects a valid lzma_vli value. |
666 | 0 | if (compressed_base + unpadded_size > UNPADDED_SIZE_MAX) |
667 | 0 | return LZMA_DATA_ERROR; |
668 | | |
669 | | // Check that the file size will stay within limits. |
670 | 0 | if (index_file_size(s->node.compressed_base, |
671 | 0 | compressed_base + unpadded_size, s->record_count + 1, |
672 | 0 | s->index_list_size + index_list_size_add, |
673 | 0 | s->stream_padding) == LZMA_VLI_UNKNOWN) |
674 | 0 | return LZMA_DATA_ERROR; |
675 | | |
676 | | // The size of the Index field must not exceed the maximum value |
677 | | // that can be stored in the Backward Size field. |
678 | 0 | if (index_size(i->record_count + 1, |
679 | 0 | i->index_list_size + index_list_size_add) |
680 | 0 | > LZMA_BACKWARD_SIZE_MAX) |
681 | 0 | return LZMA_DATA_ERROR; |
682 | | |
683 | 0 | if (g != NULL && g->last + 1 < g->allocated) { |
684 | | // There is space in the last group at least for one Record. |
685 | 0 | ++g->last; |
686 | 0 | } else { |
687 | | // We need to allocate a new group. |
688 | 0 | g = lzma_alloc(sizeof(index_group) |
689 | 0 | + i->prealloc * sizeof(index_record), |
690 | 0 | allocator); |
691 | 0 | if (g == NULL) |
692 | 0 | return LZMA_MEM_ERROR; |
693 | | |
694 | 0 | g->last = 0; |
695 | 0 | g->allocated = i->prealloc; |
696 | | |
697 | | // Reset prealloc so that if the application happens to |
698 | | // add new Records, the allocation size will be sane. |
699 | 0 | i->prealloc = INDEX_GROUP_SIZE; |
700 | | |
701 | | // Set the start offsets of this group. |
702 | 0 | g->node.uncompressed_base = uncompressed_base; |
703 | 0 | g->node.compressed_base = compressed_base; |
704 | 0 | g->number_base = s->record_count + 1; |
705 | | |
706 | | // Add the new group to the Stream. |
707 | 0 | index_tree_append(&s->groups, &g->node); |
708 | 0 | } |
709 | | |
710 | | // Add the new Record to the group. |
711 | 0 | g->records[g->last].uncompressed_sum |
712 | 0 | = uncompressed_base + uncompressed_size; |
713 | 0 | g->records[g->last].unpadded_sum |
714 | 0 | = compressed_base + unpadded_size; |
715 | | |
716 | | // Update the totals. |
717 | 0 | ++s->record_count; |
718 | 0 | s->index_list_size += index_list_size_add; |
719 | |
|
720 | 0 | i->total_size += vli_ceil4(unpadded_size); |
721 | 0 | i->uncompressed_size += uncompressed_size; |
722 | 0 | ++i->record_count; |
723 | 0 | i->index_list_size += index_list_size_add; |
724 | |
|
725 | 0 | return LZMA_OK; |
726 | 0 | } |
727 | | |
728 | | |
729 | | /// Structure to pass info to index_cat_helper() |
730 | | typedef struct { |
731 | | /// Uncompressed size of the destination |
732 | | lzma_vli uncompressed_size; |
733 | | |
734 | | /// Compressed file size of the destination |
735 | | lzma_vli file_size; |
736 | | |
737 | | /// Same as above but for Block numbers |
738 | | lzma_vli block_number_add; |
739 | | |
740 | | /// Number of Streams that were in the destination index before we |
741 | | /// started appending new Streams from the source index. This is |
742 | | /// used to fix the Stream numbering. |
743 | | uint32_t stream_number_add; |
744 | | |
745 | | /// Destination index' Stream tree |
746 | | index_tree *streams; |
747 | | |
748 | | } index_cat_info; |
749 | | |
750 | | |
751 | | /// Add the Stream nodes from the source index to dest using recursion. |
752 | | /// Simplest iterative traversal of the source tree wouldn't work, because |
753 | | /// we update the pointers in nodes when moving them to the destination tree. |
754 | | static void |
755 | | index_cat_helper(const index_cat_info *info, index_stream *this) |
756 | 0 | { |
757 | 0 | index_stream *left = (index_stream *)(this->node.left); |
758 | 0 | index_stream *right = (index_stream *)(this->node.right); |
759 | |
|
760 | 0 | if (left != NULL) |
761 | 0 | index_cat_helper(info, left); |
762 | |
|
763 | 0 | this->node.uncompressed_base += info->uncompressed_size; |
764 | 0 | this->node.compressed_base += info->file_size; |
765 | 0 | this->number += info->stream_number_add; |
766 | 0 | this->block_number_base += info->block_number_add; |
767 | 0 | index_tree_append(info->streams, &this->node); |
768 | |
|
769 | 0 | if (right != NULL) |
770 | 0 | index_cat_helper(info, right); |
771 | |
|
772 | 0 | return; |
773 | 0 | } |
774 | | |
775 | | |
776 | | extern LZMA_API(lzma_ret) |
777 | | lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src, |
778 | | const lzma_allocator *allocator) |
779 | 0 | { |
780 | 0 | if (dest == NULL || src == NULL) |
781 | 0 | return LZMA_PROG_ERROR; |
782 | | |
783 | 0 | const lzma_vli dest_file_size = lzma_index_file_size(dest); |
784 | | |
785 | | // Check that we don't exceed the file size limits. |
786 | 0 | if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX |
787 | 0 | || dest->uncompressed_size + src->uncompressed_size |
788 | 0 | > LZMA_VLI_MAX) |
789 | 0 | return LZMA_DATA_ERROR; |
790 | | |
791 | | // Check that the encoded size of the combined lzma_indexes stays |
792 | | // within limits. In theory, this should be done only if we know |
793 | | // that the user plans to actually combine the Streams and thus |
794 | | // construct a single Index (probably rare). However, exceeding |
795 | | // this limit is quite theoretical, so we do this check always |
796 | | // to simplify things elsewhere. |
797 | 0 | { |
798 | 0 | const lzma_vli dest_size = index_size_unpadded( |
799 | 0 | dest->record_count, dest->index_list_size); |
800 | 0 | const lzma_vli src_size = index_size_unpadded( |
801 | 0 | src->record_count, src->index_list_size); |
802 | 0 | if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX) |
803 | 0 | return LZMA_DATA_ERROR; |
804 | 0 | } |
805 | | |
806 | | // Optimize the last group to minimize memory usage. Allocation has |
807 | | // to be done before modifying dest or src. |
808 | 0 | { |
809 | 0 | index_stream *s = (index_stream *)(dest->streams.rightmost); |
810 | 0 | index_group *g = (index_group *)(s->groups.rightmost); |
811 | 0 | if (g != NULL && g->last + 1 < g->allocated) { |
812 | 0 | assert(g->node.left == NULL); |
813 | 0 | assert(g->node.right == NULL); |
814 | |
|
815 | 0 | index_group *newg = lzma_alloc(sizeof(index_group) |
816 | 0 | + (g->last + 1) |
817 | 0 | * sizeof(index_record), |
818 | 0 | allocator); |
819 | 0 | if (newg == NULL) |
820 | 0 | return LZMA_MEM_ERROR; |
821 | | |
822 | 0 | newg->node = g->node; |
823 | 0 | newg->allocated = g->last + 1; |
824 | 0 | newg->last = g->last; |
825 | 0 | newg->number_base = g->number_base; |
826 | |
|
827 | 0 | memcpy(newg->records, g->records, newg->allocated |
828 | 0 | * sizeof(index_record)); |
829 | |
|
830 | 0 | if (g->node.parent != NULL) { |
831 | 0 | assert(g->node.parent->right == &g->node); |
832 | 0 | g->node.parent->right = &newg->node; |
833 | 0 | } |
834 | |
|
835 | 0 | if (s->groups.leftmost == &g->node) { |
836 | 0 | assert(s->groups.root == &g->node); |
837 | 0 | s->groups.leftmost = &newg->node; |
838 | 0 | s->groups.root = &newg->node; |
839 | 0 | } |
840 | |
|
841 | 0 | assert(s->groups.rightmost == &g->node); |
842 | 0 | s->groups.rightmost = &newg->node; |
843 | |
|
844 | 0 | lzma_free(g, allocator); |
845 | | |
846 | | // NOTE: newg isn't leaked here because |
847 | | // newg == (void *)&newg->node. |
848 | 0 | } |
849 | 0 | } |
850 | | |
851 | | // dest->checks includes the check types of all except the last Stream |
852 | | // in dest. Set the bit for the check type of the last Stream now so |
853 | | // that it won't get lost when Stream(s) from src are appended to dest. |
854 | 0 | dest->checks = lzma_index_checks(dest); |
855 | | |
856 | | // Add all the Streams from src to dest. Update the base offsets |
857 | | // of each Stream from src. |
858 | 0 | const index_cat_info info = { |
859 | 0 | .uncompressed_size = dest->uncompressed_size, |
860 | 0 | .file_size = dest_file_size, |
861 | 0 | .stream_number_add = dest->streams.count, |
862 | 0 | .block_number_add = dest->record_count, |
863 | 0 | .streams = &dest->streams, |
864 | 0 | }; |
865 | 0 | index_cat_helper(&info, (index_stream *)(src->streams.root)); |
866 | | |
867 | | // Update info about all the combined Streams. |
868 | 0 | dest->uncompressed_size += src->uncompressed_size; |
869 | 0 | dest->total_size += src->total_size; |
870 | 0 | dest->record_count += src->record_count; |
871 | 0 | dest->index_list_size += src->index_list_size; |
872 | 0 | dest->checks |= src->checks; |
873 | | |
874 | | // There's nothing else left in src than the base structure. |
875 | 0 | lzma_free(src, allocator); |
876 | |
|
877 | 0 | return LZMA_OK; |
878 | 0 | } |
879 | | |
880 | | |
881 | | /// Duplicate an index_stream. |
882 | | static index_stream * |
883 | | index_dup_stream(const index_stream *src, const lzma_allocator *allocator) |
884 | 0 | { |
885 | | // Catch a somewhat theoretical integer overflow. |
886 | 0 | if (src->record_count > PREALLOC_MAX) |
887 | 0 | return NULL; |
888 | | |
889 | | // Allocate and initialize a new Stream. |
890 | 0 | index_stream *dest = index_stream_init(src->node.compressed_base, |
891 | 0 | src->node.uncompressed_base, src->number, |
892 | 0 | src->block_number_base, allocator); |
893 | 0 | if (dest == NULL) |
894 | 0 | return NULL; |
895 | | |
896 | | // Copy the overall information. |
897 | 0 | dest->record_count = src->record_count; |
898 | 0 | dest->index_list_size = src->index_list_size; |
899 | 0 | dest->stream_flags = src->stream_flags; |
900 | 0 | dest->stream_padding = src->stream_padding; |
901 | | |
902 | | // Return if there are no groups to duplicate. |
903 | 0 | if (src->groups.leftmost == NULL) |
904 | 0 | return dest; |
905 | | |
906 | | // Allocate memory for the Records. We put all the Records into |
907 | | // a single group. It's simplest and also tends to make |
908 | | // lzma_index_locate() a little bit faster with very big Indexes. |
909 | 0 | index_group *destg = lzma_alloc(sizeof(index_group) |
910 | 0 | + src->record_count * sizeof(index_record), |
911 | 0 | allocator); |
912 | 0 | if (destg == NULL) { |
913 | 0 | index_stream_end(dest, allocator); |
914 | 0 | return NULL; |
915 | 0 | } |
916 | | |
917 | | // Initialize destg. |
918 | 0 | destg->node.uncompressed_base = 0; |
919 | 0 | destg->node.compressed_base = 0; |
920 | 0 | destg->number_base = 1; |
921 | 0 | destg->allocated = src->record_count; |
922 | 0 | destg->last = src->record_count - 1; |
923 | | |
924 | | // Go through all the groups in src and copy the Records into destg. |
925 | 0 | const index_group *srcg = (const index_group *)(src->groups.leftmost); |
926 | 0 | size_t i = 0; |
927 | 0 | do { |
928 | 0 | memcpy(destg->records + i, srcg->records, |
929 | 0 | (srcg->last + 1) * sizeof(index_record)); |
930 | 0 | i += srcg->last + 1; |
931 | 0 | srcg = index_tree_next(&srcg->node); |
932 | 0 | } while (srcg != NULL); |
933 | |
|
934 | 0 | assert(i == destg->allocated); |
935 | | |
936 | | // Add the group to the new Stream. |
937 | 0 | index_tree_append(&dest->groups, &destg->node); |
938 | |
|
939 | 0 | return dest; |
940 | 0 | } |
941 | | |
942 | | |
943 | | extern LZMA_API(lzma_index *) |
944 | | lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator) |
945 | 0 | { |
946 | | // Allocate the base structure (no initial Stream). |
947 | 0 | lzma_index *dest = index_init_plain(allocator); |
948 | 0 | if (dest == NULL) |
949 | 0 | return NULL; |
950 | | |
951 | | // Copy the totals. |
952 | 0 | dest->uncompressed_size = src->uncompressed_size; |
953 | 0 | dest->total_size = src->total_size; |
954 | 0 | dest->record_count = src->record_count; |
955 | 0 | dest->index_list_size = src->index_list_size; |
956 | | |
957 | | // Copy the Streams and the groups in them. |
958 | 0 | const index_stream *srcstream |
959 | 0 | = (const index_stream *)(src->streams.leftmost); |
960 | 0 | do { |
961 | 0 | index_stream *deststream = index_dup_stream( |
962 | 0 | srcstream, allocator); |
963 | 0 | if (deststream == NULL) { |
964 | 0 | lzma_index_end(dest, allocator); |
965 | 0 | return NULL; |
966 | 0 | } |
967 | | |
968 | 0 | index_tree_append(&dest->streams, &deststream->node); |
969 | |
|
970 | 0 | srcstream = index_tree_next(&srcstream->node); |
971 | 0 | } while (srcstream != NULL); |
972 | | |
973 | 0 | return dest; |
974 | 0 | } |
975 | | |
976 | | |
977 | | /// Indexing for lzma_index_iter.internal[] |
978 | | enum { |
979 | | ITER_INDEX, |
980 | | ITER_STREAM, |
981 | | ITER_GROUP, |
982 | | ITER_RECORD, |
983 | | ITER_METHOD, |
984 | | }; |
985 | | |
986 | | |
987 | | /// Values for lzma_index_iter.internal[ITER_METHOD].s |
988 | | enum { |
989 | | ITER_METHOD_NORMAL, |
990 | | ITER_METHOD_NEXT, |
991 | | ITER_METHOD_LEFTMOST, |
992 | | }; |
993 | | |
994 | | |
995 | | static void |
996 | | iter_set_info(lzma_index_iter *iter) |
997 | 0 | { |
998 | 0 | const lzma_index *i = iter->internal[ITER_INDEX].p; |
999 | 0 | const index_stream *stream = iter->internal[ITER_STREAM].p; |
1000 | 0 | const index_group *group = iter->internal[ITER_GROUP].p; |
1001 | 0 | const size_t record = iter->internal[ITER_RECORD].s; |
1002 | | |
1003 | | // lzma_index_iter.internal must not contain a pointer to the last |
1004 | | // group in the index, because that may be reallocated by |
1005 | | // lzma_index_cat(). |
1006 | 0 | if (group == NULL) { |
1007 | | // There are no groups. |
1008 | 0 | assert(stream->groups.root == NULL); |
1009 | 0 | iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; |
1010 | |
|
1011 | 0 | } else if (i->streams.rightmost != &stream->node |
1012 | 0 | || stream->groups.rightmost != &group->node) { |
1013 | | // The group is not not the last group in the index. |
1014 | 0 | iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; |
1015 | |
|
1016 | 0 | } else if (stream->groups.leftmost != &group->node) { |
1017 | | // The group isn't the only group in the Stream, thus we |
1018 | | // know that it must have a parent group i.e. it's not |
1019 | | // the root node. |
1020 | 0 | assert(stream->groups.root != &group->node); |
1021 | 0 | assert(group->node.parent->right == &group->node); |
1022 | 0 | iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT; |
1023 | 0 | iter->internal[ITER_GROUP].p = group->node.parent; |
1024 | |
|
1025 | 0 | } else { |
1026 | | // The Stream has only one group. |
1027 | 0 | assert(stream->groups.root == &group->node); |
1028 | 0 | assert(group->node.parent == NULL); |
1029 | 0 | iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; |
1030 | 0 | iter->internal[ITER_GROUP].p = NULL; |
1031 | 0 | } |
1032 | | |
1033 | | // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t |
1034 | | // internally. |
1035 | 0 | iter->stream.number = stream->number; |
1036 | 0 | iter->stream.block_count = stream->record_count; |
1037 | 0 | iter->stream.compressed_offset = stream->node.compressed_base; |
1038 | 0 | iter->stream.uncompressed_offset = stream->node.uncompressed_base; |
1039 | | |
1040 | | // iter->stream.flags will be NULL if the Stream Flags haven't been |
1041 | | // set with lzma_index_stream_flags(). |
1042 | 0 | iter->stream.flags = stream->stream_flags.version == UINT32_MAX |
1043 | 0 | ? NULL : &stream->stream_flags; |
1044 | 0 | iter->stream.padding = stream->stream_padding; |
1045 | |
|
1046 | 0 | if (stream->groups.rightmost == NULL) { |
1047 | | // Stream has no Blocks. |
1048 | 0 | iter->stream.compressed_size = index_size(0, 0) |
1049 | 0 | + 2 * LZMA_STREAM_HEADER_SIZE; |
1050 | 0 | iter->stream.uncompressed_size = 0; |
1051 | 0 | } else { |
1052 | 0 | const index_group *g = (const index_group *)( |
1053 | 0 | stream->groups.rightmost); |
1054 | | |
1055 | | // Stream Header + Stream Footer + Index + Blocks |
1056 | 0 | iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE |
1057 | 0 | + index_size(stream->record_count, |
1058 | 0 | stream->index_list_size) |
1059 | 0 | + vli_ceil4(g->records[g->last].unpadded_sum); |
1060 | 0 | iter->stream.uncompressed_size |
1061 | 0 | = g->records[g->last].uncompressed_sum; |
1062 | 0 | } |
1063 | |
|
1064 | 0 | if (group != NULL) { |
1065 | 0 | iter->block.number_in_stream = group->number_base + record; |
1066 | 0 | iter->block.number_in_file = iter->block.number_in_stream |
1067 | 0 | + stream->block_number_base; |
1068 | |
|
1069 | 0 | iter->block.compressed_stream_offset |
1070 | 0 | = record == 0 ? group->node.compressed_base |
1071 | 0 | : vli_ceil4(group->records[ |
1072 | 0 | record - 1].unpadded_sum); |
1073 | 0 | iter->block.uncompressed_stream_offset |
1074 | 0 | = record == 0 ? group->node.uncompressed_base |
1075 | 0 | : group->records[record - 1].uncompressed_sum; |
1076 | |
|
1077 | 0 | iter->block.uncompressed_size |
1078 | 0 | = group->records[record].uncompressed_sum |
1079 | 0 | - iter->block.uncompressed_stream_offset; |
1080 | 0 | iter->block.unpadded_size |
1081 | 0 | = group->records[record].unpadded_sum |
1082 | 0 | - iter->block.compressed_stream_offset; |
1083 | 0 | iter->block.total_size = vli_ceil4(iter->block.unpadded_size); |
1084 | |
|
1085 | 0 | iter->block.compressed_stream_offset |
1086 | 0 | += LZMA_STREAM_HEADER_SIZE; |
1087 | |
|
1088 | 0 | iter->block.compressed_file_offset |
1089 | 0 | = iter->block.compressed_stream_offset |
1090 | 0 | + iter->stream.compressed_offset; |
1091 | 0 | iter->block.uncompressed_file_offset |
1092 | 0 | = iter->block.uncompressed_stream_offset |
1093 | 0 | + iter->stream.uncompressed_offset; |
1094 | 0 | } |
1095 | |
|
1096 | 0 | return; |
1097 | 0 | } |
1098 | | |
1099 | | |
1100 | | extern LZMA_API(void) |
1101 | | lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i) |
1102 | 0 | { |
1103 | 0 | iter->internal[ITER_INDEX].p = i; |
1104 | 0 | lzma_index_iter_rewind(iter); |
1105 | 0 | return; |
1106 | 0 | } |
1107 | | |
1108 | | |
1109 | | extern LZMA_API(void) |
1110 | | lzma_index_iter_rewind(lzma_index_iter *iter) |
1111 | 0 | { |
1112 | 0 | iter->internal[ITER_STREAM].p = NULL; |
1113 | 0 | iter->internal[ITER_GROUP].p = NULL; |
1114 | 0 | iter->internal[ITER_RECORD].s = 0; |
1115 | 0 | iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; |
1116 | 0 | return; |
1117 | 0 | } |
1118 | | |
1119 | | |
1120 | | extern LZMA_API(lzma_bool) |
1121 | | lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode) |
1122 | 0 | { |
1123 | | // Catch unsupported mode values. |
1124 | 0 | if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK) |
1125 | 0 | return true; |
1126 | | |
1127 | 0 | const lzma_index *i = iter->internal[ITER_INDEX].p; |
1128 | 0 | const index_stream *stream = iter->internal[ITER_STREAM].p; |
1129 | 0 | const index_group *group = NULL; |
1130 | 0 | size_t record = iter->internal[ITER_RECORD].s; |
1131 | | |
1132 | | // If we are being asked for the next Stream, leave group to NULL |
1133 | | // so that the rest of the this function thinks that this Stream |
1134 | | // has no groups and will thus go to the next Stream. |
1135 | 0 | if (mode != LZMA_INDEX_ITER_STREAM) { |
1136 | | // Get the pointer to the current group. See iter_set_inf() |
1137 | | // for explanation. |
1138 | 0 | switch (iter->internal[ITER_METHOD].s) { |
1139 | 0 | case ITER_METHOD_NORMAL: |
1140 | 0 | group = iter->internal[ITER_GROUP].p; |
1141 | 0 | break; |
1142 | | |
1143 | 0 | case ITER_METHOD_NEXT: |
1144 | 0 | group = index_tree_next(iter->internal[ITER_GROUP].p); |
1145 | 0 | break; |
1146 | | |
1147 | 0 | case ITER_METHOD_LEFTMOST: |
1148 | 0 | group = (const index_group *)( |
1149 | 0 | stream->groups.leftmost); |
1150 | 0 | break; |
1151 | 0 | } |
1152 | 0 | } |
1153 | | |
1154 | 0 | again: |
1155 | 0 | if (stream == NULL) { |
1156 | | // We at the beginning of the lzma_index. |
1157 | | // Locate the first Stream. |
1158 | 0 | stream = (const index_stream *)(i->streams.leftmost); |
1159 | 0 | if (mode >= LZMA_INDEX_ITER_BLOCK) { |
1160 | | // Since we are being asked to return information |
1161 | | // about the first a Block, skip Streams that have |
1162 | | // no Blocks. |
1163 | 0 | while (stream->groups.leftmost == NULL) { |
1164 | 0 | stream = index_tree_next(&stream->node); |
1165 | 0 | if (stream == NULL) |
1166 | 0 | return true; |
1167 | 0 | } |
1168 | 0 | } |
1169 | | |
1170 | | // Start from the first Record in the Stream. |
1171 | 0 | group = (const index_group *)(stream->groups.leftmost); |
1172 | 0 | record = 0; |
1173 | |
|
1174 | 0 | } else if (group != NULL && record < group->last) { |
1175 | | // The next Record is in the same group. |
1176 | 0 | ++record; |
1177 | |
|
1178 | 0 | } else { |
1179 | | // This group has no more Records or this Stream has |
1180 | | // no Blocks at all. |
1181 | 0 | record = 0; |
1182 | | |
1183 | | // If group is not NULL, this Stream has at least one Block |
1184 | | // and thus at least one group. Find the next group. |
1185 | 0 | if (group != NULL) |
1186 | 0 | group = index_tree_next(&group->node); |
1187 | |
|
1188 | 0 | if (group == NULL) { |
1189 | | // This Stream has no more Records. Find the next |
1190 | | // Stream. If we are being asked to return information |
1191 | | // about a Block, we skip empty Streams. |
1192 | 0 | do { |
1193 | 0 | stream = index_tree_next(&stream->node); |
1194 | 0 | if (stream == NULL) |
1195 | 0 | return true; |
1196 | 0 | } while (mode >= LZMA_INDEX_ITER_BLOCK |
1197 | 0 | && stream->groups.leftmost == NULL); |
1198 | | |
1199 | 0 | group = (const index_group *)( |
1200 | 0 | stream->groups.leftmost); |
1201 | 0 | } |
1202 | 0 | } |
1203 | | |
1204 | 0 | if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) { |
1205 | | // We need to look for the next Block again if this Block |
1206 | | // is empty. |
1207 | 0 | if (record == 0) { |
1208 | 0 | if (group->node.uncompressed_base |
1209 | 0 | == group->records[0].uncompressed_sum) |
1210 | 0 | goto again; |
1211 | 0 | } else if (group->records[record - 1].uncompressed_sum |
1212 | 0 | == group->records[record].uncompressed_sum) { |
1213 | 0 | goto again; |
1214 | 0 | } |
1215 | 0 | } |
1216 | | |
1217 | 0 | iter->internal[ITER_STREAM].p = stream; |
1218 | 0 | iter->internal[ITER_GROUP].p = group; |
1219 | 0 | iter->internal[ITER_RECORD].s = record; |
1220 | |
|
1221 | 0 | iter_set_info(iter); |
1222 | |
|
1223 | 0 | return false; |
1224 | 0 | } |
1225 | | |
1226 | | |
1227 | | extern LZMA_API(lzma_bool) |
1228 | | lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target) |
1229 | 0 | { |
1230 | 0 | const lzma_index *i = iter->internal[ITER_INDEX].p; |
1231 | | |
1232 | | // If the target is past the end of the file, return immediately. |
1233 | 0 | if (i->uncompressed_size <= target) |
1234 | 0 | return true; |
1235 | | |
1236 | | // Locate the Stream containing the target offset. |
1237 | 0 | const index_stream *stream = index_tree_locate(&i->streams, target); |
1238 | 0 | assert(stream != NULL); |
1239 | 0 | target -= stream->node.uncompressed_base; |
1240 | | |
1241 | | // Locate the group containing the target offset. |
1242 | 0 | const index_group *group = index_tree_locate(&stream->groups, target); |
1243 | 0 | assert(group != NULL); |
1244 | | |
1245 | | // Use binary search to locate the exact Record. It is the first |
1246 | | // Record whose uncompressed_sum is greater than target. |
1247 | | // This is because we want the rightmost Record that fulfills the |
1248 | | // search criterion. It is possible that there are empty Blocks; |
1249 | | // we don't want to return them. |
1250 | 0 | size_t left = 0; |
1251 | 0 | size_t right = group->last; |
1252 | |
|
1253 | 0 | while (left < right) { |
1254 | 0 | const size_t pos = left + (right - left) / 2; |
1255 | 0 | if (group->records[pos].uncompressed_sum <= target) |
1256 | 0 | left = pos + 1; |
1257 | 0 | else |
1258 | 0 | right = pos; |
1259 | 0 | } |
1260 | |
|
1261 | 0 | iter->internal[ITER_STREAM].p = stream; |
1262 | 0 | iter->internal[ITER_GROUP].p = group; |
1263 | 0 | iter->internal[ITER_RECORD].s = left; |
1264 | |
|
1265 | 0 | iter_set_info(iter); |
1266 | |
|
1267 | 0 | return false; |
1268 | 0 | } |