/src/xz/src/liblzma/lz/lz_decoder.c
Line | Count | Source (jump to first uncovered line) |
1 | | // SPDX-License-Identifier: 0BSD |
2 | | |
3 | | /////////////////////////////////////////////////////////////////////////////// |
4 | | // |
5 | | /// \file lz_decoder.c |
6 | | /// \brief LZ out window |
7 | | /// |
8 | | // Authors: Igor Pavlov |
9 | | // Lasse Collin |
10 | | // |
11 | | /////////////////////////////////////////////////////////////////////////////// |
12 | | |
13 | | // liblzma supports multiple LZ77-based filters. The LZ part is shared |
14 | | // between these filters. The LZ code takes care of dictionary handling |
15 | | // and passing the data between filters in the chain. The filter-specific |
16 | | // part decodes from the input buffer to the dictionary. |
17 | | |
18 | | |
19 | | #include "lz_decoder.h" |
20 | | |
21 | | |
22 | | typedef struct { |
23 | | /// Dictionary (history buffer) |
24 | | lzma_dict dict; |
25 | | |
26 | | /// The actual LZ-based decoder e.g. LZMA |
27 | | lzma_lz_decoder lz; |
28 | | |
29 | | /// Next filter in the chain, if any. Note that LZMA and LZMA2 are |
30 | | /// only allowed as the last filter, but the long-range filter in |
31 | | /// future can be in the middle of the chain. |
32 | | lzma_next_coder next; |
33 | | |
34 | | /// True if the next filter in the chain has returned LZMA_STREAM_END. |
35 | | bool next_finished; |
36 | | |
37 | | /// True if the LZ decoder (e.g. LZMA) has detected end of payload |
38 | | /// marker. This may become true before next_finished becomes true. |
39 | | bool this_finished; |
40 | | |
41 | | /// Temporary buffer needed when the LZ-based filter is not the last |
42 | | /// filter in the chain. The output of the next filter is first |
43 | | /// decoded into buffer[], which is then used as input for the actual |
44 | | /// LZ-based decoder. |
45 | | struct { |
46 | | size_t pos; |
47 | | size_t size; |
48 | | uint8_t buffer[LZMA_BUFFER_SIZE]; |
49 | | } temp; |
50 | | } lzma_coder; |
51 | | |
52 | | |
53 | | static void |
54 | | lz_decoder_reset(lzma_coder *coder) |
55 | 59.6k | { |
56 | 59.6k | coder->dict.pos = LZ_DICT_INIT_POS; |
57 | 59.6k | coder->dict.full = 0; |
58 | 59.6k | coder->dict.buf[LZ_DICT_INIT_POS - 1] = '\0'; |
59 | 59.6k | coder->dict.has_wrapped = false; |
60 | 59.6k | coder->dict.need_reset = false; |
61 | 59.6k | return; |
62 | 59.6k | } |
63 | | |
64 | | |
65 | | static lzma_ret |
66 | | decode_buffer(lzma_coder *coder, |
67 | | const uint8_t *restrict in, size_t *restrict in_pos, |
68 | | size_t in_size, uint8_t *restrict out, |
69 | | size_t *restrict out_pos, size_t out_size) |
70 | 869k | { |
71 | 915k | while (true) { |
72 | | // Wrap the dictionary if needed. |
73 | 915k | if (coder->dict.pos == coder->dict.size) { |
74 | | // See the comment of #define LZ_DICT_REPEAT_MAX. |
75 | 18.6k | coder->dict.pos = LZ_DICT_REPEAT_MAX; |
76 | 18.6k | coder->dict.has_wrapped = true; |
77 | 18.6k | memcpy(coder->dict.buf, coder->dict.buf |
78 | 18.6k | + coder->dict.size |
79 | 18.6k | - LZ_DICT_REPEAT_MAX, |
80 | 18.6k | LZ_DICT_REPEAT_MAX); |
81 | 18.6k | } |
82 | | |
83 | | // Store the current dictionary position. It is needed to know |
84 | | // where to start copying to the out[] buffer. |
85 | 915k | const size_t dict_start = coder->dict.pos; |
86 | | |
87 | | // Calculate how much we allow coder->lz.code() to decode. |
88 | | // It must not decode past the end of the dictionary |
89 | | // buffer, and we don't want it to decode more than is |
90 | | // actually needed to fill the out[] buffer. |
91 | 915k | coder->dict.limit = coder->dict.pos |
92 | 915k | + my_min(out_size - *out_pos, |
93 | 915k | coder->dict.size - coder->dict.pos); |
94 | | |
95 | | // Call the coder->lz.code() to do the actual decoding. |
96 | 915k | const lzma_ret ret = coder->lz.code( |
97 | 915k | coder->lz.coder, &coder->dict, |
98 | 915k | in, in_pos, in_size); |
99 | | |
100 | | // Copy the decoded data from the dictionary to the out[] |
101 | | // buffer. Do it conditionally because out can be NULL |
102 | | // (in which case copy_size is always 0). Calling memcpy() |
103 | | // with a null-pointer is undefined even if the third |
104 | | // argument is 0. |
105 | 915k | const size_t copy_size = coder->dict.pos - dict_start; |
106 | 915k | assert(copy_size <= out_size - *out_pos); |
107 | | |
108 | 915k | if (copy_size > 0) |
109 | 648k | memcpy(out + *out_pos, coder->dict.buf + dict_start, |
110 | 648k | copy_size); |
111 | | |
112 | 915k | *out_pos += copy_size; |
113 | | |
114 | | // Reset the dictionary if so requested by coder->lz.code(). |
115 | 915k | if (coder->dict.need_reset) { |
116 | 28.4k | lz_decoder_reset(coder); |
117 | | |
118 | | // Since we reset dictionary, we don't check if |
119 | | // dictionary became full. |
120 | 28.4k | if (ret != LZMA_OK || *out_pos == out_size) |
121 | 475 | return ret; |
122 | 887k | } else { |
123 | | // Return if everything got decoded or an error |
124 | | // occurred, or if there's no more data to decode. |
125 | | // |
126 | | // Note that detecting if there's something to decode |
127 | | // is done by looking if dictionary become full |
128 | | // instead of looking if *in_pos == in_size. This |
129 | | // is because it is possible that all the input was |
130 | | // consumed already but some data is pending to be |
131 | | // written to the dictionary. |
132 | 887k | if (ret != LZMA_OK || *out_pos == out_size |
133 | 887k | || coder->dict.pos < coder->dict.size) |
134 | 868k | return ret; |
135 | 887k | } |
136 | 915k | } |
137 | 869k | } |
138 | | |
139 | | |
140 | | static lzma_ret |
141 | | lz_decode(void *coder_ptr, const lzma_allocator *allocator, |
142 | | const uint8_t *restrict in, size_t *restrict in_pos, |
143 | | size_t in_size, uint8_t *restrict out, |
144 | | size_t *restrict out_pos, size_t out_size, |
145 | | lzma_action action) |
146 | 869k | { |
147 | 869k | lzma_coder *coder = coder_ptr; |
148 | | |
149 | 869k | if (coder->next.code == NULL) |
150 | 869k | return decode_buffer(coder, in, in_pos, in_size, |
151 | 869k | out, out_pos, out_size); |
152 | | |
153 | | // We aren't the last coder in the chain, we need to decode |
154 | | // our input to a temporary buffer. |
155 | 0 | while (*out_pos < out_size) { |
156 | | // Fill the temporary buffer if it is empty. |
157 | 0 | if (!coder->next_finished |
158 | 0 | && coder->temp.pos == coder->temp.size) { |
159 | 0 | coder->temp.pos = 0; |
160 | 0 | coder->temp.size = 0; |
161 | |
|
162 | 0 | const lzma_ret ret = coder->next.code( |
163 | 0 | coder->next.coder, |
164 | 0 | allocator, in, in_pos, in_size, |
165 | 0 | coder->temp.buffer, &coder->temp.size, |
166 | 0 | LZMA_BUFFER_SIZE, action); |
167 | |
|
168 | 0 | if (ret == LZMA_STREAM_END) |
169 | 0 | coder->next_finished = true; |
170 | 0 | else if (ret != LZMA_OK || coder->temp.size == 0) |
171 | 0 | return ret; |
172 | 0 | } |
173 | | |
174 | 0 | if (coder->this_finished) { |
175 | 0 | if (coder->temp.size != 0) |
176 | 0 | return LZMA_DATA_ERROR; |
177 | | |
178 | 0 | if (coder->next_finished) |
179 | 0 | return LZMA_STREAM_END; |
180 | | |
181 | 0 | return LZMA_OK; |
182 | 0 | } |
183 | | |
184 | 0 | const lzma_ret ret = decode_buffer(coder, coder->temp.buffer, |
185 | 0 | &coder->temp.pos, coder->temp.size, |
186 | 0 | out, out_pos, out_size); |
187 | |
|
188 | 0 | if (ret == LZMA_STREAM_END) |
189 | 0 | coder->this_finished = true; |
190 | 0 | else if (ret != LZMA_OK) |
191 | 0 | return ret; |
192 | 0 | else if (coder->next_finished && *out_pos < out_size) |
193 | 0 | return LZMA_DATA_ERROR; |
194 | 0 | } |
195 | | |
196 | 0 | return LZMA_OK; |
197 | 0 | } |
198 | | |
199 | | |
200 | | static void |
201 | | lz_decoder_end(void *coder_ptr, const lzma_allocator *allocator) |
202 | 14.1k | { |
203 | 14.1k | lzma_coder *coder = coder_ptr; |
204 | | |
205 | 14.1k | lzma_next_end(&coder->next, allocator); |
206 | 14.1k | lzma_free(coder->dict.buf, allocator); |
207 | | |
208 | 14.1k | if (coder->lz.end != NULL) |
209 | 11.4k | coder->lz.end(coder->lz.coder, allocator); |
210 | 2.68k | else |
211 | 2.68k | lzma_free(coder->lz.coder, allocator); |
212 | | |
213 | 14.1k | lzma_free(coder, allocator); |
214 | 14.1k | return; |
215 | 14.1k | } |
216 | | |
217 | | |
218 | | extern lzma_ret |
219 | | lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator, |
220 | | const lzma_filter_info *filters, |
221 | | lzma_ret (*lz_init)(lzma_lz_decoder *lz, |
222 | | const lzma_allocator *allocator, |
223 | | lzma_vli id, const void *options, |
224 | | lzma_lz_options *lz_options)) |
225 | 31.2k | { |
226 | | // Allocate the base structure if it isn't already allocated. |
227 | 31.2k | lzma_coder *coder = next->coder; |
228 | 31.2k | if (coder == NULL) { |
229 | 14.1k | coder = lzma_alloc(sizeof(lzma_coder), allocator); |
230 | 14.1k | if (coder == NULL) |
231 | 0 | return LZMA_MEM_ERROR; |
232 | | |
233 | 14.1k | next->coder = coder; |
234 | 14.1k | next->code = &lz_decode; |
235 | 14.1k | next->end = &lz_decoder_end; |
236 | | |
237 | 14.1k | coder->dict.buf = NULL; |
238 | 14.1k | coder->dict.size = 0; |
239 | 14.1k | coder->lz = LZMA_LZ_DECODER_INIT; |
240 | 14.1k | coder->next = LZMA_NEXT_CODER_INIT; |
241 | 14.1k | } |
242 | | |
243 | | // Allocate and initialize the LZ-based decoder. It will also give |
244 | | // us the dictionary size. |
245 | 31.2k | lzma_lz_options lz_options; |
246 | 31.2k | return_if_error(lz_init(&coder->lz, allocator, |
247 | 31.2k | filters[0].id, filters[0].options, &lz_options)); |
248 | | |
249 | | // If the dictionary size is very small, increase it to 4096 bytes. |
250 | | // This is to prevent constant wrapping of the dictionary, which |
251 | | // would slow things down. The downside is that since we don't check |
252 | | // separately for the real dictionary size, we may happily accept |
253 | | // corrupt files. |
254 | 31.2k | if (lz_options.dict_size < 4096) |
255 | 1.64k | lz_options.dict_size = 4096; |
256 | | |
257 | | // Make dictionary size a multiple of 16. Some LZ-based decoders like |
258 | | // LZMA use the lowest bits lzma_dict.pos to know the alignment of the |
259 | | // data. Aligned buffer is also good when memcpying from the |
260 | | // dictionary to the output buffer, since applications are |
261 | | // recommended to give aligned buffers to liblzma. |
262 | | // |
263 | | // Reserve 2 * LZ_DICT_REPEAT_MAX bytes of extra space which is |
264 | | // needed for alloc_size. Reserve also LZ_DICT_EXTRA bytes of extra |
265 | | // space which is *not* counted in alloc_size or coder->dict.size. |
266 | | // |
267 | | // Avoid integer overflow. |
268 | 31.2k | if (lz_options.dict_size > SIZE_MAX - 15 - 2 * LZ_DICT_REPEAT_MAX |
269 | 31.2k | - LZ_DICT_EXTRA) |
270 | 0 | return LZMA_MEM_ERROR; |
271 | | |
272 | 31.2k | lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15)); |
273 | | |
274 | | // Reserve extra space as explained in the comment |
275 | | // of #define LZ_DICT_REPEAT_MAX. |
276 | 31.2k | const size_t alloc_size |
277 | 31.2k | = lz_options.dict_size + 2 * LZ_DICT_REPEAT_MAX; |
278 | | |
279 | | // Allocate and initialize the dictionary. |
280 | 31.2k | if (coder->dict.size != alloc_size) { |
281 | 14.3k | lzma_free(coder->dict.buf, allocator); |
282 | | |
283 | | // The LZ_DICT_EXTRA bytes at the end of the buffer aren't |
284 | | // included in alloc_size. These extra bytes allow |
285 | | // dict_repeat() to read and write more data than requested. |
286 | | // Otherwise this extra space is ignored. |
287 | 14.3k | coder->dict.buf = lzma_alloc(alloc_size + LZ_DICT_EXTRA, |
288 | 14.3k | allocator); |
289 | 14.3k | if (coder->dict.buf == NULL) |
290 | 22 | return LZMA_MEM_ERROR; |
291 | | |
292 | | // NOTE: Yes, alloc_size, not lz_options.dict_size. The way |
293 | | // coder->dict.full is updated will take care that we will |
294 | | // still reject distances larger than lz_options.dict_size. |
295 | 14.3k | coder->dict.size = alloc_size; |
296 | 14.3k | } |
297 | | |
298 | 31.2k | lz_decoder_reset(next->coder); |
299 | | |
300 | | // Use the preset dictionary if it was given to us. |
301 | 31.2k | if (lz_options.preset_dict != NULL |
302 | 31.2k | && lz_options.preset_dict_size > 0) { |
303 | | // If the preset dictionary is bigger than the actual |
304 | | // dictionary, copy only the tail. |
305 | 0 | const size_t copy_size = my_min(lz_options.preset_dict_size, |
306 | 0 | lz_options.dict_size); |
307 | 0 | const size_t offset = lz_options.preset_dict_size - copy_size; |
308 | 0 | memcpy(coder->dict.buf + coder->dict.pos, |
309 | 0 | lz_options.preset_dict + offset, |
310 | 0 | copy_size); |
311 | | |
312 | | // dict.pos isn't zero after lz_decoder_reset(). |
313 | 0 | coder->dict.pos += copy_size; |
314 | 0 | coder->dict.full = copy_size; |
315 | 0 | } |
316 | | |
317 | | // Miscellaneous initializations |
318 | 31.2k | coder->next_finished = false; |
319 | 31.2k | coder->this_finished = false; |
320 | 31.2k | coder->temp.pos = 0; |
321 | 31.2k | coder->temp.size = 0; |
322 | | |
323 | | // Initialize the next filter in the chain, if any. |
324 | 31.2k | return lzma_next_filter_init(&coder->next, allocator, filters + 1); |
325 | 31.2k | } |
326 | | |
327 | | |
328 | | extern uint64_t |
329 | | lzma_lz_decoder_memusage(size_t dictionary_size) |
330 | 31.2k | { |
331 | 31.2k | return sizeof(lzma_coder) + (uint64_t)(dictionary_size) |
332 | 31.2k | + 2 * LZ_DICT_REPEAT_MAX + LZ_DICT_EXTRA; |
333 | 31.2k | } |