Coverage Report

Created: 2025-10-12 07:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjxl/lib/jxl/enc_cluster.cc
Line
Count
Source
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/enc_cluster.h"
7
8
#include <algorithm>
9
#include <cstddef>
10
#include <cstdint>
11
#include <limits>
12
#include <map>
13
#include <numeric>
14
#include <queue>
15
#include <tuple>
16
#include <vector>
17
18
#include "lib/jxl/base/status.h"
19
#include "lib/jxl/enc_ans_params.h"
20
21
#undef HWY_TARGET_INCLUDE
22
#define HWY_TARGET_INCLUDE "lib/jxl/enc_cluster.cc"
23
#include <hwy/foreach_target.h>
24
#include <hwy/highway.h>
25
26
#include "lib/jxl/base/fast_math-inl.h"
27
HWY_BEFORE_NAMESPACE();
28
namespace jxl {
29
namespace HWY_NAMESPACE {
30
31
// These templates are not found via ADL.
32
using hwy::HWY_NAMESPACE::AllTrue;
33
using hwy::HWY_NAMESPACE::Eq;
34
using hwy::HWY_NAMESPACE::GetLane;
35
using hwy::HWY_NAMESPACE::IfThenZeroElse;
36
using hwy::HWY_NAMESPACE::SumOfLanes;
37
using hwy::HWY_NAMESPACE::Zero;
38
39
template <class V>
40
652M
V Entropy(V count, V inv_total, V total) {
41
652M
  const HWY_CAPPED(float, Histogram::kRounding) d;
42
652M
  const auto zero = Set(d, 0.0f);
43
  // TODO(eustas): why (0 - x) instead of Neg(x)?
44
652M
  return IfThenZeroElse(
45
652M
      Eq(count, total),
46
652M
      Sub(zero, Mul(count, FastLog2f(d, Mul(inv_total, count)))));
47
652M
}
Unexecuted instantiation: hwy::N_SSE4::Vec128<float, 4ul> jxl::N_SSE4::Entropy<hwy::N_SSE4::Vec128<float, 4ul> >(hwy::N_SSE4::Vec128<float, 4ul>, hwy::N_SSE4::Vec128<float, 4ul>, hwy::N_SSE4::Vec128<float, 4ul>)
hwy::N_AVX2::Vec256<float> jxl::N_AVX2::Entropy<hwy::N_AVX2::Vec256<float> >(hwy::N_AVX2::Vec256<float>, hwy::N_AVX2::Vec256<float>, hwy::N_AVX2::Vec256<float>)
Line
Count
Source
40
652M
V Entropy(V count, V inv_total, V total) {
41
652M
  const HWY_CAPPED(float, Histogram::kRounding) d;
42
652M
  const auto zero = Set(d, 0.0f);
43
  // TODO(eustas): why (0 - x) instead of Neg(x)?
44
652M
  return IfThenZeroElse(
45
652M
      Eq(count, total),
46
652M
      Sub(zero, Mul(count, FastLog2f(d, Mul(inv_total, count)))));
47
652M
}
Unexecuted instantiation: hwy::N_SSE2::Vec128<float, 4ul> jxl::N_SSE2::Entropy<hwy::N_SSE2::Vec128<float, 4ul> >(hwy::N_SSE2::Vec128<float, 4ul>, hwy::N_SSE2::Vec128<float, 4ul>, hwy::N_SSE2::Vec128<float, 4ul>)
48
49
456k
void HistogramCondition(Histogram& a) {
50
456k
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
51
456k
  const auto kZero = Zero(di);
52
456k
  auto total = kZero;
53
456k
  int nz_pos = -static_cast<int>(Lanes(di));
54
2.68M
  for (size_t i = 0; i < a.counts.size(); i += Lanes(di)) {
55
2.22M
    const auto counts = LoadU(di, &a.counts[i]);
56
2.22M
    const bool nz = !AllTrue(di, Eq(counts, kZero));
57
2.22M
    total = Add(total, counts);
58
2.22M
    if (nz) nz_pos = i;
59
2.22M
  }
60
456k
  a.counts.resize(nz_pos + Lanes(di));
61
456k
  a.total_count = GetLane(SumOfLanes(di, total));
62
456k
}
Unexecuted instantiation: jxl::N_SSE4::HistogramCondition(jxl::Histogram&)
jxl::N_AVX2::HistogramCondition(jxl::Histogram&)
Line
Count
Source
49
456k
void HistogramCondition(Histogram& a) {
50
456k
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
51
456k
  const auto kZero = Zero(di);
52
456k
  auto total = kZero;
53
456k
  int nz_pos = -static_cast<int>(Lanes(di));
54
2.68M
  for (size_t i = 0; i < a.counts.size(); i += Lanes(di)) {
55
2.22M
    const auto counts = LoadU(di, &a.counts[i]);
56
2.22M
    const bool nz = !AllTrue(di, Eq(counts, kZero));
57
2.22M
    total = Add(total, counts);
58
2.22M
    if (nz) nz_pos = i;
59
2.22M
  }
60
456k
  a.counts.resize(nz_pos + Lanes(di));
61
456k
  a.total_count = GetLane(SumOfLanes(di, total));
62
456k
}
Unexecuted instantiation: jxl::N_SSE2::HistogramCondition(jxl::Histogram&)
63
64
11.2M
void HistogramEntropy(const Histogram& a) {
65
11.2M
  a.entropy = 0.0f;
66
11.2M
  if (a.total_count == 0) return;
67
68
4.19M
  const HWY_CAPPED(float, Histogram::kRounding) df;
69
4.19M
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
70
71
4.19M
  const auto inv_tot = Set(df, 1.0f / a.total_count);
72
4.19M
  auto entropy_lanes = Zero(df);
73
4.19M
  auto total = Set(df, a.total_count);
74
75
14.8M
  for (size_t i = 0; i < a.counts.size(); i += Lanes(di)) {
76
10.6M
    const auto counts = LoadU(di, &a.counts[i]);
77
10.6M
    entropy_lanes =
78
10.6M
        Add(entropy_lanes, Entropy(ConvertTo(df, counts), inv_tot, total));
79
10.6M
  }
80
4.19M
  a.entropy += GetLane(SumOfLanes(df, entropy_lanes));
81
4.19M
}
Unexecuted instantiation: jxl::N_SSE4::HistogramEntropy(jxl::Histogram const&)
jxl::N_AVX2::HistogramEntropy(jxl::Histogram const&)
Line
Count
Source
64
11.2M
void HistogramEntropy(const Histogram& a) {
65
11.2M
  a.entropy = 0.0f;
66
11.2M
  if (a.total_count == 0) return;
67
68
4.19M
  const HWY_CAPPED(float, Histogram::kRounding) df;
69
4.19M
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
70
71
4.19M
  const auto inv_tot = Set(df, 1.0f / a.total_count);
72
4.19M
  auto entropy_lanes = Zero(df);
73
4.19M
  auto total = Set(df, a.total_count);
74
75
14.8M
  for (size_t i = 0; i < a.counts.size(); i += Lanes(di)) {
76
10.6M
    const auto counts = LoadU(di, &a.counts[i]);
77
10.6M
    entropy_lanes =
78
10.6M
        Add(entropy_lanes, Entropy(ConvertTo(df, counts), inv_tot, total));
79
10.6M
  }
80
4.19M
  a.entropy += GetLane(SumOfLanes(df, entropy_lanes));
81
4.19M
}
Unexecuted instantiation: jxl::N_SSE2::HistogramEntropy(jxl::Histogram const&)
82
83
180M
float HistogramDistance(const Histogram& a, const Histogram& b) {
84
180M
  if (a.total_count == 0 || b.total_count == 0) return 0;
85
86
180M
  const HWY_CAPPED(float, Histogram::kRounding) df;
87
180M
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
88
89
180M
  const auto inv_tot = Set(df, 1.0f / (a.total_count + b.total_count));
90
180M
  auto distance_lanes = Zero(df);
91
180M
  auto total = Set(df, a.total_count + b.total_count);
92
93
822M
  for (size_t i = 0; i < std::max(a.counts.size(), b.counts.size());
94
641M
       i += Lanes(di)) {
95
641M
    const auto a_counts =
96
641M
        a.counts.size() > i ? LoadU(di, &a.counts[i]) : Zero(di);
97
641M
    const auto b_counts =
98
641M
        b.counts.size() > i ? LoadU(di, &b.counts[i]) : Zero(di);
99
641M
    const auto counts = ConvertTo(df, Add(a_counts, b_counts));
100
641M
    distance_lanes = Add(distance_lanes, Entropy(counts, inv_tot, total));
101
641M
  }
102
180M
  const float total_distance = GetLane(SumOfLanes(df, distance_lanes));
103
180M
  return total_distance - a.entropy - b.entropy;
104
180M
}
Unexecuted instantiation: jxl::N_SSE4::HistogramDistance(jxl::Histogram const&, jxl::Histogram const&)
jxl::N_AVX2::HistogramDistance(jxl::Histogram const&, jxl::Histogram const&)
Line
Count
Source
83
180M
float HistogramDistance(const Histogram& a, const Histogram& b) {
84
180M
  if (a.total_count == 0 || b.total_count == 0) return 0;
85
86
180M
  const HWY_CAPPED(float, Histogram::kRounding) df;
87
180M
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
88
89
180M
  const auto inv_tot = Set(df, 1.0f / (a.total_count + b.total_count));
90
180M
  auto distance_lanes = Zero(df);
91
180M
  auto total = Set(df, a.total_count + b.total_count);
92
93
822M
  for (size_t i = 0; i < std::max(a.counts.size(), b.counts.size());
94
641M
       i += Lanes(di)) {
95
641M
    const auto a_counts =
96
641M
        a.counts.size() > i ? LoadU(di, &a.counts[i]) : Zero(di);
97
641M
    const auto b_counts =
98
641M
        b.counts.size() > i ? LoadU(di, &b.counts[i]) : Zero(di);
99
641M
    const auto counts = ConvertTo(df, Add(a_counts, b_counts));
100
641M
    distance_lanes = Add(distance_lanes, Entropy(counts, inv_tot, total));
101
641M
  }
102
180M
  const float total_distance = GetLane(SumOfLanes(df, distance_lanes));
103
180M
  return total_distance - a.entropy - b.entropy;
104
180M
}
Unexecuted instantiation: jxl::N_SSE2::HistogramDistance(jxl::Histogram const&, jxl::Histogram const&)
105
106
constexpr const float kInfinity = std::numeric_limits<float>::infinity();
107
108
0
float HistogramKLDivergence(const Histogram& actual, const Histogram& coding) {
109
0
  if (actual.total_count == 0) return 0;
110
0
  if (coding.total_count == 0) return kInfinity;
111
112
0
  const HWY_CAPPED(float, Histogram::kRounding) df;
113
0
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
114
115
0
  const auto coding_inv = Set(df, 1.0f / coding.total_count);
116
0
  auto cost_lanes = Zero(df);
117
118
0
  for (size_t i = 0; i < actual.counts.size(); i += Lanes(di)) {
119
0
    const auto counts = LoadU(di, &actual.counts[i]);
120
0
    const auto coding_counts =
121
0
        coding.counts.size() > i ? LoadU(di, &coding.counts[i]) : Zero(di);
122
0
    const auto coding_probs = Mul(ConvertTo(df, coding_counts), coding_inv);
123
0
    const auto neg_coding_cost = BitCast(
124
0
        df,
125
0
        IfThenZeroElse(Eq(counts, Zero(di)),
126
0
                       IfThenElse(Eq(coding_counts, Zero(di)),
127
0
                                  BitCast(di, Set(df, -kInfinity)),
128
0
                                  BitCast(di, FastLog2f(df, coding_probs)))));
129
0
    cost_lanes = NegMulAdd(ConvertTo(df, counts), neg_coding_cost, cost_lanes);
130
0
  }
131
0
  const float total_cost = GetLane(SumOfLanes(df, cost_lanes));
132
0
  return total_cost - actual.entropy;
133
0
}
Unexecuted instantiation: jxl::N_SSE4::HistogramKLDivergence(jxl::Histogram const&, jxl::Histogram const&)
Unexecuted instantiation: jxl::N_AVX2::HistogramKLDivergence(jxl::Histogram const&, jxl::Histogram const&)
Unexecuted instantiation: jxl::N_SSE2::HistogramKLDivergence(jxl::Histogram const&, jxl::Histogram const&)
134
135
// First step of a k-means clustering with a fancy distance metric.
136
Status FastClusterHistograms(const std::vector<Histogram>& in,
137
                             size_t max_histograms, std::vector<Histogram>* out,
138
13.2k
                             std::vector<uint32_t>* histogram_symbols) {
139
13.2k
  const size_t prev_histograms = out->size();
140
13.2k
  out->reserve(max_histograms);
141
13.2k
  histogram_symbols->clear();
142
13.2k
  histogram_symbols->resize(in.size(), max_histograms);
143
144
13.2k
  std::vector<float> dists(in.size(), std::numeric_limits<float>::max());
145
13.2k
  size_t largest_idx = 0;
146
14.0M
  for (size_t i = 0; i < in.size(); i++) {
147
14.0M
    if (in[i].total_count == 0) {
148
12.6M
      (*histogram_symbols)[i] = 0;
149
12.6M
      dists[i] = 0.0f;
150
12.6M
      continue;
151
12.6M
    }
152
1.45M
    HistogramEntropy(in[i]);
153
1.45M
    if (in[i].total_count > in[largest_idx].total_count) {
154
22.7k
      largest_idx = i;
155
22.7k
    }
156
1.45M
  }
157
158
13.2k
  if (prev_histograms > 0) {
159
0
    for (size_t j = 0; j < prev_histograms; ++j) {
160
0
      HistogramEntropy((*out)[j]);
161
0
    }
162
0
    for (size_t i = 0; i < in.size(); i++) {
163
0
      if (dists[i] == 0.0f) continue;
164
0
      for (size_t j = 0; j < prev_histograms; ++j) {
165
0
        dists[i] = std::min(HistogramKLDivergence(in[i], (*out)[j]), dists[i]);
166
0
      }
167
0
    }
168
0
    auto max_dist = std::max_element(dists.begin(), dists.end());
169
0
    if (*max_dist > 0.0f) {
170
0
      largest_idx = max_dist - dists.begin();
171
0
    }
172
0
  }
173
174
13.2k
  constexpr float kMinDistanceForDistinct = 48.0f;
175
145k
  while (out->size() < max_histograms) {
176
144k
    (*histogram_symbols)[largest_idx] = out->size();
177
144k
    out->push_back(in[largest_idx]);
178
144k
    dists[largest_idx] = 0.0f;
179
144k
    largest_idx = 0;
180
165M
    for (size_t i = 0; i < in.size(); i++) {
181
165M
      if (dists[i] == 0.0f) continue;
182
93.1M
      dists[i] = std::min(HistogramDistance(in[i], out->back()), dists[i]);
183
93.1M
      if (dists[i] > dists[largest_idx]) largest_idx = i;
184
93.1M
    }
185
144k
    if (dists[largest_idx] < kMinDistanceForDistinct) break;
186
144k
  }
187
188
14.0M
  for (size_t i = 0; i < in.size(); i++) {
189
14.0M
    if ((*histogram_symbols)[i] != max_histograms) continue;
190
1.30M
    size_t best = 0;
191
1.30M
    float best_dist = std::numeric_limits<float>::max();
192
88.9M
    for (size_t j = 0; j < out->size(); j++) {
193
87.6M
      float dist = j < prev_histograms ? HistogramKLDivergence(in[i], (*out)[j])
194
87.6M
                                       : HistogramDistance(in[i], (*out)[j]);
195
87.6M
      if (dist < best_dist) {
196
4.46M
        best = j;
197
4.46M
        best_dist = dist;
198
4.46M
      }
199
87.6M
    }
200
1.30M
    JXL_ENSURE(best_dist < std::numeric_limits<float>::max());
201
1.30M
    if (best >= prev_histograms) {
202
1.30M
      (*out)[best].AddHistogram(in[i]);
203
1.30M
      HistogramEntropy((*out)[best]);
204
1.30M
    }
205
1.30M
    (*histogram_symbols)[i] = best;
206
1.30M
  }
207
13.2k
  return true;
208
13.2k
}
Unexecuted instantiation: jxl::N_SSE4::FastClusterHistograms(std::__1::vector<jxl::Histogram, std::__1::allocator<jxl::Histogram> > const&, unsigned long, std::__1::vector<jxl::Histogram, std::__1::allocator<jxl::Histogram> >*, std::__1::vector<unsigned int, std::__1::allocator<unsigned int> >*)
jxl::N_AVX2::FastClusterHistograms(std::__1::vector<jxl::Histogram, std::__1::allocator<jxl::Histogram> > const&, unsigned long, std::__1::vector<jxl::Histogram, std::__1::allocator<jxl::Histogram> >*, std::__1::vector<unsigned int, std::__1::allocator<unsigned int> >*)
Line
Count
Source
138
13.2k
                             std::vector<uint32_t>* histogram_symbols) {
139
13.2k
  const size_t prev_histograms = out->size();
140
13.2k
  out->reserve(max_histograms);
141
13.2k
  histogram_symbols->clear();
142
13.2k
  histogram_symbols->resize(in.size(), max_histograms);
143
144
13.2k
  std::vector<float> dists(in.size(), std::numeric_limits<float>::max());
145
13.2k
  size_t largest_idx = 0;
146
14.0M
  for (size_t i = 0; i < in.size(); i++) {
147
14.0M
    if (in[i].total_count == 0) {
148
12.6M
      (*histogram_symbols)[i] = 0;
149
12.6M
      dists[i] = 0.0f;
150
12.6M
      continue;
151
12.6M
    }
152
1.45M
    HistogramEntropy(in[i]);
153
1.45M
    if (in[i].total_count > in[largest_idx].total_count) {
154
22.7k
      largest_idx = i;
155
22.7k
    }
156
1.45M
  }
157
158
13.2k
  if (prev_histograms > 0) {
159
0
    for (size_t j = 0; j < prev_histograms; ++j) {
160
0
      HistogramEntropy((*out)[j]);
161
0
    }
162
0
    for (size_t i = 0; i < in.size(); i++) {
163
0
      if (dists[i] == 0.0f) continue;
164
0
      for (size_t j = 0; j < prev_histograms; ++j) {
165
0
        dists[i] = std::min(HistogramKLDivergence(in[i], (*out)[j]), dists[i]);
166
0
      }
167
0
    }
168
0
    auto max_dist = std::max_element(dists.begin(), dists.end());
169
0
    if (*max_dist > 0.0f) {
170
0
      largest_idx = max_dist - dists.begin();
171
0
    }
172
0
  }
173
174
13.2k
  constexpr float kMinDistanceForDistinct = 48.0f;
175
145k
  while (out->size() < max_histograms) {
176
144k
    (*histogram_symbols)[largest_idx] = out->size();
177
144k
    out->push_back(in[largest_idx]);
178
144k
    dists[largest_idx] = 0.0f;
179
144k
    largest_idx = 0;
180
165M
    for (size_t i = 0; i < in.size(); i++) {
181
165M
      if (dists[i] == 0.0f) continue;
182
93.1M
      dists[i] = std::min(HistogramDistance(in[i], out->back()), dists[i]);
183
93.1M
      if (dists[i] > dists[largest_idx]) largest_idx = i;
184
93.1M
    }
185
144k
    if (dists[largest_idx] < kMinDistanceForDistinct) break;
186
144k
  }
187
188
14.0M
  for (size_t i = 0; i < in.size(); i++) {
189
14.0M
    if ((*histogram_symbols)[i] != max_histograms) continue;
190
1.30M
    size_t best = 0;
191
1.30M
    float best_dist = std::numeric_limits<float>::max();
192
88.9M
    for (size_t j = 0; j < out->size(); j++) {
193
87.6M
      float dist = j < prev_histograms ? HistogramKLDivergence(in[i], (*out)[j])
194
87.6M
                                       : HistogramDistance(in[i], (*out)[j]);
195
87.6M
      if (dist < best_dist) {
196
4.46M
        best = j;
197
4.46M
        best_dist = dist;
198
4.46M
      }
199
87.6M
    }
200
1.30M
    JXL_ENSURE(best_dist < std::numeric_limits<float>::max());
201
1.30M
    if (best >= prev_histograms) {
202
1.30M
      (*out)[best].AddHistogram(in[i]);
203
1.30M
      HistogramEntropy((*out)[best]);
204
1.30M
    }
205
1.30M
    (*histogram_symbols)[i] = best;
206
1.30M
  }
207
13.2k
  return true;
208
13.2k
}
Unexecuted instantiation: jxl::N_SSE2::FastClusterHistograms(std::__1::vector<jxl::Histogram, std::__1::allocator<jxl::Histogram> > const&, unsigned long, std::__1::vector<jxl::Histogram, std::__1::allocator<jxl::Histogram> >*, std::__1::vector<unsigned int, std::__1::allocator<unsigned int> >*)
209
210
// NOLINTNEXTLINE(google-readability-namespace-comments)
211
}  // namespace HWY_NAMESPACE
212
}  // namespace jxl
213
HWY_AFTER_NAMESPACE();
214
215
#if HWY_ONCE
216
namespace jxl {
217
HWY_EXPORT(FastClusterHistograms);  // Local function
218
HWY_EXPORT(HistogramEntropy);       // Local function
219
HWY_EXPORT(HistogramCondition);     // Local function
220
221
456k
void Histogram::Condition() { HWY_DYNAMIC_DISPATCH(HistogramCondition)(*this); }
222
223
8.46M
float Histogram::ShannonEntropy() const {
224
8.46M
  HWY_DYNAMIC_DISPATCH(HistogramEntropy)(*this);
225
8.46M
  return entropy;
226
8.46M
}
227
228
namespace {
229
// -----------------------------------------------------------------------------
230
// Histogram refinement
231
232
// Reorder histograms in *out so that the new symbols in *symbols come in
233
// increasing order.
234
void HistogramReindex(std::vector<Histogram>* out, size_t prev_histograms,
235
13.2k
                      std::vector<uint32_t>* symbols) {
236
13.2k
  std::vector<Histogram> tmp(*out);
237
13.2k
  std::map<int, int> new_index;
238
13.2k
  for (size_t i = 0; i < prev_histograms; ++i) {
239
0
    new_index[i] = i;
240
0
  }
241
13.2k
  int next_index = prev_histograms;
242
14.0M
  for (uint32_t symbol : *symbols) {
243
14.0M
    if (new_index.find(symbol) == new_index.end()) {
244
144k
      new_index[symbol] = next_index;
245
144k
      (*out)[next_index] = tmp[symbol];
246
144k
      ++next_index;
247
144k
    }
248
14.0M
  }
249
13.2k
  out->resize(next_index);
250
14.0M
  for (uint32_t& symbol : *symbols) {
251
14.0M
    symbol = new_index[symbol];
252
14.0M
  }
253
13.2k
}
254
255
}  // namespace
256
257
// Clusters similar histograms in 'in' together, the selected histograms are
258
// placed in 'out', and for each index in 'in', *histogram_symbols will
259
// indicate which of the 'out' histograms is the best approximation.
260
Status ClusterHistograms(const HistogramParams& params,
261
                         const std::vector<Histogram>& in,
262
                         size_t max_histograms, std::vector<Histogram>* out,
263
13.2k
                         std::vector<uint32_t>* histogram_symbols) {
264
13.2k
  size_t prev_histograms = out->size();
265
13.2k
  max_histograms = std::min(max_histograms, params.max_histograms);
266
13.2k
  max_histograms = std::min(max_histograms, in.size());
267
13.2k
  if (params.clustering == HistogramParams::ClusteringType::kFastest) {
268
0
    max_histograms = std::min(max_histograms, static_cast<size_t>(4));
269
0
  }
270
271
13.2k
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(FastClusterHistograms)(
272
13.2k
      in, prev_histograms + max_histograms, out, histogram_symbols));
273
274
13.2k
  if (prev_histograms == 0 &&
275
13.2k
      params.clustering == HistogramParams::ClusteringType::kBest) {
276
10.4k
    for (auto& histo : *out) {
277
10.4k
      JXL_ASSIGN_OR_RETURN(histo.entropy, histo.ANSPopulationCost());
278
10.4k
    }
279
4.15k
    uint32_t next_version = 2;
280
4.15k
    std::vector<uint32_t> version(out->size(), 1);
281
4.15k
    std::vector<uint32_t> renumbering(out->size());
282
4.15k
    std::iota(renumbering.begin(), renumbering.end(), 0);
283
284
    // Try to pair up clusters if doing so reduces the total cost.
285
286
4.15k
    struct HistogramPair {
287
      // validity of a pair: p.version == max(version[i], version[j])
288
4.15k
      float cost;
289
4.15k
      uint32_t first;
290
4.15k
      uint32_t second;
291
4.15k
      uint32_t version;
292
      // We use > because priority queues sort in *decreasing* order, but we
293
      // want lower cost elements to appear first.
294
4.15k
      bool operator<(const HistogramPair& other) const {
295
2.48k
        return std::make_tuple(cost, first, second, version) >
296
2.48k
               std::make_tuple(other.cost, other.first, other.second,
297
2.48k
                               other.version);
298
2.48k
      }
299
4.15k
    };
300
301
    // Create list of all pairs by increasing merging cost.
302
4.15k
    std::priority_queue<HistogramPair> pairs_to_merge;
303
14.5k
    for (uint32_t i = 0; i < out->size(); i++) {
304
25.2k
      for (uint32_t j = i + 1; j < out->size(); j++) {
305
14.8k
        Histogram histo;
306
14.8k
        histo.AddHistogram((*out)[i]);
307
14.8k
        histo.AddHistogram((*out)[j]);
308
14.8k
        JXL_ASSIGN_OR_RETURN(float cost, histo.ANSPopulationCost());
309
14.8k
        cost -= (*out)[i].entropy + (*out)[j].entropy;
310
        // Avoid enqueueing pairs that are not advantageous to merge.
311
14.8k
        if (cost >= 0) continue;
312
910
        pairs_to_merge.push(
313
910
            HistogramPair{cost, i, j, std::max(version[i], version[j])});
314
910
      }
315
10.4k
    }
316
317
    // Merge the best pair to merge, add new pairs that get formed as a
318
    // consequence.
319
5.20k
    while (!pairs_to_merge.empty()) {
320
1.05k
      uint32_t first = pairs_to_merge.top().first;
321
1.05k
      uint32_t second = pairs_to_merge.top().second;
322
1.05k
      uint32_t ver = pairs_to_merge.top().version;
323
1.05k
      pairs_to_merge.pop();
324
1.05k
      if (ver != std::max(version[first], version[second]) ||
325
725
          version[first] == 0 || version[second] == 0) {
326
544
        continue;
327
544
      }
328
509
      (*out)[first].AddHistogram((*out)[second]);
329
509
      JXL_ASSIGN_OR_RETURN((*out)[first].entropy,
330
509
                           (*out)[first].ANSPopulationCost());
331
2.70k
      for (uint32_t& item : renumbering) {
332
2.70k
        if (item == second) {
333
540
          item = first;
334
540
        }
335
2.70k
      }
336
509
      version[second] = 0;
337
509
      version[first] = next_version++;
338
3.21k
      for (uint32_t j = 0; j < out->size(); j++) {
339
2.70k
        if (j == first) continue;
340
2.19k
        if (version[j] == 0) continue;
341
1.49k
        Histogram histo;
342
1.49k
        histo.AddHistogram((*out)[first]);
343
1.49k
        histo.AddHistogram((*out)[j]);
344
1.49k
        JXL_ASSIGN_OR_RETURN(float merge_cost, histo.ANSPopulationCost());
345
1.49k
        merge_cost -= (*out)[first].entropy + (*out)[j].entropy;
346
        // Avoid enqueueing pairs that are not advantageous to merge.
347
1.49k
        if (merge_cost >= 0) continue;
348
143
        pairs_to_merge.push(
349
143
            HistogramPair{merge_cost, std::min(first, j), std::max(first, j),
350
143
                          std::max(version[first], version[j])});
351
143
      }
352
509
    }
353
4.15k
    std::vector<uint32_t> reverse_renumbering(out->size(), -1);
354
4.15k
    size_t num_alive = 0;
355
14.5k
    for (size_t i = 0; i < out->size(); i++) {
356
10.4k
      if (version[i] == 0) continue;
357
9.90k
      (*out)[num_alive++] = (*out)[i];
358
9.90k
      reverse_renumbering[i] = num_alive - 1;
359
9.90k
    }
360
4.15k
    out->resize(num_alive);
361
23.0k
    for (uint32_t& item : *histogram_symbols) {
362
23.0k
      item = reverse_renumbering[renumbering[item]];
363
23.0k
    }
364
4.15k
  }
365
366
  // Convert the context map to a canonical form.
367
13.2k
  HistogramReindex(out, prev_histograms, histogram_symbols);
368
13.2k
  return true;
369
13.2k
}
370
371
}  // namespace jxl
372
#endif  // HWY_ONCE