Coverage Report

Created: 2025-10-12 07:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libwebp/src/dsp/enc_sse2.c
Line
Count
Source
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 version of speed-critical encoding functions.
11
//
12
// Author: Christian Duvivier (cduvivier@google.com)
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE2)
17
#include <assert.h>
18
#include <emmintrin.h>
19
#include <stdlib.h>  // for abs()
20
#include <string.h>
21
22
#include "src/dsp/common_sse2.h"
23
#include "src/dsp/cpu.h"
24
#include "src/enc/cost_enc.h"
25
#include "src/enc/vp8i_enc.h"
26
#include "src/utils/utils.h"
27
#include "src/webp/types.h"
28
29
//------------------------------------------------------------------------------
30
// Transforms (Paragraph 14.4)
31
32
// Does one inverse transform.
33
static void ITransform_One_SSE2(const uint8_t* WEBP_RESTRICT ref,
34
                                const int16_t* WEBP_RESTRICT in,
35
252M
                                uint8_t* WEBP_RESTRICT dst) {
36
  // This implementation makes use of 16-bit fixed point versions of two
37
  // multiply constants:
38
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
39
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
40
  //
41
  // To be able to use signed 16-bit integers, we use the following trick to
42
  // have constants within range:
43
  // - Associated constants are obtained by subtracting the 16-bit fixed point
44
  //   version of one:
45
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
46
  //      K1 = 85267  =>  k1 =  20091
47
  //      K2 = 35468  =>  k2 = -30068
48
  // - The multiplication of a variable by a constant become the sum of the
49
  //   variable and the multiplication of that variable by the associated
50
  //   constant:
51
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
52
252M
  const __m128i k1k2 =
53
252M
      _mm_set_epi16(-30068, -30068, -30068, -30068, 20091, 20091, 20091, 20091);
54
252M
  const __m128i k2k1 =
55
252M
      _mm_set_epi16(20091, 20091, 20091, 20091, -30068, -30068, -30068, -30068);
56
252M
  const __m128i zero = _mm_setzero_si128();
57
252M
  const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4);
58
252M
  __m128i T01, T23;
59
60
  // Load and concatenate the transform coefficients.
61
252M
  const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]);
62
252M
  const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]);
63
  // a00 a10 a20 a30   a01 a11 a21 a31
64
  // a02 a12 a22 a32   a03 a13 a23 a33
65
66
  // Vertical pass and subsequent transpose.
67
252M
  {
68
252M
    const __m128i in1 = _mm_unpackhi_epi64(in01, in01);
69
252M
    const __m128i in3 = _mm_unpackhi_epi64(in23, in23);
70
71
    // First pass, c and d calculations are longer because of the "trick"
72
    // multiplications.
73
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
74
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
75
252M
    const __m128i a_d3 = _mm_add_epi16(in01, in23);
76
252M
    const __m128i b_c3 = _mm_sub_epi16(in01, in23);
77
252M
    const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1);
78
252M
    const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2);
79
252M
    const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
80
252M
    const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
81
252M
    const __m128i c = _mm_add_epi16(c3, c4);
82
252M
    const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
83
252M
    const __m128i du = _mm_add_epi16(a_d3, d4u);
84
252M
    const __m128i d = _mm_unpackhi_epi64(du, du);
85
86
    // Second pass.
87
252M
    const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
88
252M
    const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
89
90
252M
    const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
91
252M
    const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
92
252M
    const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
93
94
252M
    const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23);
95
252M
    const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23);
96
    // a00 a20 a01 a21   a02 a22 a03 a23
97
    // a10 a30 a11 a31   a12 a32 a13 a33
98
99
252M
    T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
100
252M
    T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
101
    // a00 a10 a20 a30   a01 a11 a21 a31
102
    // a02 a12 a22 a32   a03 a13 a23 a33
103
252M
  }
104
105
  // Horizontal pass and subsequent transpose.
106
252M
  {
107
252M
    const __m128i T1 = _mm_unpackhi_epi64(T01, T01);
108
252M
    const __m128i T3 = _mm_unpackhi_epi64(T23, T23);
109
110
    // First pass, c and d calculations are longer because of the "trick"
111
    // multiplications.
112
252M
    const __m128i dc = _mm_add_epi16(T01, zero_four);
113
114
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
115
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
116
252M
    const __m128i a_d3 = _mm_add_epi16(dc, T23);
117
252M
    const __m128i b_c3 = _mm_sub_epi16(dc, T23);
118
252M
    const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1);
119
252M
    const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2);
120
252M
    const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
121
252M
    const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
122
252M
    const __m128i c = _mm_add_epi16(c3, c4);
123
252M
    const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
124
252M
    const __m128i du = _mm_add_epi16(a_d3, d4u);
125
252M
    const __m128i d = _mm_unpackhi_epi64(du, du);
126
127
    // Second pass.
128
252M
    const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
129
252M
    const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
130
131
252M
    const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
132
252M
    const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
133
252M
    const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
134
135
252M
    const __m128i shifted01 = _mm_srai_epi16(tmp01, 3);
136
252M
    const __m128i shifted23 = _mm_srai_epi16(tmp23, 3);
137
    // a00 a01 a02 a03   a10 a11 a12 a13
138
    // a20 a21 a22 a23   a30 a31 a32 a33
139
140
252M
    const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23);
141
252M
    const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23);
142
    // a00 a20 a01 a21   a02 a22 a03 a23
143
    // a10 a30 a11 a31   a12 a32 a13 a33
144
145
252M
    T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
146
252M
    T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
147
    // a00 a10 a20 a30   a01 a11 a21 a31
148
    // a02 a12 a22 a32   a03 a13 a23 a33
149
252M
  }
150
151
  // Add inverse transform to 'ref' and store.
152
252M
  {
153
    // Load the reference(s).
154
252M
    __m128i ref01, ref23, ref0123;
155
252M
    int32_t buf[4];
156
157
    // Load four bytes/pixels per line.
158
252M
    const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS]));
159
252M
    const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS]));
160
252M
    const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS]));
161
252M
    const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS]));
162
252M
    ref01 = _mm_unpacklo_epi32(ref0, ref1);
163
252M
    ref23 = _mm_unpacklo_epi32(ref2, ref3);
164
165
    // Convert to 16b.
166
252M
    ref01 = _mm_unpacklo_epi8(ref01, zero);
167
252M
    ref23 = _mm_unpacklo_epi8(ref23, zero);
168
    // Add the inverse transform(s).
169
252M
    ref01 = _mm_add_epi16(ref01, T01);
170
252M
    ref23 = _mm_add_epi16(ref23, T23);
171
    // Unsigned saturate to 8b.
172
252M
    ref0123 = _mm_packus_epi16(ref01, ref23);
173
174
252M
    _mm_storeu_si128((__m128i*)buf, ref0123);
175
176
    // Store four bytes/pixels per line.
177
252M
    WebPInt32ToMem(&dst[0 * BPS], buf[0]);
178
252M
    WebPInt32ToMem(&dst[1 * BPS], buf[1]);
179
252M
    WebPInt32ToMem(&dst[2 * BPS], buf[2]);
180
252M
    WebPInt32ToMem(&dst[3 * BPS], buf[3]);
181
252M
  }
182
252M
}
183
184
// Does two inverse transforms.
185
static void ITransform_Two_SSE2(const uint8_t* WEBP_RESTRICT ref,
186
                                const int16_t* WEBP_RESTRICT in,
187
157M
                                uint8_t* WEBP_RESTRICT dst) {
188
  // This implementation makes use of 16-bit fixed point versions of two
189
  // multiply constants:
190
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
191
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
192
  //
193
  // To be able to use signed 16-bit integers, we use the following trick to
194
  // have constants within range:
195
  // - Associated constants are obtained by subtracting the 16-bit fixed point
196
  //   version of one:
197
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
198
  //      K1 = 85267  =>  k1 =  20091
199
  //      K2 = 35468  =>  k2 = -30068
200
  // - The multiplication of a variable by a constant become the sum of the
201
  //   variable and the multiplication of that variable by the associated
202
  //   constant:
203
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
204
157M
  const __m128i k1 = _mm_set1_epi16(20091);
205
157M
  const __m128i k2 = _mm_set1_epi16(-30068);
206
157M
  __m128i T0, T1, T2, T3;
207
208
  // Load and concatenate the transform coefficients (we'll do two inverse
209
  // transforms in parallel).
210
157M
  __m128i in0, in1, in2, in3;
211
157M
  {
212
157M
    const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]);
213
157M
    const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]);
214
157M
    const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]);
215
157M
    const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]);
216
157M
    in0 = _mm_unpacklo_epi64(tmp0, tmp2);
217
157M
    in1 = _mm_unpackhi_epi64(tmp0, tmp2);
218
157M
    in2 = _mm_unpacklo_epi64(tmp1, tmp3);
219
157M
    in3 = _mm_unpackhi_epi64(tmp1, tmp3);
220
    // a00 a10 a20 a30   b00 b10 b20 b30
221
    // a01 a11 a21 a31   b01 b11 b21 b31
222
    // a02 a12 a22 a32   b02 b12 b22 b32
223
    // a03 a13 a23 a33   b03 b13 b23 b33
224
157M
  }
225
226
  // Vertical pass and subsequent transpose.
227
157M
  {
228
    // First pass, c and d calculations are longer because of the "trick"
229
    // multiplications.
230
157M
    const __m128i a = _mm_add_epi16(in0, in2);
231
157M
    const __m128i b = _mm_sub_epi16(in0, in2);
232
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
233
157M
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
234
157M
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
235
157M
    const __m128i c3 = _mm_sub_epi16(in1, in3);
236
157M
    const __m128i c4 = _mm_sub_epi16(c1, c2);
237
157M
    const __m128i c = _mm_add_epi16(c3, c4);
238
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
239
157M
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
240
157M
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
241
157M
    const __m128i d3 = _mm_add_epi16(in1, in3);
242
157M
    const __m128i d4 = _mm_add_epi16(d1, d2);
243
157M
    const __m128i d = _mm_add_epi16(d3, d4);
244
245
    // Second pass.
246
157M
    const __m128i tmp0 = _mm_add_epi16(a, d);
247
157M
    const __m128i tmp1 = _mm_add_epi16(b, c);
248
157M
    const __m128i tmp2 = _mm_sub_epi16(b, c);
249
157M
    const __m128i tmp3 = _mm_sub_epi16(a, d);
250
251
    // Transpose the two 4x4.
252
157M
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
253
157M
  }
254
255
  // Horizontal pass and subsequent transpose.
256
157M
  {
257
    // First pass, c and d calculations are longer because of the "trick"
258
    // multiplications.
259
157M
    const __m128i four = _mm_set1_epi16(4);
260
157M
    const __m128i dc = _mm_add_epi16(T0, four);
261
157M
    const __m128i a = _mm_add_epi16(dc, T2);
262
157M
    const __m128i b = _mm_sub_epi16(dc, T2);
263
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
264
157M
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
265
157M
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
266
157M
    const __m128i c3 = _mm_sub_epi16(T1, T3);
267
157M
    const __m128i c4 = _mm_sub_epi16(c1, c2);
268
157M
    const __m128i c = _mm_add_epi16(c3, c4);
269
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
270
157M
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
271
157M
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
272
157M
    const __m128i d3 = _mm_add_epi16(T1, T3);
273
157M
    const __m128i d4 = _mm_add_epi16(d1, d2);
274
157M
    const __m128i d = _mm_add_epi16(d3, d4);
275
276
    // Second pass.
277
157M
    const __m128i tmp0 = _mm_add_epi16(a, d);
278
157M
    const __m128i tmp1 = _mm_add_epi16(b, c);
279
157M
    const __m128i tmp2 = _mm_sub_epi16(b, c);
280
157M
    const __m128i tmp3 = _mm_sub_epi16(a, d);
281
157M
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
282
157M
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
283
157M
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
284
157M
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
285
286
    // Transpose the two 4x4.
287
157M
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
288
157M
                           &T2, &T3);
289
157M
  }
290
291
  // Add inverse transform to 'ref' and store.
292
157M
  {
293
157M
    const __m128i zero = _mm_setzero_si128();
294
    // Load the reference(s).
295
157M
    __m128i ref0, ref1, ref2, ref3;
296
    // Load eight bytes/pixels per line.
297
157M
    ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
298
157M
    ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
299
157M
    ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
300
157M
    ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
301
    // Convert to 16b.
302
157M
    ref0 = _mm_unpacklo_epi8(ref0, zero);
303
157M
    ref1 = _mm_unpacklo_epi8(ref1, zero);
304
157M
    ref2 = _mm_unpacklo_epi8(ref2, zero);
305
157M
    ref3 = _mm_unpacklo_epi8(ref3, zero);
306
    // Add the inverse transform(s).
307
157M
    ref0 = _mm_add_epi16(ref0, T0);
308
157M
    ref1 = _mm_add_epi16(ref1, T1);
309
157M
    ref2 = _mm_add_epi16(ref2, T2);
310
157M
    ref3 = _mm_add_epi16(ref3, T3);
311
    // Unsigned saturate to 8b.
312
157M
    ref0 = _mm_packus_epi16(ref0, ref0);
313
157M
    ref1 = _mm_packus_epi16(ref1, ref1);
314
157M
    ref2 = _mm_packus_epi16(ref2, ref2);
315
157M
    ref3 = _mm_packus_epi16(ref3, ref3);
316
    // Store eight bytes/pixels per line.
317
157M
    _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
318
157M
    _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
319
157M
    _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
320
157M
    _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
321
157M
  }
322
157M
}
323
324
// Does one or two inverse transforms.
325
static void ITransform_SSE2(const uint8_t* WEBP_RESTRICT ref,
326
                            const int16_t* WEBP_RESTRICT in,
327
409M
                            uint8_t* WEBP_RESTRICT dst, int do_two) {
328
409M
  if (do_two) {
329
157M
    ITransform_Two_SSE2(ref, in, dst);
330
252M
  } else {
331
252M
    ITransform_One_SSE2(ref, in, dst);
332
252M
  }
333
409M
}
334
335
static void FTransformPass1_SSE2(const __m128i* const in01,
336
                                 const __m128i* const in23,
337
724M
                                 __m128i* const out01, __m128i* const out32) {
338
724M
  const __m128i k937 = _mm_set1_epi32(937);
339
724M
  const __m128i k1812 = _mm_set1_epi32(1812);
340
341
724M
  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
342
724M
  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
343
724M
  const __m128i k5352_2217p =
344
724M
      _mm_set_epi16(2217, 5352, 2217, 5352, 2217, 5352, 2217, 5352);
345
724M
  const __m128i k5352_2217m =
346
724M
      _mm_set_epi16(-5352, 2217, -5352, 2217, -5352, 2217, -5352, 2217);
347
348
  // *in01 = 00 01 10 11 02 03 12 13
349
  // *in23 = 20 21 30 31 22 23 32 33
350
724M
  const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
351
724M
  const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
352
  // 00 01 10 11 03 02 13 12
353
  // 20 21 30 31 23 22 33 32
354
724M
  const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
355
724M
  const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
356
  // 00 01 10 11 20 21 30 31
357
  // 03 02 13 12 23 22 33 32
358
724M
  const __m128i a01 = _mm_add_epi16(s01, s32);
359
724M
  const __m128i a32 = _mm_sub_epi16(s01, s32);
360
  // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
361
  // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
362
363
724M
  const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
364
724M
  const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
365
724M
  const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
366
724M
  const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
367
724M
  const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
368
724M
  const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
369
724M
  const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
370
724M
  const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
371
724M
  const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
372
724M
  const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
373
724M
  const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);  // 0 1 0 1 0 1...
374
724M
  const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);  // 2 3 2 3 2 3
375
724M
  const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
376
724M
  *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
377
724M
  *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
378
724M
}
379
380
static void FTransformPass2_SSE2(const __m128i* const v01,
381
                                 const __m128i* const v32,
382
724M
                                 int16_t* WEBP_RESTRICT out) {
383
724M
  const __m128i zero = _mm_setzero_si128();
384
724M
  const __m128i seven = _mm_set1_epi16(7);
385
724M
  const __m128i k5352_2217 =
386
724M
      _mm_set_epi16(5352, 2217, 5352, 2217, 5352, 2217, 5352, 2217);
387
724M
  const __m128i k2217_5352 =
388
724M
      _mm_set_epi16(2217, -5352, 2217, -5352, 2217, -5352, 2217, -5352);
389
724M
  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
390
724M
  const __m128i k51000 = _mm_set1_epi32(51000);
391
392
  // Same operations are done on the (0,3) and (1,2) pairs.
393
  // a3 = v0 - v3
394
  // a2 = v1 - v2
395
724M
  const __m128i a32 = _mm_sub_epi16(*v01, *v32);
396
724M
  const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
397
398
724M
  const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
399
724M
  const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
400
724M
  const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
401
724M
  const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
402
724M
  const __m128i d3 = _mm_add_epi32(c3, k51000);
403
724M
  const __m128i e1 = _mm_srai_epi32(d1, 16);
404
724M
  const __m128i e3 = _mm_srai_epi32(d3, 16);
405
  // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
406
  // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
407
724M
  const __m128i f1 = _mm_packs_epi32(e1, e1);
408
724M
  const __m128i f3 = _mm_packs_epi32(e3, e3);
409
  // g1 = f1 + (a3 != 0);
410
  // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
411
  // desired (0, 1), we add one earlier through k12000_plus_one.
412
  // -> g1 = f1 + 1 - (a3 == 0)
413
724M
  const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
414
415
  // a0 = v0 + v3
416
  // a1 = v1 + v2
417
724M
  const __m128i a01 = _mm_add_epi16(*v01, *v32);
418
724M
  const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
419
724M
  const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
420
724M
  const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
421
724M
  const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
422
  // d0 = (a0 + a1 + 7) >> 4;
423
  // d2 = (a0 - a1 + 7) >> 4;
424
724M
  const __m128i d0 = _mm_srai_epi16(c0, 4);
425
724M
  const __m128i d2 = _mm_srai_epi16(c2, 4);
426
427
724M
  const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
428
724M
  const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
429
724M
  _mm_storeu_si128((__m128i*)&out[0], d0_g1);
430
724M
  _mm_storeu_si128((__m128i*)&out[8], d2_f3);
431
724M
}
432
433
static void FTransform_SSE2(const uint8_t* WEBP_RESTRICT src,
434
                            const uint8_t* WEBP_RESTRICT ref,
435
409M
                            int16_t* WEBP_RESTRICT out) {
436
409M
  const __m128i zero = _mm_setzero_si128();
437
  // Load src.
438
409M
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
439
409M
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
440
409M
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
441
409M
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
442
  // 00 01 02 03 *
443
  // 10 11 12 13 *
444
  // 20 21 22 23 *
445
  // 30 31 32 33 *
446
  // Shuffle.
447
409M
  const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
448
409M
  const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
449
  // 00 01 10 11 02 03 12 13 * * ...
450
  // 20 21 30 31 22 22 32 33 * * ...
451
452
  // Load ref.
453
409M
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
454
409M
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
455
409M
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
456
409M
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
457
409M
  const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
458
409M
  const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
459
460
  // Convert both to 16 bit.
461
409M
  const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
462
409M
  const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
463
409M
  const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
464
409M
  const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
465
466
  // Compute the difference.
467
409M
  const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
468
409M
  const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
469
409M
  __m128i v01, v32;
470
471
  // First pass
472
409M
  FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
473
474
  // Second pass
475
409M
  FTransformPass2_SSE2(&v01, &v32, out);
476
409M
}
477
478
static void FTransform2_SSE2(const uint8_t* WEBP_RESTRICT src,
479
                             const uint8_t* WEBP_RESTRICT ref,
480
157M
                             int16_t* WEBP_RESTRICT out) {
481
157M
  const __m128i zero = _mm_setzero_si128();
482
483
  // Load src and convert to 16b.
484
157M
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
485
157M
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
486
157M
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
487
157M
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
488
157M
  const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
489
157M
  const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
490
157M
  const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
491
157M
  const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
492
  // Load ref and convert to 16b.
493
157M
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
494
157M
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
495
157M
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
496
157M
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
497
157M
  const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
498
157M
  const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
499
157M
  const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
500
157M
  const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
501
  // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
502
157M
  const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
503
157M
  const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
504
157M
  const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
505
157M
  const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
506
507
  // Unpack and shuffle
508
  // 00 01 02 03   0 0 0 0
509
  // 10 11 12 13   0 0 0 0
510
  // 20 21 22 23   0 0 0 0
511
  // 30 31 32 33   0 0 0 0
512
157M
  const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
513
157M
  const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
514
157M
  const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
515
157M
  const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
516
157M
  __m128i v01l, v32l;
517
157M
  __m128i v01h, v32h;
518
519
  // First pass
520
157M
  FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
521
157M
  FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
522
523
  // Second pass
524
157M
  FTransformPass2_SSE2(&v01l, &v32l, out + 0);
525
157M
  FTransformPass2_SSE2(&v01h, &v32h, out + 16);
526
157M
}
527
528
static void FTransformWHTRow_SSE2(const int16_t* WEBP_RESTRICT const in,
529
52.4M
                                  __m128i* const out) {
530
52.4M
  const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
531
52.4M
  const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
532
52.4M
  const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
533
52.4M
  const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
534
52.4M
  const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
535
52.4M
  const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
536
52.4M
  const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
537
52.4M
  const __m128i B0 = _mm_adds_epi16(A01, A23);         // a0 | a1 | ...
538
52.4M
  const __m128i B1 = _mm_subs_epi16(A01, A23);         // a3 | a2 | ...
539
52.4M
  const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
540
52.4M
  const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
541
52.4M
  const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
542
52.4M
  *out = _mm_madd_epi16(D, kMult);
543
52.4M
}
544
545
static void FTransformWHT_SSE2(const int16_t* WEBP_RESTRICT in,
546
13.1M
                               int16_t* WEBP_RESTRICT out) {
547
  // Input is 12b signed.
548
13.1M
  __m128i row0, row1, row2, row3;
549
  // Rows are 14b signed.
550
13.1M
  FTransformWHTRow_SSE2(in + 0 * 64, &row0);
551
13.1M
  FTransformWHTRow_SSE2(in + 1 * 64, &row1);
552
13.1M
  FTransformWHTRow_SSE2(in + 2 * 64, &row2);
553
13.1M
  FTransformWHTRow_SSE2(in + 3 * 64, &row3);
554
555
13.1M
  {
556
    // The a* are 15b signed.
557
13.1M
    const __m128i a0 = _mm_add_epi32(row0, row2);
558
13.1M
    const __m128i a1 = _mm_add_epi32(row1, row3);
559
13.1M
    const __m128i a2 = _mm_sub_epi32(row1, row3);
560
13.1M
    const __m128i a3 = _mm_sub_epi32(row0, row2);
561
13.1M
    const __m128i a0a3 = _mm_packs_epi32(a0, a3);
562
13.1M
    const __m128i a1a2 = _mm_packs_epi32(a1, a2);
563
564
    // The b* are 16b signed.
565
13.1M
    const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
566
13.1M
    const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
567
13.1M
    const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
568
13.1M
    const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
569
570
13.1M
    _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
571
13.1M
    _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
572
13.1M
  }
573
13.1M
}
574
575
//------------------------------------------------------------------------------
576
// Compute susceptibility based on DCT-coeff histograms:
577
// the higher, the "easier" the macroblock is to compress.
578
579
static void CollectHistogram_SSE2(const uint8_t* WEBP_RESTRICT ref,
580
                                  const uint8_t* WEBP_RESTRICT pred,
581
                                  int start_block, int end_block,
582
0
                                  VP8Histogram* WEBP_RESTRICT const histo) {
583
0
  const __m128i zero = _mm_setzero_si128();
584
0
  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
585
0
  int j;
586
0
  int distribution[MAX_COEFF_THRESH + 1] = {0};
587
0
  for (j = start_block; j < end_block; ++j) {
588
0
    int16_t out[16];
589
0
    int k;
590
591
0
    FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
592
593
    // Convert coefficients to bin (within out[]).
594
0
    {
595
      // Load.
596
0
      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
597
0
      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
598
0
      const __m128i d0 = _mm_sub_epi16(zero, out0);
599
0
      const __m128i d1 = _mm_sub_epi16(zero, out1);
600
0
      const __m128i abs0 = _mm_max_epi16(out0, d0);  // abs(v), 16b
601
0
      const __m128i abs1 = _mm_max_epi16(out1, d1);
602
      // v = abs(out) >> 3
603
0
      const __m128i v0 = _mm_srai_epi16(abs0, 3);
604
0
      const __m128i v1 = _mm_srai_epi16(abs1, 3);
605
      // bin = min(v, MAX_COEFF_THRESH)
606
0
      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
607
0
      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
608
      // Store.
609
0
      _mm_storeu_si128((__m128i*)&out[0], bin0);
610
0
      _mm_storeu_si128((__m128i*)&out[8], bin1);
611
0
    }
612
613
    // Convert coefficients to bin.
614
0
    for (k = 0; k < 16; ++k) {
615
0
      ++distribution[out[k]];
616
0
    }
617
0
  }
618
0
  VP8SetHistogramData(distribution, histo);
619
0
}
620
621
//------------------------------------------------------------------------------
622
// Intra predictions
623
624
// helper for chroma-DC predictions
625
13.5M
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
626
13.5M
  int j;
627
13.5M
  const __m128i values = _mm_set1_epi8((char)v);
628
122M
  for (j = 0; j < 8; ++j) {
629
108M
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
630
108M
  }
631
13.5M
}
632
633
6.79M
static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
634
6.79M
  int j;
635
6.79M
  const __m128i values = _mm_set1_epi8((char)v);
636
115M
  for (j = 0; j < 16; ++j) {
637
108M
    _mm_store_si128((__m128i*)(dst + j * BPS), values);
638
108M
  }
639
6.79M
}
640
641
25.9M
static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
642
25.9M
  if (size == 4) {
643
25.2M
    int j;
644
126M
    for (j = 0; j < 4; ++j) {
645
100M
      memset(dst + j * BPS, value, 4);
646
100M
    }
647
25.2M
  } else if (size == 8) {
648
473k
    Put8x8uv_SSE2(value, dst);
649
473k
  } else {
650
236k
    Put16_SSE2(value, dst);
651
236k
  }
652
25.9M
}
653
654
static WEBP_INLINE void VE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
655
13.1M
                                   const uint8_t* WEBP_RESTRICT top) {
656
13.1M
  int j;
657
13.1M
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
658
117M
  for (j = 0; j < 8; ++j) {
659
104M
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
660
104M
  }
661
13.1M
}
662
663
static WEBP_INLINE void VE16_SSE2(uint8_t* WEBP_RESTRICT dst,
664
6.55M
                                  const uint8_t* WEBP_RESTRICT top) {
665
6.55M
  const __m128i top_values = _mm_load_si128((const __m128i*)top);
666
6.55M
  int j;
667
111M
  for (j = 0; j < 16; ++j) {
668
104M
    _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
669
104M
  }
670
6.55M
}
671
672
static WEBP_INLINE void VerticalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
673
                                          const uint8_t* WEBP_RESTRICT top,
674
20.0M
                                          int size) {
675
20.0M
  if (top != NULL) {
676
19.6M
    if (size == 8) {
677
13.1M
      VE8uv_SSE2(dst, top);
678
13.1M
    } else {
679
6.55M
      VE16_SSE2(dst, top);
680
6.55M
    }
681
19.6M
  } else {
682
345k
    Fill_SSE2(dst, 127, size);
683
345k
  }
684
20.0M
}
685
686
static WEBP_INLINE void HE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
687
13.0M
                                   const uint8_t* WEBP_RESTRICT left) {
688
13.0M
  int j;
689
117M
  for (j = 0; j < 8; ++j) {
690
104M
    const __m128i values = _mm_set1_epi8((char)left[j]);
691
104M
    _mm_storel_epi64((__m128i*)dst, values);
692
104M
    dst += BPS;
693
104M
  }
694
13.0M
}
695
696
static WEBP_INLINE void HE16_SSE2(uint8_t* WEBP_RESTRICT dst,
697
6.54M
                                  const uint8_t* WEBP_RESTRICT left) {
698
6.54M
  int j;
699
111M
  for (j = 0; j < 16; ++j) {
700
104M
    const __m128i values = _mm_set1_epi8((char)left[j]);
701
104M
    _mm_store_si128((__m128i*)dst, values);
702
104M
    dst += BPS;
703
104M
  }
704
6.54M
}
705
706
static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
707
                                            const uint8_t* WEBP_RESTRICT left,
708
19.9M
                                            int size) {
709
19.9M
  if (left != NULL) {
710
19.6M
    if (size == 8) {
711
13.0M
      HE8uv_SSE2(dst, left);
712
13.0M
    } else {
713
6.54M
      HE16_SSE2(dst, left);
714
6.54M
    }
715
19.6M
  } else {
716
354k
    Fill_SSE2(dst, 129, size);
717
354k
  }
718
19.9M
}
719
720
static WEBP_INLINE void TM_SSE2(uint8_t* WEBP_RESTRICT dst,
721
                                const uint8_t* WEBP_RESTRICT left,
722
18.9M
                                const uint8_t* WEBP_RESTRICT top, int size) {
723
18.9M
  const __m128i zero = _mm_setzero_si128();
724
18.9M
  int y;
725
18.9M
  if (size == 8) {
726
12.6M
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
727
12.6M
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
728
113M
    for (y = 0; y < 8; ++y, dst += BPS) {
729
101M
      const int val = left[y] - left[-1];
730
101M
      const __m128i base = _mm_set1_epi16(val);
731
101M
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
732
101M
      _mm_storel_epi64((__m128i*)dst, out);
733
101M
    }
734
12.6M
  } else {
735
6.32M
    const __m128i top_values = _mm_load_si128((const __m128i*)top);
736
6.32M
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
737
6.32M
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
738
107M
    for (y = 0; y < 16; ++y, dst += BPS) {
739
101M
      const int val = left[y] - left[-1];
740
101M
      const __m128i base = _mm_set1_epi16(val);
741
101M
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
742
101M
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
743
101M
      const __m128i out = _mm_packus_epi16(out_0, out_1);
744
101M
      _mm_store_si128((__m128i*)dst, out);
745
101M
    }
746
6.32M
  }
747
18.9M
}
748
749
static WEBP_INLINE void TrueMotion_SSE2(uint8_t* WEBP_RESTRICT dst,
750
                                        const uint8_t* WEBP_RESTRICT left,
751
                                        const uint8_t* WEBP_RESTRICT top,
752
19.6M
                                        int size) {
753
19.6M
  if (left != NULL) {
754
19.3M
    if (top != NULL) {
755
18.9M
      TM_SSE2(dst, left, top, size);
756
18.9M
    } else {
757
335k
      HorizontalPred_SSE2(dst, left, size);
758
335k
    }
759
19.3M
  } else {
760
    // true motion without left samples (hence: with default 129 value)
761
    // is equivalent to VE prediction where you just copy the top samples.
762
    // Note that if top samples are not available, the default value is
763
    // then 129, and not 127 as in the VerticalPred case.
764
354k
    if (top != NULL) {
765
344k
      VerticalPred_SSE2(dst, top, size);
766
344k
    } else {
767
10.0k
      Fill_SSE2(dst, 129, size);
768
10.0k
    }
769
354k
  }
770
19.6M
}
771
772
static WEBP_INLINE void DC8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
773
                                   const uint8_t* WEBP_RESTRICT left,
774
12.6M
                                   const uint8_t* WEBP_RESTRICT top) {
775
12.6M
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
776
12.6M
  const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
777
12.6M
  const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
778
12.6M
  const int DC = VP8HorizontalAdd8b(&combined) + 8;
779
12.6M
  Put8x8uv_SSE2(DC >> 4, dst);
780
12.6M
}
781
782
static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
783
453k
                                         const uint8_t* WEBP_RESTRICT top) {
784
453k
  const __m128i zero = _mm_setzero_si128();
785
453k
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
786
453k
  const __m128i sum = _mm_sad_epu8(top_values, zero);
787
453k
  const int DC = _mm_cvtsi128_si32(sum) + 4;
788
453k
  Put8x8uv_SSE2(DC >> 3, dst);
789
453k
}
790
791
static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
792
223k
                                        const uint8_t* WEBP_RESTRICT left) {
793
  // 'left' is contiguous so we can reuse the top summation.
794
223k
  DC8uvNoLeft_SSE2(dst, left);
795
223k
}
796
797
6.72k
static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
798
6.72k
  Put8x8uv_SSE2(0x80, dst);
799
6.72k
}
800
801
static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* WEBP_RESTRICT dst,
802
                                       const uint8_t* WEBP_RESTRICT left,
803
13.1M
                                       const uint8_t* WEBP_RESTRICT top) {
804
13.1M
  if (top != NULL) {
805
12.8M
    if (left != NULL) {  // top and left present
806
12.6M
      DC8uv_SSE2(dst, left, top);
807
12.6M
    } else {  // top, but no left
808
229k
      DC8uvNoLeft_SSE2(dst, top);
809
229k
    }
810
12.8M
  } else if (left != NULL) {  // left but no top
811
223k
    DC8uvNoTop_SSE2(dst, left);
812
223k
  } else {  // no top, no left, nothing.
813
6.72k
    DC8uvNoTopLeft_SSE2(dst);
814
6.72k
  }
815
13.1M
}
816
817
static WEBP_INLINE void DC16_SSE2(uint8_t* WEBP_RESTRICT dst,
818
                                  const uint8_t* WEBP_RESTRICT left,
819
6.32M
                                  const uint8_t* WEBP_RESTRICT top) {
820
6.32M
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
821
6.32M
  const __m128i left_row = _mm_load_si128((const __m128i*)left);
822
6.32M
  const int DC =
823
6.32M
      VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
824
6.32M
  Put16_SSE2(DC >> 5, dst);
825
6.32M
}
826
827
static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
828
226k
                                        const uint8_t* WEBP_RESTRICT top) {
829
226k
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
830
226k
  const int DC = VP8HorizontalAdd8b(&top_row) + 8;
831
226k
  Put16_SSE2(DC >> 4, dst);
832
226k
}
833
834
static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
835
111k
                                       const uint8_t* WEBP_RESTRICT left) {
836
  // 'left' is contiguous so we can reuse the top summation.
837
111k
  DC16NoLeft_SSE2(dst, left);
838
111k
}
839
840
3.36k
static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
841
3.36k
  Put16_SSE2(0x80, dst);
842
3.36k
}
843
844
static WEBP_INLINE void DC16Mode_SSE2(uint8_t* WEBP_RESTRICT dst,
845
                                      const uint8_t* WEBP_RESTRICT left,
846
6.55M
                                      const uint8_t* WEBP_RESTRICT top) {
847
6.55M
  if (top != NULL) {
848
6.43M
    if (left != NULL) {  // top and left present
849
6.32M
      DC16_SSE2(dst, left, top);
850
6.32M
    } else {  // top, but no left
851
114k
      DC16NoLeft_SSE2(dst, top);
852
114k
    }
853
6.43M
  } else if (left != NULL) {  // left but no top
854
111k
    DC16NoTop_SSE2(dst, left);
855
111k
  } else {  // no top, no left, nothing.
856
3.36k
    DC16NoTopLeft_SSE2(dst);
857
3.36k
  }
858
6.55M
}
859
860
//------------------------------------------------------------------------------
861
// 4x4 predictions
862
863
908M
#define DST(x, y) dst[(x) + (y) * BPS]
864
378M
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
865
176M
#define AVG2(a, b) (((a) + (b) + 1) >> 1)
866
867
// We use the following 8b-arithmetic tricks:
868
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
869
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
870
// and:
871
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
872
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
873
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
874
875
// vertical
876
static WEBP_INLINE void VE4_SSE2(uint8_t* WEBP_RESTRICT dst,
877
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
878
25.2M
  const __m128i one = _mm_set1_epi8(1);
879
25.2M
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
880
25.2M
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
881
25.2M
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
882
25.2M
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
883
25.2M
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
884
25.2M
  const __m128i b = _mm_subs_epu8(a, lsb);
885
25.2M
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
886
25.2M
  const int vals = _mm_cvtsi128_si32(avg);
887
25.2M
  int i;
888
126M
  for (i = 0; i < 4; ++i) {
889
100M
    WebPInt32ToMem(dst + i * BPS, vals);
890
100M
  }
891
25.2M
}
892
893
// horizontal
894
static WEBP_INLINE void HE4_SSE2(uint8_t* WEBP_RESTRICT dst,
895
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
896
25.2M
  const int X = top[-1];
897
25.2M
  const int I = top[-2];
898
25.2M
  const int J = top[-3];
899
25.2M
  const int K = top[-4];
900
25.2M
  const int L = top[-5];
901
25.2M
  WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
902
25.2M
  WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
903
25.2M
  WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
904
25.2M
  WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
905
25.2M
}
906
907
static WEBP_INLINE void DC4_SSE2(uint8_t* WEBP_RESTRICT dst,
908
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
909
25.2M
  uint32_t dc = 4;
910
25.2M
  int i;
911
126M
  for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
912
25.2M
  Fill_SSE2(dst, dc >> 3, 4);
913
25.2M
}
914
915
// Down-Left
916
static WEBP_INLINE void LD4_SSE2(uint8_t* WEBP_RESTRICT dst,
917
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
918
25.2M
  const __m128i one = _mm_set1_epi8(1);
919
25.2M
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
920
25.2M
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
921
25.2M
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
922
25.2M
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
923
25.2M
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
924
25.2M
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
925
25.2M
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
926
25.2M
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
927
25.2M
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(abcdefg));
928
25.2M
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
929
25.2M
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
930
25.2M
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
931
25.2M
}
932
933
// Vertical-Right
934
static WEBP_INLINE void VR4_SSE2(uint8_t* WEBP_RESTRICT dst,
935
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
936
25.2M
  const __m128i one = _mm_set1_epi8(1);
937
25.2M
  const int I = top[-2];
938
25.2M
  const int J = top[-3];
939
25.2M
  const int K = top[-4];
940
25.2M
  const int X = top[-1];
941
25.2M
  const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
942
25.2M
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
943
25.2M
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
944
25.2M
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
945
25.2M
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
946
25.2M
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
947
25.2M
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
948
25.2M
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
949
25.2M
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
950
25.2M
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(abcd));
951
25.2M
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(efgh));
952
25.2M
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
953
25.2M
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
954
955
  // these two are hard to implement in SSE2, so we keep the C-version:
956
25.2M
  DST(0, 2) = AVG3(J, I, X);
957
25.2M
  DST(0, 3) = AVG3(K, J, I);
958
25.2M
}
959
960
// Vertical-Left
961
static WEBP_INLINE void VL4_SSE2(uint8_t* WEBP_RESTRICT dst,
962
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
963
25.2M
  const __m128i one = _mm_set1_epi8(1);
964
25.2M
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
965
25.2M
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
966
25.2M
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
967
25.2M
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
968
25.2M
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
969
25.2M
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
970
25.2M
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
971
25.2M
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
972
25.2M
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
973
25.2M
  const __m128i abbc = _mm_or_si128(ab, bc);
974
25.2M
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
975
25.2M
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
976
25.2M
  const uint32_t extra_out =
977
25.2M
      (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
978
25.2M
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(avg1));
979
25.2M
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(avg4));
980
25.2M
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
981
25.2M
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
982
983
  // these two are hard to get and irregular
984
25.2M
  DST(3, 2) = (extra_out >> 0) & 0xff;
985
25.2M
  DST(3, 3) = (extra_out >> 8) & 0xff;
986
25.2M
}
987
988
// Down-right
989
static WEBP_INLINE void RD4_SSE2(uint8_t* WEBP_RESTRICT dst,
990
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
991
25.2M
  const __m128i one = _mm_set1_epi8(1);
992
25.2M
  const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
993
25.2M
  const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
994
25.2M
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
995
25.2M
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
996
25.2M
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
997
25.2M
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
998
25.2M
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
999
25.2M
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1000
25.2M
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(abcdefg));
1001
25.2M
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1002
25.2M
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1003
25.2M
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1004
25.2M
}
1005
1006
static WEBP_INLINE void HU4_SSE2(uint8_t* WEBP_RESTRICT dst,
1007
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
1008
25.2M
  const int I = top[-2];
1009
25.2M
  const int J = top[-3];
1010
25.2M
  const int K = top[-4];
1011
25.2M
  const int L = top[-5];
1012
25.2M
  DST(0, 0) = AVG2(I, J);
1013
25.2M
  DST(2, 0) = DST(0, 1) = AVG2(J, K);
1014
25.2M
  DST(2, 1) = DST(0, 2) = AVG2(K, L);
1015
25.2M
  DST(1, 0) = AVG3(I, J, K);
1016
25.2M
  DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
1017
25.2M
  DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
1018
25.2M
  DST(3, 2) = DST(2, 2) = DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
1019
25.2M
}
1020
1021
static WEBP_INLINE void HD4_SSE2(uint8_t* WEBP_RESTRICT dst,
1022
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
1023
25.2M
  const int X = top[-1];
1024
25.2M
  const int I = top[-2];
1025
25.2M
  const int J = top[-3];
1026
25.2M
  const int K = top[-4];
1027
25.2M
  const int L = top[-5];
1028
25.2M
  const int A = top[0];
1029
25.2M
  const int B = top[1];
1030
25.2M
  const int C = top[2];
1031
1032
25.2M
  DST(0, 0) = DST(2, 1) = AVG2(I, X);
1033
25.2M
  DST(0, 1) = DST(2, 2) = AVG2(J, I);
1034
25.2M
  DST(0, 2) = DST(2, 3) = AVG2(K, J);
1035
25.2M
  DST(0, 3) = AVG2(L, K);
1036
1037
25.2M
  DST(3, 0) = AVG3(A, B, C);
1038
25.2M
  DST(2, 0) = AVG3(X, A, B);
1039
25.2M
  DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
1040
25.2M
  DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
1041
25.2M
  DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
1042
25.2M
  DST(1, 3) = AVG3(L, K, J);
1043
25.2M
}
1044
1045
static WEBP_INLINE void TM4_SSE2(uint8_t* WEBP_RESTRICT dst,
1046
25.2M
                                 const uint8_t* WEBP_RESTRICT top) {
1047
25.2M
  const __m128i zero = _mm_setzero_si128();
1048
25.2M
  const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1049
25.2M
  const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1050
25.2M
  int y;
1051
126M
  for (y = 0; y < 4; ++y, dst += BPS) {
1052
100M
    const int val = top[-2 - y] - top[-1];
1053
100M
    const __m128i base = _mm_set1_epi16(val);
1054
100M
    const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1055
100M
    WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1056
100M
  }
1057
25.2M
}
1058
1059
#undef DST
1060
#undef AVG3
1061
#undef AVG2
1062
1063
//------------------------------------------------------------------------------
1064
// luma 4x4 prediction
1065
1066
// Left samples are top[-5 .. -2], top_left is top[-1], top are
1067
// located at top[0..3], and top right is top[4..7]
1068
static void Intra4Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1069
25.2M
                             const uint8_t* WEBP_RESTRICT top) {
1070
25.2M
  DC4_SSE2(I4DC4 + dst, top);
1071
25.2M
  TM4_SSE2(I4TM4 + dst, top);
1072
25.2M
  VE4_SSE2(I4VE4 + dst, top);
1073
25.2M
  HE4_SSE2(I4HE4 + dst, top);
1074
25.2M
  RD4_SSE2(I4RD4 + dst, top);
1075
25.2M
  VR4_SSE2(I4VR4 + dst, top);
1076
25.2M
  LD4_SSE2(I4LD4 + dst, top);
1077
25.2M
  VL4_SSE2(I4VL4 + dst, top);
1078
25.2M
  HD4_SSE2(I4HD4 + dst, top);
1079
25.2M
  HU4_SSE2(I4HU4 + dst, top);
1080
25.2M
}
1081
1082
//------------------------------------------------------------------------------
1083
// Chroma 8x8 prediction (paragraph 12.2)
1084
1085
static void IntraChromaPreds_SSE2(uint8_t* WEBP_RESTRICT dst,
1086
                                  const uint8_t* WEBP_RESTRICT left,
1087
6.55M
                                  const uint8_t* WEBP_RESTRICT top) {
1088
  // U block
1089
6.55M
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
1090
6.55M
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
1091
6.55M
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1092
6.55M
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1093
  // V block
1094
6.55M
  dst += 8;
1095
6.55M
  if (top != NULL) top += 8;
1096
6.55M
  if (left != NULL) left += 16;
1097
6.55M
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
1098
6.55M
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
1099
6.55M
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1100
6.55M
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1101
6.55M
}
1102
1103
//------------------------------------------------------------------------------
1104
// luma 16x16 prediction (paragraph 12.3)
1105
1106
static void Intra16Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1107
                              const uint8_t* WEBP_RESTRICT left,
1108
6.55M
                              const uint8_t* WEBP_RESTRICT top) {
1109
6.55M
  DC16Mode_SSE2(I16DC16 + dst, left, top);
1110
6.55M
  VerticalPred_SSE2(I16VE16 + dst, top, 16);
1111
6.55M
  HorizontalPred_SSE2(I16HE16 + dst, left, 16);
1112
6.55M
  TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
1113
6.55M
}
1114
1115
//------------------------------------------------------------------------------
1116
// Metric
1117
1118
static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
1119
                                                   const __m128i b,
1120
314M
                                                   __m128i* const sum) {
1121
  // take abs(a-b) in 8b
1122
314M
  const __m128i a_b = _mm_subs_epu8(a, b);
1123
314M
  const __m128i b_a = _mm_subs_epu8(b, a);
1124
314M
  const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1125
  // zero-extend to 16b
1126
314M
  const __m128i zero = _mm_setzero_si128();
1127
314M
  const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1128
314M
  const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1129
  // multiply with self
1130
314M
  const __m128i sum1 = _mm_madd_epi16(C0, C0);
1131
314M
  const __m128i sum2 = _mm_madd_epi16(C1, C1);
1132
314M
  *sum = _mm_add_epi32(sum1, sum2);
1133
314M
}
1134
1135
static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* WEBP_RESTRICT a,
1136
                                     const uint8_t* WEBP_RESTRICT b,
1137
26.2M
                                     int num_pairs) {
1138
26.2M
  __m128i sum = _mm_setzero_si128();
1139
26.2M
  int32_t tmp[4];
1140
26.2M
  int i;
1141
1142
183M
  for (i = 0; i < num_pairs; ++i) {
1143
157M
    const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1144
157M
    const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1145
157M
    const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1146
157M
    const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1147
157M
    __m128i sum1, sum2;
1148
157M
    SubtractAndAccumulate_SSE2(a0, b0, &sum1);
1149
157M
    SubtractAndAccumulate_SSE2(a1, b1, &sum2);
1150
157M
    sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1151
157M
    a += 2 * BPS;
1152
157M
    b += 2 * BPS;
1153
157M
  }
1154
26.2M
  _mm_storeu_si128((__m128i*)tmp, sum);
1155
26.2M
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1156
26.2M
}
1157
1158
static int SSE16x16_SSE2(const uint8_t* WEBP_RESTRICT a,
1159
13.1M
                         const uint8_t* WEBP_RESTRICT b) {
1160
13.1M
  return SSE_16xN_SSE2(a, b, 8);
1161
13.1M
}
1162
1163
static int SSE16x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1164
13.1M
                        const uint8_t* WEBP_RESTRICT b) {
1165
13.1M
  return SSE_16xN_SSE2(a, b, 4);
1166
13.1M
}
1167
1168
#define LOAD_8x16b(ptr) \
1169
0
  _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1170
1171
static int SSE8x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1172
0
                       const uint8_t* WEBP_RESTRICT b) {
1173
0
  const __m128i zero = _mm_setzero_si128();
1174
0
  int num_pairs = 4;
1175
0
  __m128i sum = zero;
1176
0
  int32_t tmp[4];
1177
0
  while (num_pairs-- > 0) {
1178
0
    const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1179
0
    const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1180
0
    const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1181
0
    const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1182
    // subtract
1183
0
    const __m128i c0 = _mm_subs_epi16(a0, b0);
1184
0
    const __m128i c1 = _mm_subs_epi16(a1, b1);
1185
    // multiply/accumulate with self
1186
0
    const __m128i d0 = _mm_madd_epi16(c0, c0);
1187
0
    const __m128i d1 = _mm_madd_epi16(c1, c1);
1188
    // collect
1189
0
    const __m128i sum01 = _mm_add_epi32(d0, d1);
1190
0
    sum = _mm_add_epi32(sum, sum01);
1191
0
    a += 2 * BPS;
1192
0
    b += 2 * BPS;
1193
0
  }
1194
0
  _mm_storeu_si128((__m128i*)tmp, sum);
1195
0
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1196
0
}
1197
#undef LOAD_8x16b
1198
1199
static int SSE4x4_SSE2(const uint8_t* WEBP_RESTRICT a,
1200
252M
                       const uint8_t* WEBP_RESTRICT b) {
1201
252M
  const __m128i zero = _mm_setzero_si128();
1202
1203
  // Load values. Note that we read 8 pixels instead of 4,
1204
  // but the a/b buffers are over-allocated to that effect.
1205
252M
  const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1206
252M
  const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1207
252M
  const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1208
252M
  const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1209
252M
  const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1210
252M
  const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1211
252M
  const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1212
252M
  const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1213
  // Combine pair of lines.
1214
252M
  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1215
252M
  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1216
252M
  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1217
252M
  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1218
  // Convert to 16b.
1219
252M
  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1220
252M
  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1221
252M
  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1222
252M
  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1223
  // subtract, square and accumulate
1224
252M
  const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1225
252M
  const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1226
252M
  const __m128i e0 = _mm_madd_epi16(d0, d0);
1227
252M
  const __m128i e1 = _mm_madd_epi16(d1, d1);
1228
252M
  const __m128i sum = _mm_add_epi32(e0, e1);
1229
1230
252M
  int32_t tmp[4];
1231
252M
  _mm_storeu_si128((__m128i*)tmp, sum);
1232
252M
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1233
252M
}
1234
1235
//------------------------------------------------------------------------------
1236
1237
0
static void Mean16x4_SSE2(const uint8_t* WEBP_RESTRICT ref, uint32_t dc[4]) {
1238
0
  const __m128i mask = _mm_set1_epi16(0x00ff);
1239
0
  const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1240
0
  const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1241
0
  const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1242
0
  const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1243
0
  const __m128i b0 = _mm_srli_epi16(a0, 8);  // hi byte
1244
0
  const __m128i b1 = _mm_srli_epi16(a1, 8);
1245
0
  const __m128i b2 = _mm_srli_epi16(a2, 8);
1246
0
  const __m128i b3 = _mm_srli_epi16(a3, 8);
1247
0
  const __m128i c0 = _mm_and_si128(a0, mask);  // lo byte
1248
0
  const __m128i c1 = _mm_and_si128(a1, mask);
1249
0
  const __m128i c2 = _mm_and_si128(a2, mask);
1250
0
  const __m128i c3 = _mm_and_si128(a3, mask);
1251
0
  const __m128i d0 = _mm_add_epi32(b0, c0);
1252
0
  const __m128i d1 = _mm_add_epi32(b1, c1);
1253
0
  const __m128i d2 = _mm_add_epi32(b2, c2);
1254
0
  const __m128i d3 = _mm_add_epi32(b3, c3);
1255
0
  const __m128i e0 = _mm_add_epi32(d0, d1);
1256
0
  const __m128i e1 = _mm_add_epi32(d2, d3);
1257
0
  const __m128i f0 = _mm_add_epi32(e0, e1);
1258
0
  uint16_t tmp[8];
1259
0
  _mm_storeu_si128((__m128i*)tmp, f0);
1260
0
  dc[0] = tmp[0] + tmp[1];
1261
0
  dc[1] = tmp[2] + tmp[3];
1262
0
  dc[2] = tmp[4] + tmp[5];
1263
0
  dc[3] = tmp[6] + tmp[7];
1264
0
}
1265
1266
//------------------------------------------------------------------------------
1267
// Texture distortion
1268
//
1269
// We try to match the spectral content (weighted) between source and
1270
// reconstructed samples.
1271
1272
// Hadamard transform
1273
// Returns the weighted sum of the absolute value of transformed coefficients.
1274
// w[] contains a row-major 4 by 4 symmetric matrix.
1275
static int TTransform_SSE2(const uint8_t* WEBP_RESTRICT inA,
1276
                           const uint8_t* WEBP_RESTRICT inB,
1277
0
                           const uint16_t* WEBP_RESTRICT const w) {
1278
0
  int32_t sum[4];
1279
0
  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1280
0
  const __m128i zero = _mm_setzero_si128();
1281
1282
  // Load and combine inputs.
1283
0
  {
1284
0
    const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1285
0
    const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1286
0
    const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1287
0
    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1288
0
    const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1289
0
    const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1290
0
    const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1291
0
    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1292
1293
    // Combine inA and inB (we'll do two transforms in parallel).
1294
0
    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1295
0
    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1296
0
    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1297
0
    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1298
0
    tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1299
0
    tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1300
0
    tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1301
0
    tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1302
    // a00 a01 a02 a03   b00 b01 b02 b03
1303
    // a10 a11 a12 a13   b10 b11 b12 b13
1304
    // a20 a21 a22 a23   b20 b21 b22 b23
1305
    // a30 a31 a32 a33   b30 b31 b32 b33
1306
0
  }
1307
1308
  // Vertical pass first to avoid a transpose (vertical and horizontal passes
1309
  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1310
0
  {
1311
    // Calculate a and b (two 4x4 at once).
1312
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1313
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1314
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1315
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1316
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
1317
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
1318
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
1319
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
1320
    // a00 a01 a02 a03   b00 b01 b02 b03
1321
    // a10 a11 a12 a13   b10 b11 b12 b13
1322
    // a20 a21 a22 a23   b20 b21 b22 b23
1323
    // a30 a31 a32 a33   b30 b31 b32 b33
1324
1325
    // Transpose the two 4x4.
1326
0
    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1327
0
  }
1328
1329
  // Horizontal pass and difference of weighted sums.
1330
0
  {
1331
    // Load all inputs.
1332
0
    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1333
0
    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1334
1335
    // Calculate a and b (two 4x4 at once).
1336
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1337
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1338
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1339
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1340
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
1341
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
1342
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
1343
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
1344
1345
    // Separate the transforms of inA and inB.
1346
0
    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1347
0
    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1348
0
    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1349
0
    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1350
1351
0
    {
1352
0
      const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1353
0
      const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1354
0
      const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1355
0
      const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1356
0
      A_b0 = _mm_max_epi16(A_b0, d0);  // abs(v), 16b
1357
0
      A_b2 = _mm_max_epi16(A_b2, d1);
1358
0
      B_b0 = _mm_max_epi16(B_b0, d2);
1359
0
      B_b2 = _mm_max_epi16(B_b2, d3);
1360
0
    }
1361
1362
    // weighted sums
1363
0
    A_b0 = _mm_madd_epi16(A_b0, w_0);
1364
0
    A_b2 = _mm_madd_epi16(A_b2, w_8);
1365
0
    B_b0 = _mm_madd_epi16(B_b0, w_0);
1366
0
    B_b2 = _mm_madd_epi16(B_b2, w_8);
1367
0
    A_b0 = _mm_add_epi32(A_b0, A_b2);
1368
0
    B_b0 = _mm_add_epi32(B_b0, B_b2);
1369
1370
    // difference of weighted sums
1371
0
    A_b0 = _mm_sub_epi32(A_b0, B_b0);
1372
0
    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1373
0
  }
1374
0
  return sum[0] + sum[1] + sum[2] + sum[3];
1375
0
}
1376
1377
static int Disto4x4_SSE2(const uint8_t* WEBP_RESTRICT const a,
1378
                         const uint8_t* WEBP_RESTRICT const b,
1379
0
                         const uint16_t* WEBP_RESTRICT const w) {
1380
0
  const int diff_sum = TTransform_SSE2(a, b, w);
1381
0
  return abs(diff_sum) >> 5;
1382
0
}
1383
1384
static int Disto16x16_SSE2(const uint8_t* WEBP_RESTRICT const a,
1385
                           const uint8_t* WEBP_RESTRICT const b,
1386
0
                           const uint16_t* WEBP_RESTRICT const w) {
1387
0
  int D = 0;
1388
0
  int x, y;
1389
0
  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1390
0
    for (x = 0; x < 16; x += 4) {
1391
0
      D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1392
0
    }
1393
0
  }
1394
0
  return D;
1395
0
}
1396
1397
//------------------------------------------------------------------------------
1398
// Quantization
1399
//
1400
1401
static WEBP_INLINE int DoQuantizeBlock_SSE2(
1402
    int16_t in[16], int16_t out[16],
1403
    const uint16_t* WEBP_RESTRICT const sharpen,
1404
0
    const VP8Matrix* WEBP_RESTRICT const mtx) {
1405
0
  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1406
0
  const __m128i zero = _mm_setzero_si128();
1407
0
  __m128i coeff0, coeff8;
1408
0
  __m128i out0, out8;
1409
0
  __m128i packed_out;
1410
1411
  // Load all inputs.
1412
0
  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1413
0
  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1414
0
  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq[0]);
1415
0
  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq[8]);
1416
0
  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q[0]);
1417
0
  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q[8]);
1418
1419
  // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1420
0
  const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1421
0
  const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1422
1423
  // coeff = abs(in) = (in ^ sign) - sign
1424
0
  coeff0 = _mm_xor_si128(in0, sign0);
1425
0
  coeff8 = _mm_xor_si128(in8, sign8);
1426
0
  coeff0 = _mm_sub_epi16(coeff0, sign0);
1427
0
  coeff8 = _mm_sub_epi16(coeff8, sign8);
1428
1429
  // coeff = abs(in) + sharpen
1430
0
  if (sharpen != NULL) {
1431
0
    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1432
0
    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1433
0
    coeff0 = _mm_add_epi16(coeff0, sharpen0);
1434
0
    coeff8 = _mm_add_epi16(coeff8, sharpen8);
1435
0
  }
1436
1437
  // out = (coeff * iQ + B) >> QFIX
1438
0
  {
1439
    // doing calculations with 32b precision (QFIX=17)
1440
    // out = (coeff * iQ)
1441
0
    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1442
0
    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1443
0
    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1444
0
    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1445
0
    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1446
0
    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1447
0
    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1448
0
    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1449
    // out = (coeff * iQ + B)
1450
0
    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias[0]);
1451
0
    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias[4]);
1452
0
    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias[8]);
1453
0
    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias[12]);
1454
0
    out_00 = _mm_add_epi32(out_00, bias_00);
1455
0
    out_04 = _mm_add_epi32(out_04, bias_04);
1456
0
    out_08 = _mm_add_epi32(out_08, bias_08);
1457
0
    out_12 = _mm_add_epi32(out_12, bias_12);
1458
    // out = QUANTDIV(coeff, iQ, B, QFIX)
1459
0
    out_00 = _mm_srai_epi32(out_00, QFIX);
1460
0
    out_04 = _mm_srai_epi32(out_04, QFIX);
1461
0
    out_08 = _mm_srai_epi32(out_08, QFIX);
1462
0
    out_12 = _mm_srai_epi32(out_12, QFIX);
1463
1464
    // pack result as 16b
1465
0
    out0 = _mm_packs_epi32(out_00, out_04);
1466
0
    out8 = _mm_packs_epi32(out_08, out_12);
1467
1468
    // if (coeff > 2047) coeff = 2047
1469
0
    out0 = _mm_min_epi16(out0, max_coeff_2047);
1470
0
    out8 = _mm_min_epi16(out8, max_coeff_2047);
1471
0
  }
1472
1473
  // get sign back (if (sign[j]) out_n = -out_n)
1474
0
  out0 = _mm_xor_si128(out0, sign0);
1475
0
  out8 = _mm_xor_si128(out8, sign8);
1476
0
  out0 = _mm_sub_epi16(out0, sign0);
1477
0
  out8 = _mm_sub_epi16(out8, sign8);
1478
1479
  // in = out * Q
1480
0
  in0 = _mm_mullo_epi16(out0, q0);
1481
0
  in8 = _mm_mullo_epi16(out8, q8);
1482
1483
0
  _mm_storeu_si128((__m128i*)&in[0], in0);
1484
0
  _mm_storeu_si128((__m128i*)&in[8], in8);
1485
1486
  // zigzag the output before storing it.
1487
  //
1488
  // The zigzag pattern can almost be reproduced with a small sequence of
1489
  // shuffles. After it, we only need to swap the 7th (ending up in third
1490
  // position instead of twelfth) and 8th values.
1491
0
  {
1492
0
    __m128i outZ0, outZ8;
1493
0
    outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
1494
0
    outZ0 = _mm_shuffle_epi32(outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1495
0
    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1496
0
    outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
1497
0
    outZ8 = _mm_shuffle_epi32(outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1498
0
    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1499
0
    _mm_storeu_si128((__m128i*)&out[0], outZ0);
1500
0
    _mm_storeu_si128((__m128i*)&out[8], outZ8);
1501
0
    packed_out = _mm_packs_epi16(outZ0, outZ8);
1502
0
  }
1503
0
  {
1504
0
    const int16_t outZ_12 = out[12];
1505
0
    const int16_t outZ_3 = out[3];
1506
0
    out[3] = outZ_12;
1507
0
    out[12] = outZ_3;
1508
0
  }
1509
1510
  // detect if all 'out' values are zeroes or not
1511
0
  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1512
0
}
1513
1514
static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1515
0
                              const VP8Matrix* WEBP_RESTRICT const mtx) {
1516
0
  return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen[0], mtx);
1517
0
}
1518
1519
static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1520
0
                                 const VP8Matrix* WEBP_RESTRICT const mtx) {
1521
0
  return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1522
0
}
1523
1524
static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1525
0
                                const VP8Matrix* WEBP_RESTRICT const mtx) {
1526
0
  int nz;
1527
0
  const uint16_t* const sharpen = &mtx->sharpen[0];
1528
0
  nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1529
0
  nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1530
0
  return nz;
1531
0
}
1532
1533
//------------------------------------------------------------------------------
1534
// Entry point
1535
1536
extern void VP8EncDspInitSSE2(void);
1537
1538
1
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1539
1
  VP8CollectHistogram = CollectHistogram_SSE2;
1540
1
  VP8EncPredLuma16 = Intra16Preds_SSE2;
1541
1
  VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1542
1
  VP8EncPredLuma4 = Intra4Preds_SSE2;
1543
1
  VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1544
1
  VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1545
1
  VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1546
1
  VP8ITransform = ITransform_SSE2;
1547
1
  VP8FTransform = FTransform_SSE2;
1548
1
  VP8FTransform2 = FTransform2_SSE2;
1549
1
  VP8FTransformWHT = FTransformWHT_SSE2;
1550
1
  VP8SSE16x16 = SSE16x16_SSE2;
1551
1
  VP8SSE16x8 = SSE16x8_SSE2;
1552
1
  VP8SSE8x8 = SSE8x8_SSE2;
1553
1
  VP8SSE4x4 = SSE4x4_SSE2;
1554
1
  VP8TDisto4x4 = Disto4x4_SSE2;
1555
1
  VP8TDisto16x16 = Disto16x16_SSE2;
1556
1
  VP8Mean16x4 = Mean16x4_SSE2;
1557
1
}
1558
1559
#else  // !WEBP_USE_SSE2
1560
1561
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1562
1563
#endif  // WEBP_USE_SSE2