/src/xz/src/liblzma/rangecoder/range_decoder.h
Line | Count | Source |
1 | | // SPDX-License-Identifier: 0BSD |
2 | | |
3 | | /////////////////////////////////////////////////////////////////////////////// |
4 | | // |
5 | | /// \file range_decoder.h |
6 | | /// \brief Range Decoder |
7 | | /// |
8 | | // Authors: Igor Pavlov |
9 | | // Lasse Collin |
10 | | // |
11 | | /////////////////////////////////////////////////////////////////////////////// |
12 | | |
13 | | #ifndef LZMA_RANGE_DECODER_H |
14 | | #define LZMA_RANGE_DECODER_H |
15 | | |
16 | | #include "range_common.h" |
17 | | |
18 | | |
19 | | // Choose the range decoder variants to use using a bitmask. |
20 | | // If no bits are set, only the basic version is used. |
21 | | // If more than one version is selected for the same feature, |
22 | | // the last one on the list below is used. |
23 | | // |
24 | | // Bitwise-or of the following enable branchless C versions: |
25 | | // 0x01 normal bittrees |
26 | | // 0x02 fixed-sized reverse bittrees |
27 | | // 0x04 variable-sized reverse bittrees (not faster) |
28 | | // 0x08 matched literal (not faster) |
29 | | // |
30 | | // GCC & Clang compatible x86-64 inline assembly: |
31 | | // 0x010 normal bittrees |
32 | | // 0x020 fixed-sized reverse bittrees |
33 | | // 0x040 variable-sized reverse bittrees |
34 | | // 0x080 matched literal |
35 | | // 0x100 direct bits |
36 | | // |
37 | | // The default can be overridden at build time by defining |
38 | | // LZMA_RANGE_DECODER_CONFIG to the desired mask. |
39 | | // |
40 | | // 2024-02-22: Feedback from benchmarks: |
41 | | // - Brancless C (0x003) can be better than basic on x86-64 but often it's |
42 | | // slightly worse on other archs. Since asm is much better on x86-64, |
43 | | // branchless C is not used at all. |
44 | | // - With x86-64 asm, there are slight differences between GCC and Clang |
45 | | // and different processors. Overall 0x1F0 seems to be the best choice. |
46 | | #ifndef LZMA_RANGE_DECODER_CONFIG |
47 | | # if defined(__x86_64__) && !defined(__ILP32__) \ |
48 | | && !defined(__NVCOMPILER) \ |
49 | | && (defined(__GNUC__) || defined(__clang__)) |
50 | | # define LZMA_RANGE_DECODER_CONFIG 0x1F0 |
51 | | # else |
52 | | # define LZMA_RANGE_DECODER_CONFIG 0 |
53 | | # endif |
54 | | #endif |
55 | | |
56 | | |
57 | | // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. |
58 | | // This is useful for updating probability variables in branchless decoding: |
59 | | // |
60 | | // uint32_t decoded_bit = ...; |
61 | | // probability tmp = RC_BIT_MODEL_OFFSET; |
62 | | // tmp &= decoded_bit - 1; |
63 | | // prob -= (prob + tmp) >> RC_MOVE_BITS; |
64 | | #define RC_BIT_MODEL_OFFSET \ |
65 | 2.40M | ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) |
66 | | |
67 | | |
68 | | typedef struct { |
69 | | uint32_t range; |
70 | | uint32_t code; |
71 | | uint32_t init_bytes_left; |
72 | | } lzma_range_decoder; |
73 | | |
74 | | |
75 | | /// Reads the first five bytes to initialize the range decoder. |
76 | | static inline lzma_ret |
77 | | rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, |
78 | | size_t *restrict in_pos, size_t in_size) |
79 | 818k | { |
80 | 886k | while (rc->init_bytes_left > 0) { |
81 | 68.6k | if (*in_pos == in_size) |
82 | 475 | return LZMA_OK; |
83 | | |
84 | | // The first byte is always 0x00. It could have been omitted |
85 | | // in LZMA2 but it wasn't, so one byte is wasted in every |
86 | | // LZMA2 chunk. |
87 | 68.1k | if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00) |
88 | 168 | return LZMA_DATA_ERROR; |
89 | | |
90 | 68.0k | rc->code = (rc->code << 8) | in[*in_pos]; |
91 | 68.0k | ++*in_pos; |
92 | 68.0k | --rc->init_bytes_left; |
93 | 68.0k | } |
94 | | |
95 | 818k | return LZMA_STREAM_END; |
96 | 818k | } |
97 | | |
98 | | |
99 | | /// Makes local copies of range decoder and *in_pos variables. Doing this |
100 | | /// improves speed significantly. The range decoder macros expect also |
101 | | /// variables 'in' and 'in_size' to be defined. |
102 | | #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \ |
103 | 818k | lzma_range_decoder rc = range_decoder; \ |
104 | 818k | const uint8_t *rc_in_ptr = in + (in_pos); \ |
105 | 818k | const uint8_t *rc_in_end = in + in_size; \ |
106 | 818k | const uint8_t *rc_in_fast_end \ |
107 | 818k | = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ |
108 | 818k | ? rc_in_ptr \ |
109 | 818k | : rc_in_end - (fast_mode_in_required); \ |
110 | 818k | (void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \ |
111 | 818k | uint32_t rc_bound |
112 | | |
113 | | |
114 | | /// Evaluates to true if there is enough input remaining to use fast mode. |
115 | | #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) |
116 | | |
117 | | |
118 | | /// Stores the local copes back to the range decoder structure. |
119 | 818k | #define rc_from_local(range_decoder, in_pos) \ |
120 | 818k | do { \ |
121 | 818k | range_decoder = rc; \ |
122 | 818k | in_pos = (size_t)(rc_in_ptr - in); \ |
123 | 818k | } while (0) |
124 | | |
125 | | |
126 | | /// Resets the range decoder structure. |
127 | 14.6k | #define rc_reset(range_decoder) \ |
128 | 14.6k | do { \ |
129 | 14.6k | (range_decoder).range = UINT32_MAX; \ |
130 | 14.6k | (range_decoder).code = 0; \ |
131 | 14.6k | (range_decoder).init_bytes_left = 5; \ |
132 | 14.6k | } while (0) |
133 | | |
134 | | |
135 | | /// When decoding has been properly finished, rc.code is always zero unless |
136 | | /// the input stream is corrupt. So checking this can catch some corrupt |
137 | | /// files especially if they don't have any other integrity check. |
138 | | #define rc_is_finished(range_decoder) \ |
139 | 1.08k | ((range_decoder).code == 0) |
140 | | |
141 | | |
142 | | // Read the next input byte if needed. |
143 | 7.01M | #define rc_normalize() \ |
144 | 7.01M | do { \ |
145 | 7.01M | if (rc.range < RC_TOP_VALUE) { \ |
146 | 204k | rc.range <<= RC_SHIFT_BITS; \ |
147 | 204k | rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ |
148 | 204k | } \ |
149 | 7.01M | } while (0) |
150 | | |
151 | | |
152 | | /// If more input is needed but there is |
153 | | /// no more input available, "goto out" is used to jump out of the main |
154 | | /// decoder loop. The "_safe" macros are used in the Resumable decoder |
155 | | /// mode in order to save the sequence to continue decoding from that |
156 | | /// point later. |
157 | 3.21M | #define rc_normalize_safe(seq) \ |
158 | 3.21M | do { \ |
159 | 3.21M | if (rc.range < RC_TOP_VALUE) { \ |
160 | 197k | if (rc_in_ptr == rc_in_end) { \ |
161 | 25.9k | coder->sequence = seq; \ |
162 | 25.9k | goto out; \ |
163 | 25.9k | } \ |
164 | 197k | rc.range <<= RC_SHIFT_BITS; \ |
165 | 171k | rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ |
166 | 171k | } \ |
167 | 3.21M | } while (0) |
168 | | |
169 | | |
170 | | /// Start decoding a bit. This must be used together with rc_update_0() |
171 | | /// and rc_update_1(): |
172 | | /// |
173 | | /// rc_if_0(prob) { |
174 | | /// rc_update_0(prob); |
175 | | /// // Do something |
176 | | /// } else { |
177 | | /// rc_update_1(prob); |
178 | | /// // Do something else |
179 | | /// } |
180 | | /// |
181 | | #define rc_if_0(prob) \ |
182 | 7.01M | rc_normalize(); \ |
183 | 7.01M | rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ |
184 | 7.01M | if (rc.code < rc_bound) |
185 | | |
186 | | |
187 | | #define rc_if_0_safe(prob, seq) \ |
188 | 3.16M | rc_normalize_safe(seq); \ |
189 | 3.14M | rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ |
190 | 3.14M | if (rc.code < rc_bound) |
191 | | |
192 | | |
193 | | /// Update the range decoder state and the used probability variable to |
194 | | /// match a decoded bit of 0. |
195 | | /// |
196 | | /// The x86-64 assembly uses the commented method but it seems that, |
197 | | /// at least on x86-64, the first version is slightly faster as C code. |
198 | 2.82M | #define rc_update_0(prob) \ |
199 | 2.82M | do { \ |
200 | 2.82M | rc.range = rc_bound; \ |
201 | 2.82M | prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ |
202 | 2.82M | /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \ |
203 | 2.82M | } while (0) |
204 | | |
205 | | |
206 | | /// Update the range decoder state and the used probability variable to |
207 | | /// match a decoded bit of 1. |
208 | 7.33M | #define rc_update_1(prob) \ |
209 | 7.33M | do { \ |
210 | 7.33M | rc.range -= rc_bound; \ |
211 | 7.33M | rc.code -= rc_bound; \ |
212 | 7.33M | prob -= (prob) >> RC_MOVE_BITS; \ |
213 | 7.33M | } while (0) |
214 | | |
215 | | |
216 | | /// Decodes one bit and runs action0 or action1 depending on the decoded bit. |
217 | | /// This macro is used as the last step in bittree reverse decoders since |
218 | | /// those don't use "symbol" for anything else than indexing the probability |
219 | | /// arrays. |
220 | | #define rc_bit_last(prob, action0, action1) \ |
221 | | do { \ |
222 | | rc_if_0(prob) { \ |
223 | | rc_update_0(prob); \ |
224 | | action0; \ |
225 | | } else { \ |
226 | | rc_update_1(prob); \ |
227 | | action1; \ |
228 | | } \ |
229 | | } while (0) |
230 | | |
231 | | |
232 | 2.08M | #define rc_bit_last_safe(prob, action0, action1, seq) \ |
233 | 2.08M | do { \ |
234 | 2.08M | rc_if_0_safe(prob, seq) { \ |
235 | 898k | rc_update_0(prob); \ |
236 | 898k | action0; \ |
237 | 1.17M | } else { \ |
238 | 1.17M | rc_update_1(prob); \ |
239 | 1.17M | action1; \ |
240 | 1.17M | } \ |
241 | 2.07M | } while (0) |
242 | | |
243 | | |
244 | | /// Decodes one bit, updates "symbol", and runs action0 or action1 depending |
245 | | /// on the decoded bit. |
246 | | #define rc_bit(prob, action0, action1) \ |
247 | | rc_bit_last(prob, \ |
248 | | symbol <<= 1; action0, \ |
249 | | symbol = (symbol << 1) + 1; action1); |
250 | | |
251 | | |
252 | | #define rc_bit_safe(prob, action0, action1, seq) \ |
253 | 2.06M | rc_bit_last_safe(prob, \ |
254 | 2.06M | symbol <<= 1; action0, \ |
255 | 2.06M | symbol = (symbol << 1) + 1; action1, \ |
256 | 2.06M | seq); |
257 | | |
258 | | // Unroll fixed-sized bittree decoding. |
259 | | // |
260 | | // A compile-time constant in final_add can be used to get rid of the high bit |
261 | | // from symbol that is used for the array indexing (1U << bittree_bits). |
262 | | // final_add may also be used to add offset to the result (LZMA length |
263 | | // decoder does that). |
264 | | // |
265 | | // The reason to have final_add here is that in the asm code the addition |
266 | | // can be done for free: in x86-64 there is SBB instruction with -1 as |
267 | | // the immediate value, and final_add is combined with that value. |
268 | | #define rc_bittree_bit(prob) \ |
269 | | rc_bit(prob, , ) |
270 | | |
271 | | #define rc_bittree3(probs, final_add) \ |
272 | | do { \ |
273 | | symbol = 1; \ |
274 | | rc_bittree_bit(probs[symbol]); \ |
275 | | rc_bittree_bit(probs[symbol]); \ |
276 | | rc_bittree_bit(probs[symbol]); \ |
277 | | symbol += (uint32_t)(final_add); \ |
278 | | } while (0) |
279 | | |
280 | | #define rc_bittree6(probs, final_add) \ |
281 | | do { \ |
282 | | symbol = 1; \ |
283 | | rc_bittree_bit(probs[symbol]); \ |
284 | | rc_bittree_bit(probs[symbol]); \ |
285 | | rc_bittree_bit(probs[symbol]); \ |
286 | | rc_bittree_bit(probs[symbol]); \ |
287 | | rc_bittree_bit(probs[symbol]); \ |
288 | | rc_bittree_bit(probs[symbol]); \ |
289 | | symbol += (uint32_t)(final_add); \ |
290 | | } while (0) |
291 | | |
292 | | #define rc_bittree8(probs, final_add) \ |
293 | | do { \ |
294 | | symbol = 1; \ |
295 | | rc_bittree_bit(probs[symbol]); \ |
296 | | rc_bittree_bit(probs[symbol]); \ |
297 | | rc_bittree_bit(probs[symbol]); \ |
298 | | rc_bittree_bit(probs[symbol]); \ |
299 | | rc_bittree_bit(probs[symbol]); \ |
300 | | rc_bittree_bit(probs[symbol]); \ |
301 | | rc_bittree_bit(probs[symbol]); \ |
302 | | rc_bittree_bit(probs[symbol]); \ |
303 | | symbol += (uint32_t)(final_add); \ |
304 | | } while (0) |
305 | | |
306 | | |
307 | | // Fixed-sized reverse bittree |
308 | | #define rc_bittree_rev4(probs) \ |
309 | | do { \ |
310 | | symbol = 0; \ |
311 | | rc_bit_last(probs[symbol + 1], , symbol += 1); \ |
312 | | rc_bit_last(probs[symbol + 2], , symbol += 2); \ |
313 | | rc_bit_last(probs[symbol + 4], , symbol += 4); \ |
314 | | rc_bit_last(probs[symbol + 8], , symbol += 8); \ |
315 | | } while (0) |
316 | | |
317 | | |
318 | | // Decode one bit from variable-sized reverse bittree. The loop is done |
319 | | // in the code that uses this macro. This could be changed if the assembly |
320 | | // version benefited from having the loop done in assembly but it didn't |
321 | | // seem so in early 2024. |
322 | | // |
323 | | // Also, if the loop was done here, the loop counter would likely be local |
324 | | // to the macro so that it wouldn't modify yet another input variable. |
325 | | // If a _safe version of a macro with a loop was done then a modifiable |
326 | | // input variable couldn't be avoided though. |
327 | | #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ |
328 | | rc_bit(probs[symbol], \ |
329 | | , \ |
330 | | dest += value_to_add_if_1); |
331 | | |
332 | | |
333 | | // Matched literal |
334 | | #define decode_with_match_bit \ |
335 | | t_match_byte <<= 1; \ |
336 | | t_match_bit = t_match_byte & t_offset; \ |
337 | | t_subcoder_index = t_offset + t_match_bit + symbol; \ |
338 | | rc_bit(probs[t_subcoder_index], \ |
339 | | t_offset &= ~t_match_bit, \ |
340 | | t_offset &= t_match_bit) |
341 | | |
342 | | #define rc_matched_literal(probs_base_var, match_byte) \ |
343 | | do { \ |
344 | | uint32_t t_match_byte = (match_byte); \ |
345 | | uint32_t t_match_bit; \ |
346 | | uint32_t t_subcoder_index; \ |
347 | | uint32_t t_offset = 0x100; \ |
348 | | symbol = 1; \ |
349 | | decode_with_match_bit; \ |
350 | | decode_with_match_bit; \ |
351 | | decode_with_match_bit; \ |
352 | | decode_with_match_bit; \ |
353 | | decode_with_match_bit; \ |
354 | | decode_with_match_bit; \ |
355 | | decode_with_match_bit; \ |
356 | | decode_with_match_bit; \ |
357 | | } while (0) |
358 | | |
359 | | |
360 | | /// Decode a bit without using a probability. |
361 | | // |
362 | | // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound |
363 | | // calculation to use an arithmetic right shift so there's no need to provide |
364 | | // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't |
365 | | // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); |
366 | | #define rc_direct(dest, count_var) \ |
367 | | do { \ |
368 | | dest = (dest << 1) + 1; \ |
369 | | rc_normalize(); \ |
370 | | rc.range >>= 1; \ |
371 | | rc.code -= rc.range; \ |
372 | | rc_bound = UINT32_C(0) - (rc.code >> 31); \ |
373 | | dest += rc_bound; \ |
374 | | rc.code += rc.range & rc_bound; \ |
375 | | } while (--count_var > 0) |
376 | | |
377 | | |
378 | | |
379 | 7.08k | #define rc_direct_safe(dest, count_var, seq) \ |
380 | 45.7k | do { \ |
381 | 45.7k | rc_normalize_safe(seq); \ |
382 | 45.7k | rc.range >>= 1; \ |
383 | 44.0k | rc.code -= rc.range; \ |
384 | 44.0k | rc_bound = UINT32_C(0) - (rc.code >> 31); \ |
385 | 44.0k | rc.code += rc.range & rc_bound; \ |
386 | 44.0k | dest = (dest << 1) + (rc_bound + 1); \ |
387 | 44.0k | } while (--count_var > 0) |
388 | | |
389 | | |
390 | | ////////////////// |
391 | | // Branchless C // |
392 | | ////////////////// |
393 | | |
394 | | /// Decode a bit using a branchless method. This reduces the number of |
395 | | /// mispredicted branches and thus can improve speed. |
396 | | #define rc_c_bit(prob, action_bit, action_neg) \ |
397 | | do { \ |
398 | | probability *p = &(prob); \ |
399 | | rc_normalize(); \ |
400 | | rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \ |
401 | | uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \ |
402 | | action_bit; /* action when rc_mask is 0 or 1 */ \ |
403 | | /* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \ |
404 | | rc_mask = 0U - rc_mask; \ |
405 | | rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \ |
406 | | rc_bound ^= rc_mask; \ |
407 | | rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \ |
408 | | rc.range += rc_bound; \ |
409 | | rc_bound &= rc_mask; \ |
410 | | rc.code += rc_bound; \ |
411 | | action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \ |
412 | | rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \ |
413 | | rc_mask &= RC_BIT_MODEL_OFFSET; \ |
414 | | *p -= (*p + rc_mask) >> RC_MOVE_BITS; \ |
415 | | } while (0) |
416 | | |
417 | | |
418 | | // Testing on x86-64 give an impression that only the normal bittrees and |
419 | | // the fixed-sized reverse bittrees are worth the branchless C code. |
420 | | // It should be tested on other archs for which there isn't assembly code |
421 | | // in this file. |
422 | | |
423 | | // Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA |
424 | | // or RISC-V SH1ADD instructions. Compilers might infer it from |
425 | | // "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but |
426 | | // the use of addition doesn't require such analysis from compilers. |
427 | | #if LZMA_RANGE_DECODER_CONFIG & 0x01 |
428 | | #undef rc_bittree_bit |
429 | | #define rc_bittree_bit(prob) \ |
430 | | rc_c_bit(prob, \ |
431 | | symbol = (symbol << 1) + rc_mask, \ |
432 | | ) |
433 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x01 |
434 | | |
435 | | #if LZMA_RANGE_DECODER_CONFIG & 0x02 |
436 | | #undef rc_bittree_rev4 |
437 | | #define rc_bittree_rev4(probs) \ |
438 | | do { \ |
439 | | symbol = 0; \ |
440 | | rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \ |
441 | | rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \ |
442 | | rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \ |
443 | | rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \ |
444 | | } while (0) |
445 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x02 |
446 | | |
447 | | #if LZMA_RANGE_DECODER_CONFIG & 0x04 |
448 | | #undef rc_bit_add_if_1 |
449 | | #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ |
450 | | rc_c_bit(probs[symbol], \ |
451 | | symbol = (symbol << 1) + rc_mask, \ |
452 | | dest += (value_to_add_if_1) & rc_mask) |
453 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x04 |
454 | | |
455 | | |
456 | | #if LZMA_RANGE_DECODER_CONFIG & 0x08 |
457 | | #undef decode_with_match_bit |
458 | | #define decode_with_match_bit \ |
459 | | t_match_byte <<= 1; \ |
460 | | t_match_bit = t_match_byte & t_offset; \ |
461 | | t_subcoder_index = t_offset + t_match_bit + symbol; \ |
462 | | rc_c_bit(probs[t_subcoder_index], \ |
463 | | symbol = (symbol << 1) + rc_mask, \ |
464 | | t_offset &= ~t_match_bit ^ rc_mask) |
465 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x08 |
466 | | |
467 | | |
468 | | //////////// |
469 | | // x86-64 // |
470 | | //////////// |
471 | | |
472 | | #if LZMA_RANGE_DECODER_CONFIG & 0x1F0 |
473 | | |
474 | | // rc_asm_y and rc_asm_n are used as arguments to macros to control which |
475 | | // strings to include or omit. |
476 | | #define rc_asm_y(str) str |
477 | | #define rc_asm_n(str) |
478 | | |
479 | | // There are a few possible variations for normalization. |
480 | | // This is the smallest variant which is also used by LZMA SDK. |
481 | | // |
482 | | // - This has partial register write (the MOV from (%[in_ptr])). |
483 | | // |
484 | | // - INC saves one byte in code size over ADD. False dependency on |
485 | | // partial flags from INC shouldn't become a problem on any processor |
486 | | // because the instructions after normalization don't read the flags |
487 | | // until SUB which sets all flags. |
488 | | // |
489 | | #define rc_asm_normalize \ |
490 | | "cmp %[top_value], %[range]\n\t" \ |
491 | | "jae 1f\n\t" \ |
492 | | "shl %[shift_bits], %[code]\n\t" \ |
493 | | "mov (%[in_ptr]), %b[code]\n\t" \ |
494 | | "shl %[shift_bits], %[range]\n\t" \ |
495 | | "inc %[in_ptr]\n" \ |
496 | | "1:\n" |
497 | | |
498 | | // rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)... |
499 | | // |
500 | | // rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); |
501 | | // if (rc.code < rc_bound) |
502 | | // |
503 | | // ...but the bound is stored in "range": |
504 | | // |
505 | | // t0 = range; |
506 | | // range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); |
507 | | // t0 -= range; |
508 | | // t1 = code; |
509 | | // code -= range; |
510 | | // |
511 | | // The carry flag (CF) from the last subtraction holds the negation of |
512 | | // the decoded bit (if CF==0 then the decoded bit is 1). |
513 | | // The values in t0 and t1 are needed for rc_update_0(prob) and |
514 | | // rc_update_1(prob). If the bit is 0, rc_update_0(prob)... |
515 | | // |
516 | | // rc.range = rc_bound; |
517 | | // |
518 | | // ...has already been done but the "code -= range" has to be reverted using |
519 | | // the old value stored in t1. (Also, prob needs to be updated.) |
520 | | // |
521 | | // If the bit is 1, rc_update_1(prob)... |
522 | | // |
523 | | // rc.range -= rc_bound; |
524 | | // rc.code -= rc_bound; |
525 | | // |
526 | | // ...is already done for "code" but the value for "range" needs to be taken |
527 | | // from t0. (Also, prob needs to be updated here as well.) |
528 | | // |
529 | | // The assignments from t0 and t1 can be done in a branchless manner with CMOV |
530 | | // after the instructions from this macro. The CF from SUB tells which moves |
531 | | // are needed. |
532 | | #define rc_asm_calc(prob) \ |
533 | | "mov %[range], %[t0]\n\t" \ |
534 | | "shr %[bit_model_total_bits], %[range]\n\t" \ |
535 | | "imul %[" prob "], %[range]\n\t" \ |
536 | | "sub %[range], %[t0]\n\t" \ |
537 | | "mov %[code], %[t1]\n\t" \ |
538 | | "sub %[range], %[code]\n\t" |
539 | | |
540 | | // Also, prob needs to be updated: The update math depends on the decoded bit. |
541 | | // It can be expressed in a few slightly different ways but this is fairly |
542 | | // convenient here: |
543 | | // |
544 | | // prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS; |
545 | | // |
546 | | // To do it in branchless way when the negation of the decoded bit is in CF, |
547 | | // both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired |
548 | | // value can be picked with CMOV. The addition can be done using LEA without |
549 | | // affecting CF. |
550 | | // |
551 | | // (This prob update method is a tiny bit different from LZMA SDK 23.01. |
552 | | // In the LZMA SDK a single register is reserved solely for a constant to |
553 | | // be used with CMOV when updating prob. That is fine since there are enough |
554 | | // free registers to do so. The method used here uses one fewer register, |
555 | | // which is valuable with inline assembly.) |
556 | | // |
557 | | // * * * |
558 | | // |
559 | | // In bittree decoding, each (unrolled) loop iteration decodes one bit |
560 | | // and needs one prob variable. To make it faster, the prob variable of |
561 | | // the iteration N+1 is loaded during iteration N. There are two possible |
562 | | // prob variables to choose from for N+1. Both are loaded from memory and |
563 | | // the correct one is chosen with CMOV using the same CF as is used for |
564 | | // other things described above. |
565 | | // |
566 | | // This preloading/prefetching requires an extra register. To avoid |
567 | | // useless moves from "preloaded prob register" to "current prob register", |
568 | | // the macros swap between the two registers for odd and even iterations. |
569 | | // |
570 | | // * * * |
571 | | // |
572 | | // Finally, the decoded bit has to be stored in "symbol". Since the negation |
573 | | // of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is, |
574 | | // if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0" |
575 | | // and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is |
576 | | // the same as "symbol += 1". |
577 | | // |
578 | | // The instructions for all things are intertwined for a few reasons: |
579 | | // - freeing temporary registers for new use |
580 | | // - not modifying CF too early |
581 | | // - instruction scheduling |
582 | | // |
583 | | // The first and last iterations can cheat a little. For example, |
584 | | // on the first iteration "symbol" is known to start from 1 so it |
585 | | // doesn't need to be read; it can even be immediately initialized |
586 | | // to 2 to prepare for the second iteration of the loop. |
587 | | // |
588 | | // * * * |
589 | | // |
590 | | // a = number of the current prob variable (0 or 1) |
591 | | // b = number of the next prob variable (1 or 0) |
592 | | // *_only = rc_asm_y or _n to include or exclude code marked with them |
593 | | #define rc_asm_bittree(a, b, first_only, middle_only, last_only) \ |
594 | | first_only( \ |
595 | | "movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \ |
596 | | "mov $2, %[symbol]\n\t" \ |
597 | | "movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \ |
598 | | ) \ |
599 | | middle_only( \ |
600 | | /* Note the scaling of 4 instead of 2: */ \ |
601 | | "movzwl (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \ |
602 | | ) \ |
603 | | last_only( \ |
604 | | "add %[symbol], %[symbol]\n\t" \ |
605 | | ) \ |
606 | | \ |
607 | | rc_asm_normalize \ |
608 | | rc_asm_calc("prob" #a) \ |
609 | | \ |
610 | | "cmovae %[t0], %[range]\n\t" \ |
611 | | \ |
612 | | first_only( \ |
613 | | "movzwl 6(%[probs_base]), %[t0]\n\t" \ |
614 | | "cmovae %[t0], %[prob" #b "]\n\t" \ |
615 | | ) \ |
616 | | middle_only( \ |
617 | | "movzwl 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \ |
618 | | "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \ |
619 | | "cmovae %[t0], %[prob" #b "]\n\t" \ |
620 | | ) \ |
621 | | \ |
622 | | "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ |
623 | | "cmovb %[t1], %[code]\n\t" \ |
624 | | "mov %[symbol], %[t1]\n\t" \ |
625 | | "cmovae %[prob" #a "], %[t0]\n\t" \ |
626 | | \ |
627 | | first_only( \ |
628 | | "sbb $-1, %[symbol]\n\t" \ |
629 | | ) \ |
630 | | middle_only( \ |
631 | | "sbb $-1, %[symbol]\n\t" \ |
632 | | ) \ |
633 | | last_only( \ |
634 | | "sbb %[last_sbb], %[symbol]\n\t" \ |
635 | | ) \ |
636 | | \ |
637 | | "shr %[move_bits], %[t0]\n\t" \ |
638 | | "sub %[t0], %[prob" #a "]\n\t" \ |
639 | | /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ |
640 | | "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t" |
641 | | |
642 | | // NOTE: The order of variables in __asm__ can affect speed and code size. |
643 | 2.22M | #define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \ |
644 | 2.22M | do { \ |
645 | 2.22M | uint32_t t0; \ |
646 | 2.22M | uint32_t t1; \ |
647 | 2.22M | uint32_t t_prob0; \ |
648 | 2.22M | uint32_t t_prob1; \ |
649 | 2.22M | \ |
650 | 2.22M | __asm__( \ |
651 | 2.22M | asm_str \ |
652 | 2.22M | : \ |
653 | 2.22M | [range] "+&r"(rc.range), \ |
654 | 2.22M | [code] "+&r"(rc.code), \ |
655 | 2.22M | [t0] "=&r"(t0), \ |
656 | 2.22M | [t1] "=&r"(t1), \ |
657 | 2.22M | [prob0] "=&r"(t_prob0), \ |
658 | 2.22M | [prob1] "=&r"(t_prob1), \ |
659 | 2.22M | [symbol] "=&r"(symbol), \ |
660 | 2.22M | [in_ptr] "+&r"(rc_in_ptr) \ |
661 | 2.22M | : \ |
662 | 2.22M | [probs_base] "r"(probs_base_var), \ |
663 | 2.22M | [last_sbb] "n"(-1 - (final_add)), \ |
664 | 2.22M | [top_value] "n"(RC_TOP_VALUE), \ |
665 | 2.22M | [shift_bits] "n"(RC_SHIFT_BITS), \ |
666 | 2.22M | [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ |
667 | 2.22M | [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ |
668 | 2.22M | [move_bits] "n"(RC_MOVE_BITS) \ |
669 | 2.22M | : \ |
670 | 2.22M | "cc", "memory"); \ |
671 | 2.22M | } while (0) |
672 | | |
673 | | |
674 | | #if LZMA_RANGE_DECODER_CONFIG & 0x010 |
675 | | #undef rc_bittree3 |
676 | | #define rc_bittree3(probs_base_var, final_add) \ |
677 | 112k | rc_asm_bittree_n(probs_base_var, final_add, \ |
678 | 112k | rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ |
679 | 112k | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ |
680 | 112k | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \ |
681 | 112k | ) |
682 | | |
683 | | #undef rc_bittree6 |
684 | | #define rc_bittree6(probs_base_var, final_add) \ |
685 | 70.1k | rc_asm_bittree_n(probs_base_var, final_add, \ |
686 | 70.1k | rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ |
687 | 70.1k | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ |
688 | 70.1k | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ |
689 | 70.1k | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ |
690 | 70.1k | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ |
691 | 70.1k | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ |
692 | 70.1k | ) |
693 | | |
694 | | #undef rc_bittree8 |
695 | | #define rc_bittree8(probs_base_var, final_add) \ |
696 | 2.02M | rc_asm_bittree_n(probs_base_var, final_add, \ |
697 | 2.02M | rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ |
698 | 2.02M | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ |
699 | 2.02M | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ |
700 | 2.02M | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ |
701 | 2.02M | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ |
702 | 2.02M | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ |
703 | 2.02M | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ |
704 | 2.02M | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ |
705 | 2.02M | ) |
706 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x010 |
707 | | |
708 | | |
709 | | // Fixed-sized reverse bittree |
710 | | // |
711 | | // This uses the indexing that constructs the final value in symbol directly. |
712 | | // add = 1, 2, 4, 8 |
713 | | // dcur = -, 4, 8, 16 |
714 | | // dnext0 = 4, 8, 16, - |
715 | | // dnext0 = 6, 12, 24, - |
716 | | #define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \ |
717 | | first_only, middle_only, last_only) \ |
718 | | first_only( \ |
719 | | "movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \ |
720 | | "xor %[symbol], %[symbol]\n\t" \ |
721 | | "movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \ |
722 | | ) \ |
723 | | middle_only( \ |
724 | | "movzwl " #dnext0 "(%[probs_base], %q[symbol], 2), " \ |
725 | | "%[prob" #b "]\n\t" \ |
726 | | ) \ |
727 | | \ |
728 | | rc_asm_normalize \ |
729 | | rc_asm_calc("prob" #a) \ |
730 | | \ |
731 | | "cmovae %[t0], %[range]\n\t" \ |
732 | | \ |
733 | | first_only( \ |
734 | | "movzwl 6(%[probs_base]), %[t0]\n\t" \ |
735 | | "cmovae %[t0], %[prob" #b "]\n\t" \ |
736 | | ) \ |
737 | | middle_only( \ |
738 | | "movzwl " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \ |
739 | | "cmovae %[t0], %[prob" #b "]\n\t" \ |
740 | | ) \ |
741 | | \ |
742 | | "lea " #add "(%q[symbol]), %[t0]\n\t" \ |
743 | | "cmovb %[t1], %[code]\n\t" \ |
744 | | middle_only( \ |
745 | | "mov %[symbol], %[t1]\n\t" \ |
746 | | ) \ |
747 | | last_only( \ |
748 | | "mov %[symbol], %[t1]\n\t" \ |
749 | | ) \ |
750 | | "cmovae %[t0], %[symbol]\n\t" \ |
751 | | "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ |
752 | | "cmovae %[prob" #a "], %[t0]\n\t" \ |
753 | | \ |
754 | | "shr %[move_bits], %[t0]\n\t" \ |
755 | | "sub %[t0], %[prob" #a "]\n\t" \ |
756 | | first_only( \ |
757 | | "mov %w[prob" #a "], 2(%[probs_base])\n\t" \ |
758 | | ) \ |
759 | | middle_only( \ |
760 | | "mov %w[prob" #a "], " \ |
761 | | #dcur "(%[probs_base], %q[t1], 2)\n\t" \ |
762 | | ) \ |
763 | | last_only( \ |
764 | | "mov %w[prob" #a "], " \ |
765 | | #dcur "(%[probs_base], %q[t1], 2)\n\t" \ |
766 | | ) |
767 | | |
768 | | #if LZMA_RANGE_DECODER_CONFIG & 0x020 |
769 | | #undef rc_bittree_rev4 |
770 | 16.3k | #define rc_bittree_rev4(probs_base_var) \ |
771 | 16.3k | rc_asm_bittree_n(probs_base_var, 4, \ |
772 | 16.3k | rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \ |
773 | 16.3k | rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \ |
774 | 16.3k | rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \ |
775 | 16.3k | rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \ |
776 | 16.3k | ) |
777 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x020 |
778 | | |
779 | | |
780 | | #if LZMA_RANGE_DECODER_CONFIG & 0x040 |
781 | | #undef rc_bit_add_if_1 |
782 | 110k | #define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \ |
783 | 110k | do { \ |
784 | 110k | uint32_t t0; \ |
785 | 110k | uint32_t t1; \ |
786 | 110k | uint32_t t2 = (value_to_add_if_1); \ |
787 | 110k | uint32_t t_prob; \ |
788 | 110k | uint32_t t_index; \ |
789 | 110k | \ |
790 | 110k | __asm__( \ |
791 | 110k | "movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ |
792 | 110k | "mov %[symbol], %[index]\n\t" \ |
793 | 110k | \ |
794 | 110k | "add %[dest], %[t2]\n\t" \ |
795 | 110k | "add %[symbol], %[symbol]\n\t" \ |
796 | 110k | \ |
797 | 110k | rc_asm_normalize \ |
798 | 110k | rc_asm_calc("prob") \ |
799 | 110k | \ |
800 | 110k | "cmovae %[t0], %[range]\n\t" \ |
801 | 110k | "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ |
802 | 110k | "cmovb %[t1], %[code]\n\t" \ |
803 | 110k | "cmovae %[prob], %[t0]\n\t" \ |
804 | 110k | \ |
805 | 110k | "cmovae %[t2], %[dest]\n\t" \ |
806 | 110k | "sbb $-1, %[symbol]\n\t" \ |
807 | 110k | \ |
808 | 110k | "sar %[move_bits], %[t0]\n\t" \ |
809 | 110k | "sub %[t0], %[prob]\n\t" \ |
810 | 110k | "mov %w[prob], (%[probs_base], %q[index], 2)" \ |
811 | 110k | : \ |
812 | 110k | [range] "+&r"(rc.range), \ |
813 | 110k | [code] "+&r"(rc.code), \ |
814 | 110k | [t0] "=&r"(t0), \ |
815 | 110k | [t1] "=&r"(t1), \ |
816 | 110k | [prob] "=&r"(t_prob), \ |
817 | 110k | [index] "=&r"(t_index), \ |
818 | 110k | [symbol] "+&r"(symbol), \ |
819 | 110k | [t2] "+&r"(t2), \ |
820 | 110k | [dest] "+&r"(dest_var), \ |
821 | 110k | [in_ptr] "+&r"(rc_in_ptr) \ |
822 | 110k | : \ |
823 | 110k | [probs_base] "r"(probs_base_var), \ |
824 | 110k | [top_value] "n"(RC_TOP_VALUE), \ |
825 | 110k | [shift_bits] "n"(RC_SHIFT_BITS), \ |
826 | 110k | [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ |
827 | 110k | [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ |
828 | 110k | [move_bits] "n"(RC_MOVE_BITS) \ |
829 | 110k | : \ |
830 | 110k | "cc", "memory"); \ |
831 | 110k | } while (0) |
832 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x040 |
833 | | |
834 | | |
835 | | // Literal decoding uses a normal 8-bit bittree but literal with match byte |
836 | | // is more complex in picking the probability variable from the correct |
837 | | // subtree. This doesn't use preloading/prefetching of the next prob because |
838 | | // there are four choices instead of two. |
839 | | // |
840 | | // FIXME? The first iteration starts with symbol = 1 so it could be optimized |
841 | | // by a tiny amount. |
842 | | #define rc_asm_matched_literal(nonlast_only) \ |
843 | | "add %[offset], %[symbol]\n\t" \ |
844 | | "and %[offset], %[match_bit]\n\t" \ |
845 | | "add %[match_bit], %[symbol]\n\t" \ |
846 | | \ |
847 | | "movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ |
848 | | \ |
849 | | "add %[symbol], %[symbol]\n\t" \ |
850 | | \ |
851 | | nonlast_only( \ |
852 | | "xor %[match_bit], %[offset]\n\t" \ |
853 | | "add %[match_byte], %[match_byte]\n\t" \ |
854 | | ) \ |
855 | | \ |
856 | | rc_asm_normalize \ |
857 | | rc_asm_calc("prob") \ |
858 | | \ |
859 | | "cmovae %[t0], %[range]\n\t" \ |
860 | | "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ |
861 | | "cmovb %[t1], %[code]\n\t" \ |
862 | | "mov %[symbol], %[t1]\n\t" \ |
863 | | "cmovae %[prob], %[t0]\n\t" \ |
864 | | \ |
865 | | nonlast_only( \ |
866 | | "cmovae %[match_bit], %[offset]\n\t" \ |
867 | | "mov %[match_byte], %[match_bit]\n\t" \ |
868 | | ) \ |
869 | | \ |
870 | | "sbb $-1, %[symbol]\n\t" \ |
871 | | \ |
872 | | "shr %[move_bits], %[t0]\n\t" \ |
873 | | /* Undo symbol += match_bit + offset: */ \ |
874 | | "and $0x1FF, %[symbol]\n\t" \ |
875 | | "sub %[t0], %[prob]\n\t" \ |
876 | | \ |
877 | | /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ |
878 | | "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t" |
879 | | |
880 | | |
881 | | #if LZMA_RANGE_DECODER_CONFIG & 0x080 |
882 | | #undef rc_matched_literal |
883 | 65.6k | #define rc_matched_literal(probs_base_var, match_byte_value) \ |
884 | 65.6k | do { \ |
885 | 65.6k | uint32_t t0; \ |
886 | 65.6k | uint32_t t1; \ |
887 | 65.6k | uint32_t t_prob; \ |
888 | 65.6k | uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \ |
889 | 65.6k | uint32_t t_match_bit = t_match_byte; \ |
890 | 65.6k | uint32_t t_offset = 0x100; \ |
891 | 65.6k | symbol = 1; \ |
892 | 65.6k | \ |
893 | 65.6k | __asm__( \ |
894 | 65.6k | rc_asm_matched_literal(rc_asm_y) \ |
895 | 65.6k | rc_asm_matched_literal(rc_asm_y) \ |
896 | 65.6k | rc_asm_matched_literal(rc_asm_y) \ |
897 | 65.6k | rc_asm_matched_literal(rc_asm_y) \ |
898 | 65.6k | rc_asm_matched_literal(rc_asm_y) \ |
899 | 65.6k | rc_asm_matched_literal(rc_asm_y) \ |
900 | 65.6k | rc_asm_matched_literal(rc_asm_y) \ |
901 | 65.6k | rc_asm_matched_literal(rc_asm_n) \ |
902 | 65.6k | : \ |
903 | 65.6k | [range] "+&r"(rc.range), \ |
904 | 65.6k | [code] "+&r"(rc.code), \ |
905 | 65.6k | [t0] "=&r"(t0), \ |
906 | 65.6k | [t1] "=&r"(t1), \ |
907 | 65.6k | [prob] "=&r"(t_prob), \ |
908 | 65.6k | [match_bit] "+&r"(t_match_bit), \ |
909 | 65.6k | [symbol] "+&r"(symbol), \ |
910 | 65.6k | [match_byte] "+&r"(t_match_byte), \ |
911 | 65.6k | [offset] "+&r"(t_offset), \ |
912 | 65.6k | [in_ptr] "+&r"(rc_in_ptr) \ |
913 | 65.6k | : \ |
914 | 65.6k | [probs_base] "r"(probs_base_var), \ |
915 | 65.6k | [top_value] "n"(RC_TOP_VALUE), \ |
916 | 65.6k | [shift_bits] "n"(RC_SHIFT_BITS), \ |
917 | 65.6k | [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ |
918 | 65.6k | [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ |
919 | 65.6k | [move_bits] "n"(RC_MOVE_BITS) \ |
920 | 65.6k | : \ |
921 | 65.6k | "cc", "memory"); \ |
922 | 65.6k | } while (0) |
923 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x080 |
924 | | |
925 | | |
926 | | // Doing the loop in asm instead of C seems to help a little. |
927 | | #if LZMA_RANGE_DECODER_CONFIG & 0x100 |
928 | | #undef rc_direct |
929 | 16.3k | #define rc_direct(dest_var, count_var) \ |
930 | 16.3k | do { \ |
931 | 16.3k | uint32_t t0; \ |
932 | 16.3k | uint32_t t1; \ |
933 | 16.3k | \ |
934 | 16.3k | __asm__( \ |
935 | 16.3k | "2:\n\t" \ |
936 | 16.3k | "add %[dest], %[dest]\n\t" \ |
937 | 16.3k | "lea 1(%q[dest]), %[t1]\n\t" \ |
938 | 16.3k | \ |
939 | 16.3k | rc_asm_normalize \ |
940 | 16.3k | \ |
941 | 16.3k | "shr $1, %[range]\n\t" \ |
942 | 16.3k | "mov %[code], %[t0]\n\t" \ |
943 | 16.3k | "sub %[range], %[code]\n\t" \ |
944 | 16.3k | "cmovns %[t1], %[dest]\n\t" \ |
945 | 16.3k | "cmovs %[t0], %[code]\n\t" \ |
946 | 16.3k | "dec %[count]\n\t" \ |
947 | 16.3k | "jnz 2b\n\t" \ |
948 | 16.3k | : \ |
949 | 16.3k | [range] "+&r"(rc.range), \ |
950 | 16.3k | [code] "+&r"(rc.code), \ |
951 | 16.3k | [t0] "=&r"(t0), \ |
952 | 16.3k | [t1] "=&r"(t1), \ |
953 | 16.3k | [dest] "+&r"(dest_var), \ |
954 | 16.3k | [count] "+&r"(count_var), \ |
955 | 16.3k | [in_ptr] "+&r"(rc_in_ptr) \ |
956 | 16.3k | : \ |
957 | 16.3k | [top_value] "n"(RC_TOP_VALUE), \ |
958 | 16.3k | [shift_bits] "n"(RC_SHIFT_BITS) \ |
959 | 16.3k | : \ |
960 | 16.3k | "cc", "memory"); \ |
961 | 16.3k | } while (0) |
962 | | #endif // LZMA_RANGE_DECODER_CONFIG & 0x100 |
963 | | |
964 | | #endif // x86_64 |
965 | | |
966 | | #endif |