Coverage Report

Created: 2025-11-14 07:32

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
124k
{
81
124k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
124k
  int ci, blkn, dctbl, actbl;
83
124k
  d_derived_tbl **pdtbl;
84
124k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
124k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
17.4k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
119k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
268k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
144k
    compptr = cinfo->cur_comp_info[ci];
96
144k
    dctbl = compptr->dc_tbl_no;
97
144k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
144k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
144k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
144k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
144k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
144k
    entropy->saved.last_dc_val[ci] = 0;
106
144k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
335k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
210k
    ci = cinfo->MCU_membership[blkn];
111
210k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
210k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
210k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
210k
    if (compptr->component_needed) {
117
210k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
210k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
210k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
210k
  }
124
125
  /* Initialize bitread state variables */
126
124k
  entropy->bitstate.bits_left = 0;
127
124k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
124k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
124k
  entropy->restarts_to_go = cinfo->restart_interval;
132
124k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
478k
{
146
478k
  JHUFF_TBL *htbl;
147
478k
  d_derived_tbl *dtbl;
148
478k
  int p, i, l, si, numsymbols;
149
478k
  int lookbits, ctr;
150
478k
  char huffsize[257];
151
478k
  unsigned int huffcode[257];
152
478k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
478k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
1.07k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
478k
  htbl =
162
478k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
478k
  if (htbl == NULL)
164
845
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
478k
  if (*pdtbl == NULL)
168
199k
    *pdtbl = (d_derived_tbl *)
169
199k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
199k
                                  sizeof(d_derived_tbl));
171
478k
  dtbl = *pdtbl;
172
478k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
478k
  p = 0;
177
8.10M
  for (l = 1; l <= 16; l++) {
178
7.62M
    i = (int)htbl->bits[l];
179
7.62M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
32.4M
    while (i--)
182
24.8M
      huffsize[p++] = (char)l;
183
7.62M
  }
184
478k
  huffsize[p] = 0;
185
478k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
478k
  code = 0;
191
478k
  si = huffsize[0];
192
478k
  p = 0;
193
4.52M
  while (huffsize[p]) {
194
28.8M
    while (((int)huffsize[p]) == si) {
195
24.7M
      huffcode[p++] = code;
196
24.7M
      code++;
197
24.7M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
4.04M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
1.00k
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
4.04M
    code <<= 1;
204
4.04M
    si++;
205
4.04M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
478k
  p = 0;
210
8.08M
  for (l = 1; l <= 16; l++) {
211
7.61M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
3.34M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
3.34M
      p += htbl->bits[l];
217
3.34M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
4.26M
    } else {
219
4.26M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
4.26M
    }
221
7.61M
  }
222
478k
  dtbl->valoffset[17] = 0;
223
478k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
122M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
121M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
478k
  p = 0;
236
4.28M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
9.04M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
5.24M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
98.3M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
93.0M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
93.0M
        lookbits++;
244
93.0M
      }
245
5.24M
    }
246
3.80M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
478k
  if (isDC) {
255
3.48M
    for (i = 0; i < numsymbols; i++) {
256
3.17M
      int sym = htbl->huffval[i];
257
3.17M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
1.12k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
3.17M
    }
260
310k
  }
261
478k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
30.8M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
22.0M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
22.0M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
22.0M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
22.0M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
22.0M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
5.41M
    while (bits_left < MIN_GET_BITS) {
303
4.87M
      register int c;
304
305
      /* Attempt to read a byte */
306
4.87M
      if (bytes_in_buffer == 0) {
307
35.3k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
35.3k
        next_input_byte = cinfo->src->next_input_byte;
310
35.3k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
35.3k
      }
312
4.87M
      bytes_in_buffer--;
313
4.87M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
4.87M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
2.02M
        do {
323
2.02M
          if (bytes_in_buffer == 0) {
324
8.87k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
8.87k
            next_input_byte = cinfo->src->next_input_byte;
327
8.87k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
8.87k
          }
329
2.02M
          bytes_in_buffer--;
330
2.02M
          c = *next_input_byte++;
331
2.02M
        } while (c == 0xFF);
332
333
508k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
179k
          c = 0xFF;
336
328k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
328k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
328k
          goto no_more_bytes;
348
328k
        }
349
508k
      }
350
351
      /* OK, load c into get_buffer */
352
4.54M
      get_buffer = (get_buffer << 8) | c;
353
4.54M
      bits_left += 8;
354
4.54M
    } /* end while */
355
21.1M
  } else {
356
21.5M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
21.5M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
12.7M
      if (!cinfo->entropy->insufficient_data) {
368
322k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
322k
        cinfo->entropy->insufficient_data = TRUE;
370
322k
      }
371
      /* Fill the buffer with zero bits */
372
12.7M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
12.7M
      bits_left = MIN_GET_BITS;
374
12.7M
    }
375
21.5M
  }
376
377
  /* Unload the local registers */
378
22.0M
  state->next_input_byte = next_input_byte;
379
22.0M
  state->bytes_in_buffer = bytes_in_buffer;
380
22.0M
  state->get_buffer = get_buffer;
381
22.0M
  state->bits_left = bits_left;
382
383
22.0M
  return TRUE;
384
22.0M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
2.03M
#define GET_BYTE { \
392
2.03M
  register int c0, c1; \
393
2.03M
  c0 = *buffer++; \
394
2.03M
  c1 = *buffer; \
395
2.03M
  /* Pre-execute most common case */ \
396
2.03M
  get_buffer = (get_buffer << 8) | c0; \
397
2.03M
  bits_left += 8; \
398
2.03M
  if (c0 == 0xFF) { \
399
845k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
845k
    buffer++; \
401
845k
    if (c1 != 0) { \
402
644k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
644k
      cinfo->unread_marker = c1; \
404
644k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
644k
      buffer -= 2; \
406
644k
      get_buffer &= ~0xFF; \
407
644k
    } \
408
845k
  } \
409
2.03M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
4.41M
  if (bits_left <= 16) { \
416
338k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
338k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
20.0M
{
440
20.0M
  register int l = min_bits;
441
20.0M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
20.0M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
20.0M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
104M
  while (code > htbl->maxcode[l]) {
453
84.0M
    code <<= 1;
454
84.0M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
84.0M
    code |= GET_BITS(1);
456
84.0M
    l++;
457
84.0M
  }
458
459
  /* Unload the local registers */
460
20.0M
  state->get_buffer = get_buffer;
461
20.0M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
20.0M
  if (l > 16) {
466
1.92M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
1.92M
    return 0;                   /* fake a zero as the safest result */
468
1.92M
  }
469
470
18.1M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
20.0M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
13.8M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
13.8M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.46M
{
514
1.46M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.46M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.46M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.46M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.46M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
3.16M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
1.69M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.46M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.46M
  if (cinfo->unread_marker == 0)
539
24.3k
    entropy->pub.insufficient_data = FALSE;
540
541
1.46M
  return TRUE;
542
1.46M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
858k
{
554
858k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
858k
  BITREAD_STATE_VARS;
556
858k
  int blkn;
557
858k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
858k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
858k
  state = entropy->saved;
563
564
1.86M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.00M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.00M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.00M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.00M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.00M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.00M
    if (s) {
575
295k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
295k
      r = GET_BITS(s);
577
295k
      s = HUFF_EXTEND(r, s);
578
295k
    }
579
580
1.00M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.00M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.00M
      s += state.last_dc_val[ci];
592
1.00M
      state.last_dc_val[ci] = s;
593
1.00M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.00M
        (*block)[0] = (JCOEF)s;
596
1.00M
      }
597
1.00M
    }
598
599
1.00M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
13.0M
      for (k = 1; k < DCTSIZE2; k++) {
604
12.8M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
12.8M
        r = s >> 4;
607
12.8M
        s &= 15;
608
609
12.8M
        if (s) {
610
11.9M
          k += r;
611
11.9M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
11.9M
          r = GET_BITS(s);
613
11.9M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
11.9M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
11.9M
        } else {
620
848k
          if (r != 15)
621
789k
            break;
622
59.2k
          k += 15;
623
59.2k
        }
624
12.8M
      }
625
626
1.00M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
23
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
23
    }
647
1.00M
  }
648
649
  /* Completed MCU, so update state */
650
857k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
857k
  entropy->saved = state;
652
857k
  return TRUE;
653
858k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
697k
{
665
697k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
697k
  BITREAD_STATE_VARS;
667
697k
  JOCTET *buffer;
668
697k
  int blkn;
669
697k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
697k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
697k
  buffer = (JOCTET *)br_state.next_input_byte;
675
697k
  state = entropy->saved;
676
677
1.40M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
710k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
710k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
710k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
710k
    register int s, k, r, l;
682
683
710k
    HUFF_DECODE_FAST(s, l, dctbl);
684
710k
    if (s) {
685
253k
      FILL_BIT_BUFFER_FAST
686
253k
      r = GET_BITS(s);
687
253k
      s = HUFF_EXTEND(r, s);
688
253k
    }
689
690
710k
    if (entropy->dc_needed[blkn]) {
691
710k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
710k
      s += state.last_dc_val[ci];
696
710k
      state.last_dc_val[ci] = s;
697
710k
      if (block)
698
710k
        (*block)[0] = (JCOEF)s;
699
710k
    }
700
701
710k
    if (entropy->ac_needed[blkn] && block) {
702
703
2.11M
      for (k = 1; k < DCTSIZE2; k++) {
704
2.08M
        HUFF_DECODE_FAST(s, l, actbl);
705
2.08M
        r = s >> 4;
706
2.08M
        s &= 15;
707
708
2.08M
        if (s) {
709
1.36M
          k += r;
710
1.36M
          FILL_BIT_BUFFER_FAST
711
1.36M
          r = GET_BITS(s);
712
1.36M
          s = HUFF_EXTEND(r, s);
713
1.36M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
1.36M
        } else {
715
714k
          if (r != 15) break;
716
31.1k
          k += 15;
717
31.1k
        }
718
2.08M
      }
719
720
710k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
710k
  }
738
739
697k
  if (cinfo->unread_marker != 0) {
740
75.0k
    cinfo->unread_marker = 0;
741
75.0k
    return FALSE;
742
75.0k
  }
743
744
622k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
622k
  br_state.next_input_byte = buffer;
746
622k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
622k
  entropy->saved = state;
748
622k
  return TRUE;
749
697k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
111M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
111M
{
772
111M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
111M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
111M
  if (cinfo->restart_interval) {
777
16.6M
    if (entropy->restarts_to_go == 0)
778
1.46M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
16.6M
    usefast = 0;
781
16.6M
  }
782
783
111M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
43.2M
      cinfo->unread_marker != 0)
785
110M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
111M
  if (!entropy->pub.insufficient_data) {
791
792
1.48M
    if (usefast) {
793
697k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
783k
    } else {
795
858k
use_slow:
796
858k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
858k
    }
798
799
1.48M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
111M
  if (cinfo->restart_interval)
803
16.6M
    entropy->restarts_to_go--;
804
805
111M
  return TRUE;
806
111M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
67.4k
{
816
67.4k
  huff_entropy_ptr entropy;
817
67.4k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
67.4k
  std_huff_tables((j_common_ptr)cinfo);
824
825
67.4k
  entropy = (huff_entropy_ptr)
826
67.4k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
67.4k
                                sizeof(huff_entropy_decoder));
828
67.4k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
67.4k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
67.4k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
337k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
269k
  }
836
67.4k
}