Coverage Report

Created: 2025-11-14 07:32

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjxl/third_party/brotli/c/dec/huffman.c
Line
Count
Source
1
/* Copyright 2013 Google Inc. All Rights Reserved.
2
3
   Distributed under MIT license.
4
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5
*/
6
7
/* Utilities for building Huffman decoding tables. */
8
9
#include "huffman.h"
10
11
#include "../common/constants.h"
12
#include "../common/platform.h"
13
14
#if defined(__cplusplus) || defined(c_plusplus)
15
extern "C" {
16
#endif
17
18
0
#define BROTLI_REVERSE_BITS_MAX 8
19
20
#if defined(BROTLI_RBIT)
21
#define BROTLI_REVERSE_BITS_BASE \
22
  ((sizeof(brotli_reg_t) << 3) - BROTLI_REVERSE_BITS_MAX)
23
#else
24
0
#define BROTLI_REVERSE_BITS_BASE 0
25
static BROTLI_MODEL("small")
26
uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {
27
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
28
  0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
29
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
30
  0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
31
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
32
  0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
33
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
34
  0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
35
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
36
  0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
37
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
38
  0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
39
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
40
  0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
41
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
42
  0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
43
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
44
  0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
45
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
46
  0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
47
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
48
  0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
49
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
50
  0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
51
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
52
  0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
53
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
54
  0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
55
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
56
  0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
57
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
58
  0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
59
};
60
#endif  /* BROTLI_RBIT */
61
62
#define BROTLI_REVERSE_BITS_LOWEST \
63
0
  ((brotli_reg_t)1 << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))
64
65
/* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
66
   where reverse(value, len) is the bit-wise reversal of the len least
67
   significant bits of value. */
68
0
static BROTLI_INLINE brotli_reg_t BrotliReverseBits(brotli_reg_t num) {
69
#if defined(BROTLI_RBIT)
70
  return BROTLI_RBIT(num);
71
#else
72
0
  return kReverseBits[num];
73
0
#endif
74
0
}
75
76
/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
77
/* Assumes that end is an integer multiple of step */
78
static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
79
                                         int step, int end,
80
0
                                         HuffmanCode code) {
81
0
  do {
82
0
    end -= step;
83
0
    table[end] = code;
84
0
  } while (end > 0);
85
0
}
86
87
/* Returns the table width of the next 2nd level table. |count| is the histogram
88
   of bit lengths for the remaining symbols, |len| is the code length of the
89
   next processed symbol. */
90
static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,
91
0
                                          int len, int root_bits) {
92
0
  int left = 1 << (len - root_bits);
93
0
  while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {
94
0
    left -= count[len];
95
0
    if (left <= 0) break;
96
0
    ++len;
97
0
    left <<= 1;
98
0
  }
99
0
  return len - root_bits;
100
0
}
101
102
void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,
103
                                        const uint8_t* const code_lengths,
104
0
                                        uint16_t* count) {
105
0
  HuffmanCode code;       /* current table entry */
106
0
  int symbol;             /* symbol index in original or sorted table */
107
0
  brotli_reg_t key;       /* prefix code */
108
0
  brotli_reg_t key_step;  /* prefix code addend */
109
0
  int step;               /* step size to replicate values in current table */
110
0
  int table_size;         /* size of current table */
111
0
  int sorted[BROTLI_CODE_LENGTH_CODES];  /* symbols sorted by code length */
112
  /* offsets in sorted table for each length */
113
0
  int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];
114
0
  int bits;
115
0
  int bits_count;
116
0
  BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=
117
0
                BROTLI_REVERSE_BITS_MAX);
118
0
  BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH == 5);
119
120
  /* Generate offsets into sorted symbol table by code length. */
121
0
  symbol = -1;
122
0
  bits = 1;
123
  /* BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH == 5 */
124
0
  BROTLI_REPEAT_5({
125
0
    symbol += count[bits];
126
0
    offset[bits] = symbol;
127
0
    bits++;
128
0
  });
129
  /* Symbols with code length 0 are placed after all other symbols. */
130
0
  offset[0] = BROTLI_CODE_LENGTH_CODES - 1;
131
132
  /* Sort symbols by length, by symbol order within each length. */
133
0
  symbol = BROTLI_CODE_LENGTH_CODES;
134
0
  do {
135
0
    BROTLI_REPEAT_6({
136
0
      symbol--;
137
0
      sorted[offset[code_lengths[symbol]]--] = symbol;
138
0
    });
139
0
  } while (symbol != 0);
140
141
0
  table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;
142
143
  /* Special case: all symbols but one have 0 code length. */
144
0
  if (offset[0] == 0) {
145
0
    code = ConstructHuffmanCode(0, (uint16_t)sorted[0]);
146
0
    for (key = 0; key < (brotli_reg_t)table_size; ++key) {
147
0
      table[key] = code;
148
0
    }
149
0
    return;
150
0
  }
151
152
  /* Fill in table. */
153
0
  key = 0;
154
0
  key_step = BROTLI_REVERSE_BITS_LOWEST;
155
0
  symbol = 0;
156
0
  bits = 1;
157
0
  step = 2;
158
0
  do {
159
0
    for (bits_count = count[bits]; bits_count != 0; --bits_count) {
160
0
      code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)sorted[symbol++]);
161
0
      ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
162
0
      key += key_step;
163
0
    }
164
0
    step <<= 1;
165
0
    key_step >>= 1;
166
0
  } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);
167
0
}
168
169
uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,
170
                                 int root_bits,
171
                                 const uint16_t* const symbol_lists,
172
0
                                 uint16_t* count) {
173
0
  HuffmanCode code;       /* current table entry */
174
0
  HuffmanCode* table;     /* next available space in table */
175
0
  int len;                /* current code length */
176
0
  int symbol;             /* symbol index in original or sorted table */
177
0
  brotli_reg_t key;       /* prefix code */
178
0
  brotli_reg_t key_step;  /* prefix code addend */
179
0
  brotli_reg_t sub_key;   /* 2nd level table prefix code */
180
0
  brotli_reg_t sub_key_step;  /* 2nd level table prefix code addend */
181
0
  int step;               /* step size to replicate values in current table */
182
0
  int table_bits;         /* key length of current table */
183
0
  int table_size;         /* size of current table */
184
0
  int total_size;         /* sum of root table size and 2nd level table sizes */
185
0
  int max_length = -1;
186
0
  int bits;
187
0
  int bits_count;
188
189
0
  BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);
190
0
  BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=
191
0
                BROTLI_REVERSE_BITS_MAX);
192
193
0
  while (symbol_lists[max_length] == 0xFFFF) max_length--;
194
0
  max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;
195
196
0
  table = root_table;
197
0
  table_bits = root_bits;
198
0
  table_size = 1 << table_bits;
199
0
  total_size = table_size;
200
201
  /* Fill in the root table. Reduce the table size to if possible,
202
     and create the repetitions by memcpy. */
203
0
  if (table_bits > max_length) {
204
0
    table_bits = max_length;
205
0
    table_size = 1 << table_bits;
206
0
  }
207
0
  key = 0;
208
0
  key_step = BROTLI_REVERSE_BITS_LOWEST;
209
0
  bits = 1;
210
0
  step = 2;
211
0
  do {
212
0
    symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
213
0
    for (bits_count = count[bits]; bits_count != 0; --bits_count) {
214
0
      symbol = symbol_lists[symbol];
215
0
      code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)symbol);
216
0
      ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
217
0
      key += key_step;
218
0
    }
219
0
    step <<= 1;
220
0
    key_step >>= 1;
221
0
  } while (++bits <= table_bits);
222
223
  /* If root_bits != table_bits then replicate to fill the remaining slots. */
224
0
  while (total_size != table_size) {
225
0
    memcpy(&table[table_size], &table[0],
226
0
           (size_t)table_size * sizeof(table[0]));
227
0
    table_size <<= 1;
228
0
  }
229
230
  /* Fill in 2nd level tables and add pointers to root table. */
231
0
  key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
232
0
  sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);
233
0
  sub_key_step = BROTLI_REVERSE_BITS_LOWEST;
234
0
  for (len = root_bits + 1, step = 2; len <= max_length; ++len) {
235
0
    symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
236
0
    for (; count[len] != 0; --count[len]) {
237
0
      if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {
238
0
        table += table_size;
239
0
        table_bits = NextTableBitSize(count, len, root_bits);
240
0
        table_size = 1 << table_bits;
241
0
        total_size += table_size;
242
0
        sub_key = BrotliReverseBits(key);
243
0
        key += key_step;
244
0
        root_table[sub_key] = ConstructHuffmanCode(
245
0
            (uint8_t)(table_bits + root_bits),
246
0
            (uint16_t)(((size_t)(table - root_table)) - sub_key));
247
0
        sub_key = 0;
248
0
      }
249
0
      symbol = symbol_lists[symbol];
250
0
      code = ConstructHuffmanCode((uint8_t)(len - root_bits), (uint16_t)symbol);
251
0
      ReplicateValue(
252
0
          &table[BrotliReverseBits(sub_key)], step, table_size, code);
253
0
      sub_key += sub_key_step;
254
0
    }
255
0
    step <<= 1;
256
0
    sub_key_step >>= 1;
257
0
  }
258
0
  return (uint32_t)total_size;
259
0
}
260
261
uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,
262
                                       int root_bits,
263
                                       uint16_t* val,
264
0
                                       uint32_t num_symbols) {
265
0
  uint32_t table_size = 1;
266
0
  const uint32_t goal_size = 1U << root_bits;
267
0
  switch (num_symbols) {
268
0
    case 0:
269
0
      table[0] = ConstructHuffmanCode(0, val[0]);
270
0
      break;
271
0
    case 1:
272
0
      if (val[1] > val[0]) {
273
0
        table[0] = ConstructHuffmanCode(1, val[0]);
274
0
        table[1] = ConstructHuffmanCode(1, val[1]);
275
0
      } else {
276
0
        table[0] = ConstructHuffmanCode(1, val[1]);
277
0
        table[1] = ConstructHuffmanCode(1, val[0]);
278
0
      }
279
0
      table_size = 2;
280
0
      break;
281
0
    case 2:
282
0
      table[0] = ConstructHuffmanCode(1, val[0]);
283
0
      table[2] = ConstructHuffmanCode(1, val[0]);
284
0
      if (val[2] > val[1]) {
285
0
        table[1] = ConstructHuffmanCode(2, val[1]);
286
0
        table[3] = ConstructHuffmanCode(2, val[2]);
287
0
      } else {
288
0
        table[1] = ConstructHuffmanCode(2, val[2]);
289
0
        table[3] = ConstructHuffmanCode(2, val[1]);
290
0
      }
291
0
      table_size = 4;
292
0
      break;
293
0
    case 3: {
294
0
      int i, k;
295
0
      for (i = 0; i < 3; ++i) {
296
0
        for (k = i + 1; k < 4; ++k) {
297
0
          if (val[k] < val[i]) {
298
0
            uint16_t t = val[k];
299
0
            val[k] = val[i];
300
0
            val[i] = t;
301
0
          }
302
0
        }
303
0
      }
304
0
      table[0] = ConstructHuffmanCode(2, val[0]);
305
0
      table[2] = ConstructHuffmanCode(2, val[1]);
306
0
      table[1] = ConstructHuffmanCode(2, val[2]);
307
0
      table[3] = ConstructHuffmanCode(2, val[3]);
308
0
      table_size = 4;
309
0
      break;
310
0
    }
311
0
    case 4: {
312
0
      if (val[3] < val[2]) {
313
0
        uint16_t t = val[3];
314
0
        val[3] = val[2];
315
0
        val[2] = t;
316
0
      }
317
0
      table[0] = ConstructHuffmanCode(1, val[0]);
318
0
      table[1] = ConstructHuffmanCode(2, val[1]);
319
0
      table[2] = ConstructHuffmanCode(1, val[0]);
320
0
      table[3] = ConstructHuffmanCode(3, val[2]);
321
0
      table[4] = ConstructHuffmanCode(1, val[0]);
322
0
      table[5] = ConstructHuffmanCode(2, val[1]);
323
0
      table[6] = ConstructHuffmanCode(1, val[0]);
324
0
      table[7] = ConstructHuffmanCode(3, val[3]);
325
0
      table_size = 8;
326
0
      break;
327
0
    }
328
0
  }
329
0
  while (table_size != goal_size) {
330
0
    memcpy(&table[table_size], &table[0],
331
0
           (size_t)table_size * sizeof(table[0]));
332
0
    table_size <<= 1;
333
0
  }
334
0
  return goal_size;
335
0
}
336
337
#if defined(__cplusplus) || defined(c_plusplus)
338
}  /* extern "C" */
339
#endif