Coverage Report

Created: 2025-11-14 07:32

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libpng/png.c
Line
Count
Source
1
/* png.c - location for general purpose libpng functions
2
 *
3
 * Copyright (c) 2018-2025 Cosmin Truta
4
 * Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson
5
 * Copyright (c) 1996-1997 Andreas Dilger
6
 * Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
7
 *
8
 * This code is released under the libpng license.
9
 * For conditions of distribution and use, see the disclaimer
10
 * and license in png.h
11
 */
12
13
#include "pngpriv.h"
14
15
/* Generate a compiler error if there is an old png.h in the search path. */
16
typedef png_libpng_version_1_8_0_git Your_png_h_is_not_version_1_8_0_git;
17
18
/* Sanity check the chunks definitions - PNG_KNOWN_CHUNKS from pngpriv.h and the
19
 * corresponding macro definitions.  This causes a compile time failure if
20
 * something is wrong but generates no code.
21
 *
22
 * (1) The first check is that the PNG_CHUNK(cHNK, index) 'index' values must
23
 * increment from 0 to the last value.
24
 */
25
#define PNG_CHUNK(cHNK, index) != (index) || ((index)+1)
26
27
#if 0 PNG_KNOWN_CHUNKS < 0
28
#  error PNG_KNOWN_CHUNKS chunk definitions are not in order
29
#endif
30
31
#undef PNG_CHUNK
32
33
/* (2) The chunk name macros, png_cHNK, must all be valid and defined.  Since
34
 * this is a preprocessor test undefined pp-tokens come out as zero and will
35
 * fail this test.
36
 */
37
#define PNG_CHUNK(cHNK, index) !PNG_CHUNK_NAME_VALID(png_ ## cHNK) ||
38
39
#if PNG_KNOWN_CHUNKS 0
40
#  error png_cHNK not defined for some known cHNK
41
#endif
42
43
#undef PNG_CHUNK
44
45
/* Tells libpng that we have already handled the first "num_bytes" bytes
46
 * of the PNG file signature.  If the PNG data is embedded into another
47
 * stream we can set num_bytes = 8 so that libpng will not attempt to read
48
 * or write any of the magic bytes before it starts on the IHDR.
49
 */
50
51
#ifdef PNG_READ_SUPPORTED
52
void
53
png_set_sig_bytes(png_struct *png_ptr, int num_bytes)
54
94.0k
{
55
94.0k
   unsigned int nb = (unsigned int)num_bytes;
56
57
94.0k
   png_debug(1, "in png_set_sig_bytes");
58
59
94.0k
   if (png_ptr == NULL)
60
0
      return;
61
62
94.0k
   if (num_bytes < 0)
63
0
      nb = 0;
64
65
94.0k
   if (nb > 8)
66
0
      png_error(png_ptr, "Too many bytes for PNG signature");
67
68
94.0k
   png_ptr->sig_bytes = (png_byte)nb;
69
94.0k
}
70
71
/* Checks whether the supplied bytes match the PNG signature.  We allow
72
 * checking less than the full 8-byte signature so that those apps that
73
 * already read the first few bytes of a file to determine the file type
74
 * can simply check the remaining bytes for extra assurance.  Returns
75
 * an integer less than, equal to, or greater than zero if sig is found,
76
 * respectively, to be less than, to match, or be greater than the correct
77
 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
78
 */
79
int
80
png_sig_cmp(const png_byte *sig, size_t start, size_t num_to_check)
81
0
{
82
0
   static const png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
83
84
0
   if (num_to_check < 1)
85
0
      return -1;
86
87
0
   if (start > 7)
88
0
      return -1;
89
90
0
   if (num_to_check > 8 - start)
91
0
      num_to_check = 8 - start;
92
93
0
   return memcmp(&sig[start], &png_signature[start], num_to_check);
94
0
}
95
96
#endif /* READ */
97
98
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
99
/* Function to allocate memory for zlib */
100
PNG_FUNCTION(voidpf /* PRIVATE */,
101
png_zalloc,(voidpf png_ptr, uInt items, uInt size),
102
    PNG_ALLOCATED)
103
151k
{
104
151k
   png_alloc_size_t num_bytes = size;
105
106
151k
   if (png_ptr == NULL)
107
0
      return NULL;
108
109
   /* This check against overflow is vestigial, dating back from
110
    * the old times when png_zalloc used to be an exported function.
111
    * We're still keeping it here for now, as an extra-cautious
112
    * prevention against programming errors inside zlib, although it
113
    * should rather be a debug-time assertion instead.
114
    */
115
151k
   if (size != 0 && items >= (~(png_alloc_size_t)0) / size)
116
0
   {
117
0
      png_warning(png_voidcast(png_struct *, png_ptr),
118
0
                  "Potential overflow in png_zalloc()");
119
0
      return NULL;
120
0
   }
121
122
151k
   num_bytes *= items;
123
151k
   return png_malloc_warn(png_voidcast(png_struct *, png_ptr), num_bytes);
124
151k
}
125
126
/* Function to free memory for zlib */
127
void /* PRIVATE */
128
png_zfree(voidpf png_ptr, voidpf ptr)
129
151k
{
130
151k
   png_free(png_voidcast(const png_struct *,png_ptr), ptr);
131
151k
}
132
133
/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
134
 * in case CRC is > 32 bits to leave the top bits 0.
135
 */
136
void /* PRIVATE */
137
png_reset_crc(png_struct *png_ptr)
138
836k
{
139
   /* The cast is safe because the crc is a 32-bit value. */
140
836k
   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
141
836k
}
142
143
/* Calculate the CRC over a section of data.  We can only pass as
144
 * much data to this routine as the largest single buffer size.  We
145
 * also check that this data will actually be used before going to the
146
 * trouble of calculating it.
147
 */
148
void /* PRIVATE */
149
png_calculate_crc(png_struct *png_ptr, const png_byte *ptr, size_t length)
150
1.60M
{
151
1.60M
   int need_crc = 1;
152
153
1.60M
   if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0)
154
1.08M
   {
155
1.08M
      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
156
1.08M
          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
157
0
         need_crc = 0;
158
1.08M
   }
159
160
524k
   else /* critical */
161
524k
   {
162
524k
      if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0)
163
0
         need_crc = 0;
164
524k
   }
165
166
   /* 'uLong' is defined in zlib.h as unsigned long; this means that on some
167
    * systems it is a 64-bit value.  crc32, however, returns 32 bits so the
168
    * following cast is safe.  'uInt' may be no more than 16 bits, so it is
169
    * necessary to perform a loop here.
170
    */
171
1.60M
   if (need_crc != 0 && length > 0)
172
1.60M
   {
173
1.60M
      uLong crc = png_ptr->crc; /* Should never issue a warning */
174
175
1.60M
      do
176
1.60M
      {
177
1.60M
         uInt safe_length = (uInt)length;
178
1.60M
#ifndef __COVERITY__
179
1.60M
         if (safe_length == 0)
180
0
            safe_length = (uInt)-1; /* evil, but safe */
181
1.60M
#endif
182
183
1.60M
         crc = crc32(crc, ptr, safe_length);
184
185
         /* The following should never issue compiler warnings; if they do the
186
          * target system has characteristics that will probably violate other
187
          * assumptions within the libpng code.
188
          */
189
1.60M
         ptr += safe_length;
190
1.60M
         length -= safe_length;
191
1.60M
      }
192
1.60M
      while (length > 0);
193
194
      /* And the following is always safe because the crc is only 32 bits. */
195
1.60M
      png_ptr->crc = (png_uint_32)crc;
196
1.60M
   }
197
1.60M
}
198
199
/* Check a user supplied version number, called from both read and write
200
 * functions that create a png_struct.
201
 */
202
int
203
png_user_version_check(png_struct *png_ptr, const char *user_png_ver)
204
96.0k
{
205
   /* Libpng versions 1.0.0 and later are binary compatible if the version
206
    * string matches through the second '.'; we must recompile any
207
    * applications that use any older library version.
208
    */
209
210
96.0k
   if (user_png_ver != NULL)
211
96.0k
   {
212
96.0k
      int i = -1;
213
96.0k
      int found_dots = 0;
214
215
96.0k
      do
216
384k
      {
217
384k
         i++;
218
384k
         if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
219
0
            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
220
384k
         if (user_png_ver[i] == '.')
221
192k
            found_dots++;
222
384k
      } while (found_dots < 2 && user_png_ver[i] != 0 &&
223
288k
            PNG_LIBPNG_VER_STRING[i] != 0);
224
96.0k
   }
225
226
0
   else
227
0
      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
228
229
96.0k
   if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
230
0
   {
231
0
#ifdef PNG_WARNINGS_SUPPORTED
232
0
      size_t pos = 0;
233
0
      char m[128];
234
235
0
      pos = png_safecat(m, (sizeof m), pos,
236
0
          "Application built with libpng-");
237
0
      pos = png_safecat(m, (sizeof m), pos, user_png_ver);
238
0
      pos = png_safecat(m, (sizeof m), pos, " but running with ");
239
0
      pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
240
0
      PNG_UNUSED(pos)
241
242
0
      png_warning(png_ptr, m);
243
0
#endif
244
245
0
      return 0;
246
0
   }
247
248
   /* Success return. */
249
96.0k
   return 1;
250
96.0k
}
251
252
/* Generic function to create a png_struct for either read or write - this
253
 * contains the common initialization.
254
 */
255
PNG_FUNCTION(png_struct * /* PRIVATE */,
256
png_create_png_struct,(const char *user_png_ver, void *error_ptr,
257
    png_error_ptr error_fn, png_error_ptr warn_fn, void *mem_ptr,
258
    png_malloc_ptr malloc_fn, png_free_ptr free_fn),
259
    PNG_ALLOCATED)
260
96.0k
{
261
96.0k
   png_struct create_struct;
262
96.0k
#  ifdef PNG_SETJMP_SUPPORTED
263
96.0k
      jmp_buf create_jmp_buf;
264
96.0k
#  endif
265
266
   /* This temporary stack-allocated structure is used to provide a place to
267
    * build enough context to allow the user provided memory allocator (if any)
268
    * to be called.
269
    */
270
96.0k
   memset(&create_struct, 0, (sizeof create_struct));
271
272
96.0k
#  ifdef PNG_USER_LIMITS_SUPPORTED
273
96.0k
      create_struct.user_width_max = PNG_USER_WIDTH_MAX;
274
96.0k
      create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
275
276
96.0k
#     ifdef PNG_USER_CHUNK_CACHE_MAX
277
96.0k
      create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
278
96.0k
#     endif
279
280
96.0k
#     if PNG_USER_CHUNK_MALLOC_MAX > 0 /* default to compile-time limit */
281
96.0k
      create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
282
283
      /* No compile-time limit, so initialize to the system limit: */
284
#     elif defined PNG_MAX_MALLOC_64K /* legacy system limit */
285
      create_struct.user_chunk_malloc_max = 65536U;
286
287
#     else /* modern system limit SIZE_MAX (C99) */
288
      create_struct.user_chunk_malloc_max = PNG_SIZE_MAX;
289
#     endif
290
96.0k
#  endif
291
292
   /* The following two API calls simply set fields in png_struct, so it is safe
293
    * to do them now even though error handling is not yet set up.
294
    */
295
96.0k
#  ifdef PNG_USER_MEM_SUPPORTED
296
96.0k
      png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
297
#  else
298
      PNG_UNUSED(mem_ptr)
299
      PNG_UNUSED(malloc_fn)
300
      PNG_UNUSED(free_fn)
301
#  endif
302
303
   /* (*error_fn) can return control to the caller after the error_ptr is set,
304
    * this will result in a memory leak unless the error_fn does something
305
    * extremely sophisticated.  The design lacks merit but is implicit in the
306
    * API.
307
    */
308
96.0k
   png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
309
310
96.0k
#  ifdef PNG_SETJMP_SUPPORTED
311
96.0k
      if (!setjmp(create_jmp_buf))
312
96.0k
#  endif
313
96.0k
      {
314
96.0k
#  ifdef PNG_SETJMP_SUPPORTED
315
         /* Temporarily fake out the longjmp information until we have
316
          * successfully completed this function.  This only works if we have
317
          * setjmp() support compiled in, but it is safe - this stuff should
318
          * never happen.
319
          */
320
96.0k
         create_struct.jmp_buf_ptr = &create_jmp_buf;
321
96.0k
         create_struct.jmp_buf_size = 0; /*stack allocation*/
322
96.0k
         create_struct.longjmp_fn = longjmp;
323
96.0k
#  endif
324
         /* Call the general version checker (shared with read and write code):
325
          */
326
96.0k
         if (png_user_version_check(&create_struct, user_png_ver) != 0)
327
96.0k
         {
328
96.0k
            png_struct *png_ptr = png_voidcast(png_struct *,
329
96.0k
                png_malloc_warn(&create_struct, (sizeof *png_ptr)));
330
331
96.0k
            if (png_ptr != NULL)
332
96.0k
            {
333
               /* png_ptr->zstream holds a back-pointer to the png_struct, so
334
                * this can only be done now:
335
                */
336
96.0k
               create_struct.zstream.zalloc = png_zalloc;
337
96.0k
               create_struct.zstream.zfree = png_zfree;
338
96.0k
               create_struct.zstream.opaque = png_ptr;
339
340
96.0k
#              ifdef PNG_SETJMP_SUPPORTED
341
               /* Eliminate the local error handling: */
342
96.0k
               create_struct.jmp_buf_ptr = NULL;
343
96.0k
               create_struct.jmp_buf_size = 0;
344
96.0k
               create_struct.longjmp_fn = 0;
345
96.0k
#              endif
346
347
96.0k
               *png_ptr = create_struct;
348
349
               /* This is the successful return point */
350
96.0k
               return png_ptr;
351
96.0k
            }
352
96.0k
         }
353
96.0k
      }
354
355
   /* A longjmp because of a bug in the application storage allocator or a
356
    * simple failure to allocate the png_struct.
357
    */
358
0
   return NULL;
359
96.0k
}
360
361
/* Allocate the memory for an info_struct for the application. */
362
PNG_FUNCTION(png_info *,
363
png_create_info_struct,(const png_struct *png_ptr),
364
    PNG_ALLOCATED)
365
189k
{
366
189k
   png_info *info_ptr;
367
368
189k
   png_debug(1, "in png_create_info_struct");
369
370
189k
   if (png_ptr == NULL)
371
0
      return NULL;
372
373
   /* Use the internal API that does not (or at least should not) error out, so
374
    * that this call always returns ok.  The application typically sets up the
375
    * error handling *after* creating the info_struct because this is the way it
376
    * has always been done in 'example.c'.
377
    */
378
189k
   info_ptr = png_voidcast(png_info *, png_malloc_base(png_ptr,
379
189k
       (sizeof *info_ptr)));
380
381
189k
   if (info_ptr != NULL)
382
189k
      memset(info_ptr, 0, (sizeof *info_ptr));
383
384
189k
   return info_ptr;
385
189k
}
386
387
/* This function frees the memory associated with a single info struct.
388
 * Normally, one would use either png_destroy_read_struct() or
389
 * png_destroy_write_struct() to free an info struct, but this may be
390
 * useful for some applications.  From libpng 1.6.0 this function is also used
391
 * internally to implement the png_info release part of the 'struct' destroy
392
 * APIs.  This ensures that all possible approaches free the same data (all of
393
 * it).
394
 */
395
void
396
png_destroy_info_struct(const png_struct *png_ptr, png_info **info_ptr_ptr)
397
189k
{
398
189k
   png_info *info_ptr = NULL;
399
400
189k
   png_debug(1, "in png_destroy_info_struct");
401
402
189k
   if (png_ptr == NULL)
403
0
      return;
404
405
189k
   if (info_ptr_ptr != NULL)
406
189k
      info_ptr = *info_ptr_ptr;
407
408
189k
   if (info_ptr != NULL)
409
189k
   {
410
      /* Do this first in case of an error below; if the app implements its own
411
       * memory management this can lead to png_free calling png_error, which
412
       * will abort this routine and return control to the app error handler.
413
       * An infinite loop may result if it then tries to free the same info
414
       * ptr.
415
       */
416
189k
      *info_ptr_ptr = NULL;
417
418
189k
      png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
419
189k
      memset(info_ptr, 0, (sizeof *info_ptr));
420
189k
      png_free(png_ptr, info_ptr);
421
189k
   }
422
189k
}
423
424
/* Initialize the info structure.  This is now an internal function (0.89)
425
 * and applications using it are urged to use png_create_info_struct()
426
 * instead.  Use deprecated in 1.6.0, internal use removed (used internally it
427
 * is just a memset).
428
 *
429
 * NOTE: it is almost inconceivable that this API is used because it bypasses
430
 * the user-memory mechanism and the user error handling/warning mechanisms in
431
 * those cases where it does anything other than a memset.
432
 */
433
PNG_FUNCTION(void,
434
png_info_init_3,(png_info **ptr_ptr, size_t png_info_struct_size),
435
    PNG_DEPRECATED)
436
0
{
437
0
   png_info *info_ptr = *ptr_ptr;
438
439
0
   png_debug(1, "in png_info_init_3");
440
441
0
   if (info_ptr == NULL)
442
0
      return;
443
444
0
   if ((sizeof (png_info)) > png_info_struct_size)
445
0
   {
446
0
      *ptr_ptr = NULL;
447
      /* The following line is why this API should not be used: */
448
0
      free(info_ptr);
449
0
      info_ptr = png_voidcast(png_info *, png_malloc_base(NULL,
450
0
          (sizeof *info_ptr)));
451
0
      if (info_ptr == NULL)
452
0
         return;
453
0
      *ptr_ptr = info_ptr;
454
0
   }
455
456
   /* Set everything to 0 */
457
0
   memset(info_ptr, 0, (sizeof *info_ptr));
458
0
}
459
460
void
461
png_data_freer(const png_struct *png_ptr, png_info *info_ptr,
462
    int freer, png_uint_32 mask)
463
0
{
464
0
   png_debug(1, "in png_data_freer");
465
466
0
   if (png_ptr == NULL || info_ptr == NULL)
467
0
      return;
468
469
0
   if (freer == PNG_DESTROY_WILL_FREE_DATA)
470
0
      info_ptr->free_me |= mask;
471
472
0
   else if (freer == PNG_USER_WILL_FREE_DATA)
473
0
      info_ptr->free_me &= ~mask;
474
475
0
   else
476
0
      png_error(png_ptr, "Unknown freer parameter in png_data_freer");
477
0
}
478
479
void
480
png_free_data(const png_struct *png_ptr, png_info *info_ptr, png_uint_32 mask,
481
    int num)
482
198k
{
483
198k
   png_debug(1, "in png_free_data");
484
485
198k
   if (png_ptr == NULL || info_ptr == NULL)
486
0
      return;
487
488
198k
#ifdef PNG_TEXT_SUPPORTED
489
   /* Free text item num or (if num == -1) all text items */
490
198k
   if (info_ptr->text != NULL &&
491
4.18k
       ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
492
4.09k
   {
493
4.09k
      if (num != -1)
494
0
      {
495
0
         png_free(png_ptr, info_ptr->text[num].key);
496
0
         info_ptr->text[num].key = NULL;
497
0
      }
498
499
4.09k
      else
500
4.09k
      {
501
4.09k
         int i;
502
503
55.7k
         for (i = 0; i < info_ptr->num_text; i++)
504
51.6k
            png_free(png_ptr, info_ptr->text[i].key);
505
506
4.09k
         png_free(png_ptr, info_ptr->text);
507
4.09k
         info_ptr->text = NULL;
508
4.09k
         info_ptr->num_text = 0;
509
4.09k
         info_ptr->max_text = 0;
510
4.09k
      }
511
4.09k
   }
512
198k
#endif
513
514
198k
#ifdef PNG_tRNS_SUPPORTED
515
   /* Free any tRNS entry */
516
198k
   if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0)
517
1.69k
   {
518
1.69k
      info_ptr->valid &= ~PNG_INFO_tRNS;
519
1.69k
      png_free(png_ptr, info_ptr->trans_alpha);
520
1.69k
      info_ptr->trans_alpha = NULL;
521
1.69k
      info_ptr->num_trans = 0;
522
1.69k
   }
523
198k
#endif
524
525
198k
#ifdef PNG_sCAL_SUPPORTED
526
   /* Free any sCAL entry */
527
198k
   if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0)
528
0
   {
529
0
      png_free(png_ptr, info_ptr->scal_s_width);
530
0
      png_free(png_ptr, info_ptr->scal_s_height);
531
0
      info_ptr->scal_s_width = NULL;
532
0
      info_ptr->scal_s_height = NULL;
533
0
      info_ptr->valid &= ~PNG_INFO_sCAL;
534
0
   }
535
198k
#endif
536
537
198k
#ifdef PNG_pCAL_SUPPORTED
538
   /* Free any pCAL entry */
539
198k
   if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
540
0
   {
541
0
      png_free(png_ptr, info_ptr->pcal_purpose);
542
0
      png_free(png_ptr, info_ptr->pcal_units);
543
0
      info_ptr->pcal_purpose = NULL;
544
0
      info_ptr->pcal_units = NULL;
545
546
0
      if (info_ptr->pcal_params != NULL)
547
0
         {
548
0
            int i;
549
550
0
            for (i = 0; i < info_ptr->pcal_nparams; i++)
551
0
               png_free(png_ptr, info_ptr->pcal_params[i]);
552
553
0
            png_free(png_ptr, info_ptr->pcal_params);
554
0
            info_ptr->pcal_params = NULL;
555
0
         }
556
0
      info_ptr->valid &= ~PNG_INFO_pCAL;
557
0
   }
558
198k
#endif
559
560
198k
#ifdef PNG_iCCP_SUPPORTED
561
   /* Free any profile entry */
562
198k
   if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0)
563
4.16k
   {
564
4.16k
      png_free(png_ptr, info_ptr->iccp_name);
565
4.16k
      png_free(png_ptr, info_ptr->iccp_profile);
566
4.16k
      info_ptr->iccp_name = NULL;
567
4.16k
      info_ptr->iccp_profile = NULL;
568
4.16k
      info_ptr->valid &= ~PNG_INFO_iCCP;
569
4.16k
   }
570
198k
#endif
571
572
198k
#ifdef PNG_sPLT_SUPPORTED
573
   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
574
198k
   if (info_ptr->splt_palettes != NULL &&
575
0
       ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
576
0
   {
577
0
      if (num != -1)
578
0
      {
579
0
         png_free(png_ptr, info_ptr->splt_palettes[num].name);
580
0
         png_free(png_ptr, info_ptr->splt_palettes[num].entries);
581
0
         info_ptr->splt_palettes[num].name = NULL;
582
0
         info_ptr->splt_palettes[num].entries = NULL;
583
0
      }
584
585
0
      else
586
0
      {
587
0
         int i;
588
589
0
         for (i = 0; i < info_ptr->splt_palettes_num; i++)
590
0
         {
591
0
            png_free(png_ptr, info_ptr->splt_palettes[i].name);
592
0
            png_free(png_ptr, info_ptr->splt_palettes[i].entries);
593
0
         }
594
595
0
         png_free(png_ptr, info_ptr->splt_palettes);
596
0
         info_ptr->splt_palettes = NULL;
597
0
         info_ptr->splt_palettes_num = 0;
598
0
         info_ptr->valid &= ~PNG_INFO_sPLT;
599
0
      }
600
0
   }
601
198k
#endif
602
603
198k
#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
604
198k
   if (info_ptr->unknown_chunks != NULL &&
605
13.3k
       ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
606
12.8k
   {
607
12.8k
      if (num != -1)
608
0
      {
609
0
          png_free(png_ptr, info_ptr->unknown_chunks[num].data);
610
0
          info_ptr->unknown_chunks[num].data = NULL;
611
0
      }
612
613
12.8k
      else
614
12.8k
      {
615
12.8k
         int i;
616
617
95.2k
         for (i = 0; i < info_ptr->unknown_chunks_num; i++)
618
82.3k
            png_free(png_ptr, info_ptr->unknown_chunks[i].data);
619
620
12.8k
         png_free(png_ptr, info_ptr->unknown_chunks);
621
12.8k
         info_ptr->unknown_chunks = NULL;
622
12.8k
         info_ptr->unknown_chunks_num = 0;
623
12.8k
      }
624
12.8k
   }
625
198k
#endif
626
627
198k
#ifdef PNG_eXIf_SUPPORTED
628
   /* Free any eXIf entry */
629
198k
   if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0)
630
31
   {
631
31
      if (info_ptr->exif)
632
31
      {
633
31
         png_free(png_ptr, info_ptr->exif);
634
31
         info_ptr->exif = NULL;
635
31
      }
636
31
      info_ptr->valid &= ~PNG_INFO_eXIf;
637
31
   }
638
198k
#endif
639
640
198k
#ifdef PNG_hIST_SUPPORTED
641
   /* Free any hIST entry */
642
198k
   if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0)
643
0
   {
644
0
      png_free(png_ptr, info_ptr->hist);
645
0
      info_ptr->hist = NULL;
646
0
      info_ptr->valid &= ~PNG_INFO_hIST;
647
0
   }
648
198k
#endif
649
650
   /* Free any PLTE entry that was internally allocated */
651
198k
   if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0)
652
2.86k
   {
653
2.86k
      png_free(png_ptr, info_ptr->palette);
654
2.86k
      info_ptr->palette = NULL;
655
2.86k
      info_ptr->valid &= ~PNG_INFO_PLTE;
656
2.86k
      info_ptr->num_palette = 0;
657
2.86k
   }
658
659
198k
#ifdef PNG_INFO_IMAGE_SUPPORTED
660
   /* Free any image bits attached to the info structure */
661
198k
   if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
662
0
   {
663
0
      if (info_ptr->row_pointers != NULL)
664
0
      {
665
0
         png_uint_32 row;
666
0
         for (row = 0; row < info_ptr->height; row++)
667
0
            png_free(png_ptr, info_ptr->row_pointers[row]);
668
669
0
         png_free(png_ptr, info_ptr->row_pointers);
670
0
         info_ptr->row_pointers = NULL;
671
0
      }
672
0
      info_ptr->valid &= ~PNG_INFO_IDAT;
673
0
   }
674
198k
#endif
675
676
198k
   if (num != -1)
677
8.87k
      mask &= ~PNG_FREE_MUL;
678
679
198k
   info_ptr->free_me &= ~mask;
680
198k
}
681
#endif /* READ || WRITE */
682
683
/* This function returns a pointer to the io_ptr associated with the user
684
 * functions.  The application should free any memory associated with this
685
 * pointer before png_write_destroy() or png_read_destroy() are called.
686
 */
687
void *
688
png_get_io_ptr(const png_struct *png_ptr)
689
2.45M
{
690
2.45M
   if (png_ptr == NULL)
691
0
      return NULL;
692
693
2.45M
   return png_ptr->io_ptr;
694
2.45M
}
695
696
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
697
#  ifdef PNG_STDIO_SUPPORTED
698
/* Initialize the default input/output functions for the PNG file.  If you
699
 * use your own read or write routines, you can call either png_set_read_fn()
700
 * or png_set_write_fn() instead of png_init_io().  If you have defined
701
 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
702
 * function of your own because "FILE *" isn't necessarily available.
703
 */
704
void
705
png_init_io(png_struct *png_ptr, FILE *fp)
706
0
{
707
0
   png_debug(1, "in png_init_io");
708
709
0
   if (png_ptr == NULL)
710
0
      return;
711
712
0
   png_ptr->io_ptr = (void *)fp;
713
0
}
714
#  endif
715
716
#  ifdef PNG_SAVE_INT_32_SUPPORTED
717
/* PNG signed integers are saved in 32-bit 2's complement format.  ANSI C-90
718
 * defines a cast of a signed integer to an unsigned integer either to preserve
719
 * the value, if it is positive, or to calculate:
720
 *
721
 *     (UNSIGNED_MAX+1) + integer
722
 *
723
 * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
724
 * negative integral value is added the result will be an unsigned value
725
 * corresponding to the 2's complement representation.
726
 */
727
void
728
png_save_int_32(png_byte *buf, png_int_32 i)
729
6.26k
{
730
6.26k
   png_save_uint_32(buf, (png_uint_32)i);
731
6.26k
}
732
#  endif
733
734
#  ifdef PNG_TIME_RFC1123_SUPPORTED
735
/* Convert the supplied time into an RFC 1123 string suitable for use in
736
 * a "Creation Time" or other text-based time string.
737
 */
738
int
739
png_convert_to_rfc1123_buffer(char out[29], const png_time *ptime)
740
0
{
741
0
   static const char short_months[12][4] =
742
0
        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
743
0
         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
744
745
0
   if (out == NULL)
746
0
      return 0;
747
748
0
   if (ptime->year > 9999 /* RFC1123 limitation */ ||
749
0
       ptime->month == 0    ||  ptime->month > 12  ||
750
0
       ptime->day   == 0    ||  ptime->day   > 31  ||
751
0
       ptime->hour  > 23    ||  ptime->minute > 59 ||
752
0
       ptime->second > 60)
753
0
      return 0;
754
755
0
   {
756
0
      size_t pos = 0;
757
0
      char number_buf[5] = {0, 0, 0, 0, 0}; /* enough for a four-digit year */
758
759
0
#     define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
760
0
#     define APPEND_NUMBER(format, value)\
761
0
         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
762
0
#     define APPEND(ch) if (pos < 28) out[pos++] = (ch)
763
764
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
765
0
      APPEND(' ');
766
0
      APPEND_STRING(short_months[(ptime->month - 1)]);
767
0
      APPEND(' ');
768
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
769
0
      APPEND(' ');
770
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
771
0
      APPEND(':');
772
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
773
0
      APPEND(':');
774
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
775
0
      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
776
0
      PNG_UNUSED (pos)
777
778
0
#     undef APPEND
779
0
#     undef APPEND_NUMBER
780
0
#     undef APPEND_STRING
781
0
   }
782
783
0
   return 1;
784
0
}
785
#  endif /* TIME_RFC1123 */
786
787
#endif /* READ || WRITE */
788
789
const char *
790
png_get_copyright(const png_struct *png_ptr)
791
0
{
792
0
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
793
#ifdef PNG_STRING_COPYRIGHT
794
   return PNG_STRING_COPYRIGHT
795
#else
796
0
   return "\n"
797
0
      "libpng version 1.8.0.git\n"
798
0
      "Copyright (c) 2018-2025 Cosmin Truta\n"
799
0
      "Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson\n"
800
0
      "Copyright (c) 1996-1997 Andreas Dilger\n"
801
0
      "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.\n";
802
0
#endif
803
0
}
804
805
/* The following return the library version as a short string in the
806
 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
807
 * used with your application, print out PNG_LIBPNG_VER_STRING, which
808
 * is defined in png.h.
809
 * Note: now there is no difference between png_get_libpng_ver() and
810
 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
811
 * it is guaranteed that png.c uses the correct version of png.h.
812
 */
813
const char *
814
png_get_libpng_ver(const png_struct *png_ptr)
815
0
{
816
   /* Version of *.c files used when building libpng */
817
0
   return png_get_header_ver(png_ptr);
818
0
}
819
820
const char *
821
png_get_header_ver(const png_struct *png_ptr)
822
20
{
823
   /* Version of *.h files used when building libpng */
824
20
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
825
20
   return PNG_LIBPNG_VER_STRING;
826
20
}
827
828
const char *
829
png_get_header_version(const png_struct *png_ptr)
830
0
{
831
   /* Returns longer string containing both version and date */
832
0
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
833
0
#ifdef __STDC__
834
0
   return PNG_HEADER_VERSION_STRING
835
#  ifndef PNG_READ_SUPPORTED
836
      " (NO READ SUPPORT)"
837
#  endif
838
0
      "\n";
839
#else
840
   return PNG_HEADER_VERSION_STRING;
841
#endif
842
0
}
843
844
#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
845
/* NOTE: this routine is not used internally! */
846
/* Build a grayscale palette.  Palette is assumed to be 1 << bit_depth
847
 * large of png_color.  This lets grayscale images be treated as
848
 * paletted.  Most useful for gamma correction and simplification
849
 * of code.  This API is not used internally.
850
 */
851
void
852
png_build_grayscale_palette(int bit_depth, png_color *palette)
853
0
{
854
0
   int num_palette;
855
0
   int color_inc;
856
0
   int i;
857
0
   int v;
858
859
0
   png_debug(1, "in png_do_build_grayscale_palette");
860
861
0
   if (palette == NULL)
862
0
      return;
863
864
0
   switch (bit_depth)
865
0
   {
866
0
      case 1:
867
0
         num_palette = 2;
868
0
         color_inc = 0xff;
869
0
         break;
870
871
0
      case 2:
872
0
         num_palette = 4;
873
0
         color_inc = 0x55;
874
0
         break;
875
876
0
      case 4:
877
0
         num_palette = 16;
878
0
         color_inc = 0x11;
879
0
         break;
880
881
0
      case 8:
882
0
         num_palette = 256;
883
0
         color_inc = 1;
884
0
         break;
885
886
0
      default:
887
0
         num_palette = 0;
888
0
         color_inc = 0;
889
0
         break;
890
0
   }
891
892
0
   for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
893
0
   {
894
0
      palette[i].red = (png_byte)(v & 0xff);
895
0
      palette[i].green = (png_byte)(v & 0xff);
896
0
      palette[i].blue = (png_byte)(v & 0xff);
897
0
   }
898
0
}
899
#endif
900
901
#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
902
int
903
png_handle_as_unknown(const png_struct *png_ptr, const png_byte *chunk_name)
904
654k
{
905
   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
906
654k
   const png_byte *p, *p_end;
907
908
654k
   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
909
0
      return PNG_HANDLE_CHUNK_AS_DEFAULT;
910
911
654k
   p_end = png_ptr->chunk_list;
912
654k
   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
913
914
   /* The code is the fifth byte after each four byte string.  Historically this
915
    * code was always searched from the end of the list, this is no longer
916
    * necessary because the 'set' routine handles duplicate entries correctly.
917
    */
918
654k
   do /* num_chunk_list > 0, so at least one */
919
5.98M
   {
920
5.98M
      p -= 5;
921
922
5.98M
      if (memcmp(chunk_name, p, 4) == 0)
923
183k
         return p[4];
924
5.98M
   }
925
5.80M
   while (p > p_end);
926
927
   /* This means that known chunks should be processed and unknown chunks should
928
    * be handled according to the value of png_ptr->unknown_default; this can be
929
    * confusing because, as a result, there are two levels of defaulting for
930
    * unknown chunks.
931
    */
932
470k
   return PNG_HANDLE_CHUNK_AS_DEFAULT;
933
654k
}
934
935
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
936
   defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
937
int /* PRIVATE */
938
png_chunk_unknown_handling(const png_struct *png_ptr, png_uint_32 chunk_name)
939
654k
{
940
654k
   png_byte chunk_string[5];
941
942
654k
   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
943
654k
   return png_handle_as_unknown(png_ptr, chunk_string);
944
654k
}
945
#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
946
#endif /* SET_UNKNOWN_CHUNKS */
947
948
#ifdef PNG_READ_SUPPORTED
949
/* This function, added to libpng-1.0.6g, is untested. */
950
int
951
png_reset_zstream(png_struct *png_ptr)
952
0
{
953
0
   if (png_ptr == NULL)
954
0
      return Z_STREAM_ERROR;
955
956
   /* WARNING: this resets the window bits to the maximum! */
957
0
   return inflateReset(&png_ptr->zstream);
958
0
}
959
#endif /* READ */
960
961
/* This function was added to libpng-1.0.7 */
962
png_uint_32
963
png_access_version_number(void)
964
0
{
965
   /* Version of *.c files used when building libpng */
966
0
   return (png_uint_32)PNG_LIBPNG_VER;
967
0
}
968
969
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
970
/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
971
 * If it doesn't 'ret' is used to set it to something appropriate, even in cases
972
 * like Z_OK or Z_STREAM_END where the error code is apparently a success code.
973
 */
974
void /* PRIVATE */
975
png_zstream_error(png_struct *png_ptr, int ret)
976
135k
{
977
   /* Translate 'ret' into an appropriate error string, priority is given to the
978
    * one in zstream if set.  This always returns a string, even in cases like
979
    * Z_OK or Z_STREAM_END where the error code is a success code.
980
    */
981
135k
   if (png_ptr->zstream.msg == NULL) switch (ret)
982
50.8k
   {
983
0
      default:
984
32.5k
      case Z_OK:
985
32.5k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
986
32.5k
         break;
987
988
12.6k
      case Z_STREAM_END:
989
         /* Normal exit */
990
12.6k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
991
12.6k
         break;
992
993
1.18k
      case Z_NEED_DICT:
994
         /* This means the deflate stream did not have a dictionary; this
995
          * indicates a bogus PNG.
996
          */
997
1.18k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
998
1.18k
         break;
999
1000
0
      case Z_ERRNO:
1001
         /* gz APIs only: should not happen */
1002
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
1003
0
         break;
1004
1005
0
      case Z_STREAM_ERROR:
1006
         /* internal libpng error */
1007
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
1008
0
         break;
1009
1010
0
      case Z_DATA_ERROR:
1011
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
1012
0
         break;
1013
1014
0
      case Z_MEM_ERROR:
1015
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1016
0
         break;
1017
1018
4.53k
      case Z_BUF_ERROR:
1019
         /* End of input or output; not a problem if the caller is doing
1020
          * incremental read or write.
1021
          */
1022
4.53k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1023
4.53k
         break;
1024
1025
0
      case Z_VERSION_ERROR:
1026
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1027
0
         break;
1028
1029
0
      case PNG_UNEXPECTED_ZLIB_RETURN:
1030
         /* Compile errors here mean that zlib now uses the value co-opted in
1031
          * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1032
          * and change pngpriv.h.  Note that this message is "... return",
1033
          * whereas the default/Z_OK one is "... return code".
1034
          */
1035
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1036
0
         break;
1037
50.8k
   }
1038
135k
}
1039
1040
#ifdef PNG_COLORSPACE_SUPPORTED
1041
static png_int_32
1042
png_fp_add(png_int_32 addend0, png_int_32 addend1, int *error)
1043
0
{
1044
   /* Safely add two fixed point values setting an error flag and returning 0.5
1045
    * on overflow.
1046
    * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1047
    * relying on addition of two positive values producing a negative one is not
1048
    * safe.
1049
    */
1050
0
   if (addend0 > 0)
1051
0
   {
1052
0
      if (0x7fffffff - addend0 >= addend1)
1053
0
         return addend0+addend1;
1054
0
   }
1055
0
   else if (addend0 < 0)
1056
0
   {
1057
0
      if (-0x7fffffff - addend0 <= addend1)
1058
0
         return addend0+addend1;
1059
0
   }
1060
0
   else
1061
0
      return addend1;
1062
1063
0
   *error = 1;
1064
0
   return PNG_FP_1/2;
1065
0
}
1066
1067
static png_int_32
1068
png_fp_sub(png_int_32 addend0, png_int_32 addend1, int *error)
1069
0
{
1070
   /* As above but calculate addend0-addend1. */
1071
0
   if (addend1 > 0)
1072
0
   {
1073
0
      if (-0x7fffffff + addend1 <= addend0)
1074
0
         return addend0-addend1;
1075
0
   }
1076
0
   else if (addend1 < 0)
1077
0
   {
1078
0
      if (0x7fffffff + addend1 >= addend0)
1079
0
         return addend0-addend1;
1080
0
   }
1081
0
   else
1082
0
      return addend0;
1083
1084
0
   *error = 1;
1085
0
   return PNG_FP_1/2;
1086
0
}
1087
1088
static int
1089
png_safe_add(png_int_32 *addend0_and_result, png_int_32 addend1,
1090
      png_int_32 addend2)
1091
0
{
1092
   /* Safely add three integers.  Returns 0 on success, 1 on overflow.  Does not
1093
    * set the result on overflow.
1094
    */
1095
0
   int error = 0;
1096
0
   int result = png_fp_add(*addend0_and_result,
1097
0
                           png_fp_add(addend1, addend2, &error),
1098
0
                           &error);
1099
0
   if (!error) *addend0_and_result = result;
1100
0
   return error;
1101
0
}
1102
1103
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1104
 * cHRM, as opposed to using chromaticities.  These internal APIs return
1105
 * non-zero on a parameter error.  The X, Y and Z values are required to be
1106
 * positive and less than 1.0.
1107
 */
1108
int /* PRIVATE */
1109
png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1110
0
{
1111
   /* NOTE: returns 0 on success, 1 means error. */
1112
0
   png_int_32 d, dred, dgreen, dblue, dwhite, whiteX, whiteY;
1113
1114
   /* 'd' in each of the blocks below is just X+Y+Z for each component,
1115
    * x, y and z are X,Y,Z/(X+Y+Z).
1116
    */
1117
0
   d = XYZ->red_X;
1118
0
   if (png_safe_add(&d, XYZ->red_Y, XYZ->red_Z))
1119
0
      return 1;
1120
0
   dred = d;
1121
0
   if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, dred) == 0)
1122
0
      return 1;
1123
0
   if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, dred) == 0)
1124
0
      return 1;
1125
1126
0
   d = XYZ->green_X;
1127
0
   if (png_safe_add(&d, XYZ->green_Y, XYZ->green_Z))
1128
0
      return 1;
1129
0
   dgreen = d;
1130
0
   if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, dgreen) == 0)
1131
0
      return 1;
1132
0
   if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, dgreen) == 0)
1133
0
      return 1;
1134
1135
0
   d = XYZ->blue_X;
1136
0
   if (png_safe_add(&d, XYZ->blue_Y, XYZ->blue_Z))
1137
0
      return 1;
1138
0
   dblue = d;
1139
0
   if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, dblue) == 0)
1140
0
      return 1;
1141
0
   if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, dblue) == 0)
1142
0
      return 1;
1143
1144
   /* The reference white is simply the sum of the end-point (X,Y,Z) vectors so
1145
    * the fillowing calculates (X+Y+Z) of the reference white (media white,
1146
    * encoding white) itself:
1147
    */
1148
0
   d = dblue;
1149
0
   if (png_safe_add(&d, dred, dgreen))
1150
0
      return 1;
1151
0
   dwhite = d;
1152
1153
   /* Find the white X,Y values from the sum of the red, green and blue X,Y
1154
    * values.
1155
    */
1156
0
   d = XYZ->red_X;
1157
0
   if (png_safe_add(&d, XYZ->green_X, XYZ->blue_X))
1158
0
      return 1;
1159
0
   whiteX = d;
1160
1161
0
   d = XYZ->red_Y;
1162
0
   if (png_safe_add(&d, XYZ->green_Y, XYZ->blue_Y))
1163
0
      return 1;
1164
0
   whiteY = d;
1165
1166
0
   if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
1167
0
      return 1;
1168
0
   if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
1169
0
      return 1;
1170
1171
0
   return 0;
1172
0
}
1173
1174
int /* PRIVATE */
1175
png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1176
0
{
1177
   /* NOTE: returns 0 on success, 1 means error. */
1178
0
   png_fixed_point red_inverse, green_inverse, blue_scale;
1179
0
   png_fixed_point left, right, denominator;
1180
1181
   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
1182
    * have end points with 0 tristimulus values (these are impossible end
1183
    * points, but they are used to cover the possible colors).  We check
1184
    * xy->whitey against 5, not 0, to avoid a possible integer overflow.
1185
    *
1186
    * The limits here will *not* accept ACES AP0, where bluey is -7700
1187
    * (-0.0770) because the PNG spec itself requires the xy values to be
1188
    * unsigned.  whitey is also required to be 5 or more to avoid overflow.
1189
    *
1190
    * Instead the upper limits have been relaxed to accomodate ACES AP1 where
1191
    * redz ends up as -600 (-0.006).  ProPhotoRGB was already "in range."
1192
    * The new limit accomodates the AP0 and AP1 ranges for z but not AP0 redy.
1193
    */
1194
0
   const png_fixed_point fpLimit = PNG_FP_1+(PNG_FP_1/10);
1195
0
   if (xy->redx   < 0 || xy->redx > fpLimit) return 1;
1196
0
   if (xy->redy   < 0 || xy->redy > fpLimit-xy->redx) return 1;
1197
0
   if (xy->greenx < 0 || xy->greenx > fpLimit) return 1;
1198
0
   if (xy->greeny < 0 || xy->greeny > fpLimit-xy->greenx) return 1;
1199
0
   if (xy->bluex  < 0 || xy->bluex > fpLimit) return 1;
1200
0
   if (xy->bluey  < 0 || xy->bluey > fpLimit-xy->bluex) return 1;
1201
0
   if (xy->whitex < 0 || xy->whitex > fpLimit) return 1;
1202
0
   if (xy->whitey < 5 || xy->whitey > fpLimit-xy->whitex) return 1;
1203
1204
   /* The reverse calculation is more difficult because the original tristimulus
1205
    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1206
    * derived values were recorded in the cHRM chunk;
1207
    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
1208
    * therefore an arbitrary ninth value has to be introduced to undo the
1209
    * original transformations.
1210
    *
1211
    * Think of the original end-points as points in (X,Y,Z) space.  The
1212
    * chromaticity values (c) have the property:
1213
    *
1214
    *           C
1215
    *   c = ---------
1216
    *       X + Y + Z
1217
    *
1218
    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
1219
    * three chromaticity values (x,y,z) for each end-point obey the
1220
    * relationship:
1221
    *
1222
    *   x + y + z = 1
1223
    *
1224
    * This describes the plane in (X,Y,Z) space that intersects each axis at the
1225
    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
1226
    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
1227
    * and chromaticity is the intersection of the vector from the origin to the
1228
    * (X,Y,Z) value with the chromaticity plane.
1229
    *
1230
    * To fully invert the chromaticity calculation we would need the three
1231
    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
1232
    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
1233
    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
1234
    * given all three of the scale factors since:
1235
    *
1236
    *    color-C = color-c * color-scale
1237
    *    white-C = red-C + green-C + blue-C
1238
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1239
    *
1240
    * But cHRM records only white-x and white-y, so we have lost the white scale
1241
    * factor:
1242
    *
1243
    *    white-C = white-c*white-scale
1244
    *
1245
    * To handle this the inverse transformation makes an arbitrary assumption
1246
    * about white-scale:
1247
    *
1248
    *    Assume: white-Y = 1.0
1249
    *    Hence:  white-scale = 1/white-y
1250
    *    Or:     red-Y + green-Y + blue-Y = 1.0
1251
    *
1252
    * Notice the last statement of the assumption gives an equation in three of
1253
    * the nine values we want to calculate.  8 more equations come from the
1254
    * above routine as summarised at the top above (the chromaticity
1255
    * calculation):
1256
    *
1257
    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
1258
    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1259
    *
1260
    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
1261
    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
1262
    * determinants, however this is not as bad as it seems because only 28 of
1263
    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
1264
    * Cramer's rule is notoriously numerically unstable because the determinant
1265
    * calculation involves the difference of large, but similar, numbers.  It is
1266
    * difficult to be sure that the calculation is stable for real world values
1267
    * and it is certain that it becomes unstable where the end points are close
1268
    * together.
1269
    *
1270
    * So this code uses the perhaps slightly less optimal but more
1271
    * understandable and totally obvious approach of calculating color-scale.
1272
    *
1273
    * This algorithm depends on the precision in white-scale and that is
1274
    * (1/white-y), so we can immediately see that as white-y approaches 0 the
1275
    * accuracy inherent in the cHRM chunk drops off substantially.
1276
    *
1277
    * libpng arithmetic: a simple inversion of the above equations
1278
    * ------------------------------------------------------------
1279
    *
1280
    *    white_scale = 1/white-y
1281
    *    white-X = white-x * white-scale
1282
    *    white-Y = 1.0
1283
    *    white-Z = (1 - white-x - white-y) * white_scale
1284
    *
1285
    *    white-C = red-C + green-C + blue-C
1286
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1287
    *
1288
    * This gives us three equations in (red-scale,green-scale,blue-scale) where
1289
    * all the coefficients are now known:
1290
    *
1291
    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1292
    *       = white-x/white-y
1293
    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1294
    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1295
    *       = (1 - white-x - white-y)/white-y
1296
    *
1297
    * In the last equation color-z is (1 - color-x - color-y) so we can add all
1298
    * three equations together to get an alternative third:
1299
    *
1300
    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
1301
    *
1302
    * So now we have a Cramer's rule solution where the determinants are just
1303
    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
1304
    * multiplication of three coefficients so we can't guarantee to avoid
1305
    * overflow in the libpng fixed point representation.  Using Cramer's rule in
1306
    * floating point is probably a good choice here, but it's not an option for
1307
    * fixed point.  Instead proceed to simplify the first two equations by
1308
    * eliminating what is likely to be the largest value, blue-scale:
1309
    *
1310
    *    blue-scale = white-scale - red-scale - green-scale
1311
    *
1312
    * Hence:
1313
    *
1314
    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1315
    *                (white-x - blue-x)*white-scale
1316
    *
1317
    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1318
    *                1 - blue-y*white-scale
1319
    *
1320
    * And now we can trivially solve for (red-scale,green-scale):
1321
    *
1322
    *    green-scale =
1323
    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1324
    *                -----------------------------------------------------------
1325
    *                                  green-x - blue-x
1326
    *
1327
    *    red-scale =
1328
    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1329
    *                ---------------------------------------------------------
1330
    *                                  red-y - blue-y
1331
    *
1332
    * Hence:
1333
    *
1334
    *    red-scale =
1335
    *          ( (green-x - blue-x) * (white-y - blue-y) -
1336
    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
1337
    * -------------------------------------------------------------------------
1338
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1339
    *
1340
    *    green-scale =
1341
    *          ( (red-y - blue-y) * (white-x - blue-x) -
1342
    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
1343
    * -------------------------------------------------------------------------
1344
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1345
    *
1346
    * Accuracy:
1347
    * The input values have 5 decimal digits of accuracy.
1348
    *
1349
    * In the previous implementation the values were all in the range 0 < value
1350
    * < 1, so simple products are in the same range but may need up to 10
1351
    * decimal digits to preserve the original precision and avoid underflow.
1352
    * Because we are using a 32-bit signed representation we cannot match this;
1353
    * the best is a little over 9 decimal digits, less than 10.
1354
    *
1355
    * This range has now been extended to allow values up to 1.1, or 110,000 in
1356
    * fixed point.
1357
    *
1358
    * The approach used here is to preserve the maximum precision within the
1359
    * signed representation.  Because the red-scale calculation above uses the
1360
    * difference between two products of values that must be in the range
1361
    * -1.1..+1.1 it is sufficient to divide the product by 8;
1362
    * ceil(121,000/32767*2).  The factor is irrelevant in the calculation
1363
    * because it is applied to both numerator and denominator.
1364
    *
1365
    * Note that the values of the differences of the products of the
1366
    * chromaticities in the above equations tend to be small, for example for
1367
    * the sRGB chromaticities they are:
1368
    *
1369
    * red numerator:    -0.04751
1370
    * green numerator:  -0.08788
1371
    * denominator:      -0.2241 (without white-y multiplication)
1372
    *
1373
    *  The resultant Y coefficients from the chromaticities of some widely used
1374
    *  color space definitions are (to 15 decimal places):
1375
    *
1376
    *  sRGB
1377
    *    0.212639005871510 0.715168678767756 0.072192315360734
1378
    *  Kodak ProPhoto
1379
    *    0.288071128229293 0.711843217810102 0.000085653960605
1380
    *  Adobe RGB
1381
    *    0.297344975250536 0.627363566255466 0.075291458493998
1382
    *  Adobe Wide Gamut RGB
1383
    *    0.258728243040113 0.724682314948566 0.016589442011321
1384
    */
1385
0
   {
1386
0
      int error = 0;
1387
1388
      /* By the argument above overflow should be impossible here, however the
1389
       * code now simply returns a failure code.  The xy subtracts in the
1390
       * arguments to png_muldiv are *not* checked for overflow because the
1391
       * checks at the start guarantee they are in the range 0..110000 and
1392
       * png_fixed_point is a 32-bit signed number.
1393
       */
1394
0
      if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 8) == 0)
1395
0
         return 1;
1396
0
      if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 8) ==
1397
0
            0)
1398
0
         return 1;
1399
0
      denominator = png_fp_sub(left, right, &error);
1400
0
      if (error) return 1;
1401
1402
      /* Now find the red numerator. */
1403
0
      if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1404
0
         return 1;
1405
0
      if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 8) ==
1406
0
            0)
1407
0
         return 1;
1408
1409
      /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1410
       * chunk values.  This calculation actually returns the reciprocal of the
1411
       * scale value because this allows us to delay the multiplication of
1412
       * white-y into the denominator, which tends to produce a small number.
1413
       */
1414
0
      if (png_muldiv(&red_inverse, xy->whitey, denominator,
1415
0
                     png_fp_sub(left, right, &error)) == 0 || error ||
1416
0
          red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1417
0
         return 1;
1418
1419
      /* Similarly for green_inverse: */
1420
0
      if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 8) == 0)
1421
0
         return 1;
1422
0
      if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1423
0
         return 1;
1424
0
      if (png_muldiv(&green_inverse, xy->whitey, denominator,
1425
0
                     png_fp_sub(left, right, &error)) == 0 || error ||
1426
0
          green_inverse <= xy->whitey)
1427
0
         return 1;
1428
1429
      /* And the blue scale, the checks above guarantee this can't overflow but
1430
       * it can still produce 0 for extreme cHRM values.
1431
       */
1432
0
      blue_scale = png_fp_sub(png_fp_sub(png_reciprocal(xy->whitey),
1433
0
                                         png_reciprocal(red_inverse), &error),
1434
0
                              png_reciprocal(green_inverse), &error);
1435
0
      if (error || blue_scale <= 0)
1436
0
         return 1;
1437
0
   }
1438
1439
   /* And fill in the png_XYZ.  Again the subtracts are safe because of the
1440
    * checks on the xy values at the start (the subtracts just calculate the
1441
    * corresponding z values.)
1442
    */
1443
0
   if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
1444
0
      return 1;
1445
0
   if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
1446
0
      return 1;
1447
0
   if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1448
0
       red_inverse) == 0)
1449
0
      return 1;
1450
1451
0
   if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
1452
0
      return 1;
1453
0
   if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
1454
0
      return 1;
1455
0
   if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1456
0
       green_inverse) == 0)
1457
0
      return 1;
1458
1459
0
   if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
1460
0
      return 1;
1461
0
   if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
1462
0
      return 1;
1463
0
   if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1464
0
       PNG_FP_1) == 0)
1465
0
      return 1;
1466
1467
0
   return 0; /*success*/
1468
0
}
1469
#endif /* COLORSPACE */
1470
1471
#ifdef PNG_READ_iCCP_SUPPORTED
1472
/* Error message generation */
1473
static char
1474
png_icc_tag_char(png_uint_32 byte)
1475
76.6k
{
1476
76.6k
   byte &= 0xff;
1477
76.6k
   if (byte >= 32 && byte <= 126)
1478
76.6k
      return (char)byte;
1479
0
   else
1480
0
      return '?';
1481
76.6k
}
1482
1483
static void
1484
png_icc_tag_name(char *name, png_uint_32 tag)
1485
19.1k
{
1486
19.1k
   name[0] = '\'';
1487
19.1k
   name[1] = png_icc_tag_char(tag >> 24);
1488
19.1k
   name[2] = png_icc_tag_char(tag >> 16);
1489
19.1k
   name[3] = png_icc_tag_char(tag >>  8);
1490
19.1k
   name[4] = png_icc_tag_char(tag      );
1491
19.1k
   name[5] = '\'';
1492
19.1k
}
1493
1494
static int
1495
is_ICC_signature_char(png_alloc_size_t it)
1496
434k
{
1497
434k
   return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1498
351k
      (it >= 97 && it <= 122);
1499
434k
}
1500
1501
static int
1502
is_ICC_signature(png_alloc_size_t it)
1503
317k
{
1504
317k
   return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1505
51.7k
      is_ICC_signature_char((it >> 16) & 0xff) &&
1506
37.5k
      is_ICC_signature_char((it >> 8) & 0xff) &&
1507
27.6k
      is_ICC_signature_char(it & 0xff);
1508
317k
}
1509
1510
static int
1511
png_icc_profile_error(const png_struct *png_ptr, const char *name,
1512
   png_alloc_size_t value, const char *reason)
1513
317k
{
1514
317k
   size_t pos;
1515
317k
   char message[196]; /* see below for calculation */
1516
1517
317k
   pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1518
317k
   pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1519
317k
   pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1520
317k
   if (is_ICC_signature(value) != 0)
1521
19.1k
   {
1522
      /* So 'value' is at most 4 bytes and the following cast is safe */
1523
19.1k
      png_icc_tag_name(message+pos, (png_uint_32)value);
1524
19.1k
      pos += 6; /* total +8; less than the else clause */
1525
19.1k
      message[pos++] = ':';
1526
19.1k
      message[pos++] = ' ';
1527
19.1k
   }
1528
298k
#  ifdef PNG_WARNINGS_SUPPORTED
1529
298k
   else
1530
298k
   {
1531
298k
      char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114 */
1532
1533
298k
      pos = png_safecat(message, (sizeof message), pos,
1534
298k
          png_format_number(number, number+(sizeof number),
1535
298k
          PNG_NUMBER_FORMAT_x, value));
1536
298k
      pos = png_safecat(message, (sizeof message), pos, "h: "); /* +2 = 116 */
1537
298k
   }
1538
317k
#  endif
1539
   /* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1540
317k
   pos = png_safecat(message, (sizeof message), pos, reason);
1541
317k
   PNG_UNUSED(pos)
1542
1543
317k
   png_chunk_benign_error(png_ptr, message);
1544
1545
317k
   return 0;
1546
317k
}
1547
1548
/* Encoded value of D50 as an ICC XYZNumber.  From the ICC 2010 spec the value
1549
 * is XYZ(0.9642,1.0,0.8249), which scales to:
1550
 *
1551
 *    (63189.8112, 65536, 54060.6464)
1552
 */
1553
static const png_byte D50_nCIEXYZ[12] =
1554
   { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1555
1556
static int /* bool */
1557
icc_check_length(const png_struct *png_ptr, const char *name,
1558
   png_uint_32 profile_length)
1559
36.4k
{
1560
36.4k
   if (profile_length < 132)
1561
761
      return png_icc_profile_error(png_ptr, name, profile_length, "too short");
1562
35.6k
   return 1;
1563
36.4k
}
1564
1565
int /* PRIVATE */
1566
png_icc_check_length(const png_struct *png_ptr, const char *name,
1567
   png_uint_32 profile_length)
1568
36.4k
{
1569
36.4k
   if (!icc_check_length(png_ptr, name, profile_length))
1570
761
      return 0;
1571
1572
   /* This needs to be here because the 'normal' check is in
1573
    * png_decompress_chunk, yet this happens after the attempt to
1574
    * png_malloc_base the required data.  We only need this on read; on write
1575
    * the caller supplies the profile buffer so libpng doesn't allocate it.  See
1576
    * the call to icc_check_length below (the write case).
1577
    */
1578
35.6k
   if (profile_length > png_chunk_max(png_ptr))
1579
994
      return png_icc_profile_error(png_ptr, name, profile_length,
1580
994
            "profile too long");
1581
1582
34.6k
   return 1;
1583
35.6k
}
1584
1585
int /* PRIVATE */
1586
png_icc_check_header(const png_struct *png_ptr, const char *name,
1587
   png_uint_32 profile_length,
1588
   const png_byte *profile/* first 132 bytes only */, int color_type)
1589
34.6k
{
1590
34.6k
   png_uint_32 temp;
1591
1592
   /* Length check; this cannot be ignored in this code because profile_length
1593
    * is used later to check the tag table, so even if the profile seems over
1594
    * long profile_length from the caller must be correct.  The caller can fix
1595
    * this up on read or write by just passing in the profile header length.
1596
    */
1597
34.6k
   temp = png_get_uint_32(profile);
1598
34.6k
   if (temp != profile_length)
1599
0
      return png_icc_profile_error(png_ptr, name, temp,
1600
0
          "length does not match profile");
1601
1602
34.6k
   temp = (png_uint_32) (*(profile+8));
1603
34.6k
   if (temp > 3 && (profile_length & 3))
1604
670
      return png_icc_profile_error(png_ptr, name, profile_length,
1605
670
          "invalid length");
1606
1607
33.9k
   temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
1608
33.9k
   if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
1609
32.2k
      profile_length < 132+12*temp) /* truncated tag table */
1610
2.77k
      return png_icc_profile_error(png_ptr, name, temp,
1611
2.77k
          "tag count too large");
1612
1613
   /* The 'intent' must be valid or we can't store it, ICC limits the intent to
1614
    * 16 bits.
1615
    */
1616
31.2k
   temp = png_get_uint_32(profile+64);
1617
31.2k
   if (temp >= 0xffff) /* The ICC limit */
1618
1.16k
      return png_icc_profile_error(png_ptr, name, temp,
1619
1.16k
          "invalid rendering intent");
1620
1621
   /* This is just a warning because the profile may be valid in future
1622
    * versions.
1623
    */
1624
30.0k
   if (temp >= PNG_sRGB_INTENT_LAST)
1625
11.7k
      (void)png_icc_profile_error(png_ptr, name, temp,
1626
11.7k
          "intent outside defined range");
1627
1628
   /* At this point the tag table can't be checked because it hasn't necessarily
1629
    * been loaded; however, various header fields can be checked.  These checks
1630
    * are for values permitted by the PNG spec in an ICC profile; the PNG spec
1631
    * restricts the profiles that can be passed in an iCCP chunk (they must be
1632
    * appropriate to processing PNG data!)
1633
    */
1634
1635
   /* Data checks (could be skipped).  These checks must be independent of the
1636
    * version number; however, the version number doesn't accommodate changes in
1637
    * the header fields (just the known tags and the interpretation of the
1638
    * data.)
1639
    */
1640
30.0k
   temp = png_get_uint_32(profile+36); /* signature 'ascp' */
1641
30.0k
   if (temp != 0x61637370)
1642
1.57k
      return png_icc_profile_error(png_ptr, name, temp,
1643
1.57k
          "invalid signature");
1644
1645
   /* Currently the PCS illuminant/adopted white point (the computational
1646
    * white point) are required to be D50,
1647
    * however the profile contains a record of the illuminant so perhaps ICC
1648
    * expects to be able to change this in the future (despite the rationale in
1649
    * the introduction for using a fixed PCS adopted white.)  Consequently the
1650
    * following is just a warning.
1651
    */
1652
28.4k
   if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
1653
26.4k
      (void)png_icc_profile_error(png_ptr, name, 0/*no tag value*/,
1654
26.4k
          "PCS illuminant is not D50");
1655
1656
   /* The PNG spec requires this:
1657
    * "If the iCCP chunk is present, the image samples conform to the colour
1658
    * space represented by the embedded ICC profile as defined by the
1659
    * International Color Consortium [ICC]. The colour space of the ICC profile
1660
    * shall be an RGB colour space for colour images (PNG colour types 2, 3, and
1661
    * 6), or a greyscale colour space for greyscale images (PNG colour types 0
1662
    * and 4)."
1663
    *
1664
    * This checking code ensures the embedded profile (on either read or write)
1665
    * conforms to the specification requirements.  Notice that an ICC 'gray'
1666
    * color-space profile contains the information to transform the monochrome
1667
    * data to XYZ or L*a*b (according to which PCS the profile uses) and this
1668
    * should be used in preference to the standard libpng K channel replication
1669
    * into R, G and B channels.
1670
    *
1671
    * Previously it was suggested that an RGB profile on grayscale data could be
1672
    * handled.  However it it is clear that using an RGB profile in this context
1673
    * must be an error - there is no specification of what it means.  Thus it is
1674
    * almost certainly more correct to ignore the profile.
1675
    */
1676
28.4k
   temp = png_get_uint_32(profile+16); /* data colour space field */
1677
28.4k
   switch (temp)
1678
28.4k
   {
1679
12.9k
      case 0x52474220: /* 'RGB ' */
1680
12.9k
         if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
1681
769
            return png_icc_profile_error(png_ptr, name, temp,
1682
769
                "RGB color space not permitted on grayscale PNG");
1683
12.1k
         break;
1684
1685
13.5k
      case 0x47524159: /* 'GRAY' */
1686
13.5k
         if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
1687
567
            return png_icc_profile_error(png_ptr, name, temp,
1688
567
                "Gray color space not permitted on RGB PNG");
1689
12.9k
         break;
1690
1691
12.9k
      default:
1692
2.03k
         return png_icc_profile_error(png_ptr, name, temp,
1693
2.03k
             "invalid ICC profile color space");
1694
28.4k
   }
1695
1696
   /* It is up to the application to check that the profile class matches the
1697
    * application requirements; the spec provides no guidance, but it's pretty
1698
    * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
1699
    * ('prtr') or 'spac' (for generic color spaces).  Issue a warning in these
1700
    * cases.  Issue an error for device link or abstract profiles - these don't
1701
    * contain the records necessary to transform the color-space to anything
1702
    * other than the target device (and not even that for an abstract profile).
1703
    * Profiles of these classes may not be embedded in images.
1704
    */
1705
25.1k
   temp = png_get_uint_32(profile+12); /* profile/device class */
1706
25.1k
   switch (temp)
1707
25.1k
   {
1708
1.36k
      case 0x73636e72: /* 'scnr' */
1709
3.36k
      case 0x6d6e7472: /* 'mntr' */
1710
4.97k
      case 0x70727472: /* 'prtr' */
1711
6.18k
      case 0x73706163: /* 'spac' */
1712
         /* All supported */
1713
6.18k
         break;
1714
1715
264
      case 0x61627374: /* 'abst' */
1716
         /* May not be embedded in an image */
1717
264
         return png_icc_profile_error(png_ptr, name, temp,
1718
264
             "invalid embedded Abstract ICC profile");
1719
1720
226
      case 0x6c696e6b: /* 'link' */
1721
         /* DeviceLink profiles cannot be interpreted in a non-device specific
1722
          * fashion, if an app uses the AToB0Tag in the profile the results are
1723
          * undefined unless the result is sent to the intended device,
1724
          * therefore a DeviceLink profile should not be found embedded in a
1725
          * PNG.
1726
          */
1727
226
         return png_icc_profile_error(png_ptr, name, temp,
1728
226
             "unexpected DeviceLink ICC profile class");
1729
1730
609
      case 0x6e6d636c: /* 'nmcl' */
1731
         /* A NamedColor profile is also device specific, however it doesn't
1732
          * contain an AToB0 tag that is open to misinterpretation.  Almost
1733
          * certainly it will fail the tests below.
1734
          */
1735
609
         (void)png_icc_profile_error(png_ptr, name, temp,
1736
609
             "unexpected NamedColor ICC profile class");
1737
609
         break;
1738
1739
17.8k
      default:
1740
         /* To allow for future enhancements to the profile accept unrecognized
1741
          * profile classes with a warning, these then hit the test below on the
1742
          * tag content to ensure they are backward compatible with one of the
1743
          * understood profiles.
1744
          */
1745
17.8k
         (void)png_icc_profile_error(png_ptr, name, temp,
1746
17.8k
             "unrecognized ICC profile class");
1747
17.8k
         break;
1748
25.1k
   }
1749
1750
   /* For any profile other than a device link one the PCS must be encoded
1751
    * either in XYZ or Lab.
1752
    */
1753
24.6k
   temp = png_get_uint_32(profile+20);
1754
24.6k
   switch (temp)
1755
24.6k
   {
1756
15.4k
      case 0x58595a20: /* 'XYZ ' */
1757
21.4k
      case 0x4c616220: /* 'Lab ' */
1758
21.4k
         break;
1759
1760
3.16k
      default:
1761
3.16k
         return png_icc_profile_error(png_ptr, name, temp,
1762
3.16k
             "unexpected ICC PCS encoding");
1763
24.6k
   }
1764
1765
21.4k
   return 1;
1766
24.6k
}
1767
1768
int /* PRIVATE */
1769
png_icc_check_tag_table(const png_struct *png_ptr, const char *name,
1770
   png_uint_32 profile_length,
1771
   const png_byte *profile /* header plus whole tag table */)
1772
19.1k
{
1773
19.1k
   png_uint_32 tag_count = png_get_uint_32(profile+128);
1774
19.1k
   png_uint_32 itag;
1775
19.1k
   const png_byte *tag = profile+132; /* The first tag */
1776
1777
   /* First scan all the tags in the table and add bits to the icc_info value
1778
    * (temporarily in 'tags').
1779
    */
1780
395k
   for (itag=0; itag < tag_count; ++itag, tag += 12)
1781
378k
   {
1782
378k
      png_uint_32 tag_id = png_get_uint_32(tag+0);
1783
378k
      png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
1784
378k
      png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
1785
1786
      /* The ICC specification does not exclude zero length tags, therefore the
1787
       * start might actually be anywhere if there is no data, but this would be
1788
       * a clear abuse of the intent of the standard so the start is checked for
1789
       * being in range.  All defined tag types have an 8 byte header - a 4 byte
1790
       * type signature then 0.
1791
       */
1792
1793
      /* This is a hard error; potentially it can cause read outside the
1794
       * profile.
1795
       */
1796
378k
      if (tag_start > profile_length || tag_length > profile_length - tag_start)
1797
2.62k
         return png_icc_profile_error(png_ptr, name, tag_id,
1798
2.62k
             "ICC profile tag outside profile");
1799
1800
376k
      if ((tag_start & 3) != 0)
1801
243k
      {
1802
         /* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is
1803
          * only a warning here because libpng does not care about the
1804
          * alignment.
1805
          */
1806
243k
         (void)png_icc_profile_error(png_ptr, name, tag_id,
1807
243k
             "ICC profile tag start not a multiple of 4");
1808
243k
      }
1809
376k
   }
1810
1811
16.4k
   return 1; /* success, maybe with warnings */
1812
19.1k
}
1813
#endif /* READ_iCCP */
1814
1815
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
1816
#if (defined PNG_READ_mDCV_SUPPORTED) || (defined PNG_READ_cHRM_SUPPORTED)
1817
static int
1818
have_chromaticities(const png_struct *png_ptr)
1819
0
{
1820
   /* Handle new PNGv3 chunks and the precedence rules to determine whether
1821
    * png_struct::chromaticities must be processed.  Only required for RGB to
1822
    * gray.
1823
    *
1824
    * mDCV: this is the mastering colour space and it is independent of the
1825
    *       encoding so it needs to be used regardless of the encoded space.
1826
    *
1827
    * cICP: first in priority but not yet implemented - the chromaticities come
1828
    *       from the 'primaries'.
1829
    *
1830
    * iCCP: not supported by libpng (so ignored)
1831
    *
1832
    * sRGB: the defaults match sRGB
1833
    *
1834
    * cHRM: calculate the coefficients
1835
    */
1836
0
#  ifdef PNG_READ_mDCV_SUPPORTED
1837
0
      if (png_has_chunk(png_ptr, mDCV))
1838
0
         return 1;
1839
0
#     define check_chromaticities 1
1840
0
#  endif /*mDCV*/
1841
1842
0
#  ifdef PNG_READ_sRGB_SUPPORTED
1843
0
      if (png_has_chunk(png_ptr, sRGB))
1844
0
         return 0;
1845
0
#  endif /*sRGB*/
1846
1847
0
#  ifdef PNG_READ_cHRM_SUPPORTED
1848
0
      if (png_has_chunk(png_ptr, cHRM))
1849
0
         return 1;
1850
0
#     define check_chromaticities 1
1851
0
#  endif /*cHRM*/
1852
1853
0
   return 0; /* sRGB defaults */
1854
0
}
1855
#endif /* READ_mDCV || READ_cHRM */
1856
1857
void /* PRIVATE */
1858
png_set_rgb_coefficients(png_struct *png_ptr)
1859
0
{
1860
   /* Set the rgb_to_gray coefficients from the colorspace if available.  Note
1861
    * that '_set' means that png_rgb_to_gray was called **and** it successfully
1862
    * set up the coefficients.
1863
    */
1864
0
   if (png_ptr->rgb_to_gray_coefficients_set == 0)
1865
0
   {
1866
0
#  if check_chromaticities
1867
0
      png_XYZ xyz;
1868
1869
0
      if (have_chromaticities(png_ptr) &&
1870
0
          png_XYZ_from_xy(&xyz, &png_ptr->chromaticities) == 0)
1871
0
      {
1872
         /* png_set_rgb_to_gray has not set the coefficients, get them from the
1873
          * Y * values of the colorspace colorants.
1874
          */
1875
0
         png_fixed_point r = xyz.red_Y;
1876
0
         png_fixed_point g = xyz.green_Y;
1877
0
         png_fixed_point b = xyz.blue_Y;
1878
0
         png_fixed_point total = r+g+b;
1879
1880
0
         if (total > 0 &&
1881
0
            r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
1882
0
            g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
1883
0
            b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
1884
0
            r+g+b <= 32769)
1885
0
         {
1886
            /* We allow 0 coefficients here.  r+g+b may be 32769 if two or
1887
             * all of the coefficients were rounded up.  Handle this by
1888
             * reducing the *largest* coefficient by 1; this matches the
1889
             * approach used for the default coefficients in pngrtran.c
1890
             */
1891
0
            int add = 0;
1892
1893
0
            if (r+g+b > 32768)
1894
0
               add = -1;
1895
0
            else if (r+g+b < 32768)
1896
0
               add = 1;
1897
1898
0
            if (add != 0)
1899
0
            {
1900
0
               if (g >= r && g >= b)
1901
0
                  g += add;
1902
0
               else if (r >= g && r >= b)
1903
0
                  r += add;
1904
0
               else
1905
0
                  b += add;
1906
0
            }
1907
1908
            /* Check for an internal error. */
1909
0
            if (r+g+b != 32768)
1910
0
               png_error(png_ptr,
1911
0
                   "internal error handling cHRM coefficients");
1912
1913
0
            else
1914
0
            {
1915
0
               png_ptr->rgb_to_gray_red_coeff   = (png_uint_16)r;
1916
0
               png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
1917
0
            }
1918
0
         }
1919
0
      }
1920
0
      else
1921
0
#  endif /* check_chromaticities */
1922
0
      {
1923
         /* Use the historical REC 709 (etc) values: */
1924
0
         png_ptr->rgb_to_gray_red_coeff   = 6968;
1925
0
         png_ptr->rgb_to_gray_green_coeff = 23434;
1926
         /* png_ptr->rgb_to_gray_blue_coeff  = 2366; */
1927
0
      }
1928
0
   }
1929
0
}
1930
#endif /* READ_RGB_TO_GRAY */
1931
1932
void /* PRIVATE */
1933
png_check_IHDR(const png_struct *png_ptr,
1934
    png_uint_32 width, png_uint_32 height, int bit_depth,
1935
    int color_type, int interlace_type, int compression_type,
1936
    int filter_type)
1937
128k
{
1938
128k
   int error = 0;
1939
1940
   /* Check for width and height valid values */
1941
128k
   if (width == 0)
1942
21
   {
1943
21
      png_warning(png_ptr, "Image width is zero in IHDR");
1944
21
      error = 1;
1945
21
   }
1946
1947
128k
   if (width > PNG_UINT_31_MAX)
1948
0
   {
1949
0
      png_warning(png_ptr, "Invalid image width in IHDR");
1950
0
      error = 1;
1951
0
   }
1952
1953
   /* The bit mask on the first line below must be at least as big as a
1954
    * png_uint_32.  "~7U" is not adequate on 16-bit systems because it will
1955
    * be an unsigned 16-bit value.  Casting to (png_alloc_size_t) makes the
1956
    * type of the result at least as bit (in bits) as the RHS of the > operator
1957
    * which also avoids a common warning on 64-bit systems that the comparison
1958
    * of (png_uint_32) against the constant value on the RHS will always be
1959
    * false.
1960
    */
1961
128k
   if (((width + 7) & ~(png_alloc_size_t)7) >
1962
128k
       (((PNG_SIZE_MAX
1963
128k
           - 48        /* big_row_buf hack */
1964
128k
           - 1)        /* filter byte */
1965
128k
           / 8)        /* 8-byte RGBA pixels */
1966
128k
           - 1))       /* extra max_pixel_depth pad */
1967
0
   {
1968
      /* The size of the row must be within the limits of this architecture.
1969
       * Because the read code can perform arbitrary transformations the
1970
       * maximum size is checked here.  Because the code in png_read_start_row
1971
       * adds extra space "for safety's sake" in several places a conservative
1972
       * limit is used here.
1973
       *
1974
       * NOTE: it would be far better to check the size that is actually used,
1975
       * but the effect in the real world is minor and the changes are more
1976
       * extensive, therefore much more dangerous and much more difficult to
1977
       * write in a way that avoids compiler warnings.
1978
       */
1979
0
      png_warning(png_ptr, "Image width is too large for this architecture");
1980
0
      error = 1;
1981
0
   }
1982
1983
128k
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
1984
128k
   if (width > png_ptr->user_width_max)
1985
#else
1986
   if (width > PNG_USER_WIDTH_MAX)
1987
#endif
1988
240
   {
1989
240
      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
1990
240
      error = 1;
1991
240
   }
1992
1993
128k
   if (height == 0)
1994
17
   {
1995
17
      png_warning(png_ptr, "Image height is zero in IHDR");
1996
17
      error = 1;
1997
17
   }
1998
1999
128k
   if (height > PNG_UINT_31_MAX)
2000
0
   {
2001
0
      png_warning(png_ptr, "Invalid image height in IHDR");
2002
0
      error = 1;
2003
0
   }
2004
2005
128k
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2006
128k
   if (height > png_ptr->user_height_max)
2007
#else
2008
   if (height > PNG_USER_HEIGHT_MAX)
2009
#endif
2010
289
   {
2011
289
      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2012
289
      error = 1;
2013
289
   }
2014
2015
   /* Check other values */
2016
128k
   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2017
56.5k
       bit_depth != 8 && bit_depth != 16)
2018
293
   {
2019
293
      png_warning(png_ptr, "Invalid bit depth in IHDR");
2020
293
      error = 1;
2021
293
   }
2022
2023
128k
   if (color_type < 0 || color_type == 1 ||
2024
128k
       color_type == 5 || color_type > 6)
2025
226
   {
2026
226
      png_warning(png_ptr, "Invalid color type in IHDR");
2027
226
      error = 1;
2028
226
   }
2029
2030
128k
   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2031
128k
       ((color_type == PNG_COLOR_TYPE_RGB ||
2032
112k
         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2033
108k
         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2034
29
   {
2035
29
      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2036
29
      error = 1;
2037
29
   }
2038
2039
128k
   if (interlace_type >= PNG_INTERLACE_LAST)
2040
185
   {
2041
185
      png_warning(png_ptr, "Unknown interlace method in IHDR");
2042
185
      error = 1;
2043
185
   }
2044
2045
128k
   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2046
213
   {
2047
213
      png_warning(png_ptr, "Unknown compression method in IHDR");
2048
213
      error = 1;
2049
213
   }
2050
2051
128k
#ifdef PNG_MNG_FEATURES_SUPPORTED
2052
   /* Accept filter_method 64 (intrapixel differencing) only if
2053
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2054
    * 2. Libpng did not read a PNG signature (this filter_method is only
2055
    *    used in PNG datastreams that are embedded in MNG datastreams) and
2056
    * 3. The application called png_permit_mng_features with a mask that
2057
    *    included PNG_FLAG_MNG_FILTER_64 and
2058
    * 4. The filter_method is 64 and
2059
    * 5. The color_type is RGB or RGBA
2060
    */
2061
128k
   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
2062
0
       png_ptr->mng_features_permitted != 0)
2063
0
      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2064
2065
128k
   if (filter_type != PNG_FILTER_TYPE_BASE)
2066
203
   {
2067
203
      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
2068
22
          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2069
1
          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2070
1
          (color_type == PNG_COLOR_TYPE_RGB ||
2071
1
          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2072
203
      {
2073
203
         png_warning(png_ptr, "Unknown filter method in IHDR");
2074
203
         error = 1;
2075
203
      }
2076
2077
203
      if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
2078
0
      {
2079
0
         png_warning(png_ptr, "Invalid filter method in IHDR");
2080
0
         error = 1;
2081
0
      }
2082
203
   }
2083
2084
#else
2085
   if (filter_type != PNG_FILTER_TYPE_BASE)
2086
   {
2087
      png_warning(png_ptr, "Unknown filter method in IHDR");
2088
      error = 1;
2089
   }
2090
#endif
2091
2092
128k
   if (error == 1)
2093
415
      png_error(png_ptr, "Invalid IHDR data");
2094
128k
}
2095
2096
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2097
/* ASCII to fp functions */
2098
/* Check an ASCII formatted floating point value, see the more detailed
2099
 * comments in pngpriv.h
2100
 */
2101
/* The following is used internally to preserve the sticky flags */
2102
0
#define png_fp_add(state, flags) ((state) |= (flags))
2103
0
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2104
2105
int /* PRIVATE */
2106
png_check_fp_number(const char *string, size_t size, int *statep,
2107
    size_t *whereami)
2108
0
{
2109
0
   int state = *statep;
2110
0
   size_t i = *whereami;
2111
2112
0
   while (i < size)
2113
0
   {
2114
0
      int type;
2115
      /* First find the type of the next character */
2116
0
      switch (string[i])
2117
0
      {
2118
0
      case 43:  type = PNG_FP_SAW_SIGN;                   break;
2119
0
      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2120
0
      case 46:  type = PNG_FP_SAW_DOT;                    break;
2121
0
      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
2122
0
      case 49: case 50: case 51: case 52:
2123
0
      case 53: case 54: case 55: case 56:
2124
0
      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2125
0
      case 69:
2126
0
      case 101: type = PNG_FP_SAW_E;                      break;
2127
0
      default:  goto PNG_FP_End;
2128
0
      }
2129
2130
      /* Now deal with this type according to the current
2131
       * state, the type is arranged to not overlap the
2132
       * bits of the PNG_FP_STATE.
2133
       */
2134
0
      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2135
0
      {
2136
0
      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2137
0
         if ((state & PNG_FP_SAW_ANY) != 0)
2138
0
            goto PNG_FP_End; /* not a part of the number */
2139
2140
0
         png_fp_add(state, type);
2141
0
         break;
2142
2143
0
      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2144
         /* Ok as trailer, ok as lead of fraction. */
2145
0
         if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
2146
0
            goto PNG_FP_End;
2147
2148
0
         else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
2149
0
            png_fp_add(state, type);
2150
2151
0
         else
2152
0
            png_fp_set(state, PNG_FP_FRACTION | type);
2153
2154
0
         break;
2155
2156
0
      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2157
0
         if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
2158
0
            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2159
2160
0
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2161
2162
0
         break;
2163
2164
0
      case PNG_FP_INTEGER + PNG_FP_SAW_E:
2165
0
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2166
0
            goto PNG_FP_End;
2167
2168
0
         png_fp_set(state, PNG_FP_EXPONENT);
2169
2170
0
         break;
2171
2172
   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2173
         goto PNG_FP_End; ** no sign in fraction */
2174
2175
   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2176
         goto PNG_FP_End; ** Because SAW_DOT is always set */
2177
2178
0
      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2179
0
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2180
0
         break;
2181
2182
0
      case PNG_FP_FRACTION + PNG_FP_SAW_E:
2183
         /* This is correct because the trailing '.' on an
2184
          * integer is handled above - so we can only get here
2185
          * with the sequence ".E" (with no preceding digits).
2186
          */
2187
0
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2188
0
            goto PNG_FP_End;
2189
2190
0
         png_fp_set(state, PNG_FP_EXPONENT);
2191
2192
0
         break;
2193
2194
0
      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2195
0
         if ((state & PNG_FP_SAW_ANY) != 0)
2196
0
            goto PNG_FP_End; /* not a part of the number */
2197
2198
0
         png_fp_add(state, PNG_FP_SAW_SIGN);
2199
2200
0
         break;
2201
2202
   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2203
         goto PNG_FP_End; */
2204
2205
0
      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2206
0
         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2207
2208
0
         break;
2209
2210
   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2211
         goto PNG_FP_End; */
2212
2213
0
      default: goto PNG_FP_End; /* I.e. break 2 */
2214
0
      }
2215
2216
      /* The character seems ok, continue. */
2217
0
      ++i;
2218
0
   }
2219
2220
0
PNG_FP_End:
2221
   /* Here at the end, update the state and return the correct
2222
    * return code.
2223
    */
2224
0
   *statep = state;
2225
0
   *whereami = i;
2226
2227
0
   return (state & PNG_FP_SAW_DIGIT) != 0;
2228
0
}
2229
2230
2231
/* The same but for a complete string. */
2232
int
2233
png_check_fp_string(const char *string, size_t size)
2234
0
{
2235
0
   int state = 0;
2236
0
   size_t char_index = 0;
2237
2238
0
   if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
2239
0
      (char_index == size || string[char_index] == 0))
2240
0
      return state /* must be non-zero - see above */;
2241
2242
0
   return 0; /* i.e. fail */
2243
0
}
2244
#endif /* pCAL || sCAL */
2245
2246
#ifdef PNG_sCAL_SUPPORTED
2247
#  ifdef PNG_FLOATING_POINT_SUPPORTED
2248
/* Utility used below - a simple accurate power of ten from an integral
2249
 * exponent.
2250
 */
2251
static double
2252
png_pow10(int power)
2253
0
{
2254
0
   int recip = 0;
2255
0
   double d = 1;
2256
2257
   /* Handle negative exponent with a reciprocal at the end because
2258
    * 10 is exact whereas .1 is inexact in base 2
2259
    */
2260
0
   if (power < 0)
2261
0
   {
2262
0
      if (power < DBL_MIN_10_EXP) return 0;
2263
0
      recip = 1; power = -power;
2264
0
   }
2265
2266
0
   if (power > 0)
2267
0
   {
2268
      /* Decompose power bitwise. */
2269
0
      double mult = 10;
2270
0
      do
2271
0
      {
2272
0
         if (power & 1) d *= mult;
2273
0
         mult *= mult;
2274
0
         power >>= 1;
2275
0
      }
2276
0
      while (power > 0);
2277
2278
0
      if (recip != 0) d = 1/d;
2279
0
   }
2280
   /* else power is 0 and d is 1 */
2281
2282
0
   return d;
2283
0
}
2284
2285
/* Function to format a floating point value in ASCII with a given
2286
 * precision.
2287
 */
2288
void /* PRIVATE */
2289
png_ascii_from_fp(const png_struct *png_ptr, char *ascii, size_t size,
2290
    double fp, unsigned int precision)
2291
0
{
2292
   /* We use standard functions from math.h, but not printf because
2293
    * that would require stdio.  The caller must supply a buffer of
2294
    * sufficient size or we will png_error.  The tests on size and
2295
    * the space in ascii[] consumed are indicated below.
2296
    */
2297
0
   if (precision < 1)
2298
0
      precision = DBL_DIG;
2299
2300
   /* Enforce the limit of the implementation precision too. */
2301
0
   if (precision > DBL_DIG+1)
2302
0
      precision = DBL_DIG+1;
2303
2304
   /* Basic sanity checks */
2305
0
   if (size >= precision+5) /* See the requirements below. */
2306
0
   {
2307
0
      if (fp < 0)
2308
0
      {
2309
0
         fp = -fp;
2310
0
         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
2311
0
         --size;
2312
0
      }
2313
2314
0
      if (fp >= DBL_MIN && fp <= DBL_MAX)
2315
0
      {
2316
0
         int exp_b10;   /* A base 10 exponent */
2317
0
         double base;   /* 10^exp_b10 */
2318
2319
         /* First extract a base 10 exponent of the number,
2320
          * the calculation below rounds down when converting
2321
          * from base 2 to base 10 (multiply by log10(2) -
2322
          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2323
          * be increased.  Note that the arithmetic shift
2324
          * performs a floor() unlike C arithmetic - using a
2325
          * C multiply would break the following for negative
2326
          * exponents.
2327
          */
2328
0
         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
2329
2330
0
         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2331
2332
         /* Avoid underflow here. */
2333
0
         base = png_pow10(exp_b10); /* May underflow */
2334
2335
0
         while (base < DBL_MIN || base < fp)
2336
0
         {
2337
            /* And this may overflow. */
2338
0
            double test = png_pow10(exp_b10+1);
2339
2340
0
            if (test <= DBL_MAX)
2341
0
            {
2342
0
               ++exp_b10; base = test;
2343
0
            }
2344
2345
0
            else
2346
0
               break;
2347
0
         }
2348
2349
         /* Normalize fp and correct exp_b10, after this fp is in the
2350
          * range [.1,1) and exp_b10 is both the exponent and the digit
2351
          * *before* which the decimal point should be inserted
2352
          * (starting with 0 for the first digit).  Note that this
2353
          * works even if 10^exp_b10 is out of range because of the
2354
          * test on DBL_MAX above.
2355
          */
2356
0
         fp /= base;
2357
0
         while (fp >= 1)
2358
0
         {
2359
0
            fp /= 10; ++exp_b10;
2360
0
         }
2361
2362
         /* Because of the code above fp may, at this point, be
2363
          * less than .1, this is ok because the code below can
2364
          * handle the leading zeros this generates, so no attempt
2365
          * is made to correct that here.
2366
          */
2367
2368
0
         {
2369
0
            unsigned int czero, clead, cdigits;
2370
0
            char exponent[10];
2371
2372
            /* Allow up to two leading zeros - this will not lengthen
2373
             * the number compared to using E-n.
2374
             */
2375
0
            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2376
0
            {
2377
0
               czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */
2378
0
               exp_b10 = 0;      /* Dot added below before first output. */
2379
0
            }
2380
0
            else
2381
0
               czero = 0;    /* No zeros to add */
2382
2383
            /* Generate the digit list, stripping trailing zeros and
2384
             * inserting a '.' before a digit if the exponent is 0.
2385
             */
2386
0
            clead = czero; /* Count of leading zeros */
2387
0
            cdigits = 0;   /* Count of digits in list. */
2388
2389
0
            do
2390
0
            {
2391
0
               double d;
2392
2393
0
               fp *= 10;
2394
               /* Use modf here, not floor and subtract, so that
2395
                * the separation is done in one step.  At the end
2396
                * of the loop don't break the number into parts so
2397
                * that the final digit is rounded.
2398
                */
2399
0
               if (cdigits+czero+1 < precision+clead)
2400
0
                  fp = modf(fp, &d);
2401
2402
0
               else
2403
0
               {
2404
0
                  d = floor(fp + .5);
2405
2406
0
                  if (d > 9)
2407
0
                  {
2408
                     /* Rounding up to 10, handle that here. */
2409
0
                     if (czero > 0)
2410
0
                     {
2411
0
                        --czero; d = 1;
2412
0
                        if (cdigits == 0) --clead;
2413
0
                     }
2414
0
                     else
2415
0
                     {
2416
0
                        while (cdigits > 0 && d > 9)
2417
0
                        {
2418
0
                           int ch = *--ascii;
2419
2420
0
                           if (exp_b10 != (-1))
2421
0
                              ++exp_b10;
2422
2423
0
                           else if (ch == 46)
2424
0
                           {
2425
0
                              ch = *--ascii; ++size;
2426
                              /* Advance exp_b10 to '1', so that the
2427
                               * decimal point happens after the
2428
                               * previous digit.
2429
                               */
2430
0
                              exp_b10 = 1;
2431
0
                           }
2432
2433
0
                           --cdigits;
2434
0
                           d = ch - 47;  /* I.e. 1+(ch-48) */
2435
0
                        }
2436
2437
                        /* Did we reach the beginning? If so adjust the
2438
                         * exponent but take into account the leading
2439
                         * decimal point.
2440
                         */
2441
0
                        if (d > 9)  /* cdigits == 0 */
2442
0
                        {
2443
0
                           if (exp_b10 == (-1))
2444
0
                           {
2445
                              /* Leading decimal point (plus zeros?), if
2446
                               * we lose the decimal point here it must
2447
                               * be reentered below.
2448
                               */
2449
0
                              int ch = *--ascii;
2450
2451
0
                              if (ch == 46)
2452
0
                              {
2453
0
                                 ++size; exp_b10 = 1;
2454
0
                              }
2455
2456
                              /* Else lost a leading zero, so 'exp_b10' is
2457
                               * still ok at (-1)
2458
                               */
2459
0
                           }
2460
0
                           else
2461
0
                              ++exp_b10;
2462
2463
                           /* In all cases we output a '1' */
2464
0
                           d = 1;
2465
0
                        }
2466
0
                     }
2467
0
                  }
2468
0
                  fp = 0; /* Guarantees termination below. */
2469
0
               }
2470
2471
0
               if (d == 0)
2472
0
               {
2473
0
                  ++czero;
2474
0
                  if (cdigits == 0) ++clead;
2475
0
               }
2476
0
               else
2477
0
               {
2478
                  /* Included embedded zeros in the digit count. */
2479
0
                  cdigits += czero - clead;
2480
0
                  clead = 0;
2481
2482
0
                  while (czero > 0)
2483
0
                  {
2484
                     /* exp_b10 == (-1) means we just output the decimal
2485
                      * place - after the DP don't adjust 'exp_b10' any
2486
                      * more!
2487
                      */
2488
0
                     if (exp_b10 != (-1))
2489
0
                     {
2490
0
                        if (exp_b10 == 0)
2491
0
                        {
2492
0
                           *ascii++ = 46; --size;
2493
0
                        }
2494
                        /* PLUS 1: TOTAL 4 */
2495
0
                        --exp_b10;
2496
0
                     }
2497
0
                     *ascii++ = 48; --czero;
2498
0
                  }
2499
2500
0
                  if (exp_b10 != (-1))
2501
0
                  {
2502
0
                     if (exp_b10 == 0)
2503
0
                     {
2504
0
                        *ascii++ = 46; --size; /* counted above */
2505
0
                     }
2506
2507
0
                     --exp_b10;
2508
0
                  }
2509
0
                  *ascii++ = (char)(48 + (int)d); ++cdigits;
2510
0
               }
2511
0
            }
2512
0
            while (cdigits+czero < precision+clead && fp > DBL_MIN);
2513
2514
            /* The total output count (max) is now 4+precision */
2515
2516
            /* Check for an exponent, if we don't need one we are
2517
             * done and just need to terminate the string.  At this
2518
             * point, exp_b10==(-1) is effectively a flag: it got
2519
             * to '-1' because of the decrement, after outputting
2520
             * the decimal point above. (The exponent required is
2521
             * *not* -1.)
2522
             */
2523
0
            if (exp_b10 >= (-1) && exp_b10 <= 2)
2524
0
            {
2525
               /* The following only happens if we didn't output the
2526
                * leading zeros above for negative exponent, so this
2527
                * doesn't add to the digit requirement.  Note that the
2528
                * two zeros here can only be output if the two leading
2529
                * zeros were *not* output, so this doesn't increase
2530
                * the output count.
2531
                */
2532
0
               while (exp_b10-- > 0) *ascii++ = 48;
2533
2534
0
               *ascii = 0;
2535
2536
               /* Total buffer requirement (including the '\0') is
2537
                * 5+precision - see check at the start.
2538
                */
2539
0
               return;
2540
0
            }
2541
2542
            /* Here if an exponent is required, adjust size for
2543
             * the digits we output but did not count.  The total
2544
             * digit output here so far is at most 1+precision - no
2545
             * decimal point and no leading or trailing zeros have
2546
             * been output.
2547
             */
2548
0
            size -= cdigits;
2549
2550
0
            *ascii++ = 69; --size;    /* 'E': PLUS 1 TOTAL 2+precision */
2551
2552
            /* The following use of an unsigned temporary avoids ambiguities in
2553
             * the signed arithmetic on exp_b10 and permits GCC at least to do
2554
             * better optimization.
2555
             */
2556
0
            {
2557
0
               unsigned int uexp_b10;
2558
2559
0
               if (exp_b10 < 0)
2560
0
               {
2561
0
                  *ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */
2562
0
                  uexp_b10 = 0U-exp_b10;
2563
0
               }
2564
2565
0
               else
2566
0
                  uexp_b10 = 0U+exp_b10;
2567
2568
0
               cdigits = 0;
2569
2570
0
               while (uexp_b10 > 0)
2571
0
               {
2572
0
                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
2573
0
                  uexp_b10 /= 10;
2574
0
               }
2575
0
            }
2576
2577
            /* Need another size check here for the exponent digits, so
2578
             * this need not be considered above.
2579
             */
2580
0
            if (size > cdigits)
2581
0
            {
2582
0
               while (cdigits > 0) *ascii++ = exponent[--cdigits];
2583
2584
0
               *ascii = 0;
2585
2586
0
               return;
2587
0
            }
2588
0
         }
2589
0
      }
2590
0
      else if (!(fp >= DBL_MIN))
2591
0
      {
2592
0
         *ascii++ = 48; /* '0' */
2593
0
         *ascii = 0;
2594
0
         return;
2595
0
      }
2596
0
      else
2597
0
      {
2598
0
         *ascii++ = 105; /* 'i' */
2599
0
         *ascii++ = 110; /* 'n' */
2600
0
         *ascii++ = 102; /* 'f' */
2601
0
         *ascii = 0;
2602
0
         return;
2603
0
      }
2604
0
   }
2605
2606
   /* Here on buffer too small. */
2607
0
   png_error(png_ptr, "ASCII conversion buffer too small");
2608
0
}
2609
#  endif /* FLOATING_POINT */
2610
2611
#  ifdef PNG_FIXED_POINT_SUPPORTED
2612
/* Function to format a fixed point value in ASCII.
2613
 */
2614
void /* PRIVATE */
2615
png_ascii_from_fixed(const png_struct *png_ptr, char *ascii,
2616
    size_t size, png_fixed_point fp)
2617
0
{
2618
   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
2619
    * trailing \0, 13 characters:
2620
    */
2621
0
   if (size > 12)
2622
0
   {
2623
0
      png_uint_32 num;
2624
2625
      /* Avoid overflow here on the minimum integer. */
2626
0
      if (fp < 0)
2627
0
      {
2628
0
         *ascii++ = 45; num = (png_uint_32)(-fp);
2629
0
      }
2630
0
      else
2631
0
         num = (png_uint_32)fp;
2632
2633
0
      if (num <= 0x80000000) /* else overflowed */
2634
0
      {
2635
0
         unsigned int ndigits = 0, first = 16 /* flag value */;
2636
0
         char digits[10] = {0};
2637
2638
0
         while (num)
2639
0
         {
2640
            /* Split the low digit off num: */
2641
0
            unsigned int tmp = num/10;
2642
0
            num -= tmp*10;
2643
0
            digits[ndigits++] = (char)(48 + num);
2644
            /* Record the first non-zero digit, note that this is a number
2645
             * starting at 1, it's not actually the array index.
2646
             */
2647
0
            if (first == 16 && num > 0)
2648
0
               first = ndigits;
2649
0
            num = tmp;
2650
0
         }
2651
2652
0
         if (ndigits > 0)
2653
0
         {
2654
0
            while (ndigits > 5) *ascii++ = digits[--ndigits];
2655
            /* The remaining digits are fractional digits, ndigits is '5' or
2656
             * smaller at this point.  It is certainly not zero.  Check for a
2657
             * non-zero fractional digit:
2658
             */
2659
0
            if (first <= 5)
2660
0
            {
2661
0
               unsigned int i;
2662
0
               *ascii++ = 46; /* decimal point */
2663
               /* ndigits may be <5 for small numbers, output leading zeros
2664
                * then ndigits digits to first:
2665
                */
2666
0
               i = 5;
2667
0
               while (ndigits < i)
2668
0
               {
2669
0
                  *ascii++ = 48; --i;
2670
0
               }
2671
0
               while (ndigits >= first) *ascii++ = digits[--ndigits];
2672
               /* Don't output the trailing zeros! */
2673
0
            }
2674
0
         }
2675
0
         else
2676
0
            *ascii++ = 48;
2677
2678
         /* And null terminate the string: */
2679
0
         *ascii = 0;
2680
0
         return;
2681
0
      }
2682
0
   }
2683
2684
   /* Here on buffer too small. */
2685
0
   png_error(png_ptr, "ASCII conversion buffer too small");
2686
0
}
2687
#   endif /* FIXED_POINT */
2688
#endif /* SCAL */
2689
2690
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2691
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2692
   (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
2693
   defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2694
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
2695
   (defined(PNG_sCAL_SUPPORTED) && \
2696
   defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
2697
png_fixed_point
2698
png_fixed(const png_struct *png_ptr, double fp, const char *text)
2699
7.02k
{
2700
7.02k
   double r = floor(100000 * fp + .5);
2701
2702
7.02k
   if (r > 2147483647. || r < -2147483648.)
2703
7
      png_fixed_error(png_ptr, text);
2704
2705
#  ifndef PNG_ERROR_TEXT_SUPPORTED
2706
   PNG_UNUSED(text)
2707
#  endif
2708
2709
7.02k
   return (png_fixed_point)r;
2710
7.02k
}
2711
#endif
2712
2713
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2714
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2715
   (defined(PNG_cLLI_SUPPORTED) || defined(PNG_mDCV_SUPPORTED))
2716
png_uint_32
2717
png_fixed_ITU(const png_struct *png_ptr, double fp, const char *text)
2718
0
{
2719
0
   double r = floor(10000 * fp + .5);
2720
2721
0
   if (r > 2147483647. || r < 0)
2722
0
      png_fixed_error(png_ptr, text);
2723
2724
#  ifndef PNG_ERROR_TEXT_SUPPORTED
2725
   PNG_UNUSED(text)
2726
#  endif
2727
2728
0
   return (png_uint_32)r;
2729
0
}
2730
#endif
2731
2732
2733
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
2734
    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
2735
/* muldiv functions */
2736
/* This API takes signed arguments and rounds the result to the nearest
2737
 * integer (or, for a fixed point number - the standard argument - to
2738
 * the nearest .00001).  Overflow and divide by zero are signalled in
2739
 * the result, a boolean - true on success, false on overflow.
2740
 */
2741
int /* PRIVATE */
2742
png_muldiv(png_fixed_point *res, png_fixed_point a, png_int_32 times,
2743
    png_int_32 divisor)
2744
0
{
2745
   /* Return a * times / divisor, rounded. */
2746
0
   if (divisor != 0)
2747
0
   {
2748
0
      if (a == 0 || times == 0)
2749
0
      {
2750
0
         *res = 0;
2751
0
         return 1;
2752
0
      }
2753
0
      else
2754
0
      {
2755
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2756
0
         double r = a;
2757
0
         r *= times;
2758
0
         r /= divisor;
2759
0
         r = floor(r+.5);
2760
2761
         /* A png_fixed_point is a 32-bit integer. */
2762
0
         if (r <= 2147483647. && r >= -2147483648.)
2763
0
         {
2764
0
            *res = (png_fixed_point)r;
2765
0
            return 1;
2766
0
         }
2767
#else
2768
         int negative = 0;
2769
         png_uint_32 A, T, D;
2770
         png_uint_32 s16, s32, s00;
2771
2772
         if (a < 0)
2773
            negative = 1, A = -a;
2774
         else
2775
            A = a;
2776
2777
         if (times < 0)
2778
            negative = !negative, T = -times;
2779
         else
2780
            T = times;
2781
2782
         if (divisor < 0)
2783
            negative = !negative, D = -divisor;
2784
         else
2785
            D = divisor;
2786
2787
         /* Following can't overflow because the arguments only
2788
          * have 31 bits each, however the result may be 32 bits.
2789
          */
2790
         s16 = (A >> 16) * (T & 0xffff) +
2791
                           (A & 0xffff) * (T >> 16);
2792
         /* Can't overflow because the a*times bit is only 30
2793
          * bits at most.
2794
          */
2795
         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
2796
         s00 = (A & 0xffff) * (T & 0xffff);
2797
2798
         s16 = (s16 & 0xffff) << 16;
2799
         s00 += s16;
2800
2801
         if (s00 < s16)
2802
            ++s32; /* carry */
2803
2804
         if (s32 < D) /* else overflow */
2805
         {
2806
            /* s32.s00 is now the 64-bit product, do a standard
2807
             * division, we know that s32 < D, so the maximum
2808
             * required shift is 31.
2809
             */
2810
            int bitshift = 32;
2811
            png_fixed_point result = 0; /* NOTE: signed */
2812
2813
            while (--bitshift >= 0)
2814
            {
2815
               png_uint_32 d32, d00;
2816
2817
               if (bitshift > 0)
2818
                  d32 = D >> (32-bitshift), d00 = D << bitshift;
2819
2820
               else
2821
                  d32 = 0, d00 = D;
2822
2823
               if (s32 > d32)
2824
               {
2825
                  if (s00 < d00) --s32; /* carry */
2826
                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
2827
               }
2828
2829
               else
2830
                  if (s32 == d32 && s00 >= d00)
2831
                     s32 = 0, s00 -= d00, result += 1<<bitshift;
2832
            }
2833
2834
            /* Handle the rounding. */
2835
            if (s00 >= (D >> 1))
2836
               ++result;
2837
2838
            if (negative != 0)
2839
               result = -result;
2840
2841
            /* Check for overflow. */
2842
            if ((negative != 0 && result <= 0) ||
2843
                (negative == 0 && result >= 0))
2844
            {
2845
               *res = result;
2846
               return 1;
2847
            }
2848
         }
2849
#endif
2850
0
      }
2851
0
   }
2852
2853
0
   return 0;
2854
0
}
2855
2856
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
2857
png_fixed_point
2858
png_reciprocal(png_fixed_point a)
2859
818
{
2860
818
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2861
818
   double r = floor(1E10/a+.5);
2862
2863
818
   if (r <= 2147483647. && r >= -2147483648.)
2864
814
      return (png_fixed_point)r;
2865
#else
2866
   png_fixed_point res;
2867
2868
   if (png_muldiv(&res, 100000, 100000, a) != 0)
2869
      return res;
2870
#endif
2871
2872
4
   return 0; /* error/overflow */
2873
818
}
2874
#endif /* READ_GAMMA || COLORSPACE || INCH_CONVERSIONS || READ_pHYS */
2875
2876
#ifdef PNG_READ_GAMMA_SUPPORTED
2877
/* This is the shared test on whether a gamma value is 'significant' - whether
2878
 * it is worth doing gamma correction.
2879
 */
2880
int /* PRIVATE */
2881
png_gamma_significant(png_fixed_point gamma_val)
2882
50.3k
{
2883
   /* sRGB:       1/2.2 == 0.4545(45)
2884
    * AdobeRGB:   1/(2+51/256) ~= 0.45471 5dp
2885
    *
2886
    * So the correction from AdobeRGB to sRGB (output) is:
2887
    *
2888
    *    2.2/(2+51/256) == 1.00035524
2889
    *
2890
    * I.e. vanishly small (<4E-4) but still detectable in 16-bit linear (+/-
2891
    * 23).  Note that the Adobe choice seems to be something intended to give an
2892
    * exact number with 8 binary fractional digits - it is the closest to 2.2
2893
    * that is possible a base 2 .8p representation.
2894
    */
2895
50.3k
   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
2896
50.2k
       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
2897
50.3k
}
2898
2899
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2900
/* A local convenience routine. */
2901
static png_fixed_point
2902
png_product2(png_fixed_point a, png_fixed_point b)
2903
{
2904
   /* The required result is a * b; the following preserves accuracy. */
2905
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED /* Should now be unused */
2906
   double r = a * 1E-5;
2907
   r *= b;
2908
   r = floor(r+.5);
2909
2910
   if (r <= 2147483647. && r >= -2147483648.)
2911
      return (png_fixed_point)r;
2912
#else
2913
   png_fixed_point res;
2914
2915
   if (png_muldiv(&res, a, b, 100000) != 0)
2916
      return res;
2917
#endif
2918
2919
   return 0; /* overflow */
2920
}
2921
#endif /* FLOATING_ARITHMETIC */
2922
2923
png_fixed_point
2924
png_reciprocal2(png_fixed_point a, png_fixed_point b)
2925
0
{
2926
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
2927
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2928
0
   if (a != 0 && b != 0)
2929
0
   {
2930
0
      double r = 1E15/a;
2931
0
      r /= b;
2932
0
      r = floor(r+.5);
2933
2934
0
      if (r <= 2147483647. && r >= -2147483648.)
2935
0
         return (png_fixed_point)r;
2936
0
   }
2937
#else
2938
   /* This may overflow because the range of png_fixed_point isn't symmetric,
2939
    * but this API is only used for the product of file and screen gamma so it
2940
    * doesn't matter that the smallest number it can produce is 1/21474, not
2941
    * 1/100000
2942
    */
2943
   png_fixed_point res = png_product2(a, b);
2944
2945
   if (res != 0)
2946
      return png_reciprocal(res);
2947
#endif
2948
2949
0
   return 0; /* overflow */
2950
0
}
2951
#endif /* READ_GAMMA */
2952
2953
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
2954
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2955
/* Fixed point gamma.
2956
 *
2957
 * The code to calculate the tables used below can be found in the shell script
2958
 * contrib/tools/intgamma.sh
2959
 *
2960
 * To calculate gamma this code implements fast log() and exp() calls using only
2961
 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
2962
 * or 16-bit sample values.
2963
 *
2964
 * The tables used here were calculated using simple 'bc' programs, but C double
2965
 * precision floating point arithmetic would work fine.
2966
 *
2967
 * 8-bit log table
2968
 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2969
 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
2970
 *   mantissa.  The numbers are 32-bit fractions.
2971
 */
2972
static const png_uint_32
2973
png_8bit_l2[128] =
2974
{
2975
   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
2976
   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
2977
   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
2978
   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
2979
   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
2980
   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
2981
   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
2982
   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
2983
   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
2984
   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
2985
   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
2986
   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
2987
   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
2988
   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
2989
   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
2990
   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
2991
   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
2992
   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
2993
   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
2994
   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
2995
   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
2996
   24347096U, 0U
2997
2998
#if 0
2999
   /* The following are the values for 16-bit tables - these work fine for the
3000
    * 8-bit conversions but produce very slightly larger errors in the 16-bit
3001
    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
3002
    * use these all the shifts below must be adjusted appropriately.
3003
    */
3004
   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3005
   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3006
   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3007
   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3008
   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3009
   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3010
   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3011
   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3012
   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3013
   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3014
   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3015
   1119, 744, 372
3016
#endif
3017
};
3018
3019
static png_int_32
3020
png_log8bit(unsigned int x)
3021
{
3022
   unsigned int lg2 = 0;
3023
   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3024
    * because the log is actually negate that means adding 1.  The final
3025
    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3026
    * input), return -1 for the overflow (log 0) case, - so the result is
3027
    * always at most 19 bits.
3028
    */
3029
   if ((x &= 0xff) == 0)
3030
      return -1;
3031
3032
   if ((x & 0xf0) == 0)
3033
      lg2  = 4, x <<= 4;
3034
3035
   if ((x & 0xc0) == 0)
3036
      lg2 += 2, x <<= 2;
3037
3038
   if ((x & 0x80) == 0)
3039
      lg2 += 1, x <<= 1;
3040
3041
   /* result is at most 19 bits, so this cast is safe: */
3042
   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3043
}
3044
3045
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3046
 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
3047
 * get an approximation then multiply the approximation by a correction factor
3048
 * determined by the remaining up to 8 bits.  This requires an additional step
3049
 * in the 16-bit case.
3050
 *
3051
 * We want log2(value/65535), we have log2(v'/255), where:
3052
 *
3053
 *    value = v' * 256 + v''
3054
 *          = v' * f
3055
 *
3056
 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3057
 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3058
 * than 258.  The final factor also needs to correct for the fact that our 8-bit
3059
 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3060
 *
3061
 * This gives a final formula using a calculated value 'x' which is value/v' and
3062
 * scaling by 65536 to match the above table:
3063
 *
3064
 *   log2(x/257) * 65536
3065
 *
3066
 * Since these numbers are so close to '1' we can use simple linear
3067
 * interpolation between the two end values 256/257 (result -368.61) and 258/257
3068
 * (result 367.179).  The values used below are scaled by a further 64 to give
3069
 * 16-bit precision in the interpolation:
3070
 *
3071
 * Start (256): -23591
3072
 * Zero  (257):      0
3073
 * End   (258):  23499
3074
 */
3075
#ifdef PNG_16BIT_SUPPORTED
3076
static png_int_32
3077
png_log16bit(png_uint_32 x)
3078
{
3079
   unsigned int lg2 = 0;
3080
3081
   /* As above, but now the input has 16 bits. */
3082
   if ((x &= 0xffff) == 0)
3083
      return -1;
3084
3085
   if ((x & 0xff00) == 0)
3086
      lg2  = 8, x <<= 8;
3087
3088
   if ((x & 0xf000) == 0)
3089
      lg2 += 4, x <<= 4;
3090
3091
   if ((x & 0xc000) == 0)
3092
      lg2 += 2, x <<= 2;
3093
3094
   if ((x & 0x8000) == 0)
3095
      lg2 += 1, x <<= 1;
3096
3097
   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3098
    * value.
3099
    */
3100
   lg2 <<= 28;
3101
   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3102
3103
   /* Now we need to interpolate the factor, this requires a division by the top
3104
    * 8 bits.  Do this with maximum precision.
3105
    */
3106
   x = ((x << 16) + (x >> 9)) / (x >> 8);
3107
3108
   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3109
    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3110
    * 16 bits to interpolate to get the low bits of the result.  Round the
3111
    * answer.  Note that the end point values are scaled by 64 to retain overall
3112
    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3113
    * the overall scaling by 6-12.  Round at every step.
3114
    */
3115
   x -= 1U << 24;
3116
3117
   if (x <= 65536U) /* <= '257' */
3118
      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3119
3120
   else
3121
      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3122
3123
   /* Safe, because the result can't have more than 20 bits: */
3124
   return (png_int_32)((lg2 + 2048) >> 12);
3125
}
3126
#endif /* 16BIT */
3127
3128
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3129
 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
3130
 * each case only the low 16 bits are relevant - the fraction - since the
3131
 * integer bits (the top 4) simply determine a shift.
3132
 *
3133
 * The worst case is the 16-bit distinction between 65535 and 65534. This
3134
 * requires perhaps spurious accuracy in the decoding of the logarithm to
3135
 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
3136
 * of getting this accuracy in practice.
3137
 *
3138
 * To deal with this the following exp() function works out the exponent of the
3139
 * fractional part of the logarithm by using an accurate 32-bit value from the
3140
 * top four fractional bits then multiplying in the remaining bits.
3141
 */
3142
static const png_uint_32
3143
png_32bit_exp[16] =
3144
{
3145
   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3146
   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3147
   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3148
   2553802834U, 2445529972U, 2341847524U, 2242560872U
3149
};
3150
3151
/* Adjustment table; provided to explain the numbers in the code below. */
3152
#if 0
3153
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3154
   11 44937.64284865548751208448
3155
   10 45180.98734845585101160448
3156
    9 45303.31936980687359311872
3157
    8 45364.65110595323018870784
3158
    7 45395.35850361789624614912
3159
    6 45410.72259715102037508096
3160
    5 45418.40724413220722311168
3161
    4 45422.25021786898173001728
3162
    3 45424.17186732298419044352
3163
    2 45425.13273269940811464704
3164
    1 45425.61317555035558641664
3165
    0 45425.85339951654943850496
3166
#endif
3167
3168
static png_uint_32
3169
png_exp(png_fixed_point x)
3170
{
3171
   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3172
   {
3173
      /* Obtain a 4-bit approximation */
3174
      png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
3175
3176
      /* Incorporate the low 12 bits - these decrease the returned value by
3177
       * multiplying by a number less than 1 if the bit is set.  The multiplier
3178
       * is determined by the above table and the shift. Notice that the values
3179
       * converge on 45426 and this is used to allow linear interpolation of the
3180
       * low bits.
3181
       */
3182
      if (x & 0x800)
3183
         e -= (((e >> 16) * 44938U) +  16U) >> 5;
3184
3185
      if (x & 0x400)
3186
         e -= (((e >> 16) * 45181U) +  32U) >> 6;
3187
3188
      if (x & 0x200)
3189
         e -= (((e >> 16) * 45303U) +  64U) >> 7;
3190
3191
      if (x & 0x100)
3192
         e -= (((e >> 16) * 45365U) + 128U) >> 8;
3193
3194
      if (x & 0x080)
3195
         e -= (((e >> 16) * 45395U) + 256U) >> 9;
3196
3197
      if (x & 0x040)
3198
         e -= (((e >> 16) * 45410U) + 512U) >> 10;
3199
3200
      /* And handle the low 6 bits in a single block. */
3201
      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3202
3203
      /* Handle the upper bits of x. */
3204
      e >>= x >> 16;
3205
      return e;
3206
   }
3207
3208
   /* Check for overflow */
3209
   if (x <= 0)
3210
      return png_32bit_exp[0];
3211
3212
   /* Else underflow */
3213
   return 0;
3214
}
3215
3216
static png_byte
3217
png_exp8bit(png_fixed_point lg2)
3218
{
3219
   /* Get a 32-bit value: */
3220
   png_uint_32 x = png_exp(lg2);
3221
3222
   /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
3223
    * second, rounding, step can't overflow because of the first, subtraction,
3224
    * step.
3225
    */
3226
   x -= x >> 8;
3227
   return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff);
3228
}
3229
3230
#ifdef PNG_16BIT_SUPPORTED
3231
static png_uint_16
3232
png_exp16bit(png_fixed_point lg2)
3233
{
3234
   /* Get a 32-bit value: */
3235
   png_uint_32 x = png_exp(lg2);
3236
3237
   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3238
   x -= x >> 16;
3239
   return (png_uint_16)((x + 32767U) >> 16);
3240
}
3241
#endif /* 16BIT */
3242
#endif /* FLOATING_ARITHMETIC */
3243
3244
png_byte
3245
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3246
0
{
3247
0
   if (value > 0 && value < 255)
3248
0
   {
3249
0
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3250
         /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly
3251
          * convert this to a floating point value.  This includes values that
3252
          * would overflow if 'value' were to be converted to 'int'.
3253
          *
3254
          * Apparently GCC, however, does an intermediate conversion to (int)
3255
          * on some (ARM) but not all (x86) platforms, possibly because of
3256
          * hardware FP limitations.  (E.g. if the hardware conversion always
3257
          * assumes the integer register contains a signed value.)  This results
3258
          * in ANSI-C undefined behavior for large values.
3259
          *
3260
          * Other implementations on the same machine might actually be ANSI-C90
3261
          * conformant and therefore compile spurious extra code for the large
3262
          * values.
3263
          *
3264
          * We can be reasonably sure that an unsigned to float conversion
3265
          * won't be faster than an int to float one.  Therefore this code
3266
          * assumes responsibility for the undefined behavior, which it knows
3267
          * can't happen because of the check above.
3268
          *
3269
          * Note the argument to this routine is an (unsigned int) because, on
3270
          * 16-bit platforms, it is assigned a value which might be out of
3271
          * range for an (int); that would result in undefined behavior in the
3272
          * caller if the *argument* ('value') were to be declared (int).
3273
          */
3274
0
         double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
3275
0
         return (png_byte)r;
3276
#     else
3277
         png_int_32 lg2 = png_log8bit(value);
3278
         png_fixed_point res;
3279
3280
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3281
            return png_exp8bit(res);
3282
3283
         /* Overflow. */
3284
         value = 0;
3285
#     endif
3286
0
   }
3287
3288
0
   return (png_byte)(value & 0xff);
3289
0
}
3290
3291
#ifdef PNG_16BIT_SUPPORTED
3292
png_uint_16
3293
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3294
0
{
3295
0
   if (value > 0 && value < 65535)
3296
0
   {
3297
0
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3298
      /* The same (unsigned int)->(double) constraints apply here as above,
3299
       * however in this case the (unsigned int) to (int) conversion can
3300
       * overflow on an ANSI-C90 compliant system so the cast needs to ensure
3301
       * that this is not possible.
3302
       */
3303
0
      double r = floor(65535*pow((png_int_32)value/65535.,
3304
0
          gamma_val*.00001)+.5);
3305
0
      return (png_uint_16)r;
3306
# else
3307
      png_int_32 lg2 = png_log16bit(value);
3308
      png_fixed_point res;
3309
3310
      if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3311
         return png_exp16bit(res);
3312
3313
      /* Overflow. */
3314
      value = 0;
3315
# endif
3316
0
   }
3317
3318
0
   return (png_uint_16)value;
3319
0
}
3320
#endif /* 16BIT */
3321
3322
/* This does the right thing based on the bit_depth field of the
3323
 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
3324
 * is nominally a 16-bit value if bit depth is 8 then the result is
3325
 * 8-bit (as are the arguments.)
3326
 */
3327
png_uint_16 /* PRIVATE */
3328
png_gamma_correct(png_struct *png_ptr, unsigned int value,
3329
    png_fixed_point gamma_val)
3330
0
{
3331
0
   if (png_ptr->bit_depth == 8)
3332
0
      return png_gamma_8bit_correct(value, gamma_val);
3333
3334
0
#ifdef PNG_16BIT_SUPPORTED
3335
0
   else
3336
0
      return png_gamma_16bit_correct(value, gamma_val);
3337
#else
3338
      /* should not reach this */
3339
      return 0;
3340
#endif /* 16BIT */
3341
0
}
3342
3343
#ifdef PNG_16BIT_SUPPORTED
3344
/* Internal function to build a single 16-bit table - the table consists of
3345
 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3346
 * to shift the input values right (or 16-number_of_signifiant_bits).
3347
 *
3348
 * The caller is responsible for ensuring that the table gets cleaned up on
3349
 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3350
 * should be somewhere that will be cleaned.
3351
 */
3352
static void
3353
png_build_16bit_table(png_struct *png_ptr, png_uint_16 ***ptable,
3354
    unsigned int shift, png_fixed_point gamma_val)
3355
0
{
3356
   /* Various values derived from 'shift': */
3357
0
   unsigned int num = 1U << (8U - shift);
3358
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3359
   /* CSE the division and work round wacky GCC warnings (see the comments
3360
    * in png_gamma_8bit_correct for where these come from.)
3361
    */
3362
0
   double fmax = 1.0 / (((png_int_32)1 << (16U - shift)) - 1);
3363
0
#endif
3364
0
   unsigned int max = (1U << (16U - shift)) - 1U;
3365
0
   unsigned int max_by_2 = 1U << (15U - shift);
3366
0
   unsigned int i;
3367
3368
0
   png_uint_16 **table = *ptable =
3369
0
       (png_uint_16 **)png_calloc(png_ptr, num * (sizeof (png_uint_16 *)));
3370
3371
0
   for (i = 0; i < num; i++)
3372
0
   {
3373
0
      png_uint_16 *sub_table = table[i] =
3374
0
          (png_uint_16 *)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3375
3376
      /* The 'threshold' test is repeated here because it can arise for one of
3377
       * the 16-bit tables even if the others don't hit it.
3378
       */
3379
0
      if (png_gamma_significant(gamma_val) != 0)
3380
0
      {
3381
         /* The old code would overflow at the end and this would cause the
3382
          * 'pow' function to return a result >1, resulting in an
3383
          * arithmetic error.  This code follows the spec exactly; ig is
3384
          * the recovered input sample, it always has 8-16 bits.
3385
          *
3386
          * We want input * 65535/max, rounded, the arithmetic fits in 32
3387
          * bits (unsigned) so long as max <= 32767.
3388
          */
3389
0
         unsigned int j;
3390
0
         for (j = 0; j < 256; j++)
3391
0
         {
3392
0
            png_uint_32 ig = (j << (8-shift)) + i;
3393
0
#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3394
               /* Inline the 'max' scaling operation: */
3395
               /* See png_gamma_8bit_correct for why the cast to (int) is
3396
                * required here.
3397
                */
3398
0
               double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
3399
0
               sub_table[j] = (png_uint_16)d;
3400
#           else
3401
               if (shift != 0)
3402
                  ig = (ig * 65535U + max_by_2)/max;
3403
3404
               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3405
#           endif
3406
0
         }
3407
0
      }
3408
0
      else
3409
0
      {
3410
         /* We must still build a table, but do it the fast way. */
3411
0
         unsigned int j;
3412
3413
0
         for (j = 0; j < 256; j++)
3414
0
         {
3415
0
            png_uint_32 ig = (j << (8-shift)) + i;
3416
3417
0
            if (shift != 0)
3418
0
               ig = (ig * 65535U + max_by_2)/max;
3419
3420
0
            sub_table[j] = (png_uint_16)ig;
3421
0
         }
3422
0
      }
3423
0
   }
3424
0
}
3425
3426
/* NOTE: this function expects the *inverse* of the overall gamma transformation
3427
 * required.
3428
 */
3429
static void
3430
png_build_16to8_table(png_struct *png_ptr, png_uint_16 ***ptable,
3431
    unsigned int shift, png_fixed_point gamma_val)
3432
0
{
3433
0
   unsigned int num = 1U << (8U - shift);
3434
0
   unsigned int max = (1U << (16U - shift))-1U;
3435
0
   unsigned int i;
3436
0
   png_uint_32 last;
3437
3438
0
   png_uint_16 **table = *ptable =
3439
0
       (png_uint_16 **)png_calloc(png_ptr, num * (sizeof (png_uint_16 *)));
3440
3441
   /* 'num' is the number of tables and also the number of low bits of low
3442
    * bits of the input 16-bit value used to select a table.  Each table is
3443
    * itself indexed by the high 8 bits of the value.
3444
    */
3445
0
   for (i = 0; i < num; i++)
3446
0
      table[i] = (png_uint_16 *)png_malloc(png_ptr,
3447
0
          256 * (sizeof (png_uint_16)));
3448
3449
   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
3450
    * pow(out,g) is an *input* value.  'last' is the last input value set.
3451
    *
3452
    * In the loop 'i' is used to find output values.  Since the output is
3453
    * 8-bit there are only 256 possible values.  The tables are set up to
3454
    * select the closest possible output value for each input by finding
3455
    * the input value at the boundary between each pair of output values
3456
    * and filling the table up to that boundary with the lower output
3457
    * value.
3458
    *
3459
    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
3460
    * values the code below uses a 16-bit value in i; the values start at
3461
    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
3462
    * entries are filled with 255).  Start i at 128 and fill all 'last'
3463
    * table entries <= 'max'
3464
    */
3465
0
   last = 0;
3466
0
   for (i = 0; i < 255; ++i) /* 8-bit output value */
3467
0
   {
3468
      /* Find the corresponding maximum input value */
3469
0
      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
3470
3471
      /* Find the boundary value in 16 bits: */
3472
0
      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
3473
3474
      /* Adjust (round) to (16-shift) bits: */
3475
0
      bound = (bound * max + 32768U)/65535U + 1U;
3476
3477
0
      while (last < bound)
3478
0
      {
3479
0
         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
3480
0
         last++;
3481
0
      }
3482
0
   }
3483
3484
   /* And fill in the final entries. */
3485
0
   while (last < (num << 8))
3486
0
   {
3487
0
      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
3488
0
      last++;
3489
0
   }
3490
0
}
3491
#endif /* 16BIT */
3492
3493
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
3494
 * typically much faster).  Note that libpng currently does no sBIT processing
3495
 * (apparently contrary to the spec) so a 256-entry table is always generated.
3496
 */
3497
static void
3498
png_build_8bit_table(png_struct *png_ptr, png_byte **ptable,
3499
    png_fixed_point gamma_val)
3500
0
{
3501
0
   unsigned int i;
3502
0
   png_byte *table = *ptable = (png_byte *)png_malloc(png_ptr, 256);
3503
3504
0
   if (png_gamma_significant(gamma_val) != 0)
3505
0
      for (i=0; i<256; i++)
3506
0
         table[i] = png_gamma_8bit_correct(i, gamma_val);
3507
3508
0
   else
3509
0
      for (i=0; i<256; ++i)
3510
0
         table[i] = (png_byte)(i & 0xff);
3511
0
}
3512
3513
/* Used from png_read_destroy and below to release the memory used by the gamma
3514
 * tables.
3515
 */
3516
void /* PRIVATE */
3517
png_destroy_gamma_table(png_struct *png_ptr)
3518
93.6k
{
3519
93.6k
   png_free(png_ptr, png_ptr->gamma_table);
3520
93.6k
   png_ptr->gamma_table = NULL;
3521
3522
93.6k
#ifdef PNG_16BIT_SUPPORTED
3523
93.6k
   if (png_ptr->gamma_16_table != NULL)
3524
0
   {
3525
0
      int i;
3526
0
      int istop = (1 << (8 - png_ptr->gamma_shift));
3527
0
      for (i = 0; i < istop; i++)
3528
0
      {
3529
0
         png_free(png_ptr, png_ptr->gamma_16_table[i]);
3530
0
      }
3531
0
   png_free(png_ptr, png_ptr->gamma_16_table);
3532
0
   png_ptr->gamma_16_table = NULL;
3533
0
   }
3534
93.6k
#endif /* 16BIT */
3535
3536
93.6k
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3537
93.6k
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3538
93.6k
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3539
93.6k
   png_free(png_ptr, png_ptr->gamma_from_1);
3540
93.6k
   png_ptr->gamma_from_1 = NULL;
3541
93.6k
   png_free(png_ptr, png_ptr->gamma_to_1);
3542
93.6k
   png_ptr->gamma_to_1 = NULL;
3543
3544
93.6k
#ifdef PNG_16BIT_SUPPORTED
3545
93.6k
   if (png_ptr->gamma_16_from_1 != NULL)
3546
0
   {
3547
0
      int i;
3548
0
      int istop = (1 << (8 - png_ptr->gamma_shift));
3549
0
      for (i = 0; i < istop; i++)
3550
0
      {
3551
0
         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
3552
0
      }
3553
0
   png_free(png_ptr, png_ptr->gamma_16_from_1);
3554
0
   png_ptr->gamma_16_from_1 = NULL;
3555
0
   }
3556
93.6k
   if (png_ptr->gamma_16_to_1 != NULL)
3557
0
   {
3558
0
      int i;
3559
0
      int istop = (1 << (8 - png_ptr->gamma_shift));
3560
0
      for (i = 0; i < istop; i++)
3561
0
      {
3562
0
         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
3563
0
      }
3564
0
   png_free(png_ptr, png_ptr->gamma_16_to_1);
3565
0
   png_ptr->gamma_16_to_1 = NULL;
3566
0
   }
3567
93.6k
#endif /* 16BIT */
3568
93.6k
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
3569
93.6k
}
3570
3571
/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
3572
 * tables, we don't make a full table if we are reducing to 8-bit in
3573
 * the future.  Note also how the gamma_16 tables are segmented so that
3574
 * we don't need to allocate > 64K chunks for a full 16-bit table.
3575
 *
3576
 * TODO: move this to pngrtran.c and make it static.  Better yet create
3577
 * pngcolor.c and put all the PNG_COLORSPACE stuff in there.
3578
 */
3579
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3580
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3581
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3582
#  define GAMMA_TRANSFORMS 1 /* #ifdef CSE */
3583
#else
3584
#  define GAMMA_TRANSFORMS 0
3585
#endif
3586
3587
void /* PRIVATE */
3588
png_build_gamma_table(png_struct *png_ptr, int bit_depth)
3589
0
{
3590
0
   png_fixed_point file_gamma, screen_gamma;
3591
0
   png_fixed_point correction;
3592
0
#  if GAMMA_TRANSFORMS
3593
0
      png_fixed_point file_to_linear, linear_to_screen;
3594
0
#  endif
3595
3596
0
   png_debug(1, "in png_build_gamma_table");
3597
3598
   /* Remove any existing table; this copes with multiple calls to
3599
    * png_read_update_info. The warning is because building the gamma tables
3600
    * multiple times is a performance hit - it's harmless but the ability to
3601
    * call png_read_update_info() multiple times is new in 1.5.6 so it seems
3602
    * sensible to warn if the app introduces such a hit.
3603
    */
3604
0
   if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
3605
0
   {
3606
0
      png_warning(png_ptr, "gamma table being rebuilt");
3607
0
      png_destroy_gamma_table(png_ptr);
3608
0
   }
3609
3610
   /* The following fields are set, finally, in png_init_read_transformations.
3611
    * If file_gamma is 0 (unset) nothing can be done otherwise if screen_gamma
3612
    * is 0 (unset) there is no gamma correction but to/from linear is possible.
3613
    */
3614
0
   file_gamma = png_ptr->file_gamma;
3615
0
   screen_gamma = png_ptr->screen_gamma;
3616
0
#  if GAMMA_TRANSFORMS
3617
0
      file_to_linear = png_reciprocal(file_gamma);
3618
0
#  endif
3619
3620
0
   if (screen_gamma > 0)
3621
0
   {
3622
0
#     if GAMMA_TRANSFORMS
3623
0
         linear_to_screen = png_reciprocal(screen_gamma);
3624
0
#     endif
3625
0
      correction = png_reciprocal2(screen_gamma, file_gamma);
3626
0
   }
3627
0
   else /* screen gamma unknown */
3628
0
   {
3629
0
#     if GAMMA_TRANSFORMS
3630
0
         linear_to_screen = file_gamma;
3631
0
#     endif
3632
0
      correction = PNG_FP_1;
3633
0
   }
3634
3635
0
   if (bit_depth <= 8)
3636
0
   {
3637
0
      png_build_8bit_table(png_ptr, &png_ptr->gamma_table, correction);
3638
3639
0
#if GAMMA_TRANSFORMS
3640
0
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3641
0
      {
3642
0
         png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, file_to_linear);
3643
3644
0
         png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
3645
0
            linear_to_screen);
3646
0
      }
3647
0
#endif /* GAMMA_TRANSFORMS */
3648
0
   }
3649
0
#ifdef PNG_16BIT_SUPPORTED
3650
0
   else
3651
0
   {
3652
0
      png_byte shift, sig_bit;
3653
3654
0
      if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
3655
0
      {
3656
0
         sig_bit = png_ptr->sig_bit.red;
3657
3658
0
         if (png_ptr->sig_bit.green > sig_bit)
3659
0
            sig_bit = png_ptr->sig_bit.green;
3660
3661
0
         if (png_ptr->sig_bit.blue > sig_bit)
3662
0
            sig_bit = png_ptr->sig_bit.blue;
3663
0
      }
3664
0
      else
3665
0
         sig_bit = png_ptr->sig_bit.gray;
3666
3667
      /* 16-bit gamma code uses this equation:
3668
       *
3669
       *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
3670
       *
3671
       * Where 'iv' is the input color value and 'ov' is the output value -
3672
       * pow(iv, gamma).
3673
       *
3674
       * Thus the gamma table consists of up to 256 256-entry tables.  The table
3675
       * is selected by the (8-gamma_shift) most significant of the low 8 bits
3676
       * of the color value then indexed by the upper 8 bits:
3677
       *
3678
       *   table[low bits][high 8 bits]
3679
       *
3680
       * So the table 'n' corresponds to all those 'iv' of:
3681
       *
3682
       *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
3683
       *
3684
       */
3685
0
      if (sig_bit > 0 && sig_bit < 16U)
3686
         /* shift == insignificant bits */
3687
0
         shift = (png_byte)((16U - sig_bit) & 0xff);
3688
3689
0
      else
3690
0
         shift = 0; /* keep all 16 bits */
3691
3692
0
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3693
0
      {
3694
         /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
3695
          * the significant bits in the *input* when the output will
3696
          * eventually be 8 bits.  By default it is 11.
3697
          */
3698
0
         if (shift < (16U - PNG_MAX_GAMMA_8))
3699
0
            shift = (16U - PNG_MAX_GAMMA_8);
3700
0
      }
3701
3702
0
      if (shift > 8U)
3703
0
         shift = 8U; /* Guarantees at least one table! */
3704
3705
0
      png_ptr->gamma_shift = shift;
3706
3707
      /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
3708
       * PNG_COMPOSE).  This effectively smashed the background calculation for
3709
       * 16-bit output because the 8-bit table assumes the result will be
3710
       * reduced to 8 bits.
3711
       */
3712
0
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3713
0
         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
3714
0
            png_reciprocal(correction));
3715
0
      else
3716
0
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
3717
0
            correction);
3718
3719
0
#  if GAMMA_TRANSFORMS
3720
0
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3721
0
      {
3722
0
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
3723
0
            file_to_linear);
3724
3725
         /* Notice that the '16 from 1' table should be full precision, however
3726
          * the lookup on this table still uses gamma_shift, so it can't be.
3727
          * TODO: fix this.
3728
          */
3729
0
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
3730
0
            linear_to_screen);
3731
0
      }
3732
0
#endif /* GAMMA_TRANSFORMS */
3733
0
   }
3734
0
#endif /* 16BIT */
3735
0
}
3736
#endif /* READ_GAMMA */
3737
3738
/* HARDWARE OR SOFTWARE OPTION SUPPORT */
3739
int
3740
png_set_option(png_struct *png_ptr, int option, int onoff)
3741
187k
{
3742
187k
   if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
3743
187k
      (option & 1) == 0)
3744
187k
   {
3745
187k
      png_uint_32 mask = 3U << option;
3746
187k
      png_uint_32 setting = (2U + (onoff != 0)) << option;
3747
187k
      png_uint_32 current = png_ptr->options;
3748
3749
187k
      png_ptr->options = (png_uint_32)((current & ~mask) | setting);
3750
3751
187k
      return (int)(current & mask) >> option;
3752
187k
   }
3753
3754
0
   return PNG_OPTION_INVALID;
3755
187k
}
3756
3757
/* sRGB support */
3758
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3759
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3760
/* sRGB conversion tables; these are machine generated with the code in
3761
 * contrib/tools/makesRGB.c.  The actual sRGB transfer curve defined in the
3762
 * specification (see the article at https://en.wikipedia.org/wiki/SRGB)
3763
 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
3764
 * The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
3765
 * The inverse (linear to sRGB) table has accuracies as follows:
3766
 *
3767
 * For all possible (255*65535+1) input values:
3768
 *
3769
 *    error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
3770
 *
3771
 * For the input values corresponding to the 65536 16-bit values:
3772
 *
3773
 *    error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
3774
 *
3775
 * In all cases the inexact readings are only off by one.
3776
 */
3777
3778
#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
3779
/* The convert-to-sRGB table is only currently required for read. */
3780
const png_uint_16 png_sRGB_table[256] =
3781
{
3782
   0,20,40,60,80,99,119,139,
3783
   159,179,199,219,241,264,288,313,
3784
   340,367,396,427,458,491,526,562,
3785
   599,637,677,718,761,805,851,898,
3786
   947,997,1048,1101,1156,1212,1270,1330,
3787
   1391,1453,1517,1583,1651,1720,1790,1863,
3788
   1937,2013,2090,2170,2250,2333,2418,2504,
3789
   2592,2681,2773,2866,2961,3058,3157,3258,
3790
   3360,3464,3570,3678,3788,3900,4014,4129,
3791
   4247,4366,4488,4611,4736,4864,4993,5124,
3792
   5257,5392,5530,5669,5810,5953,6099,6246,
3793
   6395,6547,6700,6856,7014,7174,7335,7500,
3794
   7666,7834,8004,8177,8352,8528,8708,8889,
3795
   9072,9258,9445,9635,9828,10022,10219,10417,
3796
   10619,10822,11028,11235,11446,11658,11873,12090,
3797
   12309,12530,12754,12980,13209,13440,13673,13909,
3798
   14146,14387,14629,14874,15122,15371,15623,15878,
3799
   16135,16394,16656,16920,17187,17456,17727,18001,
3800
   18277,18556,18837,19121,19407,19696,19987,20281,
3801
   20577,20876,21177,21481,21787,22096,22407,22721,
3802
   23038,23357,23678,24002,24329,24658,24990,25325,
3803
   25662,26001,26344,26688,27036,27386,27739,28094,
3804
   28452,28813,29176,29542,29911,30282,30656,31033,
3805
   31412,31794,32179,32567,32957,33350,33745,34143,
3806
   34544,34948,35355,35764,36176,36591,37008,37429,
3807
   37852,38278,38706,39138,39572,40009,40449,40891,
3808
   41337,41785,42236,42690,43147,43606,44069,44534,
3809
   45002,45473,45947,46423,46903,47385,47871,48359,
3810
   48850,49344,49841,50341,50844,51349,51858,52369,
3811
   52884,53401,53921,54445,54971,55500,56032,56567,
3812
   57105,57646,58190,58737,59287,59840,60396,60955,
3813
   61517,62082,62650,63221,63795,64372,64952,65535
3814
};
3815
#endif /* SIMPLIFIED_READ */
3816
3817
/* The base/delta tables are required for both read and write (but currently
3818
 * only the simplified versions.)
3819
 */
3820
const png_uint_16 png_sRGB_base[512] =
3821
{
3822
   128,1782,3383,4644,5675,6564,7357,8074,
3823
   8732,9346,9921,10463,10977,11466,11935,12384,
3824
   12816,13233,13634,14024,14402,14769,15125,15473,
3825
   15812,16142,16466,16781,17090,17393,17690,17981,
3826
   18266,18546,18822,19093,19359,19621,19879,20133,
3827
   20383,20630,20873,21113,21349,21583,21813,22041,
3828
   22265,22487,22707,22923,23138,23350,23559,23767,
3829
   23972,24175,24376,24575,24772,24967,25160,25352,
3830
   25542,25730,25916,26101,26284,26465,26645,26823,
3831
   27000,27176,27350,27523,27695,27865,28034,28201,
3832
   28368,28533,28697,28860,29021,29182,29341,29500,
3833
   29657,29813,29969,30123,30276,30429,30580,30730,
3834
   30880,31028,31176,31323,31469,31614,31758,31902,
3835
   32045,32186,32327,32468,32607,32746,32884,33021,
3836
   33158,33294,33429,33564,33697,33831,33963,34095,
3837
   34226,34357,34486,34616,34744,34873,35000,35127,
3838
   35253,35379,35504,35629,35753,35876,35999,36122,
3839
   36244,36365,36486,36606,36726,36845,36964,37083,
3840
   37201,37318,37435,37551,37668,37783,37898,38013,
3841
   38127,38241,38354,38467,38580,38692,38803,38915,
3842
   39026,39136,39246,39356,39465,39574,39682,39790,
3843
   39898,40005,40112,40219,40325,40431,40537,40642,
3844
   40747,40851,40955,41059,41163,41266,41369,41471,
3845
   41573,41675,41777,41878,41979,42079,42179,42279,
3846
   42379,42478,42577,42676,42775,42873,42971,43068,
3847
   43165,43262,43359,43456,43552,43648,43743,43839,
3848
   43934,44028,44123,44217,44311,44405,44499,44592,
3849
   44685,44778,44870,44962,45054,45146,45238,45329,
3850
   45420,45511,45601,45692,45782,45872,45961,46051,
3851
   46140,46229,46318,46406,46494,46583,46670,46758,
3852
   46846,46933,47020,47107,47193,47280,47366,47452,
3853
   47538,47623,47709,47794,47879,47964,48048,48133,
3854
   48217,48301,48385,48468,48552,48635,48718,48801,
3855
   48884,48966,49048,49131,49213,49294,49376,49458,
3856
   49539,49620,49701,49782,49862,49943,50023,50103,
3857
   50183,50263,50342,50422,50501,50580,50659,50738,
3858
   50816,50895,50973,51051,51129,51207,51285,51362,
3859
   51439,51517,51594,51671,51747,51824,51900,51977,
3860
   52053,52129,52205,52280,52356,52432,52507,52582,
3861
   52657,52732,52807,52881,52956,53030,53104,53178,
3862
   53252,53326,53400,53473,53546,53620,53693,53766,
3863
   53839,53911,53984,54056,54129,54201,54273,54345,
3864
   54417,54489,54560,54632,54703,54774,54845,54916,
3865
   54987,55058,55129,55199,55269,55340,55410,55480,
3866
   55550,55620,55689,55759,55828,55898,55967,56036,
3867
   56105,56174,56243,56311,56380,56448,56517,56585,
3868
   56653,56721,56789,56857,56924,56992,57059,57127,
3869
   57194,57261,57328,57395,57462,57529,57595,57662,
3870
   57728,57795,57861,57927,57993,58059,58125,58191,
3871
   58256,58322,58387,58453,58518,58583,58648,58713,
3872
   58778,58843,58908,58972,59037,59101,59165,59230,
3873
   59294,59358,59422,59486,59549,59613,59677,59740,
3874
   59804,59867,59930,59993,60056,60119,60182,60245,
3875
   60308,60370,60433,60495,60558,60620,60682,60744,
3876
   60806,60868,60930,60992,61054,61115,61177,61238,
3877
   61300,61361,61422,61483,61544,61605,61666,61727,
3878
   61788,61848,61909,61969,62030,62090,62150,62211,
3879
   62271,62331,62391,62450,62510,62570,62630,62689,
3880
   62749,62808,62867,62927,62986,63045,63104,63163,
3881
   63222,63281,63340,63398,63457,63515,63574,63632,
3882
   63691,63749,63807,63865,63923,63981,64039,64097,
3883
   64155,64212,64270,64328,64385,64443,64500,64557,
3884
   64614,64672,64729,64786,64843,64900,64956,65013,
3885
   65070,65126,65183,65239,65296,65352,65409,65465
3886
};
3887
3888
const png_byte png_sRGB_delta[512] =
3889
{
3890
   207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
3891
   52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
3892
   35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
3893
   28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
3894
   23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
3895
   21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
3896
   19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
3897
   17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
3898
   16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
3899
   15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
3900
   14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
3901
   13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
3902
   12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
3903
   12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
3904
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3905
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3906
   11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3907
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3908
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3909
   10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3910
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3911
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3912
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3913
   9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3914
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3915
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3916
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3917
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3918
   8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
3919
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3920
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3921
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
3922
};
3923
#endif /* SIMPLIFIED READ/WRITE sRGB support */
3924
3925
/* SIMPLIFIED READ/WRITE SUPPORT */
3926
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3927
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3928
static int
3929
png_image_free_function(void *argument)
3930
0
{
3931
0
   png_image *image = png_voidcast(png_image *, argument);
3932
0
   png_control *cp = image->opaque;
3933
0
   png_control c;
3934
3935
   /* Double check that we have a png_ptr - it should be impossible to get here
3936
    * without one.
3937
    */
3938
0
   if (cp->png_ptr == NULL)
3939
0
      return 0;
3940
3941
   /* First free any data held in the control structure. */
3942
0
#  ifdef PNG_STDIO_SUPPORTED
3943
0
      if (cp->owned_file != 0)
3944
0
      {
3945
0
         FILE *fp = png_voidcast(FILE *, cp->png_ptr->io_ptr);
3946
0
         cp->owned_file = 0;
3947
3948
         /* Ignore errors here. */
3949
0
         if (fp != NULL)
3950
0
         {
3951
0
            cp->png_ptr->io_ptr = NULL;
3952
0
            (void)fclose(fp);
3953
0
         }
3954
0
      }
3955
0
#  endif
3956
3957
   /* Copy the control structure so that the original, allocated, version can be
3958
    * safely freed.  Notice that a png_error here stops the remainder of the
3959
    * cleanup, but this is probably fine because that would indicate bad memory
3960
    * problems anyway.
3961
    */
3962
0
   c = *cp;
3963
0
   image->opaque = &c;
3964
0
   png_free(c.png_ptr, cp);
3965
3966
   /* Then the structures, calling the correct API. */
3967
0
   if (c.for_write != 0)
3968
0
   {
3969
0
#     ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
3970
0
         png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
3971
#     else
3972
         png_error(c.png_ptr, "simplified write not supported");
3973
#     endif
3974
0
   }
3975
0
   else
3976
0
   {
3977
0
#     ifdef PNG_SIMPLIFIED_READ_SUPPORTED
3978
0
         png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
3979
#     else
3980
         png_error(c.png_ptr, "simplified read not supported");
3981
#     endif
3982
0
   }
3983
3984
   /* Success. */
3985
0
   return 1;
3986
0
}
3987
3988
void
3989
png_image_free(png_image *image)
3990
0
{
3991
   /* Safely call the real function, but only if doing so is safe at this point
3992
    * (if not inside an error handling context).  Otherwise assume
3993
    * png_safe_execute will call this API after the return.
3994
    */
3995
0
   if (image != NULL && image->opaque != NULL &&
3996
0
      image->opaque->error_buf == NULL)
3997
0
   {
3998
0
      png_image_free_function(image);
3999
0
      image->opaque = NULL;
4000
0
   }
4001
0
}
4002
4003
int /* PRIVATE */
4004
png_image_error(png_image *image, const char *error_message)
4005
0
{
4006
   /* Utility to log an error. */
4007
0
   png_safecat(image->message, (sizeof image->message), 0, error_message);
4008
0
   image->warning_or_error |= PNG_IMAGE_ERROR;
4009
0
   png_image_free(image);
4010
0
   return 0;
4011
0
}
4012
4013
#endif /* SIMPLIFIED READ/WRITE */
4014
#endif /* READ || WRITE */