Coverage Report

Created: 2025-07-11 07:30

/src/irssi/subprojects/glib-2.74.3/glib/gslice.c
Line
Count
Source (jump to first uncovered line)
1
/* GLIB sliced memory - fast concurrent memory chunk allocator
2
 * Copyright (C) 2005 Tim Janik
3
 *
4
 * SPDX-License-Identifier: LGPL-2.1-or-later
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
/* MT safe */
20
21
#include "config.h"
22
#include "glibconfig.h"
23
24
#if defined(HAVE_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE)
25
#define _XOPEN_SOURCE 600       /* posix_memalign() */
26
#endif
27
#include <stdlib.h>             /* posix_memalign() */
28
#include <string.h>
29
#include <errno.h>
30
31
#ifdef G_OS_UNIX
32
#include <unistd.h>             /* sysconf() */
33
#endif
34
#ifdef G_OS_WIN32
35
#include <windows.h>
36
#include <process.h>
37
#endif
38
39
#include <stdio.h>              /* fputs */
40
41
#include "gslice.h"
42
43
#include "gmain.h"
44
#include "gmem.h"               /* gslice.h */
45
#include "gstrfuncs.h"
46
#include "gutils.h"
47
#include "gtrashstack.h"
48
#include "gtestutils.h"
49
#include "gthread.h"
50
#include "gthreadprivate.h"
51
#include "glib_trace.h"
52
#include "gprintf.h"
53
54
#include "gvalgrind.h"
55
56
/**
57
 * SECTION:memory_slices
58
 * @title: Memory Slices
59
 * @short_description: efficient way to allocate groups of equal-sized
60
 *     chunks of memory
61
 *
62
 * Memory slices provide a space-efficient and multi-processing scalable
63
 * way to allocate equal-sized pieces of memory, just like the original
64
 * #GMemChunks (from GLib 2.8), while avoiding their excessive
65
 * memory-waste, scalability and performance problems.
66
 *
67
 * To achieve these goals, the slice allocator uses a sophisticated,
68
 * layered design that has been inspired by Bonwick's slab allocator
69
 * ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html)
70
 * Jeff Bonwick, The slab allocator: An object-caching kernel
71
 * memory allocator. USENIX 1994, and
72
 * [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html)
73
 * Bonwick and Jonathan Adams, Magazines and vmem: Extending the
74
 * slab allocator to many cpu's and arbitrary resources. USENIX 2001)
75
 *
76
 * It uses posix_memalign() to optimize allocations of many equally-sized
77
 * chunks, and has per-thread free lists (the so-called magazine layer)
78
 * to quickly satisfy allocation requests of already known structure sizes.
79
 * This is accompanied by extra caching logic to keep freed memory around
80
 * for some time before returning it to the system. Memory that is unused
81
 * due to alignment constraints is used for cache colorization (random
82
 * distribution of chunk addresses) to improve CPU cache utilization. The
83
 * caching layer of the slice allocator adapts itself to high lock contention
84
 * to improve scalability.
85
 *
86
 * The slice allocator can allocate blocks as small as two pointers, and
87
 * unlike malloc(), it does not reserve extra space per block. For large block
88
 * sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the
89
 * system malloc() implementation. For newly written code it is recommended
90
 * to use the new `g_slice` API instead of g_malloc() and
91
 * friends, as long as objects are not resized during their lifetime and the
92
 * object size used at allocation time is still available when freeing.
93
 *
94
 * Here is an example for using the slice allocator:
95
 * |[<!-- language="C" --> 
96
 * gchar *mem[10000];
97
 * gint i;
98
 *
99
 * // Allocate 10000 blocks.
100
 * for (i = 0; i < 10000; i++)
101
 *   {
102
 *     mem[i] = g_slice_alloc (50);
103
 *
104
 *     // Fill in the memory with some junk.
105
 *     for (j = 0; j < 50; j++)
106
 *       mem[i][j] = i * j;
107
 *   }
108
 *
109
 * // Now free all of the blocks.
110
 * for (i = 0; i < 10000; i++)
111
 *   g_slice_free1 (50, mem[i]);
112
 * ]|
113
 *
114
 * And here is an example for using the using the slice allocator
115
 * with data structures:
116
 * |[<!-- language="C" --> 
117
 * GRealArray *array;
118
 *
119
 * // Allocate one block, using the g_slice_new() macro.
120
 * array = g_slice_new (GRealArray);
121
 *
122
 * // We can now use array just like a normal pointer to a structure.
123
 * array->data            = NULL;
124
 * array->len             = 0;
125
 * array->alloc           = 0;
126
 * array->zero_terminated = (zero_terminated ? 1 : 0);
127
 * array->clear           = (clear ? 1 : 0);
128
 * array->elt_size        = elt_size;
129
 *
130
 * // We can free the block, so it can be reused.
131
 * g_slice_free (GRealArray, array);
132
 * ]|
133
 */
134
135
/* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
136
 * allocator and magazine extensions as outlined in:
137
 * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
138
 *   memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
139
 * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
140
 *   slab allocator to many cpu's and arbitrary resources.
141
 *   USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
142
 * the layers are:
143
 * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
144
 *   of recently freed and soon to be allocated chunks is maintained per thread.
145
 *   this way, most alloc/free requests can be quickly satisfied from per-thread
146
 *   free lists which only require one g_private_get() call to retrieve the
147
 *   thread handle.
148
 * - the magazine cache. allocating and freeing chunks to/from threads only
149
 *   occurs at magazine sizes from a global depot of magazines. the depot
150
 *   maintaines a 15 second working set of allocated magazines, so full
151
 *   magazines are not allocated and released too often.
152
 *   the chunk size dependent magazine sizes automatically adapt (within limits,
153
 *   see [3]) to lock contention to properly scale performance across a variety
154
 *   of SMP systems.
155
 * - the slab allocator. this allocator allocates slabs (blocks of memory) close
156
 *   to the system page size or multiples thereof which have to be page aligned.
157
 *   the blocks are divided into smaller chunks which are used to satisfy
158
 *   allocations from the upper layers. the space provided by the reminder of
159
 *   the chunk size division is used for cache colorization (random distribution
160
 *   of chunk addresses) to improve processor cache utilization. multiple slabs
161
 *   with the same chunk size are kept in a partially sorted ring to allow O(1)
162
 *   freeing and allocation of chunks (as long as the allocation of an entirely
163
 *   new slab can be avoided).
164
 * - the page allocator. on most modern systems, posix_memalign(3) or
165
 *   memalign(3) should be available, so this is used to allocate blocks with
166
 *   system page size based alignments and sizes or multiples thereof.
167
 *   if no memalign variant is provided, valloc() is used instead and
168
 *   block sizes are limited to the system page size (no multiples thereof).
169
 *   as a fallback, on system without even valloc(), a malloc(3)-based page
170
 *   allocator with alloc-only behaviour is used.
171
 *
172
 * NOTES:
173
 * [1] some systems memalign(3) implementations may rely on boundary tagging for
174
 *     the handed out memory chunks. to avoid excessive page-wise fragmentation,
175
 *     we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
176
 *     specified in NATIVE_MALLOC_PADDING.
177
 * [2] using the slab allocator alone already provides for a fast and efficient
178
 *     allocator, it doesn't properly scale beyond single-threaded uses though.
179
 *     also, the slab allocator implements eager free(3)-ing, i.e. does not
180
 *     provide any form of caching or working set maintenance. so if used alone,
181
 *     it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
182
 *     at certain thresholds.
183
 * [3] magazine sizes are bound by an implementation specific minimum size and
184
 *     a chunk size specific maximum to limit magazine storage sizes to roughly
185
 *     16KB.
186
 * [4] allocating ca. 8 chunks per block/page keeps a good balance between
187
 *     external and internal fragmentation (<= 12.5%). [Bonwick94]
188
 */
189
190
/* --- macros and constants --- */
191
#define LARGEALIGNMENT          (256)
192
3.68G
#define P2ALIGNMENT             (2 * sizeof (gsize))                            /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
193
#define ALIGN(size, base)       ((base) * (gsize) (((size) + (base) - 1) / (base)))
194
23.3k
#define NATIVE_MALLOC_PADDING   P2ALIGNMENT                                     /* per-page padding left for native malloc(3) see [1] */
195
223k
#define SLAB_INFO_SIZE          P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
196
#define MAX_MAGAZINE_SIZE       (256)                                           /* see [3] and allocator_get_magazine_threshold() for this */
197
0
#define MIN_MAGAZINE_SIZE       (4)
198
23.3M
#define MAX_STAMP_COUNTER       (7)                                             /* distributes the load of gettimeofday() */
199
8
#define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8)    /* we want at last 8 chunks per page, see [4] */
200
8
#define MAX_SLAB_INDEX(al)      (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
201
2.04G
#define SLAB_INDEX(al, asize)   ((asize) / P2ALIGNMENT - 1)                     /* asize must be P2ALIGNMENT aligned */
202
1.63G
#define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
203
111k
#define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
204
205
/* optimized version of ALIGN (size, P2ALIGNMENT) */
206
#if     GLIB_SIZEOF_SIZE_T * 2 == 8  /* P2ALIGNMENT */
207
#define P2ALIGN(size)   (((size) + 0x7) & ~(gsize) 0x7)
208
#elif   GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
209
2.04G
#define P2ALIGN(size)   (((size) + 0xf) & ~(gsize) 0xf)
210
#else
211
#define P2ALIGN(size)   ALIGN (size, P2ALIGNMENT)
212
#endif
213
214
/* special helpers to avoid gmessage.c dependency */
215
static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2);
216
23.5M
#define mem_assert(cond)    do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
217
218
/* --- structures --- */
219
typedef struct _ChunkLink      ChunkLink;
220
typedef struct _SlabInfo       SlabInfo;
221
typedef struct _CachedMagazine CachedMagazine;
222
struct _ChunkLink {
223
  ChunkLink *next;
224
  ChunkLink *data;
225
};
226
struct _SlabInfo {
227
  ChunkLink *chunks;
228
  guint n_allocated;
229
  SlabInfo *next, *prev;
230
};
231
typedef struct {
232
  ChunkLink *chunks;
233
  gsize      count;                     /* approximative chunks list length */
234
} Magazine;
235
typedef struct {
236
  Magazine   *magazine1;                /* array of MAX_SLAB_INDEX (allocator) */
237
  Magazine   *magazine2;                /* array of MAX_SLAB_INDEX (allocator) */
238
} ThreadMemory;
239
typedef struct {
240
  gboolean always_malloc;
241
  gboolean bypass_magazines;
242
  gboolean debug_blocks;
243
  gsize    working_set_msecs;
244
  guint    color_increment;
245
} SliceConfig;
246
typedef struct {
247
  /* const after initialization */
248
  gsize         min_page_size, max_page_size;
249
  SliceConfig   config;
250
  gsize         max_slab_chunk_size_for_magazine_cache;
251
  /* magazine cache */
252
  GMutex        magazine_mutex;
253
  ChunkLink   **magazines;                /* array of MAX_SLAB_INDEX (allocator) */
254
  guint        *contention_counters;      /* array of MAX_SLAB_INDEX (allocator) */
255
  gint          mutex_counter;
256
  guint         stamp_counter;
257
  guint         last_stamp;
258
  /* slab allocator */
259
  GMutex        slab_mutex;
260
  SlabInfo    **slab_stack;                /* array of MAX_SLAB_INDEX (allocator) */
261
  guint        color_accu;
262
} Allocator;
263
264
/* --- g-slice prototypes --- */
265
static gpointer     slab_allocator_alloc_chunk       (gsize      chunk_size);
266
static void         slab_allocator_free_chunk        (gsize      chunk_size,
267
                                                      gpointer   mem);
268
static void         private_thread_memory_cleanup    (gpointer   data);
269
static gpointer     allocator_memalign               (gsize      alignment,
270
                                                      gsize      memsize);
271
static void         allocator_memfree                (gsize      memsize,
272
                                                      gpointer   mem);
273
static inline void  magazine_cache_update_stamp      (void);
274
static inline gsize allocator_get_magazine_threshold (Allocator *allocator,
275
                                                      guint      ix);
276
277
/* --- g-slice memory checker --- */
278
static void     smc_notify_alloc  (void   *pointer,
279
                                   size_t  size);
280
static int      smc_notify_free   (void   *pointer,
281
                                   size_t  size);
282
283
/* --- variables --- */
284
static GPrivate    private_thread_memory = G_PRIVATE_INIT (private_thread_memory_cleanup);
285
static gsize       sys_page_size = 0;
286
static Allocator   allocator[1] = { { 0, }, };
287
static SliceConfig slice_config = {
288
  FALSE,        /* always_malloc */
289
  FALSE,        /* bypass_magazines */
290
  FALSE,        /* debug_blocks */
291
  15 * 1000,    /* working_set_msecs */
292
  1,            /* color increment, alt: 0x7fffffff */
293
};
294
static GMutex      smc_tree_mutex; /* mutex for G_SLICE=debug-blocks */
295
296
/* --- auxiliary functions --- */
297
void
298
g_slice_set_config (GSliceConfig ckey,
299
                    gint64       value)
300
0
{
301
0
  g_return_if_fail (sys_page_size == 0);
302
0
  switch (ckey)
303
0
    {
304
0
    case G_SLICE_CONFIG_ALWAYS_MALLOC:
305
0
      slice_config.always_malloc = value != 0;
306
0
      break;
307
0
    case G_SLICE_CONFIG_BYPASS_MAGAZINES:
308
0
      slice_config.bypass_magazines = value != 0;
309
0
      break;
310
0
    case G_SLICE_CONFIG_WORKING_SET_MSECS:
311
0
      slice_config.working_set_msecs = value;
312
0
      break;
313
0
    case G_SLICE_CONFIG_COLOR_INCREMENT:
314
0
      slice_config.color_increment = value;
315
0
      break;
316
0
    default: ;
317
0
    }
318
0
}
319
320
gint64
321
g_slice_get_config (GSliceConfig ckey)
322
0
{
323
0
  switch (ckey)
324
0
    {
325
0
    case G_SLICE_CONFIG_ALWAYS_MALLOC:
326
0
      return slice_config.always_malloc;
327
0
    case G_SLICE_CONFIG_BYPASS_MAGAZINES:
328
0
      return slice_config.bypass_magazines;
329
0
    case G_SLICE_CONFIG_WORKING_SET_MSECS:
330
0
      return slice_config.working_set_msecs;
331
0
    case G_SLICE_CONFIG_CHUNK_SIZES:
332
0
      return MAX_SLAB_INDEX (allocator);
333
0
    case G_SLICE_CONFIG_COLOR_INCREMENT:
334
0
      return slice_config.color_increment;
335
0
    default:
336
0
      return 0;
337
0
    }
338
0
}
339
340
gint64*
341
g_slice_get_config_state (GSliceConfig ckey,
342
                          gint64       address,
343
                          guint       *n_values)
344
0
{
345
0
  guint i = 0;
346
0
  g_return_val_if_fail (n_values != NULL, NULL);
347
0
  *n_values = 0;
348
0
  switch (ckey)
349
0
    {
350
0
      gint64 array[64];
351
0
    case G_SLICE_CONFIG_CONTENTION_COUNTER:
352
0
      array[i++] = SLAB_CHUNK_SIZE (allocator, address);
353
0
      array[i++] = allocator->contention_counters[address];
354
0
      array[i++] = allocator_get_magazine_threshold (allocator, address);
355
0
      *n_values = i;
356
0
      return g_memdup2 (array, sizeof (array[0]) * *n_values);
357
0
    default:
358
0
      return NULL;
359
0
    }
360
0
}
361
362
static void
363
slice_config_init (SliceConfig *config)
364
8
{
365
8
  const gchar *val;
366
8
  gchar *val_allocated = NULL;
367
368
8
  *config = slice_config;
369
370
  /* Note that the empty string (`G_SLICE=""`) is treated differently from the
371
   * envvar being unset. In the latter case, we also check whether running under
372
   * valgrind. */
373
8
#ifndef G_OS_WIN32
374
8
  val = g_getenv ("G_SLICE");
375
#else
376
  /* The win32 implementation of g_getenv() has to do UTF-8 ↔ UTF-16 conversions
377
   * which use the slice allocator, leading to deadlock. Use a simple in-place
378
   * implementation here instead.
379
   *
380
   * Ignore references to other environment variables: only support values which
381
   * are a combination of always-malloc and debug-blocks. */
382
  {
383
384
  wchar_t wvalue[128];  /* at least big enough for `always-malloc,debug-blocks` */
385
  gsize len;
386
387
  len = GetEnvironmentVariableW (L"G_SLICE", wvalue, G_N_ELEMENTS (wvalue));
388
389
  if (len == 0)
390
    {
391
      if (GetLastError () == ERROR_ENVVAR_NOT_FOUND)
392
        val = NULL;
393
      else
394
        val = "";
395
    }
396
  else if (len >= G_N_ELEMENTS (wvalue))
397
    {
398
      /* @wvalue isn’t big enough. Give up. */
399
      g_warning ("Unsupported G_SLICE value");
400
      val = NULL;
401
    }
402
  else
403
    {
404
      /* it’s safe to use g_utf16_to_utf8() here as it only allocates using
405
       * malloc() rather than GSlice */
406
      val = val_allocated = g_utf16_to_utf8 (wvalue, -1, NULL, NULL, NULL);
407
    }
408
409
  }
410
#endif  /* G_OS_WIN32 */
411
412
8
  if (val != NULL)
413
0
    {
414
0
      gint flags;
415
0
      const GDebugKey keys[] = {
416
0
        { "always-malloc", 1 << 0 },
417
0
        { "debug-blocks",  1 << 1 },
418
0
      };
419
420
0
      flags = g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
421
0
      if (flags & (1 << 0))
422
0
        config->always_malloc = TRUE;
423
0
      if (flags & (1 << 1))
424
0
        config->debug_blocks = TRUE;
425
0
    }
426
8
  else
427
8
    {
428
      /* G_SLICE was not specified, so check if valgrind is running and
429
       * disable ourselves if it is.
430
       *
431
       * This way it's possible to force gslice to be enabled under
432
       * valgrind just by setting G_SLICE to the empty string.
433
       */
434
8
#ifdef ENABLE_VALGRIND
435
8
      if (RUNNING_ON_VALGRIND)
436
0
        config->always_malloc = TRUE;
437
8
#endif
438
8
    }
439
440
8
  g_free (val_allocated);
441
8
}
442
443
static void
444
g_slice_init_nomessage (void)
445
8
{
446
  /* we may not use g_error() or friends here */
447
8
  mem_assert (sys_page_size == 0);
448
8
  mem_assert (MIN_MAGAZINE_SIZE >= 4);
449
450
#ifdef G_OS_WIN32
451
  {
452
    SYSTEM_INFO system_info;
453
    GetSystemInfo (&system_info);
454
    sys_page_size = system_info.dwPageSize;
455
  }
456
#else
457
8
  sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
458
8
#endif
459
8
  mem_assert (sys_page_size >= 2 * LARGEALIGNMENT);
460
8
  mem_assert ((sys_page_size & (sys_page_size - 1)) == 0);
461
8
  slice_config_init (&allocator->config);
462
8
  allocator->min_page_size = sys_page_size;
463
8
#if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN
464
  /* allow allocation of pages up to 8KB (with 8KB alignment).
465
   * this is useful because many medium to large sized structures
466
   * fit less than 8 times (see [4]) into 4KB pages.
467
   * we allow very small page sizes here, to reduce wastage in
468
   * threads if only small allocations are required (this does
469
   * bear the risk of increasing allocation times and fragmentation
470
   * though).
471
   */
472
8
  allocator->min_page_size = MAX (allocator->min_page_size, 4096);
473
8
  allocator->max_page_size = MAX (allocator->min_page_size, 8192);
474
8
  allocator->min_page_size = MIN (allocator->min_page_size, 128);
475
#else
476
  /* we can only align to system page size */
477
  allocator->max_page_size = sys_page_size;
478
#endif
479
8
  if (allocator->config.always_malloc)
480
0
    {
481
0
      allocator->contention_counters = NULL;
482
0
      allocator->magazines = NULL;
483
0
      allocator->slab_stack = NULL;
484
0
    }
485
8
  else
486
8
    {
487
8
      allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator));
488
8
      allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator));
489
8
      allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator));
490
8
    }
491
492
8
  allocator->mutex_counter = 0;
493
8
  allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */
494
8
  allocator->last_stamp = 0;
495
8
  allocator->color_accu = 0;
496
8
  magazine_cache_update_stamp();
497
  /* values cached for performance reasons */
498
8
  allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator);
499
8
  if (allocator->config.always_malloc || allocator->config.bypass_magazines)
500
0
    allocator->max_slab_chunk_size_for_magazine_cache = 0;      /* non-optimized cases */
501
8
}
502
503
static inline guint
504
allocator_categorize (gsize aligned_chunk_size)
505
2.04G
{
506
  /* speed up the likely path */
507
2.04G
  if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache))
508
2.04G
    return 1;           /* use magazine cache */
509
510
0
  if (!allocator->config.always_malloc &&
511
0
      aligned_chunk_size &&
512
0
      aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator))
513
0
    {
514
0
      if (allocator->config.bypass_magazines)
515
0
        return 2;       /* use slab allocator, see [2] */
516
0
      return 1;         /* use magazine cache */
517
0
    }
518
0
  return 0;             /* use malloc() */
519
0
}
520
521
static inline void
522
g_mutex_lock_a (GMutex *mutex,
523
                guint  *contention_counter)
524
23.3M
{
525
23.3M
  gboolean contention = FALSE;
526
23.3M
  if (!g_mutex_trylock (mutex))
527
0
    {
528
0
      g_mutex_lock (mutex);
529
0
      contention = TRUE;
530
0
    }
531
23.3M
  if (contention)
532
0
    {
533
0
      allocator->mutex_counter++;
534
0
      if (allocator->mutex_counter >= 1)        /* quickly adapt to contention */
535
0
        {
536
0
          allocator->mutex_counter = 0;
537
0
          *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE);
538
0
        }
539
0
    }
540
23.3M
  else /* !contention */
541
23.3M
    {
542
23.3M
      allocator->mutex_counter--;
543
23.3M
      if (allocator->mutex_counter < -11)       /* moderately recover magazine sizes */
544
1.94M
        {
545
1.94M
          allocator->mutex_counter = 0;
546
1.94M
          *contention_counter = MAX (*contention_counter, 1) - 1;
547
1.94M
        }
548
23.3M
    }
549
23.3M
}
550
551
static inline ThreadMemory*
552
thread_memory_from_self (void)
553
2.04G
{
554
2.04G
  ThreadMemory *tmem = g_private_get (&private_thread_memory);
555
2.04G
  if (G_UNLIKELY (!tmem))
556
8
    {
557
8
      static GMutex init_mutex;
558
8
      guint n_magazines;
559
560
8
      g_mutex_lock (&init_mutex);
561
8
      if G_UNLIKELY (sys_page_size == 0)
562
8
        g_slice_init_nomessage ();
563
8
      g_mutex_unlock (&init_mutex);
564
565
8
      n_magazines = MAX_SLAB_INDEX (allocator);
566
8
      tmem = g_private_set_alloc0 (&private_thread_memory, sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines);
567
8
      tmem->magazine1 = (Magazine*) (tmem + 1);
568
8
      tmem->magazine2 = &tmem->magazine1[n_magazines];
569
8
    }
570
2.04G
  return tmem;
571
2.04G
}
572
573
static inline ChunkLink*
574
magazine_chain_pop_head (ChunkLink **magazine_chunks)
575
1.68G
{
576
  /* magazine chains are linked via ChunkLink->next.
577
   * each ChunkLink->data of the toplevel chain may point to a subchain,
578
   * linked via ChunkLink->next. ChunkLink->data of the subchains just
579
   * contains uninitialized junk.
580
   */
581
1.68G
  ChunkLink *chunk = (*magazine_chunks)->data;
582
1.68G
  if (G_UNLIKELY (chunk))
583
0
    {
584
      /* allocating from freed list */
585
0
      (*magazine_chunks)->data = chunk->next;
586
0
    }
587
1.68G
  else
588
1.68G
    {
589
1.68G
      chunk = *magazine_chunks;
590
1.68G
      *magazine_chunks = chunk->next;
591
1.68G
    }
592
1.68G
  return chunk;
593
1.68G
}
594
595
#if 0 /* useful for debugging */
596
static guint
597
magazine_count (ChunkLink *head)
598
{
599
  guint count = 0;
600
  if (!head)
601
    return 0;
602
  while (head)
603
    {
604
      ChunkLink *child = head->data;
605
      count += 1;
606
      for (child = head->data; child; child = child->next)
607
        count += 1;
608
      head = head->next;
609
    }
610
  return count;
611
}
612
#endif
613
614
static inline gsize
615
allocator_get_magazine_threshold (Allocator *local_allocator,
616
                                  guint ix)
617
1.63G
{
618
  /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
619
   * which is required by the implementation. also, for moderately sized chunks
620
   * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
621
   * of chunks available per page/2 to avoid excessive traffic in the magazine
622
   * cache for small to medium sized structures.
623
   * the upper bound of the magazine size is effectively provided by
624
   * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
625
   * the content of a single magazine doesn't exceed ca. 16KB.
626
   */
627
1.63G
  gsize chunk_size = SLAB_CHUNK_SIZE (local_allocator, ix);
628
1.63G
  guint threshold = MAX (MIN_MAGAZINE_SIZE, local_allocator->max_page_size / MAX (5 * chunk_size, 5 * 32));
629
1.63G
  guint contention_counter = local_allocator->contention_counters[ix];
630
1.63G
  if (G_UNLIKELY (contention_counter))  /* single CPU bias */
631
0
    {
632
      /* adapt contention counter thresholds to chunk sizes */
633
0
      contention_counter = contention_counter * 64 / chunk_size;
634
0
      threshold = MAX (threshold, contention_counter);
635
0
    }
636
1.63G
  return threshold;
637
1.63G
}
638
639
/* --- magazine cache --- */
640
static inline void
641
magazine_cache_update_stamp (void)
642
23.3M
{
643
23.3M
  if (allocator->stamp_counter >= MAX_STAMP_COUNTER)
644
2.92M
    {
645
2.92M
      gint64 now_us = g_get_real_time ();
646
2.92M
      allocator->last_stamp = now_us / 1000; /* milli seconds */
647
2.92M
      allocator->stamp_counter = 0;
648
2.92M
    }
649
20.4M
  else
650
20.4M
    allocator->stamp_counter++;
651
23.3M
}
652
653
static inline ChunkLink*
654
magazine_chain_prepare_fields (ChunkLink *magazine_chunks)
655
23.3M
{
656
23.3M
  ChunkLink *chunk1;
657
23.3M
  ChunkLink *chunk2;
658
23.3M
  ChunkLink *chunk3;
659
23.3M
  ChunkLink *chunk4;
660
  /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
661
  /* ensure a magazine with at least 4 unused data pointers */
662
23.3M
  chunk1 = magazine_chain_pop_head (&magazine_chunks);
663
23.3M
  chunk2 = magazine_chain_pop_head (&magazine_chunks);
664
23.3M
  chunk3 = magazine_chain_pop_head (&magazine_chunks);
665
23.3M
  chunk4 = magazine_chain_pop_head (&magazine_chunks);
666
23.3M
  chunk4->next = magazine_chunks;
667
23.3M
  chunk3->next = chunk4;
668
23.3M
  chunk2->next = chunk3;
669
23.3M
  chunk1->next = chunk2;
670
23.3M
  return chunk1;
671
23.3M
}
672
673
/* access the first 3 fields of a specially prepared magazine chain */
674
163M
#define magazine_chain_prev(mc)         ((mc)->data)
675
46.7M
#define magazine_chain_stamp(mc)        ((mc)->next->data)
676
#define magazine_chain_uint_stamp(mc)   GPOINTER_TO_UINT ((mc)->next->data)
677
116M
#define magazine_chain_next(mc)         ((mc)->next->next->data)
678
70.1M
#define magazine_chain_count(mc)        ((mc)->next->next->next->data)
679
680
static void
681
magazine_cache_trim (Allocator *local_allocator,
682
                     guint ix,
683
                     guint stamp)
684
23.3M
{
685
  /* g_mutex_lock (local_allocator->mutex); done by caller */
686
  /* trim magazine cache from tail */
687
23.3M
  ChunkLink *current = magazine_chain_prev (local_allocator->magazines[ix]);
688
23.3M
  ChunkLink *trash = NULL;
689
23.3M
  while (!G_APPROX_VALUE (stamp, magazine_chain_uint_stamp (current),
690
23.3M
                          local_allocator->config.working_set_msecs))
691
2.07k
    {
692
      /* unlink */
693
2.07k
      ChunkLink *prev = magazine_chain_prev (current);
694
2.07k
      ChunkLink *next = magazine_chain_next (current);
695
2.07k
      magazine_chain_next (prev) = next;
696
2.07k
      magazine_chain_prev (next) = prev;
697
      /* clear special fields, put on trash stack */
698
2.07k
      magazine_chain_next (current) = NULL;
699
2.07k
      magazine_chain_count (current) = NULL;
700
2.07k
      magazine_chain_stamp (current) = NULL;
701
2.07k
      magazine_chain_prev (current) = trash;
702
2.07k
      trash = current;
703
      /* fixup list head if required */
704
2.07k
      if (current == local_allocator->magazines[ix])
705
0
        {
706
0
          local_allocator->magazines[ix] = NULL;
707
0
          break;
708
0
        }
709
2.07k
      current = prev;
710
2.07k
    }
711
23.3M
  g_mutex_unlock (&local_allocator->magazine_mutex);
712
  /* free trash */
713
23.3M
  if (trash)
714
55
    {
715
55
      const gsize chunk_size = SLAB_CHUNK_SIZE (local_allocator, ix);
716
55
      g_mutex_lock (&local_allocator->slab_mutex);
717
2.13k
      while (trash)
718
2.07k
        {
719
2.07k
          current = trash;
720
2.07k
          trash = magazine_chain_prev (current);
721
2.07k
          magazine_chain_prev (current) = NULL; /* clear special field */
722
90.4k
          while (current)
723
88.3k
            {
724
88.3k
              ChunkLink *chunk = magazine_chain_pop_head (&current);
725
88.3k
              slab_allocator_free_chunk (chunk_size, chunk);
726
88.3k
            }
727
2.07k
        }
728
55
      g_mutex_unlock (&local_allocator->slab_mutex);
729
55
    }
730
23.3M
}
731
732
static void
733
magazine_cache_push_magazine (guint      ix,
734
                              ChunkLink *magazine_chunks,
735
                              gsize      count) /* must be >= MIN_MAGAZINE_SIZE */
736
23.3M
{
737
23.3M
  ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks);
738
23.3M
  ChunkLink *next, *prev;
739
23.3M
  g_mutex_lock (&allocator->magazine_mutex);
740
  /* add magazine at head */
741
23.3M
  next = allocator->magazines[ix];
742
23.3M
  if (next)
743
23.3M
    prev = magazine_chain_prev (next);
744
85.1k
  else
745
85.1k
    next = prev = current;
746
23.3M
  magazine_chain_next (prev) = current;
747
23.3M
  magazine_chain_prev (next) = current;
748
23.3M
  magazine_chain_prev (current) = prev;
749
23.3M
  magazine_chain_next (current) = next;
750
23.3M
  magazine_chain_count (current) = (gpointer) count;
751
  /* stamp magazine */
752
23.3M
  magazine_cache_update_stamp();
753
23.3M
  magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp);
754
23.3M
  allocator->magazines[ix] = current;
755
  /* free old magazines beyond a certain threshold */
756
23.3M
  magazine_cache_trim (allocator, ix, allocator->last_stamp);
757
  /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
758
23.3M
}
759
760
static ChunkLink*
761
magazine_cache_pop_magazine (guint  ix,
762
                             gsize *countp)
763
23.3M
{
764
23.3M
  g_mutex_lock_a (&allocator->magazine_mutex, &allocator->contention_counters[ix]);
765
23.3M
  if (!allocator->magazines[ix])
766
9.73k
    {
767
9.73k
      guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix);
768
9.73k
      gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
769
9.73k
      ChunkLink *chunk, *head;
770
9.73k
      g_mutex_unlock (&allocator->magazine_mutex);
771
9.73k
      g_mutex_lock (&allocator->slab_mutex);
772
9.73k
      head = slab_allocator_alloc_chunk (chunk_size);
773
9.73k
      head->data = NULL;
774
9.73k
      chunk = head;
775
312k
      for (i = 1; i < magazine_threshold; i++)
776
302k
        {
777
302k
          chunk->next = slab_allocator_alloc_chunk (chunk_size);
778
302k
          chunk = chunk->next;
779
302k
          chunk->data = NULL;
780
302k
        }
781
9.73k
      chunk->next = NULL;
782
9.73k
      g_mutex_unlock (&allocator->slab_mutex);
783
9.73k
      *countp = i;
784
9.73k
      return head;
785
9.73k
    }
786
23.3M
  else
787
23.3M
    {
788
23.3M
      ChunkLink *current = allocator->magazines[ix];
789
23.3M
      ChunkLink *prev = magazine_chain_prev (current);
790
23.3M
      ChunkLink *next = magazine_chain_next (current);
791
      /* unlink */
792
23.3M
      magazine_chain_next (prev) = next;
793
23.3M
      magazine_chain_prev (next) = prev;
794
23.3M
      allocator->magazines[ix] = next == current ? NULL : next;
795
23.3M
      g_mutex_unlock (&allocator->magazine_mutex);
796
      /* clear special fields and hand out */
797
23.3M
      *countp = (gsize) magazine_chain_count (current);
798
23.3M
      magazine_chain_prev (current) = NULL;
799
23.3M
      magazine_chain_next (current) = NULL;
800
23.3M
      magazine_chain_count (current) = NULL;
801
23.3M
      magazine_chain_stamp (current) = NULL;
802
23.3M
      return current;
803
23.3M
    }
804
23.3M
}
805
806
/* --- thread magazines --- */
807
static void
808
private_thread_memory_cleanup (gpointer data)
809
0
{
810
0
  ThreadMemory *tmem = data;
811
0
  const guint n_magazines = MAX_SLAB_INDEX (allocator);
812
0
  guint ix;
813
0
  for (ix = 0; ix < n_magazines; ix++)
814
0
    {
815
0
      Magazine *mags[2];
816
0
      guint j;
817
0
      mags[0] = &tmem->magazine1[ix];
818
0
      mags[1] = &tmem->magazine2[ix];
819
0
      for (j = 0; j < 2; j++)
820
0
        {
821
0
          Magazine *mag = mags[j];
822
0
          if (mag->count >= MIN_MAGAZINE_SIZE)
823
0
            magazine_cache_push_magazine (ix, mag->chunks, mag->count);
824
0
          else
825
0
            {
826
0
              const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
827
0
              g_mutex_lock (&allocator->slab_mutex);
828
0
              while (mag->chunks)
829
0
                {
830
0
                  ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
831
0
                  slab_allocator_free_chunk (chunk_size, chunk);
832
0
                }
833
0
              g_mutex_unlock (&allocator->slab_mutex);
834
0
            }
835
0
        }
836
0
    }
837
0
  g_free (tmem);
838
0
}
839
840
static void
841
thread_memory_magazine1_reload (ThreadMemory *tmem,
842
                                guint         ix)
843
23.3M
{
844
23.3M
  Magazine *mag = &tmem->magazine1[ix];
845
23.3M
  mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */
846
23.3M
  mag->count = 0;
847
23.3M
  mag->chunks = magazine_cache_pop_magazine (ix, &mag->count);
848
23.3M
}
849
850
static void
851
thread_memory_magazine2_unload (ThreadMemory *tmem,
852
                                guint         ix)
853
23.3M
{
854
23.3M
  Magazine *mag = &tmem->magazine2[ix];
855
23.3M
  magazine_cache_push_magazine (ix, mag->chunks, mag->count);
856
23.3M
  mag->chunks = NULL;
857
23.3M
  mag->count = 0;
858
23.3M
}
859
860
static inline void
861
thread_memory_swap_magazines (ThreadMemory *tmem,
862
                              guint         ix)
863
73.7M
{
864
73.7M
  Magazine xmag = tmem->magazine1[ix];
865
73.7M
  tmem->magazine1[ix] = tmem->magazine2[ix];
866
73.7M
  tmem->magazine2[ix] = xmag;
867
73.7M
}
868
869
static inline gboolean
870
thread_memory_magazine1_is_empty (ThreadMemory *tmem,
871
                                  guint         ix)
872
1.61G
{
873
1.61G
  return tmem->magazine1[ix].chunks == NULL;
874
1.61G
}
875
876
static inline gboolean
877
thread_memory_magazine2_is_full (ThreadMemory *tmem,
878
                                 guint         ix)
879
1.63G
{
880
1.63G
  return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix);
881
1.63G
}
882
883
static inline gpointer
884
thread_memory_magazine1_alloc (ThreadMemory *tmem,
885
                               guint         ix)
886
1.58G
{
887
1.58G
  Magazine *mag = &tmem->magazine1[ix];
888
1.58G
  ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
889
1.58G
  if (G_LIKELY (mag->count > 0))
890
1.58G
    mag->count--;
891
1.58G
  return chunk;
892
1.58G
}
893
894
static inline void
895
thread_memory_magazine2_free (ThreadMemory *tmem,
896
                              guint         ix,
897
                              gpointer      mem)
898
1.58G
{
899
1.58G
  Magazine *mag = &tmem->magazine2[ix];
900
1.58G
  ChunkLink *chunk = mem;
901
1.58G
  chunk->data = NULL;
902
1.58G
  chunk->next = mag->chunks;
903
1.58G
  mag->chunks = chunk;
904
1.58G
  mag->count++;
905
1.58G
}
906
907
/* --- API functions --- */
908
909
/**
910
 * g_slice_new:
911
 * @type: the type to allocate, typically a structure name
912
 *
913
 * A convenience macro to allocate a block of memory from the
914
 * slice allocator.
915
 *
916
 * It calls g_slice_alloc() with `sizeof (@type)` and casts the
917
 * returned pointer to a pointer of the given type, avoiding a type
918
 * cast in the source code. Note that the underlying slice allocation
919
 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
920
 * environment variable.
921
 *
922
 * This can never return %NULL as the minimum allocation size from
923
 * `sizeof (@type)` is 1 byte.
924
 *
925
 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
926
 *    to @type
927
 *
928
 * Since: 2.10
929
 */
930
931
/**
932
 * g_slice_new0:
933
 * @type: the type to allocate, typically a structure name
934
 *
935
 * A convenience macro to allocate a block of memory from the
936
 * slice allocator and set the memory to 0.
937
 *
938
 * It calls g_slice_alloc0() with `sizeof (@type)`
939
 * and casts the returned pointer to a pointer of the given type,
940
 * avoiding a type cast in the source code.
941
 * Note that the underlying slice allocation mechanism can
942
 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
943
 * environment variable.
944
 *
945
 * This can never return %NULL as the minimum allocation size from
946
 * `sizeof (@type)` is 1 byte.
947
 *
948
 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
949
 *    to @type
950
 *
951
 * Since: 2.10
952
 */
953
954
/**
955
 * g_slice_dup:
956
 * @type: the type to duplicate, typically a structure name
957
 * @mem: (not nullable): the memory to copy into the allocated block
958
 *
959
 * A convenience macro to duplicate a block of memory using
960
 * the slice allocator.
961
 *
962
 * It calls g_slice_copy() with `sizeof (@type)`
963
 * and casts the returned pointer to a pointer of the given type,
964
 * avoiding a type cast in the source code.
965
 * Note that the underlying slice allocation mechanism can
966
 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
967
 * environment variable.
968
 *
969
 * This can never return %NULL.
970
 *
971
 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
972
 *    to @type
973
 *
974
 * Since: 2.14
975
 */
976
977
/**
978
 * g_slice_free:
979
 * @type: the type of the block to free, typically a structure name
980
 * @mem: a pointer to the block to free
981
 *
982
 * A convenience macro to free a block of memory that has
983
 * been allocated from the slice allocator.
984
 *
985
 * It calls g_slice_free1() using `sizeof (type)`
986
 * as the block size.
987
 * Note that the exact release behaviour can be changed with the
988
 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
989
 * [`G_SLICE`][G_SLICE] for related debugging options.
990
 *
991
 * If @mem is %NULL, this macro does nothing.
992
 *
993
 * Since: 2.10
994
 */
995
996
/**
997
 * g_slice_free_chain:
998
 * @type: the type of the @mem_chain blocks
999
 * @mem_chain: a pointer to the first block of the chain
1000
 * @next: the field name of the next pointer in @type
1001
 *
1002
 * Frees a linked list of memory blocks of structure type @type.
1003
 *
1004
 * The memory blocks must be equal-sized, allocated via
1005
 * g_slice_alloc() or g_slice_alloc0() and linked together by
1006
 * a @next pointer (similar to #GSList). The name of the
1007
 * @next field in @type is passed as third argument.
1008
 * Note that the exact release behaviour can be changed with the
1009
 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
1010
 * [`G_SLICE`][G_SLICE] for related debugging options.
1011
 *
1012
 * If @mem_chain is %NULL, this function does nothing.
1013
 *
1014
 * Since: 2.10
1015
 */
1016
1017
/**
1018
 * g_slice_alloc:
1019
 * @block_size: the number of bytes to allocate
1020
 *
1021
 * Allocates a block of memory from the slice allocator.
1022
 *
1023
 * The block address handed out can be expected to be aligned
1024
 * to at least `1 * sizeof (void*)`, though in general slices
1025
 * are `2 * sizeof (void*)` bytes aligned; if a `malloc()`
1026
 * fallback implementation is used instead, the alignment may
1027
 * be reduced in a libc dependent fashion.
1028
 *
1029
 * Note that the underlying slice allocation mechanism can
1030
 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
1031
 * environment variable.
1032
 *
1033
 * Returns: a pointer to the allocated memory block, which will
1034
 *   be %NULL if and only if @mem_size is 0
1035
 *
1036
 * Since: 2.10
1037
 */
1038
gpointer
1039
g_slice_alloc (gsize mem_size)
1040
1.58G
{
1041
1.58G
  ThreadMemory *tmem;
1042
1.58G
  gsize chunk_size;
1043
1.58G
  gpointer mem;
1044
1.58G
  guint acat;
1045
1046
  /* This gets the private structure for this thread.  If the private
1047
   * structure does not yet exist, it is created.
1048
   *
1049
   * This has a side effect of causing GSlice to be initialised, so it
1050
   * must come first.
1051
   */
1052
1.58G
  tmem = thread_memory_from_self ();
1053
1054
1.58G
  chunk_size = P2ALIGN (mem_size);
1055
1.58G
  acat = allocator_categorize (chunk_size);
1056
1.58G
  if (G_LIKELY (acat == 1))     /* allocate through magazine layer */
1057
1.58G
    {
1058
1.58G
      guint ix = SLAB_INDEX (allocator, chunk_size);
1059
1.58G
      if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
1060
25.4M
        {
1061
25.4M
          thread_memory_swap_magazines (tmem, ix);
1062
25.4M
          if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
1063
23.3M
            thread_memory_magazine1_reload (tmem, ix);
1064
25.4M
        }
1065
1.58G
      mem = thread_memory_magazine1_alloc (tmem, ix);
1066
1.58G
    }
1067
0
  else if (acat == 2)           /* allocate through slab allocator */
1068
0
    {
1069
0
      g_mutex_lock (&allocator->slab_mutex);
1070
0
      mem = slab_allocator_alloc_chunk (chunk_size);
1071
0
      g_mutex_unlock (&allocator->slab_mutex);
1072
0
    }
1073
0
  else                          /* delegate to system malloc */
1074
0
    mem = g_malloc (mem_size);
1075
1.58G
  if (G_UNLIKELY (allocator->config.debug_blocks))
1076
0
    smc_notify_alloc (mem, mem_size);
1077
1078
1.58G
  TRACE (GLIB_SLICE_ALLOC((void*)mem, mem_size));
1079
1080
1.58G
  return mem;
1081
1.58G
}
1082
1083
/**
1084
 * g_slice_alloc0:
1085
 * @block_size: the number of bytes to allocate
1086
 *
1087
 * Allocates a block of memory via g_slice_alloc() and initializes
1088
 * the returned memory to 0. Note that the underlying slice allocation
1089
 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
1090
 * environment variable.
1091
 *
1092
 * Returns: a pointer to the allocated block, which will be %NULL if and only
1093
 *    if @mem_size is 0
1094
 *
1095
 * Since: 2.10
1096
 */
1097
gpointer
1098
g_slice_alloc0 (gsize mem_size)
1099
13.2k
{
1100
13.2k
  gpointer mem = g_slice_alloc (mem_size);
1101
13.2k
  if (mem)
1102
13.2k
    memset (mem, 0, mem_size);
1103
13.2k
  return mem;
1104
13.2k
}
1105
1106
/**
1107
 * g_slice_copy:
1108
 * @block_size: the number of bytes to allocate
1109
 * @mem_block: the memory to copy
1110
 *
1111
 * Allocates a block of memory from the slice allocator
1112
 * and copies @block_size bytes into it from @mem_block.
1113
 *
1114
 * @mem_block must be non-%NULL if @block_size is non-zero.
1115
 *
1116
 * Returns: a pointer to the allocated memory block, which will be %NULL if and
1117
 *    only if @mem_size is 0
1118
 *
1119
 * Since: 2.14
1120
 */
1121
gpointer
1122
g_slice_copy (gsize         mem_size,
1123
              gconstpointer mem_block)
1124
0
{
1125
0
  gpointer mem = g_slice_alloc (mem_size);
1126
0
  if (mem)
1127
0
    memcpy (mem, mem_block, mem_size);
1128
0
  return mem;
1129
0
}
1130
1131
/**
1132
 * g_slice_free1:
1133
 * @block_size: the size of the block
1134
 * @mem_block: a pointer to the block to free
1135
 *
1136
 * Frees a block of memory.
1137
 *
1138
 * The memory must have been allocated via g_slice_alloc() or
1139
 * g_slice_alloc0() and the @block_size has to match the size
1140
 * specified upon allocation. Note that the exact release behaviour
1141
 * can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment
1142
 * variable, also see [`G_SLICE`][G_SLICE] for related debugging options.
1143
 *
1144
 * If @mem_block is %NULL, this function does nothing.
1145
 *
1146
 * Since: 2.10
1147
 */
1148
void
1149
g_slice_free1 (gsize    mem_size,
1150
               gpointer mem_block)
1151
119M
{
1152
119M
  gsize chunk_size = P2ALIGN (mem_size);
1153
119M
  guint acat = allocator_categorize (chunk_size);
1154
119M
  if (G_UNLIKELY (!mem_block))
1155
0
    return;
1156
119M
  if (G_UNLIKELY (allocator->config.debug_blocks) &&
1157
119M
      !smc_notify_free (mem_block, mem_size))
1158
0
    abort();
1159
119M
  if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
1160
119M
    {
1161
119M
      ThreadMemory *tmem = thread_memory_from_self();
1162
119M
      guint ix = SLAB_INDEX (allocator, chunk_size);
1163
119M
      if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1164
4.63M
        {
1165
4.63M
          thread_memory_swap_magazines (tmem, ix);
1166
4.63M
          if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1167
945k
            thread_memory_magazine2_unload (tmem, ix);
1168
4.63M
        }
1169
119M
      if (G_UNLIKELY (g_mem_gc_friendly))
1170
0
        memset (mem_block, 0, chunk_size);
1171
119M
      thread_memory_magazine2_free (tmem, ix, mem_block);
1172
119M
    }
1173
0
  else if (acat == 2)                   /* allocate through slab allocator */
1174
0
    {
1175
0
      if (G_UNLIKELY (g_mem_gc_friendly))
1176
0
        memset (mem_block, 0, chunk_size);
1177
0
      g_mutex_lock (&allocator->slab_mutex);
1178
0
      slab_allocator_free_chunk (chunk_size, mem_block);
1179
0
      g_mutex_unlock (&allocator->slab_mutex);
1180
0
    }
1181
0
  else                                  /* delegate to system malloc */
1182
0
    {
1183
0
      if (G_UNLIKELY (g_mem_gc_friendly))
1184
0
        memset (mem_block, 0, mem_size);
1185
0
      g_free (mem_block);
1186
0
    }
1187
119M
  TRACE (GLIB_SLICE_FREE((void*)mem_block, mem_size));
1188
119M
}
1189
1190
/**
1191
 * g_slice_free_chain_with_offset:
1192
 * @block_size: the size of the blocks
1193
 * @mem_chain:  a pointer to the first block of the chain
1194
 * @next_offset: the offset of the @next field in the blocks
1195
 *
1196
 * Frees a linked list of memory blocks of structure type @type.
1197
 *
1198
 * The memory blocks must be equal-sized, allocated via
1199
 * g_slice_alloc() or g_slice_alloc0() and linked together by a
1200
 * @next pointer (similar to #GSList). The offset of the @next
1201
 * field in each block is passed as third argument.
1202
 * Note that the exact release behaviour can be changed with the
1203
 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
1204
 * [`G_SLICE`][G_SLICE] for related debugging options.
1205
 *
1206
 * If @mem_chain is %NULL, this function does nothing.
1207
 *
1208
 * Since: 2.10
1209
 */
1210
void
1211
g_slice_free_chain_with_offset (gsize    mem_size,
1212
                                gpointer mem_chain,
1213
                                gsize    next_offset)
1214
338M
{
1215
338M
  gpointer slice = mem_chain;
1216
  /* while the thread magazines and the magazine cache are implemented so that
1217
   * they can easily be extended to allow for free lists containing more free
1218
   * lists for the first level nodes, which would allow O(1) freeing in this
1219
   * function, the benefit of such an extension is questionable, because:
1220
   * - the magazine size counts will become mere lower bounds which confuses
1221
   *   the code adapting to lock contention;
1222
   * - freeing a single node to the thread magazines is very fast, so this
1223
   *   O(list_length) operation is multiplied by a fairly small factor;
1224
   * - memory usage histograms on larger applications seem to indicate that
1225
   *   the amount of released multi node lists is negligible in comparison
1226
   *   to single node releases.
1227
   * - the major performance bottle neck, namely g_private_get() or
1228
   *   g_mutex_lock()/g_mutex_unlock() has already been moved out of the
1229
   *   inner loop for freeing chained slices.
1230
   */
1231
338M
  gsize chunk_size = P2ALIGN (mem_size);
1232
338M
  guint acat = allocator_categorize (chunk_size);
1233
338M
  if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
1234
338M
    {
1235
338M
      ThreadMemory *tmem = thread_memory_from_self();
1236
338M
      guint ix = SLAB_INDEX (allocator, chunk_size);
1237
1.80G
      while (slice)
1238
1.46G
        {
1239
1.46G
          guint8 *current = slice;
1240
1.46G
          slice = *(gpointer*) (current + next_offset);
1241
1.46G
          if (G_UNLIKELY (allocator->config.debug_blocks) &&
1242
1.46G
              !smc_notify_free (current, mem_size))
1243
0
            abort();
1244
1.46G
          if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1245
43.6M
            {
1246
43.6M
              thread_memory_swap_magazines (tmem, ix);
1247
43.6M
              if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
1248
22.4M
                thread_memory_magazine2_unload (tmem, ix);
1249
43.6M
            }
1250
1.46G
          if (G_UNLIKELY (g_mem_gc_friendly))
1251
0
            memset (current, 0, chunk_size);
1252
1.46G
          thread_memory_magazine2_free (tmem, ix, current);
1253
1.46G
        }
1254
338M
    }
1255
0
  else if (acat == 2)                   /* allocate through slab allocator */
1256
0
    {
1257
0
      g_mutex_lock (&allocator->slab_mutex);
1258
0
      while (slice)
1259
0
        {
1260
0
          guint8 *current = slice;
1261
0
          slice = *(gpointer*) (current + next_offset);
1262
0
          if (G_UNLIKELY (allocator->config.debug_blocks) &&
1263
0
              !smc_notify_free (current, mem_size))
1264
0
            abort();
1265
0
          if (G_UNLIKELY (g_mem_gc_friendly))
1266
0
            memset (current, 0, chunk_size);
1267
0
          slab_allocator_free_chunk (chunk_size, current);
1268
0
        }
1269
0
      g_mutex_unlock (&allocator->slab_mutex);
1270
0
    }
1271
0
  else                                  /* delegate to system malloc */
1272
0
    while (slice)
1273
0
      {
1274
0
        guint8 *current = slice;
1275
0
        slice = *(gpointer*) (current + next_offset);
1276
0
        if (G_UNLIKELY (allocator->config.debug_blocks) &&
1277
0
            !smc_notify_free (current, mem_size))
1278
0
          abort();
1279
0
        if (G_UNLIKELY (g_mem_gc_friendly))
1280
0
          memset (current, 0, mem_size);
1281
0
        g_free (current);
1282
0
      }
1283
338M
}
1284
1285
/* --- single page allocator --- */
1286
static void
1287
allocator_slab_stack_push (Allocator *local_allocator,
1288
                           guint ix,
1289
                           SlabInfo *sinfo)
1290
36.4k
{
1291
  /* insert slab at slab ring head */
1292
36.4k
  if (!local_allocator->slab_stack[ix])
1293
32
    {
1294
32
      sinfo->next = sinfo;
1295
32
      sinfo->prev = sinfo;
1296
32
    }
1297
36.3k
  else
1298
36.3k
    {
1299
36.3k
      SlabInfo *next = local_allocator->slab_stack[ix], *prev = next->prev;
1300
36.3k
      next->prev = sinfo;
1301
36.3k
      prev->next = sinfo;
1302
36.3k
      sinfo->next = next;
1303
36.3k
      sinfo->prev = prev;
1304
36.3k
    }
1305
36.4k
  local_allocator->slab_stack[ix] = sinfo;
1306
36.4k
}
1307
1308
static gsize
1309
allocator_aligned_page_size (Allocator *local_allocator,
1310
                             gsize n_bytes)
1311
111k
{
1312
111k
  gsize val = (gsize) 1 << g_bit_storage (n_bytes - 1);
1313
111k
  val = MAX (val, local_allocator->min_page_size);
1314
111k
  return val;
1315
111k
}
1316
1317
static void
1318
allocator_add_slab (Allocator *local_allocator,
1319
                    guint ix,
1320
                    gsize chunk_size)
1321
23.3k
{
1322
23.3k
  ChunkLink *chunk;
1323
23.3k
  SlabInfo *sinfo;
1324
23.3k
  gsize addr, padding, n_chunks, color = 0;
1325
23.3k
  gsize page_size;
1326
23.3k
  int errsv;
1327
23.3k
  gpointer aligned_memory;
1328
23.3k
  guint8 *mem;
1329
23.3k
  guint i;
1330
1331
23.3k
  page_size = allocator_aligned_page_size (local_allocator, SLAB_BPAGE_SIZE (local_allocator, chunk_size));
1332
  /* allocate 1 page for the chunks and the slab */
1333
23.3k
  aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING);
1334
23.3k
  errsv = errno;
1335
23.3k
  mem = aligned_memory;
1336
1337
23.3k
  if (!mem)
1338
0
    {
1339
0
      const gchar *syserr = strerror (errsv);
1340
0
      mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
1341
0
                 (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr);
1342
0
    }
1343
  /* mask page address */
1344
23.3k
  addr = ((gsize) mem / page_size) * page_size;
1345
  /* assert alignment */
1346
23.3k
  mem_assert (aligned_memory == (gpointer) addr);
1347
  /* basic slab info setup */
1348
23.3k
  sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE);
1349
23.3k
  sinfo->n_allocated = 0;
1350
23.3k
  sinfo->chunks = NULL;
1351
  /* figure cache colorization */
1352
23.3k
  n_chunks = ((guint8*) sinfo - mem) / chunk_size;
1353
23.3k
  padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size;
1354
23.3k
  if (padding)
1355
12.4k
    {
1356
12.4k
      color = (local_allocator->color_accu * P2ALIGNMENT) % padding;
1357
12.4k
      local_allocator->color_accu += local_allocator->config.color_increment;
1358
12.4k
    }
1359
  /* add chunks to free list */
1360
23.3k
  chunk = (ChunkLink*) (mem + color);
1361
23.3k
  sinfo->chunks = chunk;
1362
273k
  for (i = 0; i < n_chunks - 1; i++)
1363
250k
    {
1364
250k
      chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size);
1365
250k
      chunk = chunk->next;
1366
250k
    }
1367
23.3k
  chunk->next = NULL;   /* last chunk */
1368
  /* add slab to slab ring */
1369
23.3k
  allocator_slab_stack_push (local_allocator, ix, sinfo);
1370
23.3k
}
1371
1372
static gpointer
1373
slab_allocator_alloc_chunk (gsize chunk_size)
1374
312k
{
1375
312k
  ChunkLink *chunk;
1376
312k
  guint ix = SLAB_INDEX (allocator, chunk_size);
1377
  /* ensure non-empty slab */
1378
312k
  if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks)
1379
23.3k
    allocator_add_slab (allocator, ix, chunk_size);
1380
  /* allocate chunk */
1381
312k
  chunk = allocator->slab_stack[ix]->chunks;
1382
312k
  allocator->slab_stack[ix]->chunks = chunk->next;
1383
312k
  allocator->slab_stack[ix]->n_allocated++;
1384
  /* rotate empty slabs */
1385
312k
  if (!allocator->slab_stack[ix]->chunks)
1386
32.5k
    allocator->slab_stack[ix] = allocator->slab_stack[ix]->next;
1387
312k
  return chunk;
1388
312k
}
1389
1390
static void
1391
slab_allocator_free_chunk (gsize    chunk_size,
1392
                           gpointer mem)
1393
88.3k
{
1394
88.3k
  ChunkLink *chunk;
1395
88.3k
  gboolean was_empty;
1396
88.3k
  guint ix = SLAB_INDEX (allocator, chunk_size);
1397
88.3k
  gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
1398
88.3k
  gsize addr = ((gsize) mem / page_size) * page_size;
1399
  /* mask page address */
1400
88.3k
  guint8 *page = (guint8*) addr;
1401
88.3k
  SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE);
1402
  /* assert valid chunk count */
1403
88.3k
  mem_assert (sinfo->n_allocated > 0);
1404
  /* add chunk to free list */
1405
88.3k
  was_empty = sinfo->chunks == NULL;
1406
88.3k
  chunk = (ChunkLink*) mem;
1407
88.3k
  chunk->next = sinfo->chunks;
1408
88.3k
  sinfo->chunks = chunk;
1409
88.3k
  sinfo->n_allocated--;
1410
  /* keep slab ring partially sorted, empty slabs at end */
1411
88.3k
  if (was_empty)
1412
13.0k
    {
1413
      /* unlink slab */
1414
13.0k
      SlabInfo *next = sinfo->next, *prev = sinfo->prev;
1415
13.0k
      next->prev = prev;
1416
13.0k
      prev->next = next;
1417
13.0k
      if (allocator->slab_stack[ix] == sinfo)
1418
0
        allocator->slab_stack[ix] = next == sinfo ? NULL : next;
1419
      /* insert slab at head */
1420
13.0k
      allocator_slab_stack_push (allocator, ix, sinfo);
1421
13.0k
    }
1422
  /* eagerly free complete unused slabs */
1423
88.3k
  if (!sinfo->n_allocated)
1424
3.81k
    {
1425
      /* unlink slab */
1426
3.81k
      SlabInfo *next = sinfo->next, *prev = sinfo->prev;
1427
3.81k
      next->prev = prev;
1428
3.81k
      prev->next = next;
1429
3.81k
      if (allocator->slab_stack[ix] == sinfo)
1430
413
        allocator->slab_stack[ix] = next == sinfo ? NULL : next;
1431
      /* free slab */
1432
3.81k
      allocator_memfree (page_size, page);
1433
3.81k
    }
1434
88.3k
}
1435
1436
/* --- memalign implementation --- */
1437
#ifdef HAVE_MALLOC_H
1438
#include <malloc.h>             /* memalign() */
1439
#endif
1440
1441
/* from config.h:
1442
 * define HAVE_POSIX_MEMALIGN           1 // if free(posix_memalign(3)) works, <stdlib.h>
1443
 * define HAVE_MEMALIGN                 1 // if free(memalign(3)) works, <malloc.h>
1444
 * define HAVE_VALLOC                   1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
1445
 * if none is provided, we implement malloc(3)-based alloc-only page alignment
1446
 */
1447
1448
#if !(HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
1449
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1450
static GTrashStack *compat_valloc_trash = NULL;
1451
G_GNUC_END_IGNORE_DEPRECATIONS
1452
#endif
1453
1454
static gpointer
1455
allocator_memalign (gsize alignment,
1456
                    gsize memsize)
1457
23.3k
{
1458
23.3k
  gpointer aligned_memory = NULL;
1459
23.3k
  gint err = ENOMEM;
1460
23.3k
#if     HAVE_POSIX_MEMALIGN
1461
23.3k
  err = posix_memalign (&aligned_memory, alignment, memsize);
1462
#elif   HAVE_MEMALIGN
1463
  errno = 0;
1464
  aligned_memory = memalign (alignment, memsize);
1465
  err = errno;
1466
#elif   HAVE_VALLOC
1467
  errno = 0;
1468
  aligned_memory = valloc (memsize);
1469
  err = errno;
1470
#else
1471
  /* simplistic non-freeing page allocator */
1472
  mem_assert (alignment == sys_page_size);
1473
  mem_assert (memsize <= sys_page_size);
1474
  if (!compat_valloc_trash)
1475
    {
1476
      const guint n_pages = 16;
1477
      guint8 *mem = malloc (n_pages * sys_page_size);
1478
      err = errno;
1479
      if (mem)
1480
        {
1481
          gint i = n_pages;
1482
          guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size);
1483
          if (amem != mem)
1484
            i--;        /* mem wasn't page aligned */
1485
          G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1486
          while (--i >= 0)
1487
            g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size);
1488
          G_GNUC_END_IGNORE_DEPRECATIONS
1489
        }
1490
    }
1491
  G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1492
  aligned_memory = g_trash_stack_pop (&compat_valloc_trash);
1493
  G_GNUC_END_IGNORE_DEPRECATIONS
1494
#endif
1495
23.3k
  if (!aligned_memory)
1496
0
    errno = err;
1497
23.3k
  return aligned_memory;
1498
23.3k
}
1499
1500
static void
1501
allocator_memfree (gsize    memsize,
1502
                   gpointer mem)
1503
3.81k
{
1504
3.81k
#if     HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
1505
3.81k
  free (mem);
1506
#else
1507
  mem_assert (memsize <= sys_page_size);
1508
  G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1509
  g_trash_stack_push (&compat_valloc_trash, mem);
1510
  G_GNUC_END_IGNORE_DEPRECATIONS
1511
#endif
1512
3.81k
}
1513
1514
static void
1515
mem_error (const char *format,
1516
           ...)
1517
0
{
1518
0
  const char *pname;
1519
0
  va_list args;
1520
  /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
1521
0
  fputs ("\n***MEMORY-ERROR***: ", stderr);
1522
0
  pname = g_get_prgname();
1523
0
  g_fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid());
1524
0
  va_start (args, format);
1525
0
  g_vfprintf (stderr, format, args);
1526
0
  va_end (args);
1527
0
  fputs ("\n", stderr);
1528
0
  abort();
1529
0
  _exit (1);
1530
0
}
1531
1532
/* --- g-slice memory checker tree --- */
1533
typedef size_t SmcKType;                /* key type */
1534
typedef size_t SmcVType;                /* value type */
1535
typedef struct {
1536
  SmcKType key;
1537
  SmcVType value;
1538
} SmcEntry;
1539
static void             smc_tree_insert      (SmcKType  key,
1540
                                              SmcVType  value);
1541
static gboolean         smc_tree_lookup      (SmcKType  key,
1542
                                              SmcVType *value_p);
1543
static gboolean         smc_tree_remove      (SmcKType  key);
1544
1545
1546
/* --- g-slice memory checker implementation --- */
1547
static void
1548
smc_notify_alloc (void   *pointer,
1549
                  size_t  size)
1550
0
{
1551
0
  size_t address = (size_t) pointer;
1552
0
  if (pointer)
1553
0
    smc_tree_insert (address, size);
1554
0
}
1555
1556
#if 0
1557
static void
1558
smc_notify_ignore (void *pointer)
1559
{
1560
  size_t address = (size_t) pointer;
1561
  if (pointer)
1562
    smc_tree_remove (address);
1563
}
1564
#endif
1565
1566
static int
1567
smc_notify_free (void   *pointer,
1568
                 size_t  size)
1569
0
{
1570
0
  size_t address = (size_t) pointer;
1571
0
  SmcVType real_size;
1572
0
  gboolean found_one;
1573
1574
0
  if (!pointer)
1575
0
    return 1; /* ignore */
1576
0
  found_one = smc_tree_lookup (address, &real_size);
1577
0
  if (!found_one)
1578
0
    {
1579
0
      g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
1580
0
      return 0;
1581
0
    }
1582
0
  if (real_size != size && (real_size || size))
1583
0
    {
1584
0
      g_fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size);
1585
0
      return 0;
1586
0
    }
1587
0
  if (!smc_tree_remove (address))
1588
0
    {
1589
0
      g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
1590
0
      return 0;
1591
0
    }
1592
0
  return 1; /* all fine */
1593
0
}
1594
1595
/* --- g-slice memory checker tree implementation --- */
1596
0
#define SMC_TRUNK_COUNT     (4093 /* 16381 */)          /* prime, to distribute trunk collisions (big, allocated just once) */
1597
0
#define SMC_BRANCH_COUNT    (511)                       /* prime, to distribute branch collisions */
1598
0
#define SMC_TRUNK_EXTENT    (SMC_BRANCH_COUNT * 2039)   /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */
1599
0
#define SMC_TRUNK_HASH(k)   ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT)  /* generate new trunk hash per megabyte (roughly) */
1600
0
#define SMC_BRANCH_HASH(k)  (k % SMC_BRANCH_COUNT)
1601
1602
typedef struct {
1603
  SmcEntry    *entries;
1604
  unsigned int n_entries;
1605
} SmcBranch;
1606
1607
static SmcBranch     **smc_tree_root = NULL;
1608
1609
static void
1610
smc_tree_abort (int errval)
1611
0
{
1612
0
  const char *syserr = strerror (errval);
1613
0
  mem_error ("MemChecker: failure in debugging tree: %s", syserr);
1614
0
}
1615
1616
static inline SmcEntry*
1617
smc_tree_branch_grow_L (SmcBranch   *branch,
1618
                        unsigned int index)
1619
0
{
1620
0
  unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]);
1621
0
  unsigned int new_size = old_size + sizeof (branch->entries[0]);
1622
0
  SmcEntry *entry;
1623
0
  mem_assert (index <= branch->n_entries);
1624
0
  branch->entries = (SmcEntry*) realloc (branch->entries, new_size);
1625
0
  if (!branch->entries)
1626
0
    smc_tree_abort (errno);
1627
0
  entry = branch->entries + index;
1628
0
  memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0]));
1629
0
  branch->n_entries += 1;
1630
0
  return entry;
1631
0
}
1632
1633
static inline SmcEntry*
1634
smc_tree_branch_lookup_nearest_L (SmcBranch *branch,
1635
                                  SmcKType   key)
1636
0
{
1637
0
  unsigned int n_nodes = branch->n_entries, offs = 0;
1638
0
  SmcEntry *check = branch->entries;
1639
0
  int cmp = 0;
1640
0
  while (offs < n_nodes)
1641
0
    {
1642
0
      unsigned int i = (offs + n_nodes) >> 1;
1643
0
      check = branch->entries + i;
1644
0
      cmp = key < check->key ? -1 : key != check->key;
1645
0
      if (cmp == 0)
1646
0
        return check;                   /* return exact match */
1647
0
      else if (cmp < 0)
1648
0
        n_nodes = i;
1649
0
      else /* (cmp > 0) */
1650
0
        offs = i + 1;
1651
0
    }
1652
  /* check points at last mismatch, cmp > 0 indicates greater key */
1653
0
  return cmp > 0 ? check + 1 : check;   /* return insertion position for inexact match */
1654
0
}
1655
1656
static void
1657
smc_tree_insert (SmcKType key,
1658
                 SmcVType value)
1659
0
{
1660
0
  unsigned int ix0, ix1;
1661
0
  SmcEntry *entry;
1662
1663
0
  g_mutex_lock (&smc_tree_mutex);
1664
0
  ix0 = SMC_TRUNK_HASH (key);
1665
0
  ix1 = SMC_BRANCH_HASH (key);
1666
0
  if (!smc_tree_root)
1667
0
    {
1668
0
      smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0]));
1669
0
      if (!smc_tree_root)
1670
0
        smc_tree_abort (errno);
1671
0
    }
1672
0
  if (!smc_tree_root[ix0])
1673
0
    {
1674
0
      smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0]));
1675
0
      if (!smc_tree_root[ix0])
1676
0
        smc_tree_abort (errno);
1677
0
    }
1678
0
  entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1679
0
  if (!entry ||                                                                         /* need create */
1680
0
      entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries ||   /* need append */
1681
0
      entry->key != key)                                                                /* need insert */
1682
0
    entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries);
1683
0
  entry->key = key;
1684
0
  entry->value = value;
1685
0
  g_mutex_unlock (&smc_tree_mutex);
1686
0
}
1687
1688
static gboolean
1689
smc_tree_lookup (SmcKType  key,
1690
                 SmcVType *value_p)
1691
0
{
1692
0
  SmcEntry *entry = NULL;
1693
0
  unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
1694
0
  gboolean found_one = FALSE;
1695
0
  *value_p = 0;
1696
0
  g_mutex_lock (&smc_tree_mutex);
1697
0
  if (smc_tree_root && smc_tree_root[ix0])
1698
0
    {
1699
0
      entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1700
0
      if (entry &&
1701
0
          entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
1702
0
          entry->key == key)
1703
0
        {
1704
0
          found_one = TRUE;
1705
0
          *value_p = entry->value;
1706
0
        }
1707
0
    }
1708
0
  g_mutex_unlock (&smc_tree_mutex);
1709
0
  return found_one;
1710
0
}
1711
1712
static gboolean
1713
smc_tree_remove (SmcKType key)
1714
0
{
1715
0
  unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
1716
0
  gboolean found_one = FALSE;
1717
0
  g_mutex_lock (&smc_tree_mutex);
1718
0
  if (smc_tree_root && smc_tree_root[ix0])
1719
0
    {
1720
0
      SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1721
0
      if (entry &&
1722
0
          entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
1723
0
          entry->key == key)
1724
0
        {
1725
0
          unsigned int i = entry - smc_tree_root[ix0][ix1].entries;
1726
0
          smc_tree_root[ix0][ix1].n_entries -= 1;
1727
0
          memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0]));
1728
0
          if (!smc_tree_root[ix0][ix1].n_entries)
1729
0
            {
1730
              /* avoid useless pressure on the memory system */
1731
0
              free (smc_tree_root[ix0][ix1].entries);
1732
0
              smc_tree_root[ix0][ix1].entries = NULL;
1733
0
            }
1734
0
          found_one = TRUE;
1735
0
        }
1736
0
    }
1737
0
  g_mutex_unlock (&smc_tree_mutex);
1738
0
  return found_one;
1739
0
}
1740
1741
#ifdef G_ENABLE_DEBUG
1742
void
1743
g_slice_debug_tree_statistics (void)
1744
0
{
1745
0
  g_mutex_lock (&smc_tree_mutex);
1746
0
  if (smc_tree_root)
1747
0
    {
1748
0
      unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u;
1749
0
      double tf, bf;
1750
0
      for (i = 0; i < SMC_TRUNK_COUNT; i++)
1751
0
        if (smc_tree_root[i])
1752
0
          {
1753
0
            t++;
1754
0
            for (j = 0; j < SMC_BRANCH_COUNT; j++)
1755
0
              if (smc_tree_root[i][j].n_entries)
1756
0
                {
1757
0
                  b++;
1758
0
                  su += smc_tree_root[i][j].n_entries;
1759
0
                  en = MIN (en, smc_tree_root[i][j].n_entries);
1760
0
                  ex = MAX (ex, smc_tree_root[i][j].n_entries);
1761
0
                }
1762
0
              else if (smc_tree_root[i][j].entries)
1763
0
                o++; /* formerly used, now empty */
1764
0
          }
1765
0
      en = b ? en : 0;
1766
0
      tf = MAX (t, 1.0); /* max(1) to be a valid divisor */
1767
0
      bf = MAX (b, 1.0); /* max(1) to be a valid divisor */
1768
0
      g_fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o);
1769
0
      g_fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
1770
0
               b / tf,
1771
0
               100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT));
1772
0
      g_fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
1773
0
               su / bf, en, ex);
1774
0
    }
1775
0
  else
1776
0
    g_fprintf (stderr, "GSlice: MemChecker: root=NULL\n");
1777
0
  g_mutex_unlock (&smc_tree_mutex);
1778
  
1779
  /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
1780
   *  PID %CPU %MEM   VSZ  RSS      COMMAND
1781
   * 8887 30.3 45.8 456068 414856   beast-0.7.1 empty.bse
1782
   * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
1783
   * 114017 103714 2354 344 0 108676 0
1784
   * $ cat /proc/8887/status 
1785
   * Name:   beast-0.7.1
1786
   * VmSize:   456068 kB
1787
   * VmLck:         0 kB
1788
   * VmRSS:    414856 kB
1789
   * VmData:   434620 kB
1790
   * VmStk:        84 kB
1791
   * VmExe:      1376 kB
1792
   * VmLib:     13036 kB
1793
   * VmPTE:       456 kB
1794
   * Threads:        3
1795
   * (gdb) print g_slice_debug_tree_statistics ()
1796
   * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
1797
   * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
1798
   * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
1799
   */
1800
0
}
1801
#endif /* G_ENABLE_DEBUG */