/src/irssi/subprojects/openssl-1.1.1l/crypto/rand/rand_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <time.h> |
12 | | #include "internal/cryptlib.h" |
13 | | #include <openssl/opensslconf.h> |
14 | | #include "crypto/rand.h" |
15 | | #include <openssl/engine.h> |
16 | | #include "internal/thread_once.h" |
17 | | #include "rand_local.h" |
18 | | #include "e_os.h" |
19 | | |
20 | | #ifndef OPENSSL_NO_ENGINE |
21 | | /* non-NULL if default_RAND_meth is ENGINE-provided */ |
22 | | static ENGINE *funct_ref; |
23 | | static CRYPTO_RWLOCK *rand_engine_lock; |
24 | | #endif |
25 | | static CRYPTO_RWLOCK *rand_meth_lock; |
26 | | static const RAND_METHOD *default_RAND_meth; |
27 | | static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT; |
28 | | |
29 | | static CRYPTO_RWLOCK *rand_nonce_lock; |
30 | | static int rand_nonce_count; |
31 | | |
32 | | static int rand_inited = 0; |
33 | | |
34 | | #ifdef OPENSSL_RAND_SEED_RDTSC |
35 | | /* |
36 | | * IMPORTANT NOTE: It is not currently possible to use this code |
37 | | * because we are not sure about the amount of randomness it provides. |
38 | | * Some SP900 tests have been run, but there is internal skepticism. |
39 | | * So for now this code is not used. |
40 | | */ |
41 | | # error "RDTSC enabled? Should not be possible!" |
42 | | |
43 | | /* |
44 | | * Acquire entropy from high-speed clock |
45 | | * |
46 | | * Since we get some randomness from the low-order bits of the |
47 | | * high-speed clock, it can help. |
48 | | * |
49 | | * Returns the total entropy count, if it exceeds the requested |
50 | | * entropy count. Otherwise, returns an entropy count of 0. |
51 | | */ |
52 | | size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool) |
53 | | { |
54 | | unsigned char c; |
55 | | int i; |
56 | | |
57 | | if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) { |
58 | | for (i = 0; i < TSC_READ_COUNT; i++) { |
59 | | c = (unsigned char)(OPENSSL_rdtsc() & 0xFF); |
60 | | rand_pool_add(pool, &c, 1, 4); |
61 | | } |
62 | | } |
63 | | return rand_pool_entropy_available(pool); |
64 | | } |
65 | | #endif |
66 | | |
67 | | #ifdef OPENSSL_RAND_SEED_RDCPU |
68 | | size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len); |
69 | | size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len); |
70 | | |
71 | | extern unsigned int OPENSSL_ia32cap_P[]; |
72 | | |
73 | | /* |
74 | | * Acquire entropy using Intel-specific cpu instructions |
75 | | * |
76 | | * Uses the RDSEED instruction if available, otherwise uses |
77 | | * RDRAND if available. |
78 | | * |
79 | | * For the differences between RDSEED and RDRAND, and why RDSEED |
80 | | * is the preferred choice, see https://goo.gl/oK3KcN |
81 | | * |
82 | | * Returns the total entropy count, if it exceeds the requested |
83 | | * entropy count. Otherwise, returns an entropy count of 0. |
84 | | */ |
85 | | size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool) |
86 | | { |
87 | | size_t bytes_needed; |
88 | | unsigned char *buffer; |
89 | | |
90 | | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
91 | | if (bytes_needed > 0) { |
92 | | buffer = rand_pool_add_begin(pool, bytes_needed); |
93 | | |
94 | | if (buffer != NULL) { |
95 | | /* Whichever comes first, use RDSEED, RDRAND or nothing */ |
96 | | if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) { |
97 | | if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed) |
98 | | == bytes_needed) { |
99 | | rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); |
100 | | } |
101 | | } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) { |
102 | | if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed) |
103 | | == bytes_needed) { |
104 | | rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); |
105 | | } |
106 | | } else { |
107 | | rand_pool_add_end(pool, 0, 0); |
108 | | } |
109 | | } |
110 | | } |
111 | | |
112 | | return rand_pool_entropy_available(pool); |
113 | | } |
114 | | #endif |
115 | | |
116 | | |
117 | | /* |
118 | | * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks()) |
119 | | * |
120 | | * If the DRBG has a parent, then the required amount of entropy input |
121 | | * is fetched using the parent's RAND_DRBG_generate(). |
122 | | * |
123 | | * Otherwise, the entropy is polled from the system entropy sources |
124 | | * using rand_pool_acquire_entropy(). |
125 | | * |
126 | | * If a random pool has been added to the DRBG using RAND_add(), then |
127 | | * its entropy will be used up first. |
128 | | */ |
129 | | size_t rand_drbg_get_entropy(RAND_DRBG *drbg, |
130 | | unsigned char **pout, |
131 | | int entropy, size_t min_len, size_t max_len, |
132 | | int prediction_resistance) |
133 | 12 | { |
134 | 12 | size_t ret = 0; |
135 | 12 | size_t entropy_available = 0; |
136 | 12 | RAND_POOL *pool; |
137 | | |
138 | 12 | if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) { |
139 | | /* |
140 | | * We currently don't support the algorithm from NIST SP 800-90C |
141 | | * 10.1.2 to use a weaker DRBG as source |
142 | | */ |
143 | 0 | RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK); |
144 | 0 | return 0; |
145 | 0 | } |
146 | | |
147 | 12 | if (drbg->seed_pool != NULL) { |
148 | 0 | pool = drbg->seed_pool; |
149 | 0 | pool->entropy_requested = entropy; |
150 | 12 | } else { |
151 | 12 | pool = rand_pool_new(entropy, drbg->secure, min_len, max_len); |
152 | 12 | if (pool == NULL) |
153 | 0 | return 0; |
154 | 12 | } |
155 | | |
156 | 12 | if (drbg->parent != NULL) { |
157 | 11 | size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
158 | 11 | unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed); |
159 | | |
160 | 11 | if (buffer != NULL) { |
161 | 11 | size_t bytes = 0; |
162 | | |
163 | | /* |
164 | | * Get random data from parent. Include our address as additional input, |
165 | | * in order to provide some additional distinction between different |
166 | | * DRBG child instances. |
167 | | * Our lock is already held, but we need to lock our parent before |
168 | | * generating bits from it. (Note: taking the lock will be a no-op |
169 | | * if locking if drbg->parent->lock == NULL.) |
170 | | */ |
171 | 11 | rand_drbg_lock(drbg->parent); |
172 | 11 | if (RAND_DRBG_generate(drbg->parent, |
173 | 11 | buffer, bytes_needed, |
174 | 11 | prediction_resistance, |
175 | 11 | (unsigned char *)&drbg, sizeof(drbg)) != 0) |
176 | 11 | bytes = bytes_needed; |
177 | 11 | rand_drbg_unlock(drbg->parent); |
178 | | |
179 | 11 | rand_pool_add_end(pool, bytes, 8 * bytes); |
180 | 11 | entropy_available = rand_pool_entropy_available(pool); |
181 | 11 | } |
182 | | |
183 | 11 | } else { |
184 | 1 | if (prediction_resistance) { |
185 | | /* |
186 | | * We don't have any entropy sources that comply with the NIST |
187 | | * standard to provide prediction resistance (see NIST SP 800-90C, |
188 | | * Section 5.4). |
189 | | */ |
190 | 0 | RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, |
191 | 0 | RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED); |
192 | 0 | goto err; |
193 | 0 | } |
194 | | |
195 | | /* Get entropy by polling system entropy sources. */ |
196 | 1 | entropy_available = rand_pool_acquire_entropy(pool); |
197 | 1 | } |
198 | | |
199 | 12 | if (entropy_available > 0) { |
200 | 12 | ret = rand_pool_length(pool); |
201 | 12 | *pout = rand_pool_detach(pool); |
202 | 12 | } |
203 | | |
204 | 12 | err: |
205 | 12 | if (drbg->seed_pool == NULL) |
206 | 12 | rand_pool_free(pool); |
207 | 12 | return ret; |
208 | 12 | } |
209 | | |
210 | | /* |
211 | | * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks()) |
212 | | * |
213 | | */ |
214 | | void rand_drbg_cleanup_entropy(RAND_DRBG *drbg, |
215 | | unsigned char *out, size_t outlen) |
216 | 12 | { |
217 | 12 | if (drbg->seed_pool == NULL) { |
218 | 12 | if (drbg->secure) |
219 | 0 | OPENSSL_secure_clear_free(out, outlen); |
220 | 12 | else |
221 | 12 | OPENSSL_clear_free(out, outlen); |
222 | 12 | } |
223 | 12 | } |
224 | | |
225 | | |
226 | | /* |
227 | | * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks()) |
228 | | * |
229 | | */ |
230 | | size_t rand_drbg_get_nonce(RAND_DRBG *drbg, |
231 | | unsigned char **pout, |
232 | | int entropy, size_t min_len, size_t max_len) |
233 | 1 | { |
234 | 1 | size_t ret = 0; |
235 | 1 | RAND_POOL *pool; |
236 | | |
237 | 1 | struct { |
238 | 1 | void * instance; |
239 | 1 | int count; |
240 | 1 | } data; |
241 | | |
242 | 1 | memset(&data, 0, sizeof(data)); |
243 | 1 | pool = rand_pool_new(0, 0, min_len, max_len); |
244 | 1 | if (pool == NULL) |
245 | 0 | return 0; |
246 | | |
247 | 1 | if (rand_pool_add_nonce_data(pool) == 0) |
248 | 0 | goto err; |
249 | | |
250 | 1 | data.instance = drbg; |
251 | 1 | CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock); |
252 | | |
253 | 1 | if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0) |
254 | 0 | goto err; |
255 | | |
256 | 1 | ret = rand_pool_length(pool); |
257 | 1 | *pout = rand_pool_detach(pool); |
258 | | |
259 | 1 | err: |
260 | 1 | rand_pool_free(pool); |
261 | | |
262 | 1 | return ret; |
263 | 1 | } |
264 | | |
265 | | /* |
266 | | * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks()) |
267 | | * |
268 | | */ |
269 | | void rand_drbg_cleanup_nonce(RAND_DRBG *drbg, |
270 | | unsigned char *out, size_t outlen) |
271 | 1 | { |
272 | 1 | OPENSSL_clear_free(out, outlen); |
273 | 1 | } |
274 | | |
275 | | /* |
276 | | * Generate additional data that can be used for the drbg. The data does |
277 | | * not need to contain entropy, but it's useful if it contains at least |
278 | | * some bits that are unpredictable. |
279 | | * |
280 | | * Returns 0 on failure. |
281 | | * |
282 | | * On success it allocates a buffer at |*pout| and returns the length of |
283 | | * the data. The buffer should get freed using OPENSSL_secure_clear_free(). |
284 | | */ |
285 | | size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout) |
286 | 472k | { |
287 | 472k | size_t ret = 0; |
288 | | |
289 | 472k | if (rand_pool_add_additional_data(pool) == 0) |
290 | 0 | goto err; |
291 | | |
292 | 472k | ret = rand_pool_length(pool); |
293 | 472k | *pout = rand_pool_detach(pool); |
294 | | |
295 | 472k | err: |
296 | 472k | return ret; |
297 | 472k | } |
298 | | |
299 | | void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out) |
300 | 472k | { |
301 | 472k | rand_pool_reattach(pool, out); |
302 | 472k | } |
303 | | |
304 | | DEFINE_RUN_ONCE_STATIC(do_rand_init) |
305 | 1 | { |
306 | 1 | #ifndef OPENSSL_NO_ENGINE |
307 | 1 | rand_engine_lock = CRYPTO_THREAD_lock_new(); |
308 | 1 | if (rand_engine_lock == NULL) |
309 | 0 | return 0; |
310 | 1 | #endif |
311 | | |
312 | 1 | rand_meth_lock = CRYPTO_THREAD_lock_new(); |
313 | 1 | if (rand_meth_lock == NULL) |
314 | 0 | goto err1; |
315 | | |
316 | 1 | rand_nonce_lock = CRYPTO_THREAD_lock_new(); |
317 | 1 | if (rand_nonce_lock == NULL) |
318 | 0 | goto err2; |
319 | | |
320 | 1 | if (!rand_pool_init()) |
321 | 0 | goto err3; |
322 | | |
323 | 1 | rand_inited = 1; |
324 | 1 | return 1; |
325 | | |
326 | 0 | err3: |
327 | 0 | CRYPTO_THREAD_lock_free(rand_nonce_lock); |
328 | 0 | rand_nonce_lock = NULL; |
329 | 0 | err2: |
330 | 0 | CRYPTO_THREAD_lock_free(rand_meth_lock); |
331 | 0 | rand_meth_lock = NULL; |
332 | 0 | err1: |
333 | 0 | #ifndef OPENSSL_NO_ENGINE |
334 | 0 | CRYPTO_THREAD_lock_free(rand_engine_lock); |
335 | 0 | rand_engine_lock = NULL; |
336 | 0 | #endif |
337 | 0 | return 0; |
338 | 0 | } |
339 | | |
340 | | void rand_cleanup_int(void) |
341 | 2 | { |
342 | 2 | const RAND_METHOD *meth = default_RAND_meth; |
343 | | |
344 | 2 | if (!rand_inited) |
345 | 1 | return; |
346 | | |
347 | 1 | if (meth != NULL && meth->cleanup != NULL) |
348 | 0 | meth->cleanup(); |
349 | 1 | RAND_set_rand_method(NULL); |
350 | 1 | rand_pool_cleanup(); |
351 | 1 | #ifndef OPENSSL_NO_ENGINE |
352 | 1 | CRYPTO_THREAD_lock_free(rand_engine_lock); |
353 | 1 | rand_engine_lock = NULL; |
354 | 1 | #endif |
355 | 1 | CRYPTO_THREAD_lock_free(rand_meth_lock); |
356 | 1 | rand_meth_lock = NULL; |
357 | 1 | CRYPTO_THREAD_lock_free(rand_nonce_lock); |
358 | 1 | rand_nonce_lock = NULL; |
359 | 1 | rand_inited = 0; |
360 | 1 | } |
361 | | |
362 | | /* |
363 | | * RAND_close_seed_files() ensures that any seed file descriptors are |
364 | | * closed after use. |
365 | | */ |
366 | | void RAND_keep_random_devices_open(int keep) |
367 | 0 | { |
368 | 0 | if (RUN_ONCE(&rand_init, do_rand_init)) |
369 | 0 | rand_pool_keep_random_devices_open(keep); |
370 | 0 | } |
371 | | |
372 | | /* |
373 | | * RAND_poll() reseeds the default RNG using random input |
374 | | * |
375 | | * The random input is obtained from polling various entropy |
376 | | * sources which depend on the operating system and are |
377 | | * configurable via the --with-rand-seed configure option. |
378 | | */ |
379 | | int RAND_poll(void) |
380 | 0 | { |
381 | 0 | int ret = 0; |
382 | |
|
383 | 0 | RAND_POOL *pool = NULL; |
384 | |
|
385 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
386 | |
|
387 | 0 | if (meth == NULL) |
388 | 0 | return 0; |
389 | | |
390 | 0 | if (meth == RAND_OpenSSL()) { |
391 | | /* fill random pool and seed the master DRBG */ |
392 | 0 | RAND_DRBG *drbg = RAND_DRBG_get0_master(); |
393 | |
|
394 | 0 | if (drbg == NULL) |
395 | 0 | return 0; |
396 | | |
397 | 0 | rand_drbg_lock(drbg); |
398 | 0 | ret = rand_drbg_restart(drbg, NULL, 0, 0); |
399 | 0 | rand_drbg_unlock(drbg); |
400 | |
|
401 | 0 | return ret; |
402 | |
|
403 | 0 | } else { |
404 | | /* fill random pool and seed the current legacy RNG */ |
405 | 0 | pool = rand_pool_new(RAND_DRBG_STRENGTH, 1, |
406 | 0 | (RAND_DRBG_STRENGTH + 7) / 8, |
407 | 0 | RAND_POOL_MAX_LENGTH); |
408 | 0 | if (pool == NULL) |
409 | 0 | return 0; |
410 | | |
411 | 0 | if (rand_pool_acquire_entropy(pool) == 0) |
412 | 0 | goto err; |
413 | | |
414 | 0 | if (meth->add == NULL |
415 | 0 | || meth->add(rand_pool_buffer(pool), |
416 | 0 | rand_pool_length(pool), |
417 | 0 | (rand_pool_entropy(pool) / 8.0)) == 0) |
418 | 0 | goto err; |
419 | | |
420 | 0 | ret = 1; |
421 | 0 | } |
422 | | |
423 | 0 | err: |
424 | 0 | rand_pool_free(pool); |
425 | 0 | return ret; |
426 | 0 | } |
427 | | |
428 | | /* |
429 | | * Allocate memory and initialize a new random pool |
430 | | */ |
431 | | |
432 | | RAND_POOL *rand_pool_new(int entropy_requested, int secure, |
433 | | size_t min_len, size_t max_len) |
434 | 15 | { |
435 | 15 | RAND_POOL *pool; |
436 | 15 | size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure); |
437 | | |
438 | 15 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
439 | 0 | return NULL; |
440 | | |
441 | 15 | pool = OPENSSL_zalloc(sizeof(*pool)); |
442 | 15 | if (pool == NULL) { |
443 | 0 | RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); |
444 | 0 | return NULL; |
445 | 0 | } |
446 | | |
447 | 15 | pool->min_len = min_len; |
448 | 15 | pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ? |
449 | 15 | RAND_POOL_MAX_LENGTH : max_len; |
450 | 15 | pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len; |
451 | 15 | if (pool->alloc_len > pool->max_len) |
452 | 0 | pool->alloc_len = pool->max_len; |
453 | | |
454 | 15 | if (secure) |
455 | 0 | pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len); |
456 | 15 | else |
457 | 15 | pool->buffer = OPENSSL_zalloc(pool->alloc_len); |
458 | | |
459 | 15 | if (pool->buffer == NULL) { |
460 | 0 | RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); |
461 | 0 | goto err; |
462 | 0 | } |
463 | | |
464 | 15 | pool->entropy_requested = entropy_requested; |
465 | 15 | pool->secure = secure; |
466 | | |
467 | 15 | return pool; |
468 | | |
469 | 0 | err: |
470 | 0 | OPENSSL_free(pool); |
471 | 0 | return NULL; |
472 | 15 | } |
473 | | |
474 | | /* |
475 | | * Attach new random pool to the given buffer |
476 | | * |
477 | | * This function is intended to be used only for feeding random data |
478 | | * provided by RAND_add() and RAND_seed() into the <master> DRBG. |
479 | | */ |
480 | | RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len, |
481 | | size_t entropy) |
482 | 0 | { |
483 | 0 | RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool)); |
484 | |
|
485 | 0 | if (pool == NULL) { |
486 | 0 | RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE); |
487 | 0 | return NULL; |
488 | 0 | } |
489 | | |
490 | | /* |
491 | | * The const needs to be cast away, but attached buffers will not be |
492 | | * modified (in contrary to allocated buffers which are zeroed and |
493 | | * freed in the end). |
494 | | */ |
495 | 0 | pool->buffer = (unsigned char *) buffer; |
496 | 0 | pool->len = len; |
497 | |
|
498 | 0 | pool->attached = 1; |
499 | |
|
500 | 0 | pool->min_len = pool->max_len = pool->alloc_len = pool->len; |
501 | 0 | pool->entropy = entropy; |
502 | |
|
503 | 0 | return pool; |
504 | 0 | } |
505 | | |
506 | | /* |
507 | | * Free |pool|, securely erasing its buffer. |
508 | | */ |
509 | | void rand_pool_free(RAND_POOL *pool) |
510 | 16 | { |
511 | 16 | if (pool == NULL) |
512 | 1 | return; |
513 | | |
514 | | /* |
515 | | * Although it would be advisable from a cryptographical viewpoint, |
516 | | * we are not allowed to clear attached buffers, since they are passed |
517 | | * to rand_pool_attach() as `const unsigned char*`. |
518 | | * (see corresponding comment in rand_pool_attach()). |
519 | | */ |
520 | 15 | if (!pool->attached) { |
521 | 15 | if (pool->secure) |
522 | 0 | OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len); |
523 | 15 | else |
524 | 15 | OPENSSL_clear_free(pool->buffer, pool->alloc_len); |
525 | 15 | } |
526 | | |
527 | 15 | OPENSSL_free(pool); |
528 | 15 | } |
529 | | |
530 | | /* |
531 | | * Return the |pool|'s buffer to the caller (readonly). |
532 | | */ |
533 | | const unsigned char *rand_pool_buffer(RAND_POOL *pool) |
534 | 0 | { |
535 | 0 | return pool->buffer; |
536 | 0 | } |
537 | | |
538 | | /* |
539 | | * Return the |pool|'s entropy to the caller. |
540 | | */ |
541 | | size_t rand_pool_entropy(RAND_POOL *pool) |
542 | 0 | { |
543 | 0 | return pool->entropy; |
544 | 0 | } |
545 | | |
546 | | /* |
547 | | * Return the |pool|'s buffer length to the caller. |
548 | | */ |
549 | | size_t rand_pool_length(RAND_POOL *pool) |
550 | 472k | { |
551 | 472k | return pool->len; |
552 | 472k | } |
553 | | |
554 | | /* |
555 | | * Detach the |pool| buffer and return it to the caller. |
556 | | * It's the responsibility of the caller to free the buffer |
557 | | * using OPENSSL_secure_clear_free() or to re-attach it |
558 | | * again to the pool using rand_pool_reattach(). |
559 | | */ |
560 | | unsigned char *rand_pool_detach(RAND_POOL *pool) |
561 | 472k | { |
562 | 472k | unsigned char *ret = pool->buffer; |
563 | 472k | pool->buffer = NULL; |
564 | 472k | pool->entropy = 0; |
565 | 472k | return ret; |
566 | 472k | } |
567 | | |
568 | | /* |
569 | | * Re-attach the |pool| buffer. It is only allowed to pass |
570 | | * the |buffer| which was previously detached from the same pool. |
571 | | */ |
572 | | void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer) |
573 | 472k | { |
574 | 472k | pool->buffer = buffer; |
575 | 472k | OPENSSL_cleanse(pool->buffer, pool->len); |
576 | 472k | pool->len = 0; |
577 | 472k | } |
578 | | |
579 | | /* |
580 | | * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one |
581 | | * need to obtain at least |bits| bits of entropy? |
582 | | */ |
583 | | #define ENTROPY_TO_BYTES(bits, entropy_factor) \ |
584 | 12 | (((bits) * (entropy_factor) + 7) / 8) |
585 | | |
586 | | |
587 | | /* |
588 | | * Checks whether the |pool|'s entropy is available to the caller. |
589 | | * This is the case when entropy count and buffer length are high enough. |
590 | | * Returns |
591 | | * |
592 | | * |entropy| if the entropy count and buffer size is large enough |
593 | | * 0 otherwise |
594 | | */ |
595 | | size_t rand_pool_entropy_available(RAND_POOL *pool) |
596 | 12 | { |
597 | 12 | if (pool->entropy < pool->entropy_requested) |
598 | 0 | return 0; |
599 | | |
600 | 12 | if (pool->len < pool->min_len) |
601 | 0 | return 0; |
602 | | |
603 | 12 | return pool->entropy; |
604 | 12 | } |
605 | | |
606 | | /* |
607 | | * Returns the (remaining) amount of entropy needed to fill |
608 | | * the random pool. |
609 | | */ |
610 | | |
611 | | size_t rand_pool_entropy_needed(RAND_POOL *pool) |
612 | 12 | { |
613 | 12 | if (pool->entropy < pool->entropy_requested) |
614 | 12 | return pool->entropy_requested - pool->entropy; |
615 | | |
616 | 0 | return 0; |
617 | 12 | } |
618 | | |
619 | | /* Increase the allocation size -- not usable for an attached pool */ |
620 | | static int rand_pool_grow(RAND_POOL *pool, size_t len) |
621 | 472k | { |
622 | 472k | if (len > pool->alloc_len - pool->len) { |
623 | 0 | unsigned char *p; |
624 | 0 | const size_t limit = pool->max_len / 2; |
625 | 0 | size_t newlen = pool->alloc_len; |
626 | |
|
627 | 0 | if (pool->attached || len > pool->max_len - pool->len) { |
628 | 0 | RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR); |
629 | 0 | return 0; |
630 | 0 | } |
631 | | |
632 | 0 | do |
633 | 0 | newlen = newlen < limit ? newlen * 2 : pool->max_len; |
634 | 0 | while (len > newlen - pool->len); |
635 | |
|
636 | 0 | if (pool->secure) |
637 | 0 | p = OPENSSL_secure_zalloc(newlen); |
638 | 0 | else |
639 | 0 | p = OPENSSL_zalloc(newlen); |
640 | 0 | if (p == NULL) { |
641 | 0 | RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE); |
642 | 0 | return 0; |
643 | 0 | } |
644 | 0 | memcpy(p, pool->buffer, pool->len); |
645 | 0 | if (pool->secure) |
646 | 0 | OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len); |
647 | 0 | else |
648 | 0 | OPENSSL_clear_free(pool->buffer, pool->alloc_len); |
649 | 0 | pool->buffer = p; |
650 | 0 | pool->alloc_len = newlen; |
651 | 0 | } |
652 | 472k | return 1; |
653 | 472k | } |
654 | | |
655 | | /* |
656 | | * Returns the number of bytes needed to fill the pool, assuming |
657 | | * the input has 1 / |entropy_factor| entropy bits per data bit. |
658 | | * In case of an error, 0 is returned. |
659 | | */ |
660 | | |
661 | | size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor) |
662 | 12 | { |
663 | 12 | size_t bytes_needed; |
664 | 12 | size_t entropy_needed = rand_pool_entropy_needed(pool); |
665 | | |
666 | 12 | if (entropy_factor < 1) { |
667 | 0 | RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE); |
668 | 0 | return 0; |
669 | 0 | } |
670 | | |
671 | 12 | bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor); |
672 | | |
673 | 12 | if (bytes_needed > pool->max_len - pool->len) { |
674 | | /* not enough space left */ |
675 | 0 | RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW); |
676 | 0 | return 0; |
677 | 0 | } |
678 | | |
679 | 12 | if (pool->len < pool->min_len && |
680 | 12 | bytes_needed < pool->min_len - pool->len) |
681 | | /* to meet the min_len requirement */ |
682 | 0 | bytes_needed = pool->min_len - pool->len; |
683 | | |
684 | | /* |
685 | | * Make sure the buffer is large enough for the requested amount |
686 | | * of data. This guarantees that existing code patterns where |
687 | | * rand_pool_add_begin, rand_pool_add_end or rand_pool_add |
688 | | * are used to collect entropy data without any error handling |
689 | | * whatsoever, continue to be valid. |
690 | | * Furthermore if the allocation here fails once, make sure that |
691 | | * we don't fall back to a less secure or even blocking random source, |
692 | | * as that could happen by the existing code patterns. |
693 | | * This is not a concern for additional data, therefore that |
694 | | * is not needed if rand_pool_grow fails in other places. |
695 | | */ |
696 | 12 | if (!rand_pool_grow(pool, bytes_needed)) { |
697 | | /* persistent error for this pool */ |
698 | 0 | pool->max_len = pool->len = 0; |
699 | 0 | return 0; |
700 | 0 | } |
701 | | |
702 | 12 | return bytes_needed; |
703 | 12 | } |
704 | | |
705 | | /* Returns the remaining number of bytes available */ |
706 | | size_t rand_pool_bytes_remaining(RAND_POOL *pool) |
707 | 0 | { |
708 | 0 | return pool->max_len - pool->len; |
709 | 0 | } |
710 | | |
711 | | /* |
712 | | * Add random bytes to the random pool. |
713 | | * |
714 | | * It is expected that the |buffer| contains |len| bytes of |
715 | | * random input which contains at least |entropy| bits of |
716 | | * randomness. |
717 | | * |
718 | | * Returns 1 if the added amount is adequate, otherwise 0 |
719 | | */ |
720 | | int rand_pool_add(RAND_POOL *pool, |
721 | | const unsigned char *buffer, size_t len, size_t entropy) |
722 | 472k | { |
723 | 472k | if (len > pool->max_len - pool->len) { |
724 | 0 | RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG); |
725 | 0 | return 0; |
726 | 0 | } |
727 | | |
728 | 472k | if (pool->buffer == NULL) { |
729 | 0 | RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR); |
730 | 0 | return 0; |
731 | 0 | } |
732 | | |
733 | 472k | if (len > 0) { |
734 | | /* |
735 | | * This is to protect us from accidentally passing the buffer |
736 | | * returned from rand_pool_add_begin. |
737 | | * The check for alloc_len makes sure we do not compare the |
738 | | * address of the end of the allocated memory to something |
739 | | * different, since that comparison would have an |
740 | | * indeterminate result. |
741 | | */ |
742 | 472k | if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) { |
743 | 0 | RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR); |
744 | 0 | return 0; |
745 | 0 | } |
746 | | /* |
747 | | * We have that only for cases when a pool is used to collect |
748 | | * additional data. |
749 | | * For entropy data, as long as the allocation request stays within |
750 | | * the limits given by rand_pool_bytes_needed this rand_pool_grow |
751 | | * below is guaranteed to succeed, thus no allocation happens. |
752 | | */ |
753 | 472k | if (!rand_pool_grow(pool, len)) |
754 | 0 | return 0; |
755 | 472k | memcpy(pool->buffer + pool->len, buffer, len); |
756 | 472k | pool->len += len; |
757 | 472k | pool->entropy += entropy; |
758 | 472k | } |
759 | | |
760 | 472k | return 1; |
761 | 472k | } |
762 | | |
763 | | /* |
764 | | * Start to add random bytes to the random pool in-place. |
765 | | * |
766 | | * Reserves the next |len| bytes for adding random bytes in-place |
767 | | * and returns a pointer to the buffer. |
768 | | * The caller is allowed to copy up to |len| bytes into the buffer. |
769 | | * If |len| == 0 this is considered a no-op and a NULL pointer |
770 | | * is returned without producing an error message. |
771 | | * |
772 | | * After updating the buffer, rand_pool_add_end() needs to be called |
773 | | * to finish the update operation (see next comment). |
774 | | */ |
775 | | unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len) |
776 | 12 | { |
777 | 12 | if (len == 0) |
778 | 0 | return NULL; |
779 | | |
780 | 12 | if (len > pool->max_len - pool->len) { |
781 | 0 | RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW); |
782 | 0 | return NULL; |
783 | 0 | } |
784 | | |
785 | 12 | if (pool->buffer == NULL) { |
786 | 0 | RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR); |
787 | 0 | return NULL; |
788 | 0 | } |
789 | | |
790 | | /* |
791 | | * As long as the allocation request stays within the limits given |
792 | | * by rand_pool_bytes_needed this rand_pool_grow below is guaranteed |
793 | | * to succeed, thus no allocation happens. |
794 | | * We have that only for cases when a pool is used to collect |
795 | | * additional data. Then the buffer might need to grow here, |
796 | | * and of course the caller is responsible to check the return |
797 | | * value of this function. |
798 | | */ |
799 | 12 | if (!rand_pool_grow(pool, len)) |
800 | 0 | return NULL; |
801 | | |
802 | 12 | return pool->buffer + pool->len; |
803 | 12 | } |
804 | | |
805 | | /* |
806 | | * Finish to add random bytes to the random pool in-place. |
807 | | * |
808 | | * Finishes an in-place update of the random pool started by |
809 | | * rand_pool_add_begin() (see previous comment). |
810 | | * It is expected that |len| bytes of random input have been added |
811 | | * to the buffer which contain at least |entropy| bits of randomness. |
812 | | * It is allowed to add less bytes than originally reserved. |
813 | | */ |
814 | | int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy) |
815 | 12 | { |
816 | 12 | if (len > pool->alloc_len - pool->len) { |
817 | 0 | RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW); |
818 | 0 | return 0; |
819 | 0 | } |
820 | | |
821 | 12 | if (len > 0) { |
822 | 12 | pool->len += len; |
823 | 12 | pool->entropy += entropy; |
824 | 12 | } |
825 | | |
826 | 12 | return 1; |
827 | 12 | } |
828 | | |
829 | | int RAND_set_rand_method(const RAND_METHOD *meth) |
830 | 1 | { |
831 | 1 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
832 | 0 | return 0; |
833 | | |
834 | 1 | CRYPTO_THREAD_write_lock(rand_meth_lock); |
835 | 1 | #ifndef OPENSSL_NO_ENGINE |
836 | 1 | ENGINE_finish(funct_ref); |
837 | 1 | funct_ref = NULL; |
838 | 1 | #endif |
839 | 1 | default_RAND_meth = meth; |
840 | 1 | CRYPTO_THREAD_unlock(rand_meth_lock); |
841 | 1 | return 1; |
842 | 1 | } |
843 | | |
844 | | const RAND_METHOD *RAND_get_rand_method(void) |
845 | 472k | { |
846 | 472k | const RAND_METHOD *tmp_meth = NULL; |
847 | | |
848 | 472k | if (!RUN_ONCE(&rand_init, do_rand_init)) |
849 | 0 | return NULL; |
850 | | |
851 | 472k | CRYPTO_THREAD_write_lock(rand_meth_lock); |
852 | 472k | if (default_RAND_meth == NULL) { |
853 | 1 | #ifndef OPENSSL_NO_ENGINE |
854 | 1 | ENGINE *e; |
855 | | |
856 | | /* If we have an engine that can do RAND, use it. */ |
857 | 1 | if ((e = ENGINE_get_default_RAND()) != NULL |
858 | 1 | && (tmp_meth = ENGINE_get_RAND(e)) != NULL) { |
859 | 0 | funct_ref = e; |
860 | 0 | default_RAND_meth = tmp_meth; |
861 | 1 | } else { |
862 | 1 | ENGINE_finish(e); |
863 | 1 | default_RAND_meth = &rand_meth; |
864 | 1 | } |
865 | | #else |
866 | | default_RAND_meth = &rand_meth; |
867 | | #endif |
868 | 1 | } |
869 | 472k | tmp_meth = default_RAND_meth; |
870 | 472k | CRYPTO_THREAD_unlock(rand_meth_lock); |
871 | 472k | return tmp_meth; |
872 | 472k | } |
873 | | |
874 | | #ifndef OPENSSL_NO_ENGINE |
875 | | int RAND_set_rand_engine(ENGINE *engine) |
876 | 0 | { |
877 | 0 | const RAND_METHOD *tmp_meth = NULL; |
878 | |
|
879 | 0 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
880 | 0 | return 0; |
881 | | |
882 | 0 | if (engine != NULL) { |
883 | 0 | if (!ENGINE_init(engine)) |
884 | 0 | return 0; |
885 | 0 | tmp_meth = ENGINE_get_RAND(engine); |
886 | 0 | if (tmp_meth == NULL) { |
887 | 0 | ENGINE_finish(engine); |
888 | 0 | return 0; |
889 | 0 | } |
890 | 0 | } |
891 | 0 | CRYPTO_THREAD_write_lock(rand_engine_lock); |
892 | | /* This function releases any prior ENGINE so call it first */ |
893 | 0 | RAND_set_rand_method(tmp_meth); |
894 | 0 | funct_ref = engine; |
895 | 0 | CRYPTO_THREAD_unlock(rand_engine_lock); |
896 | 0 | return 1; |
897 | 0 | } |
898 | | #endif |
899 | | |
900 | | void RAND_seed(const void *buf, int num) |
901 | 0 | { |
902 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
903 | |
|
904 | 0 | if (meth != NULL && meth->seed != NULL) |
905 | 0 | meth->seed(buf, num); |
906 | 0 | } |
907 | | |
908 | | void RAND_add(const void *buf, int num, double randomness) |
909 | 0 | { |
910 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
911 | |
|
912 | 0 | if (meth != NULL && meth->add != NULL) |
913 | 0 | meth->add(buf, num, randomness); |
914 | 0 | } |
915 | | |
916 | | /* |
917 | | * This function is not part of RAND_METHOD, so if we're not using |
918 | | * the default method, then just call RAND_bytes(). Otherwise make |
919 | | * sure we're instantiated and use the private DRBG. |
920 | | */ |
921 | | int RAND_priv_bytes(unsigned char *buf, int num) |
922 | 270k | { |
923 | 270k | const RAND_METHOD *meth = RAND_get_rand_method(); |
924 | 270k | RAND_DRBG *drbg; |
925 | | |
926 | 270k | if (meth != NULL && meth != RAND_OpenSSL()) |
927 | 0 | return RAND_bytes(buf, num); |
928 | | |
929 | 270k | drbg = RAND_DRBG_get0_private(); |
930 | 270k | if (drbg != NULL) |
931 | 270k | return RAND_DRBG_bytes(drbg, buf, num); |
932 | | |
933 | 0 | return 0; |
934 | 270k | } |
935 | | |
936 | | int RAND_bytes(unsigned char *buf, int num) |
937 | 202k | { |
938 | 202k | const RAND_METHOD *meth = RAND_get_rand_method(); |
939 | | |
940 | 202k | if (meth != NULL && meth->bytes != NULL) |
941 | 202k | return meth->bytes(buf, num); |
942 | 0 | RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); |
943 | 0 | return -1; |
944 | 202k | } |
945 | | |
946 | | #if OPENSSL_API_COMPAT < 0x10100000L |
947 | | int RAND_pseudo_bytes(unsigned char *buf, int num) |
948 | 0 | { |
949 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
950 | |
|
951 | 0 | if (meth != NULL && meth->pseudorand != NULL) |
952 | 0 | return meth->pseudorand(buf, num); |
953 | 0 | RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); |
954 | 0 | return -1; |
955 | 0 | } |
956 | | #endif |
957 | | |
958 | | int RAND_status(void) |
959 | 0 | { |
960 | 0 | const RAND_METHOD *meth = RAND_get_rand_method(); |
961 | |
|
962 | 0 | if (meth != NULL && meth->status != NULL) |
963 | 0 | return meth->status(); |
964 | 0 | return 0; |
965 | 0 | } |