Coverage Report

Created: 2025-11-11 07:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/irssi/subprojects/openssl-1.1.1l/crypto/bn/bn_gcd.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "bn_local.h"
12
13
/*
14
 * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
15
 * not contain branches that may leak sensitive information.
16
 *
17
 * This is a static function, we ensure all callers in this file pass valid
18
 * arguments: all passed pointers here are non-NULL.
19
 */
20
static ossl_inline
21
BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
22
                                 const BIGNUM *a, const BIGNUM *n,
23
                                 BN_CTX *ctx, int *pnoinv)
24
0
{
25
0
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
26
0
    BIGNUM *ret = NULL;
27
0
    int sign;
28
29
0
    bn_check_top(a);
30
0
    bn_check_top(n);
31
32
0
    BN_CTX_start(ctx);
33
0
    A = BN_CTX_get(ctx);
34
0
    B = BN_CTX_get(ctx);
35
0
    X = BN_CTX_get(ctx);
36
0
    D = BN_CTX_get(ctx);
37
0
    M = BN_CTX_get(ctx);
38
0
    Y = BN_CTX_get(ctx);
39
0
    T = BN_CTX_get(ctx);
40
0
    if (T == NULL)
41
0
        goto err;
42
43
0
    if (in == NULL)
44
0
        R = BN_new();
45
0
    else
46
0
        R = in;
47
0
    if (R == NULL)
48
0
        goto err;
49
50
0
    BN_one(X);
51
0
    BN_zero(Y);
52
0
    if (BN_copy(B, a) == NULL)
53
0
        goto err;
54
0
    if (BN_copy(A, n) == NULL)
55
0
        goto err;
56
0
    A->neg = 0;
57
58
0
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
59
        /*
60
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
61
         * BN_div_no_branch will be called eventually.
62
         */
63
0
         {
64
0
            BIGNUM local_B;
65
0
            bn_init(&local_B);
66
0
            BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
67
0
            if (!BN_nnmod(B, &local_B, A, ctx))
68
0
                goto err;
69
            /* Ensure local_B goes out of scope before any further use of B */
70
0
        }
71
0
    }
72
0
    sign = -1;
73
    /*-
74
     * From  B = a mod |n|,  A = |n|  it follows that
75
     *
76
     *      0 <= B < A,
77
     *     -sign*X*a  ==  B   (mod |n|),
78
     *      sign*Y*a  ==  A   (mod |n|).
79
     */
80
81
0
    while (!BN_is_zero(B)) {
82
0
        BIGNUM *tmp;
83
84
        /*-
85
         *      0 < B < A,
86
         * (*) -sign*X*a  ==  B   (mod |n|),
87
         *      sign*Y*a  ==  A   (mod |n|)
88
         */
89
90
        /*
91
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
92
         * BN_div_no_branch will be called eventually.
93
         */
94
0
        {
95
0
            BIGNUM local_A;
96
0
            bn_init(&local_A);
97
0
            BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
98
99
            /* (D, M) := (A/B, A%B) ... */
100
0
            if (!BN_div(D, M, &local_A, B, ctx))
101
0
                goto err;
102
            /* Ensure local_A goes out of scope before any further use of A */
103
0
        }
104
105
        /*-
106
         * Now
107
         *      A = D*B + M;
108
         * thus we have
109
         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
110
         */
111
112
0
        tmp = A;                /* keep the BIGNUM object, the value does not
113
                                 * matter */
114
115
        /* (A, B) := (B, A mod B) ... */
116
0
        A = B;
117
0
        B = M;
118
        /* ... so we have  0 <= B < A  again */
119
120
        /*-
121
         * Since the former  M  is now  B  and the former  B  is now  A,
122
         * (**) translates into
123
         *       sign*Y*a  ==  D*A + B    (mod |n|),
124
         * i.e.
125
         *       sign*Y*a - D*A  ==  B    (mod |n|).
126
         * Similarly, (*) translates into
127
         *      -sign*X*a  ==  A          (mod |n|).
128
         *
129
         * Thus,
130
         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
131
         * i.e.
132
         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
133
         *
134
         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
135
         *      -sign*X*a  ==  B   (mod |n|),
136
         *       sign*Y*a  ==  A   (mod |n|).
137
         * Note that  X  and  Y  stay non-negative all the time.
138
         */
139
140
0
        if (!BN_mul(tmp, D, X, ctx))
141
0
            goto err;
142
0
        if (!BN_add(tmp, tmp, Y))
143
0
            goto err;
144
145
0
        M = Y;                  /* keep the BIGNUM object, the value does not
146
                                 * matter */
147
0
        Y = X;
148
0
        X = tmp;
149
0
        sign = -sign;
150
0
    }
151
152
    /*-
153
     * The while loop (Euclid's algorithm) ends when
154
     *      A == gcd(a,n);
155
     * we have
156
     *       sign*Y*a  ==  A  (mod |n|),
157
     * where  Y  is non-negative.
158
     */
159
160
0
    if (sign < 0) {
161
0
        if (!BN_sub(Y, n, Y))
162
0
            goto err;
163
0
    }
164
    /* Now  Y*a  ==  A  (mod |n|).  */
165
166
0
    if (BN_is_one(A)) {
167
        /* Y*a == 1  (mod |n|) */
168
0
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
169
0
            if (!BN_copy(R, Y))
170
0
                goto err;
171
0
        } else {
172
0
            if (!BN_nnmod(R, Y, n, ctx))
173
0
                goto err;
174
0
        }
175
0
    } else {
176
0
        *pnoinv = 1;
177
        /* caller sets the BN_R_NO_INVERSE error */
178
0
        goto err;
179
0
    }
180
181
0
    ret = R;
182
0
    *pnoinv = 0;
183
184
0
 err:
185
0
    if ((ret == NULL) && (in == NULL))
186
0
        BN_free(R);
187
0
    BN_CTX_end(ctx);
188
0
    bn_check_top(ret);
189
0
    return ret;
190
0
}
191
192
/*
193
 * This is an internal function, we assume all callers pass valid arguments:
194
 * all pointers passed here are assumed non-NULL.
195
 */
196
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
197
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
198
                           int *pnoinv)
199
0
{
200
0
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
201
0
    BIGNUM *ret = NULL;
202
0
    int sign;
203
204
    /* This is invalid input so we don't worry about constant time here */
205
0
    if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
206
0
        *pnoinv = 1;
207
0
        return NULL;
208
0
    }
209
210
0
    *pnoinv = 0;
211
212
0
    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
213
0
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
214
0
        return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
215
0
    }
216
217
0
    bn_check_top(a);
218
0
    bn_check_top(n);
219
220
0
    BN_CTX_start(ctx);
221
0
    A = BN_CTX_get(ctx);
222
0
    B = BN_CTX_get(ctx);
223
0
    X = BN_CTX_get(ctx);
224
0
    D = BN_CTX_get(ctx);
225
0
    M = BN_CTX_get(ctx);
226
0
    Y = BN_CTX_get(ctx);
227
0
    T = BN_CTX_get(ctx);
228
0
    if (T == NULL)
229
0
        goto err;
230
231
0
    if (in == NULL)
232
0
        R = BN_new();
233
0
    else
234
0
        R = in;
235
0
    if (R == NULL)
236
0
        goto err;
237
238
0
    BN_one(X);
239
0
    BN_zero(Y);
240
0
    if (BN_copy(B, a) == NULL)
241
0
        goto err;
242
0
    if (BN_copy(A, n) == NULL)
243
0
        goto err;
244
0
    A->neg = 0;
245
0
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
246
0
        if (!BN_nnmod(B, B, A, ctx))
247
0
            goto err;
248
0
    }
249
0
    sign = -1;
250
    /*-
251
     * From  B = a mod |n|,  A = |n|  it follows that
252
     *
253
     *      0 <= B < A,
254
     *     -sign*X*a  ==  B   (mod |n|),
255
     *      sign*Y*a  ==  A   (mod |n|).
256
     */
257
258
0
    if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
259
        /*
260
         * Binary inversion algorithm; requires odd modulus. This is faster
261
         * than the general algorithm if the modulus is sufficiently small
262
         * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
263
         * systems)
264
         */
265
0
        int shift;
266
267
0
        while (!BN_is_zero(B)) {
268
            /*-
269
             *      0 < B < |n|,
270
             *      0 < A <= |n|,
271
             * (1) -sign*X*a  ==  B   (mod |n|),
272
             * (2)  sign*Y*a  ==  A   (mod |n|)
273
             */
274
275
            /*
276
             * Now divide B by the maximum possible power of two in the
277
             * integers, and divide X by the same value mod |n|. When we're
278
             * done, (1) still holds.
279
             */
280
0
            shift = 0;
281
0
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
282
0
                shift++;
283
284
0
                if (BN_is_odd(X)) {
285
0
                    if (!BN_uadd(X, X, n))
286
0
                        goto err;
287
0
                }
288
                /*
289
                 * now X is even, so we can easily divide it by two
290
                 */
291
0
                if (!BN_rshift1(X, X))
292
0
                    goto err;
293
0
            }
294
0
            if (shift > 0) {
295
0
                if (!BN_rshift(B, B, shift))
296
0
                    goto err;
297
0
            }
298
299
            /*
300
             * Same for A and Y.  Afterwards, (2) still holds.
301
             */
302
0
            shift = 0;
303
0
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
304
0
                shift++;
305
306
0
                if (BN_is_odd(Y)) {
307
0
                    if (!BN_uadd(Y, Y, n))
308
0
                        goto err;
309
0
                }
310
                /* now Y is even */
311
0
                if (!BN_rshift1(Y, Y))
312
0
                    goto err;
313
0
            }
314
0
            if (shift > 0) {
315
0
                if (!BN_rshift(A, A, shift))
316
0
                    goto err;
317
0
            }
318
319
            /*-
320
             * We still have (1) and (2).
321
             * Both  A  and  B  are odd.
322
             * The following computations ensure that
323
             *
324
             *     0 <= B < |n|,
325
             *      0 < A < |n|,
326
             * (1) -sign*X*a  ==  B   (mod |n|),
327
             * (2)  sign*Y*a  ==  A   (mod |n|),
328
             *
329
             * and that either  A  or  B  is even in the next iteration.
330
             */
331
0
            if (BN_ucmp(B, A) >= 0) {
332
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
333
0
                if (!BN_uadd(X, X, Y))
334
0
                    goto err;
335
                /*
336
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
337
                 * actually makes the algorithm slower
338
                 */
339
0
                if (!BN_usub(B, B, A))
340
0
                    goto err;
341
0
            } else {
342
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
343
0
                if (!BN_uadd(Y, Y, X))
344
0
                    goto err;
345
                /*
346
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
347
                 */
348
0
                if (!BN_usub(A, A, B))
349
0
                    goto err;
350
0
            }
351
0
        }
352
0
    } else {
353
        /* general inversion algorithm */
354
355
0
        while (!BN_is_zero(B)) {
356
0
            BIGNUM *tmp;
357
358
            /*-
359
             *      0 < B < A,
360
             * (*) -sign*X*a  ==  B   (mod |n|),
361
             *      sign*Y*a  ==  A   (mod |n|)
362
             */
363
364
            /* (D, M) := (A/B, A%B) ... */
365
0
            if (BN_num_bits(A) == BN_num_bits(B)) {
366
0
                if (!BN_one(D))
367
0
                    goto err;
368
0
                if (!BN_sub(M, A, B))
369
0
                    goto err;
370
0
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
371
                /* A/B is 1, 2, or 3 */
372
0
                if (!BN_lshift1(T, B))
373
0
                    goto err;
374
0
                if (BN_ucmp(A, T) < 0) {
375
                    /* A < 2*B, so D=1 */
376
0
                    if (!BN_one(D))
377
0
                        goto err;
378
0
                    if (!BN_sub(M, A, B))
379
0
                        goto err;
380
0
                } else {
381
                    /* A >= 2*B, so D=2 or D=3 */
382
0
                    if (!BN_sub(M, A, T))
383
0
                        goto err;
384
0
                    if (!BN_add(D, T, B))
385
0
                        goto err; /* use D (:= 3*B) as temp */
386
0
                    if (BN_ucmp(A, D) < 0) {
387
                        /* A < 3*B, so D=2 */
388
0
                        if (!BN_set_word(D, 2))
389
0
                            goto err;
390
                        /*
391
                         * M (= A - 2*B) already has the correct value
392
                         */
393
0
                    } else {
394
                        /* only D=3 remains */
395
0
                        if (!BN_set_word(D, 3))
396
0
                            goto err;
397
                        /*
398
                         * currently M = A - 2*B, but we need M = A - 3*B
399
                         */
400
0
                        if (!BN_sub(M, M, B))
401
0
                            goto err;
402
0
                    }
403
0
                }
404
0
            } else {
405
0
                if (!BN_div(D, M, A, B, ctx))
406
0
                    goto err;
407
0
            }
408
409
            /*-
410
             * Now
411
             *      A = D*B + M;
412
             * thus we have
413
             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
414
             */
415
416
0
            tmp = A;    /* keep the BIGNUM object, the value does not matter */
417
418
            /* (A, B) := (B, A mod B) ... */
419
0
            A = B;
420
0
            B = M;
421
            /* ... so we have  0 <= B < A  again */
422
423
            /*-
424
             * Since the former  M  is now  B  and the former  B  is now  A,
425
             * (**) translates into
426
             *       sign*Y*a  ==  D*A + B    (mod |n|),
427
             * i.e.
428
             *       sign*Y*a - D*A  ==  B    (mod |n|).
429
             * Similarly, (*) translates into
430
             *      -sign*X*a  ==  A          (mod |n|).
431
             *
432
             * Thus,
433
             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
434
             * i.e.
435
             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
436
             *
437
             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
438
             *      -sign*X*a  ==  B   (mod |n|),
439
             *       sign*Y*a  ==  A   (mod |n|).
440
             * Note that  X  and  Y  stay non-negative all the time.
441
             */
442
443
            /*
444
             * most of the time D is very small, so we can optimize tmp := D*X+Y
445
             */
446
0
            if (BN_is_one(D)) {
447
0
                if (!BN_add(tmp, X, Y))
448
0
                    goto err;
449
0
            } else {
450
0
                if (BN_is_word(D, 2)) {
451
0
                    if (!BN_lshift1(tmp, X))
452
0
                        goto err;
453
0
                } else if (BN_is_word(D, 4)) {
454
0
                    if (!BN_lshift(tmp, X, 2))
455
0
                        goto err;
456
0
                } else if (D->top == 1) {
457
0
                    if (!BN_copy(tmp, X))
458
0
                        goto err;
459
0
                    if (!BN_mul_word(tmp, D->d[0]))
460
0
                        goto err;
461
0
                } else {
462
0
                    if (!BN_mul(tmp, D, X, ctx))
463
0
                        goto err;
464
0
                }
465
0
                if (!BN_add(tmp, tmp, Y))
466
0
                    goto err;
467
0
            }
468
469
0
            M = Y;      /* keep the BIGNUM object, the value does not matter */
470
0
            Y = X;
471
0
            X = tmp;
472
0
            sign = -sign;
473
0
        }
474
0
    }
475
476
    /*-
477
     * The while loop (Euclid's algorithm) ends when
478
     *      A == gcd(a,n);
479
     * we have
480
     *       sign*Y*a  ==  A  (mod |n|),
481
     * where  Y  is non-negative.
482
     */
483
484
0
    if (sign < 0) {
485
0
        if (!BN_sub(Y, n, Y))
486
0
            goto err;
487
0
    }
488
    /* Now  Y*a  ==  A  (mod |n|).  */
489
490
0
    if (BN_is_one(A)) {
491
        /* Y*a == 1  (mod |n|) */
492
0
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
493
0
            if (!BN_copy(R, Y))
494
0
                goto err;
495
0
        } else {
496
0
            if (!BN_nnmod(R, Y, n, ctx))
497
0
                goto err;
498
0
        }
499
0
    } else {
500
0
        *pnoinv = 1;
501
0
        goto err;
502
0
    }
503
0
    ret = R;
504
0
 err:
505
0
    if ((ret == NULL) && (in == NULL))
506
0
        BN_free(R);
507
0
    BN_CTX_end(ctx);
508
0
    bn_check_top(ret);
509
0
    return ret;
510
0
}
511
512
/* solves ax == 1 (mod n) */
513
BIGNUM *BN_mod_inverse(BIGNUM *in,
514
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
515
0
{
516
0
    BN_CTX *new_ctx = NULL;
517
0
    BIGNUM *rv;
518
0
    int noinv = 0;
519
520
0
    if (ctx == NULL) {
521
0
        ctx = new_ctx = BN_CTX_new();
522
0
        if (ctx == NULL) {
523
0
            BNerr(BN_F_BN_MOD_INVERSE, ERR_R_MALLOC_FAILURE);
524
0
            return NULL;
525
0
        }
526
0
    }
527
528
0
    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
529
0
    if (noinv)
530
0
        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
531
0
    BN_CTX_free(new_ctx);
532
0
    return rv;
533
0
}
534
535
/*-
536
 * This function is based on the constant-time GCD work by Bernstein and Yang:
537
 * https://eprint.iacr.org/2019/266
538
 * Generalized fast GCD function to allow even inputs.
539
 * The algorithm first finds the shared powers of 2 between
540
 * the inputs, and removes them, reducing at least one of the
541
 * inputs to an odd value. Then it proceeds to calculate the GCD.
542
 * Before returning the resulting GCD, we take care of adding
543
 * back the powers of two removed at the beginning.
544
 * Note 1: we assume the bit length of both inputs is public information,
545
 * since access to top potentially leaks this information.
546
 */
547
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
548
0
{
549
0
    BIGNUM *g, *temp = NULL;
550
0
    BN_ULONG mask = 0;
551
0
    int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;
552
553
    /* Note 2: zero input corner cases are not constant-time since they are
554
     * handled immediately. An attacker can run an attack under this
555
     * assumption without the need of side-channel information. */
556
0
    if (BN_is_zero(in_b)) {
557
0
        ret = BN_copy(r, in_a) != NULL;
558
0
        r->neg = 0;
559
0
        return ret;
560
0
    }
561
0
    if (BN_is_zero(in_a)) {
562
0
        ret = BN_copy(r, in_b) != NULL;
563
0
        r->neg = 0;
564
0
        return ret;
565
0
    }
566
567
0
    bn_check_top(in_a);
568
0
    bn_check_top(in_b);
569
570
0
    BN_CTX_start(ctx);
571
0
    temp = BN_CTX_get(ctx);
572
0
    g = BN_CTX_get(ctx);
573
574
    /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
575
0
    if (g == NULL
576
0
        || !BN_lshift1(g, in_b)
577
0
        || !BN_lshift1(r, in_a))
578
0
        goto err;
579
580
    /* find shared powers of two, i.e. "shifts" >= 1 */
581
0
    for (i = 0; i < r->dmax && i < g->dmax; i++) {
582
0
        mask = ~(r->d[i] | g->d[i]);
583
0
        for (j = 0; j < BN_BITS2; j++) {
584
0
            bit &= mask;
585
0
            shifts += bit;
586
0
            mask >>= 1;
587
0
        }
588
0
    }
589
590
    /* subtract shared powers of two; shifts >= 1 */
591
0
    if (!BN_rshift(r, r, shifts)
592
0
        || !BN_rshift(g, g, shifts))
593
0
        goto err;
594
595
    /* expand to biggest nword, with room for a possible extra word */
596
0
    top = 1 + ((r->top >= g->top) ? r->top : g->top);
597
0
    if (bn_wexpand(r, top) == NULL
598
0
        || bn_wexpand(g, top) == NULL
599
0
        || bn_wexpand(temp, top) == NULL)
600
0
        goto err;
601
602
    /* re arrange inputs s.t. r is odd */
603
0
    BN_consttime_swap((~r->d[0]) & 1, r, g, top);
604
605
    /* compute the number of iterations */
606
0
    rlen = BN_num_bits(r);
607
0
    glen = BN_num_bits(g);
608
0
    m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
609
610
0
    for (i = 0; i < m; i++) {
611
        /* conditionally flip signs if delta is positive and g is odd */
612
0
        cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
613
            /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
614
0
            & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1)));
615
0
        delta = (-cond & -delta) | ((cond - 1) & delta);
616
0
        r->neg ^= cond;
617
        /* swap */
618
0
        BN_consttime_swap(cond, r, g, top);
619
620
        /* elimination step */
621
0
        delta++;
622
0
        if (!BN_add(temp, g, r))
623
0
            goto err;
624
0
        BN_consttime_swap(g->d[0] & 1 /* g is odd */
625
                /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
626
0
                & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))),
627
0
                g, temp, top);
628
0
        if (!BN_rshift1(g, g))
629
0
            goto err;
630
0
    }
631
632
    /* remove possible negative sign */
633
0
    r->neg = 0;
634
    /* add powers of 2 removed, then correct the artificial shift */
635
0
    if (!BN_lshift(r, r, shifts)
636
0
        || !BN_rshift1(r, r))
637
0
        goto err;
638
639
0
    ret = 1;
640
641
0
 err:
642
0
    BN_CTX_end(ctx);
643
0
    bn_check_top(r);
644
0
    return ret;
645
0
}