/src/irssi/subprojects/openssl-1.1.1l/crypto/sha/keccak1600.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <openssl/e_os2.h> |
11 | | #include <string.h> |
12 | | #include <assert.h> |
13 | | |
14 | | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, |
15 | | size_t r); |
16 | | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); |
17 | | |
18 | | #if !defined(KECCAK1600_ASM) || !defined(SELFTEST) |
19 | | |
20 | | /* |
21 | | * Choose some sensible defaults |
22 | | */ |
23 | | #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \ |
24 | | !defined(KECCAK_2X) && !defined(KECCAK_INPLACE) |
25 | | # define KECCAK_2X /* default to KECCAK_2X variant */ |
26 | | #endif |
27 | | |
28 | | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
29 | | # define KECCAK_COMPLEMENTING_TRANSFORM |
30 | | #endif |
31 | | |
32 | | #if defined(__x86_64__) || defined(__aarch64__) || \ |
33 | | defined(__mips64) || defined(__ia64) || \ |
34 | | (defined(__VMS) && !defined(__vax)) |
35 | | /* |
36 | | * These are available even in ILP32 flavours, but even then they are |
37 | | * capable of performing 64-bit operations as efficiently as in *P64. |
38 | | * Since it's not given that we can use sizeof(void *), just shunt it. |
39 | | */ |
40 | 0 | # define BIT_INTERLEAVE (0) |
41 | | #else |
42 | | # define BIT_INTERLEAVE (sizeof(void *) < 8) |
43 | | #endif |
44 | | |
45 | 0 | #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) |
46 | | |
47 | | static uint64_t ROL64(uint64_t val, int offset) |
48 | 0 | { |
49 | 0 | if (offset == 0) { |
50 | 0 | return val; |
51 | 0 | } else if (!BIT_INTERLEAVE) { |
52 | 0 | return (val << offset) | (val >> (64-offset)); |
53 | 0 | } else { |
54 | 0 | uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; |
55 | |
|
56 | 0 | if (offset & 1) { |
57 | 0 | uint32_t tmp = hi; |
58 | |
|
59 | 0 | offset >>= 1; |
60 | 0 | hi = ROL32(lo, offset); |
61 | 0 | lo = ROL32(tmp, offset + 1); |
62 | 0 | } else { |
63 | 0 | offset >>= 1; |
64 | 0 | lo = ROL32(lo, offset); |
65 | 0 | hi = ROL32(hi, offset); |
66 | 0 | } |
67 | |
|
68 | 0 | return ((uint64_t)hi << 32) | lo; |
69 | 0 | } |
70 | 0 | } |
71 | | |
72 | | static const unsigned char rhotates[5][5] = { |
73 | | { 0, 1, 62, 28, 27 }, |
74 | | { 36, 44, 6, 55, 20 }, |
75 | | { 3, 10, 43, 25, 39 }, |
76 | | { 41, 45, 15, 21, 8 }, |
77 | | { 18, 2, 61, 56, 14 } |
78 | | }; |
79 | | |
80 | | static const uint64_t iotas[] = { |
81 | | BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL, |
82 | | BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL, |
83 | | BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL, |
84 | | BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL, |
85 | | BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL, |
86 | | BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, |
87 | | BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, |
88 | | BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL, |
89 | | BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL, |
90 | | BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL, |
91 | | BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL, |
92 | | BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL, |
93 | | BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL, |
94 | | BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL, |
95 | | BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL, |
96 | | BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL, |
97 | | BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL, |
98 | | BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL, |
99 | | BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL, |
100 | | BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL, |
101 | | BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, |
102 | | BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL, |
103 | | BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, |
104 | | BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL |
105 | | }; |
106 | | |
107 | | #if defined(KECCAK_REF) |
108 | | /* |
109 | | * This is straightforward or "maximum clarity" implementation aiming |
110 | | * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: |
111 | | * Permutation-Based Hash and Extendible-Output Functions" as much as |
112 | | * possible. With one caveat. Because of the way C stores matrices, |
113 | | * references to A[x,y] in the specification are presented as A[y][x]. |
114 | | * Implementation unrolls inner x-loops so that modulo 5 operations are |
115 | | * explicitly pre-computed. |
116 | | */ |
117 | | static void Theta(uint64_t A[5][5]) |
118 | | { |
119 | | uint64_t C[5], D[5]; |
120 | | size_t y; |
121 | | |
122 | | C[0] = A[0][0]; |
123 | | C[1] = A[0][1]; |
124 | | C[2] = A[0][2]; |
125 | | C[3] = A[0][3]; |
126 | | C[4] = A[0][4]; |
127 | | |
128 | | for (y = 1; y < 5; y++) { |
129 | | C[0] ^= A[y][0]; |
130 | | C[1] ^= A[y][1]; |
131 | | C[2] ^= A[y][2]; |
132 | | C[3] ^= A[y][3]; |
133 | | C[4] ^= A[y][4]; |
134 | | } |
135 | | |
136 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
137 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
138 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
139 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
140 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
141 | | |
142 | | for (y = 0; y < 5; y++) { |
143 | | A[y][0] ^= D[0]; |
144 | | A[y][1] ^= D[1]; |
145 | | A[y][2] ^= D[2]; |
146 | | A[y][3] ^= D[3]; |
147 | | A[y][4] ^= D[4]; |
148 | | } |
149 | | } |
150 | | |
151 | | static void Rho(uint64_t A[5][5]) |
152 | | { |
153 | | size_t y; |
154 | | |
155 | | for (y = 0; y < 5; y++) { |
156 | | A[y][0] = ROL64(A[y][0], rhotates[y][0]); |
157 | | A[y][1] = ROL64(A[y][1], rhotates[y][1]); |
158 | | A[y][2] = ROL64(A[y][2], rhotates[y][2]); |
159 | | A[y][3] = ROL64(A[y][3], rhotates[y][3]); |
160 | | A[y][4] = ROL64(A[y][4], rhotates[y][4]); |
161 | | } |
162 | | } |
163 | | |
164 | | static void Pi(uint64_t A[5][5]) |
165 | | { |
166 | | uint64_t T[5][5]; |
167 | | |
168 | | /* |
169 | | * T = A |
170 | | * A[y][x] = T[x][(3*y+x)%5] |
171 | | */ |
172 | | memcpy(T, A, sizeof(T)); |
173 | | |
174 | | A[0][0] = T[0][0]; |
175 | | A[0][1] = T[1][1]; |
176 | | A[0][2] = T[2][2]; |
177 | | A[0][3] = T[3][3]; |
178 | | A[0][4] = T[4][4]; |
179 | | |
180 | | A[1][0] = T[0][3]; |
181 | | A[1][1] = T[1][4]; |
182 | | A[1][2] = T[2][0]; |
183 | | A[1][3] = T[3][1]; |
184 | | A[1][4] = T[4][2]; |
185 | | |
186 | | A[2][0] = T[0][1]; |
187 | | A[2][1] = T[1][2]; |
188 | | A[2][2] = T[2][3]; |
189 | | A[2][3] = T[3][4]; |
190 | | A[2][4] = T[4][0]; |
191 | | |
192 | | A[3][0] = T[0][4]; |
193 | | A[3][1] = T[1][0]; |
194 | | A[3][2] = T[2][1]; |
195 | | A[3][3] = T[3][2]; |
196 | | A[3][4] = T[4][3]; |
197 | | |
198 | | A[4][0] = T[0][2]; |
199 | | A[4][1] = T[1][3]; |
200 | | A[4][2] = T[2][4]; |
201 | | A[4][3] = T[3][0]; |
202 | | A[4][4] = T[4][1]; |
203 | | } |
204 | | |
205 | | static void Chi(uint64_t A[5][5]) |
206 | | { |
207 | | uint64_t C[5]; |
208 | | size_t y; |
209 | | |
210 | | for (y = 0; y < 5; y++) { |
211 | | C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); |
212 | | C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); |
213 | | C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); |
214 | | C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); |
215 | | C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); |
216 | | |
217 | | A[y][0] = C[0]; |
218 | | A[y][1] = C[1]; |
219 | | A[y][2] = C[2]; |
220 | | A[y][3] = C[3]; |
221 | | A[y][4] = C[4]; |
222 | | } |
223 | | } |
224 | | |
225 | | static void Iota(uint64_t A[5][5], size_t i) |
226 | | { |
227 | | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
228 | | A[0][0] ^= iotas[i]; |
229 | | } |
230 | | |
231 | | static void KeccakF1600(uint64_t A[5][5]) |
232 | | { |
233 | | size_t i; |
234 | | |
235 | | for (i = 0; i < 24; i++) { |
236 | | Theta(A); |
237 | | Rho(A); |
238 | | Pi(A); |
239 | | Chi(A); |
240 | | Iota(A, i); |
241 | | } |
242 | | } |
243 | | |
244 | | #elif defined(KECCAK_1X) |
245 | | /* |
246 | | * This implementation is optimization of above code featuring unroll |
247 | | * of even y-loops, their fusion and code motion. It also minimizes |
248 | | * temporary storage. Compiler would normally do all these things for |
249 | | * you, purpose of manual optimization is to provide "unobscured" |
250 | | * reference for assembly implementation [in case this approach is |
251 | | * chosen for implementation on some platform]. In the nutshell it's |
252 | | * equivalent of "plane-per-plane processing" approach discussed in |
253 | | * section 2.4 of "Keccak implementation overview". |
254 | | */ |
255 | | static void Round(uint64_t A[5][5], size_t i) |
256 | | { |
257 | | uint64_t C[5], E[2]; /* registers */ |
258 | | uint64_t D[5], T[2][5]; /* memory */ |
259 | | |
260 | | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
261 | | |
262 | | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
263 | | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
264 | | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
265 | | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
266 | | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
267 | | |
268 | | #if defined(__arm__) |
269 | | D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; |
270 | | D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; |
271 | | D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; |
272 | | D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; |
273 | | D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; |
274 | | |
275 | | T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ |
276 | | T[0][1] = A[0][1] ^ E[0]; /* D[1] */ |
277 | | T[0][2] = A[0][2] ^ C[1]; /* D[2] */ |
278 | | T[0][3] = A[0][3] ^ C[2]; /* D[3] */ |
279 | | T[0][4] = A[0][4] ^ E[1]; /* D[4] */ |
280 | | |
281 | | C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ |
282 | | C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ |
283 | | C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ |
284 | | C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ |
285 | | C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ |
286 | | #else |
287 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
288 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
289 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
290 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
291 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
292 | | |
293 | | T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ |
294 | | T[0][1] = A[0][1] ^ D[1]; |
295 | | T[0][2] = A[0][2] ^ D[2]; |
296 | | T[0][3] = A[0][3] ^ D[3]; |
297 | | T[0][4] = A[0][4] ^ D[4]; |
298 | | |
299 | | C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
300 | | C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
301 | | C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
302 | | C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
303 | | C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
304 | | #endif |
305 | | A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
306 | | A[0][1] = C[1] ^ (~C[2] & C[3]); |
307 | | A[0][2] = C[2] ^ (~C[3] & C[4]); |
308 | | A[0][3] = C[3] ^ (~C[4] & C[0]); |
309 | | A[0][4] = C[4] ^ (~C[0] & C[1]); |
310 | | |
311 | | T[1][0] = A[1][0] ^ (C[3] = D[0]); |
312 | | T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ |
313 | | T[1][2] = A[1][2] ^ (E[0] = D[2]); |
314 | | T[1][3] = A[1][3] ^ (E[1] = D[3]); |
315 | | T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ |
316 | | |
317 | | C[0] = ROL64(T[0][3], rhotates[0][3]); |
318 | | C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */ |
319 | | C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */ |
320 | | C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */ |
321 | | C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */ |
322 | | |
323 | | A[1][0] = C[0] ^ (~C[1] & C[2]); |
324 | | A[1][1] = C[1] ^ (~C[2] & C[3]); |
325 | | A[1][2] = C[2] ^ (~C[3] & C[4]); |
326 | | A[1][3] = C[3] ^ (~C[4] & C[0]); |
327 | | A[1][4] = C[4] ^ (~C[0] & C[1]); |
328 | | |
329 | | C[0] = ROL64(T[0][1], rhotates[0][1]); |
330 | | C[1] = ROL64(T[1][2], rhotates[1][2]); |
331 | | C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
332 | | C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
333 | | C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
334 | | |
335 | | A[2][0] = C[0] ^ (~C[1] & C[2]); |
336 | | A[2][1] = C[1] ^ (~C[2] & C[3]); |
337 | | A[2][2] = C[2] ^ (~C[3] & C[4]); |
338 | | A[2][3] = C[3] ^ (~C[4] & C[0]); |
339 | | A[2][4] = C[4] ^ (~C[0] & C[1]); |
340 | | |
341 | | C[0] = ROL64(T[0][4], rhotates[0][4]); |
342 | | C[1] = ROL64(T[1][0], rhotates[1][0]); |
343 | | C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ |
344 | | C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
345 | | C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
346 | | |
347 | | A[3][0] = C[0] ^ (~C[1] & C[2]); |
348 | | A[3][1] = C[1] ^ (~C[2] & C[3]); |
349 | | A[3][2] = C[2] ^ (~C[3] & C[4]); |
350 | | A[3][3] = C[3] ^ (~C[4] & C[0]); |
351 | | A[3][4] = C[4] ^ (~C[0] & C[1]); |
352 | | |
353 | | C[0] = ROL64(T[0][2], rhotates[0][2]); |
354 | | C[1] = ROL64(T[1][3], rhotates[1][3]); |
355 | | C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ |
356 | | C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ |
357 | | C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
358 | | |
359 | | A[4][0] = C[0] ^ (~C[1] & C[2]); |
360 | | A[4][1] = C[1] ^ (~C[2] & C[3]); |
361 | | A[4][2] = C[2] ^ (~C[3] & C[4]); |
362 | | A[4][3] = C[3] ^ (~C[4] & C[0]); |
363 | | A[4][4] = C[4] ^ (~C[0] & C[1]); |
364 | | } |
365 | | |
366 | | static void KeccakF1600(uint64_t A[5][5]) |
367 | | { |
368 | | size_t i; |
369 | | |
370 | | for (i = 0; i < 24; i++) { |
371 | | Round(A, i); |
372 | | } |
373 | | } |
374 | | |
375 | | #elif defined(KECCAK_1X_ALT) |
376 | | /* |
377 | | * This is variant of above KECCAK_1X that reduces requirement for |
378 | | * temporary storage even further, but at cost of more updates to A[][]. |
379 | | * It's less suitable if A[][] is memory bound, but better if it's |
380 | | * register bound. |
381 | | */ |
382 | | |
383 | | static void Round(uint64_t A[5][5], size_t i) |
384 | | { |
385 | | uint64_t C[5], D[5]; |
386 | | |
387 | | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
388 | | |
389 | | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
390 | | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
391 | | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
392 | | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
393 | | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
394 | | |
395 | | D[1] = C[0] ^ ROL64(C[2], 1); |
396 | | D[2] = C[1] ^ ROL64(C[3], 1); |
397 | | D[3] = C[2] ^= ROL64(C[4], 1); |
398 | | D[4] = C[3] ^= ROL64(C[0], 1); |
399 | | D[0] = C[4] ^= ROL64(C[1], 1); |
400 | | |
401 | | A[0][1] ^= D[1]; |
402 | | A[1][1] ^= D[1]; |
403 | | A[2][1] ^= D[1]; |
404 | | A[3][1] ^= D[1]; |
405 | | A[4][1] ^= D[1]; |
406 | | |
407 | | A[0][2] ^= D[2]; |
408 | | A[1][2] ^= D[2]; |
409 | | A[2][2] ^= D[2]; |
410 | | A[3][2] ^= D[2]; |
411 | | A[4][2] ^= D[2]; |
412 | | |
413 | | A[0][3] ^= C[2]; |
414 | | A[1][3] ^= C[2]; |
415 | | A[2][3] ^= C[2]; |
416 | | A[3][3] ^= C[2]; |
417 | | A[4][3] ^= C[2]; |
418 | | |
419 | | A[0][4] ^= C[3]; |
420 | | A[1][4] ^= C[3]; |
421 | | A[2][4] ^= C[3]; |
422 | | A[3][4] ^= C[3]; |
423 | | A[4][4] ^= C[3]; |
424 | | |
425 | | A[0][0] ^= C[4]; |
426 | | A[1][0] ^= C[4]; |
427 | | A[2][0] ^= C[4]; |
428 | | A[3][0] ^= C[4]; |
429 | | A[4][0] ^= C[4]; |
430 | | |
431 | | C[1] = A[0][1]; |
432 | | C[2] = A[0][2]; |
433 | | C[3] = A[0][3]; |
434 | | C[4] = A[0][4]; |
435 | | |
436 | | A[0][1] = ROL64(A[1][1], rhotates[1][1]); |
437 | | A[0][2] = ROL64(A[2][2], rhotates[2][2]); |
438 | | A[0][3] = ROL64(A[3][3], rhotates[3][3]); |
439 | | A[0][4] = ROL64(A[4][4], rhotates[4][4]); |
440 | | |
441 | | A[1][1] = ROL64(A[1][4], rhotates[1][4]); |
442 | | A[2][2] = ROL64(A[2][3], rhotates[2][3]); |
443 | | A[3][3] = ROL64(A[3][2], rhotates[3][2]); |
444 | | A[4][4] = ROL64(A[4][1], rhotates[4][1]); |
445 | | |
446 | | A[1][4] = ROL64(A[4][2], rhotates[4][2]); |
447 | | A[2][3] = ROL64(A[3][4], rhotates[3][4]); |
448 | | A[3][2] = ROL64(A[2][1], rhotates[2][1]); |
449 | | A[4][1] = ROL64(A[1][3], rhotates[1][3]); |
450 | | |
451 | | A[4][2] = ROL64(A[2][4], rhotates[2][4]); |
452 | | A[3][4] = ROL64(A[4][3], rhotates[4][3]); |
453 | | A[2][1] = ROL64(A[1][2], rhotates[1][2]); |
454 | | A[1][3] = ROL64(A[3][1], rhotates[3][1]); |
455 | | |
456 | | A[2][4] = ROL64(A[4][0], rhotates[4][0]); |
457 | | A[4][3] = ROL64(A[3][0], rhotates[3][0]); |
458 | | A[1][2] = ROL64(A[2][0], rhotates[2][0]); |
459 | | A[3][1] = ROL64(A[1][0], rhotates[1][0]); |
460 | | |
461 | | A[1][0] = ROL64(C[3], rhotates[0][3]); |
462 | | A[2][0] = ROL64(C[1], rhotates[0][1]); |
463 | | A[3][0] = ROL64(C[4], rhotates[0][4]); |
464 | | A[4][0] = ROL64(C[2], rhotates[0][2]); |
465 | | |
466 | | C[0] = A[0][0]; |
467 | | C[1] = A[1][0]; |
468 | | D[0] = A[0][1]; |
469 | | D[1] = A[1][1]; |
470 | | |
471 | | A[0][0] ^= (~A[0][1] & A[0][2]); |
472 | | A[1][0] ^= (~A[1][1] & A[1][2]); |
473 | | A[0][1] ^= (~A[0][2] & A[0][3]); |
474 | | A[1][1] ^= (~A[1][2] & A[1][3]); |
475 | | A[0][2] ^= (~A[0][3] & A[0][4]); |
476 | | A[1][2] ^= (~A[1][3] & A[1][4]); |
477 | | A[0][3] ^= (~A[0][4] & C[0]); |
478 | | A[1][3] ^= (~A[1][4] & C[1]); |
479 | | A[0][4] ^= (~C[0] & D[0]); |
480 | | A[1][4] ^= (~C[1] & D[1]); |
481 | | |
482 | | C[2] = A[2][0]; |
483 | | C[3] = A[3][0]; |
484 | | D[2] = A[2][1]; |
485 | | D[3] = A[3][1]; |
486 | | |
487 | | A[2][0] ^= (~A[2][1] & A[2][2]); |
488 | | A[3][0] ^= (~A[3][1] & A[3][2]); |
489 | | A[2][1] ^= (~A[2][2] & A[2][3]); |
490 | | A[3][1] ^= (~A[3][2] & A[3][3]); |
491 | | A[2][2] ^= (~A[2][3] & A[2][4]); |
492 | | A[3][2] ^= (~A[3][3] & A[3][4]); |
493 | | A[2][3] ^= (~A[2][4] & C[2]); |
494 | | A[3][3] ^= (~A[3][4] & C[3]); |
495 | | A[2][4] ^= (~C[2] & D[2]); |
496 | | A[3][4] ^= (~C[3] & D[3]); |
497 | | |
498 | | C[4] = A[4][0]; |
499 | | D[4] = A[4][1]; |
500 | | |
501 | | A[4][0] ^= (~A[4][1] & A[4][2]); |
502 | | A[4][1] ^= (~A[4][2] & A[4][3]); |
503 | | A[4][2] ^= (~A[4][3] & A[4][4]); |
504 | | A[4][3] ^= (~A[4][4] & C[4]); |
505 | | A[4][4] ^= (~C[4] & D[4]); |
506 | | A[0][0] ^= iotas[i]; |
507 | | } |
508 | | |
509 | | static void KeccakF1600(uint64_t A[5][5]) |
510 | | { |
511 | | size_t i; |
512 | | |
513 | | for (i = 0; i < 24; i++) { |
514 | | Round(A, i); |
515 | | } |
516 | | } |
517 | | |
518 | | #elif defined(KECCAK_2X) |
519 | | /* |
520 | | * This implementation is variant of KECCAK_1X above with outer-most |
521 | | * round loop unrolled twice. This allows to take temporary storage |
522 | | * out of round procedure and simplify references to it by alternating |
523 | | * it with actual data (see round loop below). Originally it was meant |
524 | | * rather as reference for an assembly implementation, but it seems to |
525 | | * play best with compilers [as well as provide best instruction per |
526 | | * processed byte ratio at minimal round unroll factor]... |
527 | | */ |
528 | | static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) |
529 | 0 | { |
530 | 0 | uint64_t C[5], D[5]; |
531 | |
|
532 | 0 | assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
533 | |
|
534 | 0 | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
535 | 0 | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
536 | 0 | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
537 | 0 | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
538 | 0 | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
539 | |
|
540 | 0 | D[0] = ROL64(C[1], 1) ^ C[4]; |
541 | 0 | D[1] = ROL64(C[2], 1) ^ C[0]; |
542 | 0 | D[2] = ROL64(C[3], 1) ^ C[1]; |
543 | 0 | D[3] = ROL64(C[4], 1) ^ C[2]; |
544 | 0 | D[4] = ROL64(C[0], 1) ^ C[3]; |
545 | |
|
546 | 0 | C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
547 | 0 | C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
548 | 0 | C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
549 | 0 | C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
550 | 0 | C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
551 | |
|
552 | | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
553 | | R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i]; |
554 | | R[0][1] = C[1] ^ (~C[2] | C[3]); |
555 | | R[0][2] = C[2] ^ ( C[3] & C[4]); |
556 | | R[0][3] = C[3] ^ ( C[4] | C[0]); |
557 | | R[0][4] = C[4] ^ ( C[0] & C[1]); |
558 | | #else |
559 | 0 | R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
560 | 0 | R[0][1] = C[1] ^ (~C[2] & C[3]); |
561 | 0 | R[0][2] = C[2] ^ (~C[3] & C[4]); |
562 | 0 | R[0][3] = C[3] ^ (~C[4] & C[0]); |
563 | 0 | R[0][4] = C[4] ^ (~C[0] & C[1]); |
564 | 0 | #endif |
565 | |
|
566 | 0 | C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
567 | 0 | C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
568 | 0 | C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
569 | 0 | C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
570 | 0 | C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
571 | |
|
572 | | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
573 | | R[1][0] = C[0] ^ (C[1] | C[2]); |
574 | | R[1][1] = C[1] ^ (C[2] & C[3]); |
575 | | R[1][2] = C[2] ^ (C[3] | ~C[4]); |
576 | | R[1][3] = C[3] ^ (C[4] | C[0]); |
577 | | R[1][4] = C[4] ^ (C[0] & C[1]); |
578 | | #else |
579 | 0 | R[1][0] = C[0] ^ (~C[1] & C[2]); |
580 | 0 | R[1][1] = C[1] ^ (~C[2] & C[3]); |
581 | 0 | R[1][2] = C[2] ^ (~C[3] & C[4]); |
582 | 0 | R[1][3] = C[3] ^ (~C[4] & C[0]); |
583 | 0 | R[1][4] = C[4] ^ (~C[0] & C[1]); |
584 | 0 | #endif |
585 | |
|
586 | 0 | C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
587 | 0 | C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
588 | 0 | C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
589 | 0 | C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
590 | 0 | C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
591 | |
|
592 | | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
593 | | R[2][0] = C[0] ^ ( C[1] | C[2]); |
594 | | R[2][1] = C[1] ^ ( C[2] & C[3]); |
595 | | R[2][2] = C[2] ^ (~C[3] & C[4]); |
596 | | R[2][3] = ~C[3] ^ ( C[4] | C[0]); |
597 | | R[2][4] = C[4] ^ ( C[0] & C[1]); |
598 | | #else |
599 | 0 | R[2][0] = C[0] ^ (~C[1] & C[2]); |
600 | 0 | R[2][1] = C[1] ^ (~C[2] & C[3]); |
601 | 0 | R[2][2] = C[2] ^ (~C[3] & C[4]); |
602 | 0 | R[2][3] = C[3] ^ (~C[4] & C[0]); |
603 | 0 | R[2][4] = C[4] ^ (~C[0] & C[1]); |
604 | 0 | #endif |
605 | |
|
606 | 0 | C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
607 | 0 | C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
608 | 0 | C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
609 | 0 | C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
610 | 0 | C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
611 | |
|
612 | | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
613 | | R[3][0] = C[0] ^ ( C[1] & C[2]); |
614 | | R[3][1] = C[1] ^ ( C[2] | C[3]); |
615 | | R[3][2] = C[2] ^ (~C[3] | C[4]); |
616 | | R[3][3] = ~C[3] ^ ( C[4] & C[0]); |
617 | | R[3][4] = C[4] ^ ( C[0] | C[1]); |
618 | | #else |
619 | 0 | R[3][0] = C[0] ^ (~C[1] & C[2]); |
620 | 0 | R[3][1] = C[1] ^ (~C[2] & C[3]); |
621 | 0 | R[3][2] = C[2] ^ (~C[3] & C[4]); |
622 | 0 | R[3][3] = C[3] ^ (~C[4] & C[0]); |
623 | 0 | R[3][4] = C[4] ^ (~C[0] & C[1]); |
624 | 0 | #endif |
625 | |
|
626 | 0 | C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
627 | 0 | C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
628 | 0 | C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
629 | 0 | C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
630 | 0 | C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
631 | |
|
632 | | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
633 | | R[4][0] = C[0] ^ (~C[1] & C[2]); |
634 | | R[4][1] = ~C[1] ^ ( C[2] | C[3]); |
635 | | R[4][2] = C[2] ^ ( C[3] & C[4]); |
636 | | R[4][3] = C[3] ^ ( C[4] | C[0]); |
637 | | R[4][4] = C[4] ^ ( C[0] & C[1]); |
638 | | #else |
639 | 0 | R[4][0] = C[0] ^ (~C[1] & C[2]); |
640 | 0 | R[4][1] = C[1] ^ (~C[2] & C[3]); |
641 | 0 | R[4][2] = C[2] ^ (~C[3] & C[4]); |
642 | 0 | R[4][3] = C[3] ^ (~C[4] & C[0]); |
643 | 0 | R[4][4] = C[4] ^ (~C[0] & C[1]); |
644 | 0 | #endif |
645 | 0 | } |
646 | | |
647 | | static void KeccakF1600(uint64_t A[5][5]) |
648 | 0 | { |
649 | 0 | uint64_t T[5][5]; |
650 | 0 | size_t i; |
651 | |
|
652 | | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
653 | | A[0][1] = ~A[0][1]; |
654 | | A[0][2] = ~A[0][2]; |
655 | | A[1][3] = ~A[1][3]; |
656 | | A[2][2] = ~A[2][2]; |
657 | | A[3][2] = ~A[3][2]; |
658 | | A[4][0] = ~A[4][0]; |
659 | | #endif |
660 | |
|
661 | 0 | for (i = 0; i < 24; i += 2) { |
662 | 0 | Round(T, A, i); |
663 | 0 | Round(A, T, i + 1); |
664 | 0 | } |
665 | |
|
666 | | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
667 | | A[0][1] = ~A[0][1]; |
668 | | A[0][2] = ~A[0][2]; |
669 | | A[1][3] = ~A[1][3]; |
670 | | A[2][2] = ~A[2][2]; |
671 | | A[3][2] = ~A[3][2]; |
672 | | A[4][0] = ~A[4][0]; |
673 | | #endif |
674 | 0 | } |
675 | | |
676 | | #else /* define KECCAK_INPLACE to compile this code path */ |
677 | | /* |
678 | | * This implementation is KECCAK_1X from above combined 4 times with |
679 | | * a twist that allows to omit temporary storage and perform in-place |
680 | | * processing. It's discussed in section 2.5 of "Keccak implementation |
681 | | * overview". It's likely to be best suited for processors with large |
682 | | * register bank... On the other hand processor with large register |
683 | | * bank can as well use KECCAK_1X_ALT, it would be as fast but much |
684 | | * more compact... |
685 | | */ |
686 | | static void FourRounds(uint64_t A[5][5], size_t i) |
687 | | { |
688 | | uint64_t B[5], C[5], D[5]; |
689 | | |
690 | | assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); |
691 | | |
692 | | /* Round 4*n */ |
693 | | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
694 | | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
695 | | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
696 | | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
697 | | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
698 | | |
699 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
700 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
701 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
702 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
703 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
704 | | |
705 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
706 | | B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
707 | | B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
708 | | B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
709 | | B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
710 | | |
711 | | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; |
712 | | C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); |
713 | | C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); |
714 | | C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); |
715 | | C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); |
716 | | |
717 | | B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
718 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
719 | | B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
720 | | B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
721 | | B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
722 | | |
723 | | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
724 | | C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
725 | | C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
726 | | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
727 | | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
728 | | |
729 | | B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
730 | | B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
731 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
732 | | B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
733 | | B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
734 | | |
735 | | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
736 | | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
737 | | C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
738 | | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
739 | | C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
740 | | |
741 | | B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
742 | | B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
743 | | B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
744 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
745 | | B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
746 | | |
747 | | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
748 | | C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
749 | | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
750 | | C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
751 | | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
752 | | |
753 | | B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
754 | | B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
755 | | B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
756 | | B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
757 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
758 | | |
759 | | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
760 | | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
761 | | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
762 | | C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
763 | | C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
764 | | |
765 | | /* Round 4*n+1 */ |
766 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
767 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
768 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
769 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
770 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
771 | | |
772 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
773 | | B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); |
774 | | B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); |
775 | | B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); |
776 | | B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); |
777 | | |
778 | | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; |
779 | | C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); |
780 | | C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); |
781 | | C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); |
782 | | C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); |
783 | | |
784 | | B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); |
785 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
786 | | B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); |
787 | | B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); |
788 | | B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); |
789 | | |
790 | | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
791 | | C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
792 | | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
793 | | C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
794 | | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
795 | | |
796 | | B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); |
797 | | B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); |
798 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
799 | | B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); |
800 | | B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); |
801 | | |
802 | | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
803 | | C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
804 | | C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
805 | | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
806 | | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
807 | | |
808 | | B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); |
809 | | B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); |
810 | | B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); |
811 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
812 | | B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); |
813 | | |
814 | | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
815 | | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
816 | | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
817 | | C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
818 | | C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
819 | | |
820 | | B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); |
821 | | B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); |
822 | | B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); |
823 | | B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); |
824 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
825 | | |
826 | | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
827 | | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
828 | | C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
829 | | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
830 | | C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
831 | | |
832 | | /* Round 4*n+2 */ |
833 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
834 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
835 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
836 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
837 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
838 | | |
839 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
840 | | B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); |
841 | | B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); |
842 | | B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); |
843 | | B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); |
844 | | |
845 | | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; |
846 | | C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); |
847 | | C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); |
848 | | C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); |
849 | | C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); |
850 | | |
851 | | B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); |
852 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
853 | | B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); |
854 | | B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); |
855 | | B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); |
856 | | |
857 | | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
858 | | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
859 | | C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
860 | | C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
861 | | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
862 | | |
863 | | B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); |
864 | | B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); |
865 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
866 | | B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); |
867 | | B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); |
868 | | |
869 | | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
870 | | C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
871 | | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
872 | | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
873 | | C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
874 | | |
875 | | B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); |
876 | | B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); |
877 | | B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); |
878 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
879 | | B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); |
880 | | |
881 | | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
882 | | C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
883 | | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
884 | | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
885 | | C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
886 | | |
887 | | B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); |
888 | | B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); |
889 | | B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); |
890 | | B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); |
891 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
892 | | |
893 | | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
894 | | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
895 | | C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
896 | | C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
897 | | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
898 | | |
899 | | /* Round 4*n+3 */ |
900 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
901 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
902 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
903 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
904 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
905 | | |
906 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
907 | | B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); |
908 | | B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); |
909 | | B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); |
910 | | B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); |
911 | | |
912 | | /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; |
913 | | /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); |
914 | | /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); |
915 | | /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); |
916 | | /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); |
917 | | |
918 | | B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); |
919 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
920 | | B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); |
921 | | B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); |
922 | | B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); |
923 | | |
924 | | /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); |
925 | | /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); |
926 | | /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); |
927 | | /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); |
928 | | /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); |
929 | | |
930 | | B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); |
931 | | B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); |
932 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
933 | | B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); |
934 | | B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); |
935 | | |
936 | | /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); |
937 | | /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); |
938 | | /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); |
939 | | /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); |
940 | | /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); |
941 | | |
942 | | B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); |
943 | | B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); |
944 | | B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); |
945 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
946 | | B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); |
947 | | |
948 | | /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); |
949 | | /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); |
950 | | /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); |
951 | | /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); |
952 | | /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); |
953 | | |
954 | | B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); |
955 | | B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); |
956 | | B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); |
957 | | B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); |
958 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
959 | | |
960 | | /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); |
961 | | /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); |
962 | | /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); |
963 | | /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); |
964 | | /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); |
965 | | } |
966 | | |
967 | | static void KeccakF1600(uint64_t A[5][5]) |
968 | | { |
969 | | size_t i; |
970 | | |
971 | | for (i = 0; i < 24; i += 4) { |
972 | | FourRounds(A, i); |
973 | | } |
974 | | } |
975 | | |
976 | | #endif |
977 | | |
978 | | static uint64_t BitInterleave(uint64_t Ai) |
979 | 0 | { |
980 | 0 | if (BIT_INTERLEAVE) { |
981 | 0 | uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; |
982 | 0 | uint32_t t0, t1; |
983 | |
|
984 | 0 | t0 = lo & 0x55555555; |
985 | 0 | t0 |= t0 >> 1; t0 &= 0x33333333; |
986 | 0 | t0 |= t0 >> 2; t0 &= 0x0f0f0f0f; |
987 | 0 | t0 |= t0 >> 4; t0 &= 0x00ff00ff; |
988 | 0 | t0 |= t0 >> 8; t0 &= 0x0000ffff; |
989 | |
|
990 | 0 | t1 = hi & 0x55555555; |
991 | 0 | t1 |= t1 >> 1; t1 &= 0x33333333; |
992 | 0 | t1 |= t1 >> 2; t1 &= 0x0f0f0f0f; |
993 | 0 | t1 |= t1 >> 4; t1 &= 0x00ff00ff; |
994 | 0 | t1 |= t1 >> 8; t1 <<= 16; |
995 | |
|
996 | 0 | lo &= 0xaaaaaaaa; |
997 | 0 | lo |= lo << 1; lo &= 0xcccccccc; |
998 | 0 | lo |= lo << 2; lo &= 0xf0f0f0f0; |
999 | 0 | lo |= lo << 4; lo &= 0xff00ff00; |
1000 | 0 | lo |= lo << 8; lo >>= 16; |
1001 | |
|
1002 | 0 | hi &= 0xaaaaaaaa; |
1003 | 0 | hi |= hi << 1; hi &= 0xcccccccc; |
1004 | 0 | hi |= hi << 2; hi &= 0xf0f0f0f0; |
1005 | 0 | hi |= hi << 4; hi &= 0xff00ff00; |
1006 | 0 | hi |= hi << 8; hi &= 0xffff0000; |
1007 | |
|
1008 | 0 | Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); |
1009 | 0 | } |
1010 | |
|
1011 | 0 | return Ai; |
1012 | 0 | } |
1013 | | |
1014 | | static uint64_t BitDeinterleave(uint64_t Ai) |
1015 | 0 | { |
1016 | 0 | if (BIT_INTERLEAVE) { |
1017 | 0 | uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; |
1018 | 0 | uint32_t t0, t1; |
1019 | |
|
1020 | 0 | t0 = lo & 0x0000ffff; |
1021 | 0 | t0 |= t0 << 8; t0 &= 0x00ff00ff; |
1022 | 0 | t0 |= t0 << 4; t0 &= 0x0f0f0f0f; |
1023 | 0 | t0 |= t0 << 2; t0 &= 0x33333333; |
1024 | 0 | t0 |= t0 << 1; t0 &= 0x55555555; |
1025 | |
|
1026 | 0 | t1 = hi << 16; |
1027 | 0 | t1 |= t1 >> 8; t1 &= 0xff00ff00; |
1028 | 0 | t1 |= t1 >> 4; t1 &= 0xf0f0f0f0; |
1029 | 0 | t1 |= t1 >> 2; t1 &= 0xcccccccc; |
1030 | 0 | t1 |= t1 >> 1; t1 &= 0xaaaaaaaa; |
1031 | |
|
1032 | 0 | lo >>= 16; |
1033 | 0 | lo |= lo << 8; lo &= 0x00ff00ff; |
1034 | 0 | lo |= lo << 4; lo &= 0x0f0f0f0f; |
1035 | 0 | lo |= lo << 2; lo &= 0x33333333; |
1036 | 0 | lo |= lo << 1; lo &= 0x55555555; |
1037 | |
|
1038 | 0 | hi &= 0xffff0000; |
1039 | 0 | hi |= hi >> 8; hi &= 0xff00ff00; |
1040 | 0 | hi |= hi >> 4; hi &= 0xf0f0f0f0; |
1041 | 0 | hi |= hi >> 2; hi &= 0xcccccccc; |
1042 | 0 | hi |= hi >> 1; hi &= 0xaaaaaaaa; |
1043 | |
|
1044 | 0 | Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); |
1045 | 0 | } |
1046 | |
|
1047 | 0 | return Ai; |
1048 | 0 | } |
1049 | | |
1050 | | /* |
1051 | | * SHA3_absorb can be called multiple times, but at each invocation |
1052 | | * largest multiple of |r| out of |len| bytes are processed. Then |
1053 | | * remaining amount of bytes is returned. This is done to spare caller |
1054 | | * trouble of calculating the largest multiple of |r|. |r| can be viewed |
1055 | | * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, |
1056 | | * 72, but can also be (1600 - 448)/8 = 144. All this means that message |
1057 | | * padding and intermediate sub-block buffering, byte- or bitwise, is |
1058 | | * caller's responsibility. |
1059 | | */ |
1060 | | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, |
1061 | | size_t r) |
1062 | 0 | { |
1063 | 0 | uint64_t *A_flat = (uint64_t *)A; |
1064 | 0 | size_t i, w = r / 8; |
1065 | |
|
1066 | 0 | assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
1067 | |
|
1068 | 0 | while (len >= r) { |
1069 | 0 | for (i = 0; i < w; i++) { |
1070 | 0 | uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | |
1071 | 0 | (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | |
1072 | 0 | (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | |
1073 | 0 | (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; |
1074 | 0 | inp += 8; |
1075 | |
|
1076 | 0 | A_flat[i] ^= BitInterleave(Ai); |
1077 | 0 | } |
1078 | 0 | KeccakF1600(A); |
1079 | 0 | len -= r; |
1080 | 0 | } |
1081 | |
|
1082 | 0 | return len; |
1083 | 0 | } |
1084 | | |
1085 | | /* |
1086 | | * SHA3_squeeze is called once at the end to generate |out| hash value |
1087 | | * of |len| bytes. |
1088 | | */ |
1089 | | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) |
1090 | 0 | { |
1091 | 0 | uint64_t *A_flat = (uint64_t *)A; |
1092 | 0 | size_t i, w = r / 8; |
1093 | |
|
1094 | 0 | assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
1095 | |
|
1096 | 0 | while (len != 0) { |
1097 | 0 | for (i = 0; i < w && len != 0; i++) { |
1098 | 0 | uint64_t Ai = BitDeinterleave(A_flat[i]); |
1099 | |
|
1100 | 0 | if (len < 8) { |
1101 | 0 | for (i = 0; i < len; i++) { |
1102 | 0 | *out++ = (unsigned char)Ai; |
1103 | 0 | Ai >>= 8; |
1104 | 0 | } |
1105 | 0 | return; |
1106 | 0 | } |
1107 | | |
1108 | 0 | out[0] = (unsigned char)(Ai); |
1109 | 0 | out[1] = (unsigned char)(Ai >> 8); |
1110 | 0 | out[2] = (unsigned char)(Ai >> 16); |
1111 | 0 | out[3] = (unsigned char)(Ai >> 24); |
1112 | 0 | out[4] = (unsigned char)(Ai >> 32); |
1113 | 0 | out[5] = (unsigned char)(Ai >> 40); |
1114 | 0 | out[6] = (unsigned char)(Ai >> 48); |
1115 | 0 | out[7] = (unsigned char)(Ai >> 56); |
1116 | 0 | out += 8; |
1117 | 0 | len -= 8; |
1118 | 0 | } |
1119 | 0 | if (len) |
1120 | 0 | KeccakF1600(A); |
1121 | 0 | } |
1122 | 0 | } |
1123 | | #endif |
1124 | | |
1125 | | #ifdef SELFTEST |
1126 | | /* |
1127 | | * Post-padding one-shot implementations would look as following: |
1128 | | * |
1129 | | * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); |
1130 | | * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); |
1131 | | * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); |
1132 | | * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); |
1133 | | * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); |
1134 | | * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); |
1135 | | */ |
1136 | | |
1137 | | void SHA3_sponge(const unsigned char *inp, size_t len, |
1138 | | unsigned char *out, size_t d, size_t r) |
1139 | | { |
1140 | | uint64_t A[5][5]; |
1141 | | |
1142 | | memset(A, 0, sizeof(A)); |
1143 | | SHA3_absorb(A, inp, len, r); |
1144 | | SHA3_squeeze(A, out, d, r); |
1145 | | } |
1146 | | |
1147 | | # include <stdio.h> |
1148 | | |
1149 | | int main() |
1150 | | { |
1151 | | /* |
1152 | | * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing |
1153 | | */ |
1154 | | unsigned char test[168] = { '\xf3', '\x3' }; |
1155 | | unsigned char out[512]; |
1156 | | size_t i; |
1157 | | static const unsigned char result[512] = { |
1158 | | 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, |
1159 | | 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, |
1160 | | 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, |
1161 | | 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, |
1162 | | 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, |
1163 | | 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, |
1164 | | 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, |
1165 | | 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, |
1166 | | 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, |
1167 | | 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, |
1168 | | 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, |
1169 | | 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, |
1170 | | 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, |
1171 | | 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, |
1172 | | 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, |
1173 | | 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, |
1174 | | 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, |
1175 | | 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, |
1176 | | 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, |
1177 | | 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, |
1178 | | 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, |
1179 | | 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, |
1180 | | 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, |
1181 | | 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, |
1182 | | 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, |
1183 | | 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, |
1184 | | 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, |
1185 | | 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, |
1186 | | 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, |
1187 | | 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, |
1188 | | 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, |
1189 | | 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, |
1190 | | 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, |
1191 | | 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, |
1192 | | 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, |
1193 | | 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, |
1194 | | 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, |
1195 | | 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, |
1196 | | 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, |
1197 | | 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, |
1198 | | 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, |
1199 | | 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, |
1200 | | 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, |
1201 | | 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, |
1202 | | 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, |
1203 | | 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, |
1204 | | 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, |
1205 | | 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, |
1206 | | 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, |
1207 | | 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, |
1208 | | 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, |
1209 | | 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, |
1210 | | 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, |
1211 | | 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, |
1212 | | 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, |
1213 | | 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, |
1214 | | 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, |
1215 | | 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, |
1216 | | 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, |
1217 | | 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, |
1218 | | 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, |
1219 | | 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, |
1220 | | 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, |
1221 | | 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 |
1222 | | }; |
1223 | | |
1224 | | test[167] = '\x80'; |
1225 | | SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); |
1226 | | |
1227 | | /* |
1228 | | * Rationale behind keeping output [formatted as below] is that |
1229 | | * one should be able to redirect it to a file, then copy-n-paste |
1230 | | * final "output val" from official example to another file, and |
1231 | | * compare the two with diff(1). |
1232 | | */ |
1233 | | for (i = 0; i < sizeof(out);) { |
1234 | | printf("%02X", out[i]); |
1235 | | printf(++i % 16 && i != sizeof(out) ? " " : "\n"); |
1236 | | } |
1237 | | |
1238 | | if (memcmp(out,result,sizeof(out))) { |
1239 | | fprintf(stderr,"failure\n"); |
1240 | | return 1; |
1241 | | } else { |
1242 | | fprintf(stderr,"success\n"); |
1243 | | return 0; |
1244 | | } |
1245 | | } |
1246 | | #endif |