/src/irssi/subprojects/openssl-1.1.1l/crypto/whrlpool/wp_block.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /** |
11 | | * The Whirlpool hashing function. |
12 | | * |
13 | | * See |
14 | | * P.S.L.M. Barreto, V. Rijmen, |
15 | | * ``The Whirlpool hashing function,'' |
16 | | * NESSIE submission, 2000 (tweaked version, 2001), |
17 | | * <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip> |
18 | | * |
19 | | * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and |
20 | | * Vincent Rijmen. Lookup "reference implementations" on |
21 | | * <http://planeta.terra.com.br/informatica/paulobarreto/> |
22 | | * |
23 | | * ============================================================================= |
24 | | * |
25 | | * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
26 | | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
27 | | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
28 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
29 | | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
30 | | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
31 | | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
32 | | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
33 | | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
34 | | * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
35 | | * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
36 | | * |
37 | | */ |
38 | | |
39 | | #include "wp_local.h" |
40 | | #include <string.h> |
41 | | |
42 | | typedef unsigned char u8; |
43 | | #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32) |
44 | | typedef unsigned __int64 u64; |
45 | | #elif defined(__arch64__) |
46 | | typedef unsigned long u64; |
47 | | #else |
48 | | typedef unsigned long long u64; |
49 | | #endif |
50 | | |
51 | 0 | #define ROUNDS 10 |
52 | | |
53 | | #define STRICT_ALIGNMENT |
54 | | #if !defined(PEDANTIC) && (defined(__i386) || defined(__i386__) || \ |
55 | | defined(__x86_64) || defined(__x86_64__) || \ |
56 | | defined(_M_IX86) || defined(_M_AMD64) || \ |
57 | | defined(_M_X64)) |
58 | | /* |
59 | | * Well, formally there're couple of other architectures, which permit |
60 | | * unaligned loads, specifically those not crossing cache lines, IA-64 and |
61 | | * PowerPC... |
62 | | */ |
63 | | # undef STRICT_ALIGNMENT |
64 | | #endif |
65 | | |
66 | | #ifndef STRICT_ALIGNMENT |
67 | | # ifdef __GNUC__ |
68 | | typedef u64 u64_a1 __attribute((__aligned__(1))); |
69 | | # else |
70 | | typedef u64 u64_a1; |
71 | | # endif |
72 | | #endif |
73 | | |
74 | | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) |
75 | | typedef u64 u64_aX __attribute((__aligned__(1))); |
76 | | #else |
77 | | typedef u64 u64_aX; |
78 | | #endif |
79 | | |
80 | | #undef SMALL_REGISTER_BANK |
81 | | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
82 | | # define SMALL_REGISTER_BANK |
83 | | # if defined(WHIRLPOOL_ASM) |
84 | | # ifndef OPENSSL_SMALL_FOOTPRINT |
85 | | /* |
86 | | * it appears that for elder non-MMX |
87 | | * CPUs this is actually faster! |
88 | | */ |
89 | | # define OPENSSL_SMALL_FOOTPRINT |
90 | | # endif |
91 | | # define GO_FOR_MMX(ctx,inp,num) do { \ |
92 | | extern unsigned long OPENSSL_ia32cap_P[]; \ |
93 | | void whirlpool_block_mmx(void *,const void *,size_t); \ |
94 | | if (!(OPENSSL_ia32cap_P[0] & (1<<23))) break; \ |
95 | | whirlpool_block_mmx(ctx->H.c,inp,num); return; \ |
96 | | } while (0) |
97 | | # endif |
98 | | #endif |
99 | | |
100 | | #undef ROTATE |
101 | | #ifndef PEDANTIC |
102 | | # if defined(_MSC_VER) |
103 | | # if defined(_WIN64) /* applies to both IA-64 and AMD64 */ |
104 | | # include <stdlib.h> |
105 | | # pragma intrinsic(_rotl64) |
106 | | # define ROTATE(a,n) _rotl64((a),n) |
107 | | # endif |
108 | | # elif defined(__GNUC__) && __GNUC__>=2 |
109 | | # if defined(__x86_64) || defined(__x86_64__) |
110 | | # if defined(L_ENDIAN) |
111 | | # define ROTATE(a,n) ({ u64 ret; asm ("rolq %1,%0" \ |
112 | | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) |
113 | | # elif defined(B_ENDIAN) |
114 | | /* |
115 | | * Most will argue that x86_64 is always little-endian. Well, yes, but |
116 | | * then we have stratus.com who has modified gcc to "emulate" |
117 | | * big-endian on x86. Is there evidence that they [or somebody else] |
118 | | * won't do same for x86_64? Naturally no. And this line is waiting |
119 | | * ready for that brave soul:-) |
120 | | */ |
121 | | # define ROTATE(a,n) ({ u64 ret; asm ("rorq %1,%0" \ |
122 | | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) |
123 | | # endif |
124 | | # elif defined(__ia64) || defined(__ia64__) |
125 | | # if defined(L_ENDIAN) |
126 | | # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ |
127 | | : "=r"(ret) : "r"(a),"M"(64-(n))); ret; }) |
128 | | # elif defined(B_ENDIAN) |
129 | | # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ |
130 | | : "=r"(ret) : "r"(a),"M"(n)); ret; }) |
131 | | # endif |
132 | | # endif |
133 | | # endif |
134 | | #endif |
135 | | |
136 | | #if defined(OPENSSL_SMALL_FOOTPRINT) |
137 | | # if !defined(ROTATE) |
138 | | # if defined(L_ENDIAN) /* little-endians have to rotate left */ |
139 | | # define ROTATE(i,n) ((i)<<(n) ^ (i)>>(64-n)) |
140 | | # elif defined(B_ENDIAN) /* big-endians have to rotate right */ |
141 | | # define ROTATE(i,n) ((i)>>(n) ^ (i)<<(64-n)) |
142 | | # endif |
143 | | # endif |
144 | | # if defined(ROTATE) && !defined(STRICT_ALIGNMENT) |
145 | | # define STRICT_ALIGNMENT /* ensure smallest table size */ |
146 | | # endif |
147 | | #endif |
148 | | |
149 | | /* |
150 | | * Table size depends on STRICT_ALIGNMENT and whether or not endian- |
151 | | * specific ROTATE macro is defined. If STRICT_ALIGNMENT is not |
152 | | * defined, which is normally the case on x86[_64] CPUs, the table is |
153 | | * 4KB large unconditionally. Otherwise if ROTATE is defined, the |
154 | | * table is 2KB large, and otherwise - 16KB. 2KB table requires a |
155 | | * whole bunch of additional rotations, but I'm willing to "trade," |
156 | | * because 16KB table certainly trashes L1 cache. I wish all CPUs |
157 | | * could handle unaligned load as 4KB table doesn't trash the cache, |
158 | | * nor does it require additional rotations. |
159 | | */ |
160 | | /* |
161 | | * Note that every Cn macro expands as two loads: one byte load and |
162 | | * one quadword load. One can argue that that many single-byte loads |
163 | | * is too excessive, as one could load a quadword and "milk" it for |
164 | | * eight 8-bit values instead. Well, yes, but in order to do so *and* |
165 | | * avoid excessive loads you have to accommodate a handful of 64-bit |
166 | | * values in the register bank and issue a bunch of shifts and mask. |
167 | | * It's a tradeoff: loads vs. shift and mask in big register bank[!]. |
168 | | * On most CPUs eight single-byte loads are faster and I let other |
169 | | * ones to depend on smart compiler to fold byte loads if beneficial. |
170 | | * Hand-coded assembler would be another alternative:-) |
171 | | */ |
172 | | #ifdef STRICT_ALIGNMENT |
173 | | # if defined(ROTATE) |
174 | | # define N 1 |
175 | | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7 |
176 | | # define C0(K,i) (Cx.q[K.c[(i)*8+0]]) |
177 | | # define C1(K,i) ROTATE(Cx.q[K.c[(i)*8+1]],8) |
178 | | # define C2(K,i) ROTATE(Cx.q[K.c[(i)*8+2]],16) |
179 | | # define C3(K,i) ROTATE(Cx.q[K.c[(i)*8+3]],24) |
180 | | # define C4(K,i) ROTATE(Cx.q[K.c[(i)*8+4]],32) |
181 | | # define C5(K,i) ROTATE(Cx.q[K.c[(i)*8+5]],40) |
182 | | # define C6(K,i) ROTATE(Cx.q[K.c[(i)*8+6]],48) |
183 | | # define C7(K,i) ROTATE(Cx.q[K.c[(i)*8+7]],56) |
184 | | # else |
185 | | # define N 8 |
186 | | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ |
187 | | c7,c0,c1,c2,c3,c4,c5,c6, \ |
188 | | c6,c7,c0,c1,c2,c3,c4,c5, \ |
189 | | c5,c6,c7,c0,c1,c2,c3,c4, \ |
190 | | c4,c5,c6,c7,c0,c1,c2,c3, \ |
191 | | c3,c4,c5,c6,c7,c0,c1,c2, \ |
192 | | c2,c3,c4,c5,c6,c7,c0,c1, \ |
193 | | c1,c2,c3,c4,c5,c6,c7,c0 |
194 | | # define C0(K,i) (Cx.q[0+8*K.c[(i)*8+0]]) |
195 | | # define C1(K,i) (Cx.q[1+8*K.c[(i)*8+1]]) |
196 | | # define C2(K,i) (Cx.q[2+8*K.c[(i)*8+2]]) |
197 | | # define C3(K,i) (Cx.q[3+8*K.c[(i)*8+3]]) |
198 | | # define C4(K,i) (Cx.q[4+8*K.c[(i)*8+4]]) |
199 | | # define C5(K,i) (Cx.q[5+8*K.c[(i)*8+5]]) |
200 | | # define C6(K,i) (Cx.q[6+8*K.c[(i)*8+6]]) |
201 | | # define C7(K,i) (Cx.q[7+8*K.c[(i)*8+7]]) |
202 | | # endif |
203 | | #else |
204 | 0 | # define N 2 |
205 | | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ |
206 | | c0,c1,c2,c3,c4,c5,c6,c7 |
207 | 0 | # define C0(K,i) (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]]) |
208 | 0 | # define C1(K,i) (((u64_a1*)(Cx.c+7))[2*K.c[(i)*8+1]]) |
209 | 0 | # define C2(K,i) (((u64_a1*)(Cx.c+6))[2*K.c[(i)*8+2]]) |
210 | 0 | # define C3(K,i) (((u64_a1*)(Cx.c+5))[2*K.c[(i)*8+3]]) |
211 | 0 | # define C4(K,i) (((u64_a1*)(Cx.c+4))[2*K.c[(i)*8+4]]) |
212 | 0 | # define C5(K,i) (((u64_a1*)(Cx.c+3))[2*K.c[(i)*8+5]]) |
213 | 0 | # define C6(K,i) (((u64_a1*)(Cx.c+2))[2*K.c[(i)*8+6]]) |
214 | 0 | # define C7(K,i) (((u64_a1*)(Cx.c+1))[2*K.c[(i)*8+7]]) |
215 | | #endif |
216 | | |
217 | | static const |
218 | | union { |
219 | | u8 c[(256 * N + ROUNDS) * sizeof(u64)]; |
220 | | u64 q[(256 * N + ROUNDS)]; |
221 | | } Cx = { |
222 | | { |
223 | | /* Note endian-neutral representation:-) */ |
224 | | LL(0x18, 0x18, 0x60, 0x18, 0xc0, 0x78, 0x30, 0xd8), |
225 | | LL(0x23, 0x23, 0x8c, 0x23, 0x05, 0xaf, 0x46, 0x26), |
226 | | LL(0xc6, 0xc6, 0x3f, 0xc6, 0x7e, 0xf9, 0x91, 0xb8), |
227 | | LL(0xe8, 0xe8, 0x87, 0xe8, 0x13, 0x6f, 0xcd, 0xfb), |
228 | | LL(0x87, 0x87, 0x26, 0x87, 0x4c, 0xa1, 0x13, 0xcb), |
229 | | LL(0xb8, 0xb8, 0xda, 0xb8, 0xa9, 0x62, 0x6d, 0x11), |
230 | | LL(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09), |
231 | | LL(0x4f, 0x4f, 0x21, 0x4f, 0x42, 0x6e, 0x9e, 0x0d), |
232 | | LL(0x36, 0x36, 0xd8, 0x36, 0xad, 0xee, 0x6c, 0x9b), |
233 | | LL(0xa6, 0xa6, 0xa2, 0xa6, 0x59, 0x04, 0x51, 0xff), |
234 | | LL(0xd2, 0xd2, 0x6f, 0xd2, 0xde, 0xbd, 0xb9, 0x0c), |
235 | | LL(0xf5, 0xf5, 0xf3, 0xf5, 0xfb, 0x06, 0xf7, 0x0e), |
236 | | LL(0x79, 0x79, 0xf9, 0x79, 0xef, 0x80, 0xf2, 0x96), |
237 | | LL(0x6f, 0x6f, 0xa1, 0x6f, 0x5f, 0xce, 0xde, 0x30), |
238 | | LL(0x91, 0x91, 0x7e, 0x91, 0xfc, 0xef, 0x3f, 0x6d), |
239 | | LL(0x52, 0x52, 0x55, 0x52, 0xaa, 0x07, 0xa4, 0xf8), |
240 | | LL(0x60, 0x60, 0x9d, 0x60, 0x27, 0xfd, 0xc0, 0x47), |
241 | | LL(0xbc, 0xbc, 0xca, 0xbc, 0x89, 0x76, 0x65, 0x35), |
242 | | LL(0x9b, 0x9b, 0x56, 0x9b, 0xac, 0xcd, 0x2b, 0x37), |
243 | | LL(0x8e, 0x8e, 0x02, 0x8e, 0x04, 0x8c, 0x01, 0x8a), |
244 | | LL(0xa3, 0xa3, 0xb6, 0xa3, 0x71, 0x15, 0x5b, 0xd2), |
245 | | LL(0x0c, 0x0c, 0x30, 0x0c, 0x60, 0x3c, 0x18, 0x6c), |
246 | | LL(0x7b, 0x7b, 0xf1, 0x7b, 0xff, 0x8a, 0xf6, 0x84), |
247 | | LL(0x35, 0x35, 0xd4, 0x35, 0xb5, 0xe1, 0x6a, 0x80), |
248 | | LL(0x1d, 0x1d, 0x74, 0x1d, 0xe8, 0x69, 0x3a, 0xf5), |
249 | | LL(0xe0, 0xe0, 0xa7, 0xe0, 0x53, 0x47, 0xdd, 0xb3), |
250 | | LL(0xd7, 0xd7, 0x7b, 0xd7, 0xf6, 0xac, 0xb3, 0x21), |
251 | | LL(0xc2, 0xc2, 0x2f, 0xc2, 0x5e, 0xed, 0x99, 0x9c), |
252 | | LL(0x2e, 0x2e, 0xb8, 0x2e, 0x6d, 0x96, 0x5c, 0x43), |
253 | | LL(0x4b, 0x4b, 0x31, 0x4b, 0x62, 0x7a, 0x96, 0x29), |
254 | | LL(0xfe, 0xfe, 0xdf, 0xfe, 0xa3, 0x21, 0xe1, 0x5d), |
255 | | LL(0x57, 0x57, 0x41, 0x57, 0x82, 0x16, 0xae, 0xd5), |
256 | | LL(0x15, 0x15, 0x54, 0x15, 0xa8, 0x41, 0x2a, 0xbd), |
257 | | LL(0x77, 0x77, 0xc1, 0x77, 0x9f, 0xb6, 0xee, 0xe8), |
258 | | LL(0x37, 0x37, 0xdc, 0x37, 0xa5, 0xeb, 0x6e, 0x92), |
259 | | LL(0xe5, 0xe5, 0xb3, 0xe5, 0x7b, 0x56, 0xd7, 0x9e), |
260 | | LL(0x9f, 0x9f, 0x46, 0x9f, 0x8c, 0xd9, 0x23, 0x13), |
261 | | LL(0xf0, 0xf0, 0xe7, 0xf0, 0xd3, 0x17, 0xfd, 0x23), |
262 | | LL(0x4a, 0x4a, 0x35, 0x4a, 0x6a, 0x7f, 0x94, 0x20), |
263 | | LL(0xda, 0xda, 0x4f, 0xda, 0x9e, 0x95, 0xa9, 0x44), |
264 | | LL(0x58, 0x58, 0x7d, 0x58, 0xfa, 0x25, 0xb0, 0xa2), |
265 | | LL(0xc9, 0xc9, 0x03, 0xc9, 0x06, 0xca, 0x8f, 0xcf), |
266 | | LL(0x29, 0x29, 0xa4, 0x29, 0x55, 0x8d, 0x52, 0x7c), |
267 | | LL(0x0a, 0x0a, 0x28, 0x0a, 0x50, 0x22, 0x14, 0x5a), |
268 | | LL(0xb1, 0xb1, 0xfe, 0xb1, 0xe1, 0x4f, 0x7f, 0x50), |
269 | | LL(0xa0, 0xa0, 0xba, 0xa0, 0x69, 0x1a, 0x5d, 0xc9), |
270 | | LL(0x6b, 0x6b, 0xb1, 0x6b, 0x7f, 0xda, 0xd6, 0x14), |
271 | | LL(0x85, 0x85, 0x2e, 0x85, 0x5c, 0xab, 0x17, 0xd9), |
272 | | LL(0xbd, 0xbd, 0xce, 0xbd, 0x81, 0x73, 0x67, 0x3c), |
273 | | LL(0x5d, 0x5d, 0x69, 0x5d, 0xd2, 0x34, 0xba, 0x8f), |
274 | | LL(0x10, 0x10, 0x40, 0x10, 0x80, 0x50, 0x20, 0x90), |
275 | | LL(0xf4, 0xf4, 0xf7, 0xf4, 0xf3, 0x03, 0xf5, 0x07), |
276 | | LL(0xcb, 0xcb, 0x0b, 0xcb, 0x16, 0xc0, 0x8b, 0xdd), |
277 | | LL(0x3e, 0x3e, 0xf8, 0x3e, 0xed, 0xc6, 0x7c, 0xd3), |
278 | | LL(0x05, 0x05, 0x14, 0x05, 0x28, 0x11, 0x0a, 0x2d), |
279 | | LL(0x67, 0x67, 0x81, 0x67, 0x1f, 0xe6, 0xce, 0x78), |
280 | | LL(0xe4, 0xe4, 0xb7, 0xe4, 0x73, 0x53, 0xd5, 0x97), |
281 | | LL(0x27, 0x27, 0x9c, 0x27, 0x25, 0xbb, 0x4e, 0x02), |
282 | | LL(0x41, 0x41, 0x19, 0x41, 0x32, 0x58, 0x82, 0x73), |
283 | | LL(0x8b, 0x8b, 0x16, 0x8b, 0x2c, 0x9d, 0x0b, 0xa7), |
284 | | LL(0xa7, 0xa7, 0xa6, 0xa7, 0x51, 0x01, 0x53, 0xf6), |
285 | | LL(0x7d, 0x7d, 0xe9, 0x7d, 0xcf, 0x94, 0xfa, 0xb2), |
286 | | LL(0x95, 0x95, 0x6e, 0x95, 0xdc, 0xfb, 0x37, 0x49), |
287 | | LL(0xd8, 0xd8, 0x47, 0xd8, 0x8e, 0x9f, 0xad, 0x56), |
288 | | LL(0xfb, 0xfb, 0xcb, 0xfb, 0x8b, 0x30, 0xeb, 0x70), |
289 | | LL(0xee, 0xee, 0x9f, 0xee, 0x23, 0x71, 0xc1, 0xcd), |
290 | | LL(0x7c, 0x7c, 0xed, 0x7c, 0xc7, 0x91, 0xf8, 0xbb), |
291 | | LL(0x66, 0x66, 0x85, 0x66, 0x17, 0xe3, 0xcc, 0x71), |
292 | | LL(0xdd, 0xdd, 0x53, 0xdd, 0xa6, 0x8e, 0xa7, 0x7b), |
293 | | LL(0x17, 0x17, 0x5c, 0x17, 0xb8, 0x4b, 0x2e, 0xaf), |
294 | | LL(0x47, 0x47, 0x01, 0x47, 0x02, 0x46, 0x8e, 0x45), |
295 | | LL(0x9e, 0x9e, 0x42, 0x9e, 0x84, 0xdc, 0x21, 0x1a), |
296 | | LL(0xca, 0xca, 0x0f, 0xca, 0x1e, 0xc5, 0x89, 0xd4), |
297 | | LL(0x2d, 0x2d, 0xb4, 0x2d, 0x75, 0x99, 0x5a, 0x58), |
298 | | LL(0xbf, 0xbf, 0xc6, 0xbf, 0x91, 0x79, 0x63, 0x2e), |
299 | | LL(0x07, 0x07, 0x1c, 0x07, 0x38, 0x1b, 0x0e, 0x3f), |
300 | | LL(0xad, 0xad, 0x8e, 0xad, 0x01, 0x23, 0x47, 0xac), |
301 | | LL(0x5a, 0x5a, 0x75, 0x5a, 0xea, 0x2f, 0xb4, 0xb0), |
302 | | LL(0x83, 0x83, 0x36, 0x83, 0x6c, 0xb5, 0x1b, 0xef), |
303 | | LL(0x33, 0x33, 0xcc, 0x33, 0x85, 0xff, 0x66, 0xb6), |
304 | | LL(0x63, 0x63, 0x91, 0x63, 0x3f, 0xf2, 0xc6, 0x5c), |
305 | | LL(0x02, 0x02, 0x08, 0x02, 0x10, 0x0a, 0x04, 0x12), |
306 | | LL(0xaa, 0xaa, 0x92, 0xaa, 0x39, 0x38, 0x49, 0x93), |
307 | | LL(0x71, 0x71, 0xd9, 0x71, 0xaf, 0xa8, 0xe2, 0xde), |
308 | | LL(0xc8, 0xc8, 0x07, 0xc8, 0x0e, 0xcf, 0x8d, 0xc6), |
309 | | LL(0x19, 0x19, 0x64, 0x19, 0xc8, 0x7d, 0x32, 0xd1), |
310 | | LL(0x49, 0x49, 0x39, 0x49, 0x72, 0x70, 0x92, 0x3b), |
311 | | LL(0xd9, 0xd9, 0x43, 0xd9, 0x86, 0x9a, 0xaf, 0x5f), |
312 | | LL(0xf2, 0xf2, 0xef, 0xf2, 0xc3, 0x1d, 0xf9, 0x31), |
313 | | LL(0xe3, 0xe3, 0xab, 0xe3, 0x4b, 0x48, 0xdb, 0xa8), |
314 | | LL(0x5b, 0x5b, 0x71, 0x5b, 0xe2, 0x2a, 0xb6, 0xb9), |
315 | | LL(0x88, 0x88, 0x1a, 0x88, 0x34, 0x92, 0x0d, 0xbc), |
316 | | LL(0x9a, 0x9a, 0x52, 0x9a, 0xa4, 0xc8, 0x29, 0x3e), |
317 | | LL(0x26, 0x26, 0x98, 0x26, 0x2d, 0xbe, 0x4c, 0x0b), |
318 | | LL(0x32, 0x32, 0xc8, 0x32, 0x8d, 0xfa, 0x64, 0xbf), |
319 | | LL(0xb0, 0xb0, 0xfa, 0xb0, 0xe9, 0x4a, 0x7d, 0x59), |
320 | | LL(0xe9, 0xe9, 0x83, 0xe9, 0x1b, 0x6a, 0xcf, 0xf2), |
321 | | LL(0x0f, 0x0f, 0x3c, 0x0f, 0x78, 0x33, 0x1e, 0x77), |
322 | | LL(0xd5, 0xd5, 0x73, 0xd5, 0xe6, 0xa6, 0xb7, 0x33), |
323 | | LL(0x80, 0x80, 0x3a, 0x80, 0x74, 0xba, 0x1d, 0xf4), |
324 | | LL(0xbe, 0xbe, 0xc2, 0xbe, 0x99, 0x7c, 0x61, 0x27), |
325 | | LL(0xcd, 0xcd, 0x13, 0xcd, 0x26, 0xde, 0x87, 0xeb), |
326 | | LL(0x34, 0x34, 0xd0, 0x34, 0xbd, 0xe4, 0x68, 0x89), |
327 | | LL(0x48, 0x48, 0x3d, 0x48, 0x7a, 0x75, 0x90, 0x32), |
328 | | LL(0xff, 0xff, 0xdb, 0xff, 0xab, 0x24, 0xe3, 0x54), |
329 | | LL(0x7a, 0x7a, 0xf5, 0x7a, 0xf7, 0x8f, 0xf4, 0x8d), |
330 | | LL(0x90, 0x90, 0x7a, 0x90, 0xf4, 0xea, 0x3d, 0x64), |
331 | | LL(0x5f, 0x5f, 0x61, 0x5f, 0xc2, 0x3e, 0xbe, 0x9d), |
332 | | LL(0x20, 0x20, 0x80, 0x20, 0x1d, 0xa0, 0x40, 0x3d), |
333 | | LL(0x68, 0x68, 0xbd, 0x68, 0x67, 0xd5, 0xd0, 0x0f), |
334 | | LL(0x1a, 0x1a, 0x68, 0x1a, 0xd0, 0x72, 0x34, 0xca), |
335 | | LL(0xae, 0xae, 0x82, 0xae, 0x19, 0x2c, 0x41, 0xb7), |
336 | | LL(0xb4, 0xb4, 0xea, 0xb4, 0xc9, 0x5e, 0x75, 0x7d), |
337 | | LL(0x54, 0x54, 0x4d, 0x54, 0x9a, 0x19, 0xa8, 0xce), |
338 | | LL(0x93, 0x93, 0x76, 0x93, 0xec, 0xe5, 0x3b, 0x7f), |
339 | | LL(0x22, 0x22, 0x88, 0x22, 0x0d, 0xaa, 0x44, 0x2f), |
340 | | LL(0x64, 0x64, 0x8d, 0x64, 0x07, 0xe9, 0xc8, 0x63), |
341 | | LL(0xf1, 0xf1, 0xe3, 0xf1, 0xdb, 0x12, 0xff, 0x2a), |
342 | | LL(0x73, 0x73, 0xd1, 0x73, 0xbf, 0xa2, 0xe6, 0xcc), |
343 | | LL(0x12, 0x12, 0x48, 0x12, 0x90, 0x5a, 0x24, 0x82), |
344 | | LL(0x40, 0x40, 0x1d, 0x40, 0x3a, 0x5d, 0x80, 0x7a), |
345 | | LL(0x08, 0x08, 0x20, 0x08, 0x40, 0x28, 0x10, 0x48), |
346 | | LL(0xc3, 0xc3, 0x2b, 0xc3, 0x56, 0xe8, 0x9b, 0x95), |
347 | | LL(0xec, 0xec, 0x97, 0xec, 0x33, 0x7b, 0xc5, 0xdf), |
348 | | LL(0xdb, 0xdb, 0x4b, 0xdb, 0x96, 0x90, 0xab, 0x4d), |
349 | | LL(0xa1, 0xa1, 0xbe, 0xa1, 0x61, 0x1f, 0x5f, 0xc0), |
350 | | LL(0x8d, 0x8d, 0x0e, 0x8d, 0x1c, 0x83, 0x07, 0x91), |
351 | | LL(0x3d, 0x3d, 0xf4, 0x3d, 0xf5, 0xc9, 0x7a, 0xc8), |
352 | | LL(0x97, 0x97, 0x66, 0x97, 0xcc, 0xf1, 0x33, 0x5b), |
353 | | LL(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), |
354 | | LL(0xcf, 0xcf, 0x1b, 0xcf, 0x36, 0xd4, 0x83, 0xf9), |
355 | | LL(0x2b, 0x2b, 0xac, 0x2b, 0x45, 0x87, 0x56, 0x6e), |
356 | | LL(0x76, 0x76, 0xc5, 0x76, 0x97, 0xb3, 0xec, 0xe1), |
357 | | LL(0x82, 0x82, 0x32, 0x82, 0x64, 0xb0, 0x19, 0xe6), |
358 | | LL(0xd6, 0xd6, 0x7f, 0xd6, 0xfe, 0xa9, 0xb1, 0x28), |
359 | | LL(0x1b, 0x1b, 0x6c, 0x1b, 0xd8, 0x77, 0x36, 0xc3), |
360 | | LL(0xb5, 0xb5, 0xee, 0xb5, 0xc1, 0x5b, 0x77, 0x74), |
361 | | LL(0xaf, 0xaf, 0x86, 0xaf, 0x11, 0x29, 0x43, 0xbe), |
362 | | LL(0x6a, 0x6a, 0xb5, 0x6a, 0x77, 0xdf, 0xd4, 0x1d), |
363 | | LL(0x50, 0x50, 0x5d, 0x50, 0xba, 0x0d, 0xa0, 0xea), |
364 | | LL(0x45, 0x45, 0x09, 0x45, 0x12, 0x4c, 0x8a, 0x57), |
365 | | LL(0xf3, 0xf3, 0xeb, 0xf3, 0xcb, 0x18, 0xfb, 0x38), |
366 | | LL(0x30, 0x30, 0xc0, 0x30, 0x9d, 0xf0, 0x60, 0xad), |
367 | | LL(0xef, 0xef, 0x9b, 0xef, 0x2b, 0x74, 0xc3, 0xc4), |
368 | | LL(0x3f, 0x3f, 0xfc, 0x3f, 0xe5, 0xc3, 0x7e, 0xda), |
369 | | LL(0x55, 0x55, 0x49, 0x55, 0x92, 0x1c, 0xaa, 0xc7), |
370 | | LL(0xa2, 0xa2, 0xb2, 0xa2, 0x79, 0x10, 0x59, 0xdb), |
371 | | LL(0xea, 0xea, 0x8f, 0xea, 0x03, 0x65, 0xc9, 0xe9), |
372 | | LL(0x65, 0x65, 0x89, 0x65, 0x0f, 0xec, 0xca, 0x6a), |
373 | | LL(0xba, 0xba, 0xd2, 0xba, 0xb9, 0x68, 0x69, 0x03), |
374 | | LL(0x2f, 0x2f, 0xbc, 0x2f, 0x65, 0x93, 0x5e, 0x4a), |
375 | | LL(0xc0, 0xc0, 0x27, 0xc0, 0x4e, 0xe7, 0x9d, 0x8e), |
376 | | LL(0xde, 0xde, 0x5f, 0xde, 0xbe, 0x81, 0xa1, 0x60), |
377 | | LL(0x1c, 0x1c, 0x70, 0x1c, 0xe0, 0x6c, 0x38, 0xfc), |
378 | | LL(0xfd, 0xfd, 0xd3, 0xfd, 0xbb, 0x2e, 0xe7, 0x46), |
379 | | LL(0x4d, 0x4d, 0x29, 0x4d, 0x52, 0x64, 0x9a, 0x1f), |
380 | | LL(0x92, 0x92, 0x72, 0x92, 0xe4, 0xe0, 0x39, 0x76), |
381 | | LL(0x75, 0x75, 0xc9, 0x75, 0x8f, 0xbc, 0xea, 0xfa), |
382 | | LL(0x06, 0x06, 0x18, 0x06, 0x30, 0x1e, 0x0c, 0x36), |
383 | | LL(0x8a, 0x8a, 0x12, 0x8a, 0x24, 0x98, 0x09, 0xae), |
384 | | LL(0xb2, 0xb2, 0xf2, 0xb2, 0xf9, 0x40, 0x79, 0x4b), |
385 | | LL(0xe6, 0xe6, 0xbf, 0xe6, 0x63, 0x59, 0xd1, 0x85), |
386 | | LL(0x0e, 0x0e, 0x38, 0x0e, 0x70, 0x36, 0x1c, 0x7e), |
387 | | LL(0x1f, 0x1f, 0x7c, 0x1f, 0xf8, 0x63, 0x3e, 0xe7), |
388 | | LL(0x62, 0x62, 0x95, 0x62, 0x37, 0xf7, 0xc4, 0x55), |
389 | | LL(0xd4, 0xd4, 0x77, 0xd4, 0xee, 0xa3, 0xb5, 0x3a), |
390 | | LL(0xa8, 0xa8, 0x9a, 0xa8, 0x29, 0x32, 0x4d, 0x81), |
391 | | LL(0x96, 0x96, 0x62, 0x96, 0xc4, 0xf4, 0x31, 0x52), |
392 | | LL(0xf9, 0xf9, 0xc3, 0xf9, 0x9b, 0x3a, 0xef, 0x62), |
393 | | LL(0xc5, 0xc5, 0x33, 0xc5, 0x66, 0xf6, 0x97, 0xa3), |
394 | | LL(0x25, 0x25, 0x94, 0x25, 0x35, 0xb1, 0x4a, 0x10), |
395 | | LL(0x59, 0x59, 0x79, 0x59, 0xf2, 0x20, 0xb2, 0xab), |
396 | | LL(0x84, 0x84, 0x2a, 0x84, 0x54, 0xae, 0x15, 0xd0), |
397 | | LL(0x72, 0x72, 0xd5, 0x72, 0xb7, 0xa7, 0xe4, 0xc5), |
398 | | LL(0x39, 0x39, 0xe4, 0x39, 0xd5, 0xdd, 0x72, 0xec), |
399 | | LL(0x4c, 0x4c, 0x2d, 0x4c, 0x5a, 0x61, 0x98, 0x16), |
400 | | LL(0x5e, 0x5e, 0x65, 0x5e, 0xca, 0x3b, 0xbc, 0x94), |
401 | | LL(0x78, 0x78, 0xfd, 0x78, 0xe7, 0x85, 0xf0, 0x9f), |
402 | | LL(0x38, 0x38, 0xe0, 0x38, 0xdd, 0xd8, 0x70, 0xe5), |
403 | | LL(0x8c, 0x8c, 0x0a, 0x8c, 0x14, 0x86, 0x05, 0x98), |
404 | | LL(0xd1, 0xd1, 0x63, 0xd1, 0xc6, 0xb2, 0xbf, 0x17), |
405 | | LL(0xa5, 0xa5, 0xae, 0xa5, 0x41, 0x0b, 0x57, 0xe4), |
406 | | LL(0xe2, 0xe2, 0xaf, 0xe2, 0x43, 0x4d, 0xd9, 0xa1), |
407 | | LL(0x61, 0x61, 0x99, 0x61, 0x2f, 0xf8, 0xc2, 0x4e), |
408 | | LL(0xb3, 0xb3, 0xf6, 0xb3, 0xf1, 0x45, 0x7b, 0x42), |
409 | | LL(0x21, 0x21, 0x84, 0x21, 0x15, 0xa5, 0x42, 0x34), |
410 | | LL(0x9c, 0x9c, 0x4a, 0x9c, 0x94, 0xd6, 0x25, 0x08), |
411 | | LL(0x1e, 0x1e, 0x78, 0x1e, 0xf0, 0x66, 0x3c, 0xee), |
412 | | LL(0x43, 0x43, 0x11, 0x43, 0x22, 0x52, 0x86, 0x61), |
413 | | LL(0xc7, 0xc7, 0x3b, 0xc7, 0x76, 0xfc, 0x93, 0xb1), |
414 | | LL(0xfc, 0xfc, 0xd7, 0xfc, 0xb3, 0x2b, 0xe5, 0x4f), |
415 | | LL(0x04, 0x04, 0x10, 0x04, 0x20, 0x14, 0x08, 0x24), |
416 | | LL(0x51, 0x51, 0x59, 0x51, 0xb2, 0x08, 0xa2, 0xe3), |
417 | | LL(0x99, 0x99, 0x5e, 0x99, 0xbc, 0xc7, 0x2f, 0x25), |
418 | | LL(0x6d, 0x6d, 0xa9, 0x6d, 0x4f, 0xc4, 0xda, 0x22), |
419 | | LL(0x0d, 0x0d, 0x34, 0x0d, 0x68, 0x39, 0x1a, 0x65), |
420 | | LL(0xfa, 0xfa, 0xcf, 0xfa, 0x83, 0x35, 0xe9, 0x79), |
421 | | LL(0xdf, 0xdf, 0x5b, 0xdf, 0xb6, 0x84, 0xa3, 0x69), |
422 | | LL(0x7e, 0x7e, 0xe5, 0x7e, 0xd7, 0x9b, 0xfc, 0xa9), |
423 | | LL(0x24, 0x24, 0x90, 0x24, 0x3d, 0xb4, 0x48, 0x19), |
424 | | LL(0x3b, 0x3b, 0xec, 0x3b, 0xc5, 0xd7, 0x76, 0xfe), |
425 | | LL(0xab, 0xab, 0x96, 0xab, 0x31, 0x3d, 0x4b, 0x9a), |
426 | | LL(0xce, 0xce, 0x1f, 0xce, 0x3e, 0xd1, 0x81, 0xf0), |
427 | | LL(0x11, 0x11, 0x44, 0x11, 0x88, 0x55, 0x22, 0x99), |
428 | | LL(0x8f, 0x8f, 0x06, 0x8f, 0x0c, 0x89, 0x03, 0x83), |
429 | | LL(0x4e, 0x4e, 0x25, 0x4e, 0x4a, 0x6b, 0x9c, 0x04), |
430 | | LL(0xb7, 0xb7, 0xe6, 0xb7, 0xd1, 0x51, 0x73, 0x66), |
431 | | LL(0xeb, 0xeb, 0x8b, 0xeb, 0x0b, 0x60, 0xcb, 0xe0), |
432 | | LL(0x3c, 0x3c, 0xf0, 0x3c, 0xfd, 0xcc, 0x78, 0xc1), |
433 | | LL(0x81, 0x81, 0x3e, 0x81, 0x7c, 0xbf, 0x1f, 0xfd), |
434 | | LL(0x94, 0x94, 0x6a, 0x94, 0xd4, 0xfe, 0x35, 0x40), |
435 | | LL(0xf7, 0xf7, 0xfb, 0xf7, 0xeb, 0x0c, 0xf3, 0x1c), |
436 | | LL(0xb9, 0xb9, 0xde, 0xb9, 0xa1, 0x67, 0x6f, 0x18), |
437 | | LL(0x13, 0x13, 0x4c, 0x13, 0x98, 0x5f, 0x26, 0x8b), |
438 | | LL(0x2c, 0x2c, 0xb0, 0x2c, 0x7d, 0x9c, 0x58, 0x51), |
439 | | LL(0xd3, 0xd3, 0x6b, 0xd3, 0xd6, 0xb8, 0xbb, 0x05), |
440 | | LL(0xe7, 0xe7, 0xbb, 0xe7, 0x6b, 0x5c, 0xd3, 0x8c), |
441 | | LL(0x6e, 0x6e, 0xa5, 0x6e, 0x57, 0xcb, 0xdc, 0x39), |
442 | | LL(0xc4, 0xc4, 0x37, 0xc4, 0x6e, 0xf3, 0x95, 0xaa), |
443 | | LL(0x03, 0x03, 0x0c, 0x03, 0x18, 0x0f, 0x06, 0x1b), |
444 | | LL(0x56, 0x56, 0x45, 0x56, 0x8a, 0x13, 0xac, 0xdc), |
445 | | LL(0x44, 0x44, 0x0d, 0x44, 0x1a, 0x49, 0x88, 0x5e), |
446 | | LL(0x7f, 0x7f, 0xe1, 0x7f, 0xdf, 0x9e, 0xfe, 0xa0), |
447 | | LL(0xa9, 0xa9, 0x9e, 0xa9, 0x21, 0x37, 0x4f, 0x88), |
448 | | LL(0x2a, 0x2a, 0xa8, 0x2a, 0x4d, 0x82, 0x54, 0x67), |
449 | | LL(0xbb, 0xbb, 0xd6, 0xbb, 0xb1, 0x6d, 0x6b, 0x0a), |
450 | | LL(0xc1, 0xc1, 0x23, 0xc1, 0x46, 0xe2, 0x9f, 0x87), |
451 | | LL(0x53, 0x53, 0x51, 0x53, 0xa2, 0x02, 0xa6, 0xf1), |
452 | | LL(0xdc, 0xdc, 0x57, 0xdc, 0xae, 0x8b, 0xa5, 0x72), |
453 | | LL(0x0b, 0x0b, 0x2c, 0x0b, 0x58, 0x27, 0x16, 0x53), |
454 | | LL(0x9d, 0x9d, 0x4e, 0x9d, 0x9c, 0xd3, 0x27, 0x01), |
455 | | LL(0x6c, 0x6c, 0xad, 0x6c, 0x47, 0xc1, 0xd8, 0x2b), |
456 | | LL(0x31, 0x31, 0xc4, 0x31, 0x95, 0xf5, 0x62, 0xa4), |
457 | | LL(0x74, 0x74, 0xcd, 0x74, 0x87, 0xb9, 0xe8, 0xf3), |
458 | | LL(0xf6, 0xf6, 0xff, 0xf6, 0xe3, 0x09, 0xf1, 0x15), |
459 | | LL(0x46, 0x46, 0x05, 0x46, 0x0a, 0x43, 0x8c, 0x4c), |
460 | | LL(0xac, 0xac, 0x8a, 0xac, 0x09, 0x26, 0x45, 0xa5), |
461 | | LL(0x89, 0x89, 0x1e, 0x89, 0x3c, 0x97, 0x0f, 0xb5), |
462 | | LL(0x14, 0x14, 0x50, 0x14, 0xa0, 0x44, 0x28, 0xb4), |
463 | | LL(0xe1, 0xe1, 0xa3, 0xe1, 0x5b, 0x42, 0xdf, 0xba), |
464 | | LL(0x16, 0x16, 0x58, 0x16, 0xb0, 0x4e, 0x2c, 0xa6), |
465 | | LL(0x3a, 0x3a, 0xe8, 0x3a, 0xcd, 0xd2, 0x74, 0xf7), |
466 | | LL(0x69, 0x69, 0xb9, 0x69, 0x6f, 0xd0, 0xd2, 0x06), |
467 | | LL(0x09, 0x09, 0x24, 0x09, 0x48, 0x2d, 0x12, 0x41), |
468 | | LL(0x70, 0x70, 0xdd, 0x70, 0xa7, 0xad, 0xe0, 0xd7), |
469 | | LL(0xb6, 0xb6, 0xe2, 0xb6, 0xd9, 0x54, 0x71, 0x6f), |
470 | | LL(0xd0, 0xd0, 0x67, 0xd0, 0xce, 0xb7, 0xbd, 0x1e), |
471 | | LL(0xed, 0xed, 0x93, 0xed, 0x3b, 0x7e, 0xc7, 0xd6), |
472 | | LL(0xcc, 0xcc, 0x17, 0xcc, 0x2e, 0xdb, 0x85, 0xe2), |
473 | | LL(0x42, 0x42, 0x15, 0x42, 0x2a, 0x57, 0x84, 0x68), |
474 | | LL(0x98, 0x98, 0x5a, 0x98, 0xb4, 0xc2, 0x2d, 0x2c), |
475 | | LL(0xa4, 0xa4, 0xaa, 0xa4, 0x49, 0x0e, 0x55, 0xed), |
476 | | LL(0x28, 0x28, 0xa0, 0x28, 0x5d, 0x88, 0x50, 0x75), |
477 | | LL(0x5c, 0x5c, 0x6d, 0x5c, 0xda, 0x31, 0xb8, 0x86), |
478 | | LL(0xf8, 0xf8, 0xc7, 0xf8, 0x93, 0x3f, 0xed, 0x6b), |
479 | | LL(0x86, 0x86, 0x22, 0x86, 0x44, 0xa4, 0x11, 0xc2), |
480 | 0 | #define RC (&(Cx.q[256*N])) |
481 | | 0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f, |
482 | | /* rc[ROUNDS] */ |
483 | | 0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b, |
484 | | 0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b, |
485 | | 0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58, |
486 | | 0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4, |
487 | | 0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95, |
488 | | 0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d, |
489 | | 0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33 |
490 | | } |
491 | | }; |
492 | | |
493 | | void whirlpool_block(WHIRLPOOL_CTX *ctx, const void *inp, size_t n) |
494 | 0 | { |
495 | 0 | int r; |
496 | 0 | const u8 *p = inp; |
497 | 0 | union { |
498 | 0 | u64 q[8]; |
499 | 0 | u8 c[64]; |
500 | 0 | } S, K, *H = (void *)ctx->H.q; |
501 | |
|
502 | | #ifdef GO_FOR_MMX |
503 | | GO_FOR_MMX(ctx, inp, n); |
504 | | #endif |
505 | 0 | do { |
506 | | #ifdef OPENSSL_SMALL_FOOTPRINT |
507 | | u64 L[8]; |
508 | | int i; |
509 | | |
510 | | for (i = 0; i < 64; i++) |
511 | | S.c[i] = (K.c[i] = H->c[i]) ^ p[i]; |
512 | | for (r = 0; r < ROUNDS; r++) { |
513 | | for (i = 0; i < 8; i++) { |
514 | | L[i] = i ? 0 : RC[r]; |
515 | | L[i] ^= C0(K, i) ^ C1(K, (i - 1) & 7) ^ |
516 | | C2(K, (i - 2) & 7) ^ C3(K, (i - 3) & 7) ^ |
517 | | C4(K, (i - 4) & 7) ^ C5(K, (i - 5) & 7) ^ |
518 | | C6(K, (i - 6) & 7) ^ C7(K, (i - 7) & 7); |
519 | | } |
520 | | memcpy(K.q, L, 64); |
521 | | for (i = 0; i < 8; i++) { |
522 | | L[i] ^= C0(S, i) ^ C1(S, (i - 1) & 7) ^ |
523 | | C2(S, (i - 2) & 7) ^ C3(S, (i - 3) & 7) ^ |
524 | | C4(S, (i - 4) & 7) ^ C5(S, (i - 5) & 7) ^ |
525 | | C6(S, (i - 6) & 7) ^ C7(S, (i - 7) & 7); |
526 | | } |
527 | | memcpy(S.q, L, 64); |
528 | | } |
529 | | for (i = 0; i < 64; i++) |
530 | | H->c[i] ^= S.c[i] ^ p[i]; |
531 | | #else |
532 | 0 | u64 L0, L1, L2, L3, L4, L5, L6, L7; |
533 | |
|
534 | | # ifdef STRICT_ALIGNMENT |
535 | | if ((size_t)p & 7) { |
536 | | memcpy(S.c, p, 64); |
537 | | S.q[0] ^= (K.q[0] = H->q[0]); |
538 | | S.q[1] ^= (K.q[1] = H->q[1]); |
539 | | S.q[2] ^= (K.q[2] = H->q[2]); |
540 | | S.q[3] ^= (K.q[3] = H->q[3]); |
541 | | S.q[4] ^= (K.q[4] = H->q[4]); |
542 | | S.q[5] ^= (K.q[5] = H->q[5]); |
543 | | S.q[6] ^= (K.q[6] = H->q[6]); |
544 | | S.q[7] ^= (K.q[7] = H->q[7]); |
545 | | } else |
546 | | # endif |
547 | 0 | { |
548 | 0 | const u64_aX *pa = (const u64_aX *)p; |
549 | 0 | S.q[0] = (K.q[0] = H->q[0]) ^ pa[0]; |
550 | 0 | S.q[1] = (K.q[1] = H->q[1]) ^ pa[1]; |
551 | 0 | S.q[2] = (K.q[2] = H->q[2]) ^ pa[2]; |
552 | 0 | S.q[3] = (K.q[3] = H->q[3]) ^ pa[3]; |
553 | 0 | S.q[4] = (K.q[4] = H->q[4]) ^ pa[4]; |
554 | 0 | S.q[5] = (K.q[5] = H->q[5]) ^ pa[5]; |
555 | 0 | S.q[6] = (K.q[6] = H->q[6]) ^ pa[6]; |
556 | 0 | S.q[7] = (K.q[7] = H->q[7]) ^ pa[7]; |
557 | 0 | } |
558 | |
|
559 | 0 | for (r = 0; r < ROUNDS; r++) { |
560 | | # ifdef SMALL_REGISTER_BANK |
561 | | L0 = C0(K, 0) ^ C1(K, 7) ^ C2(K, 6) ^ C3(K, 5) ^ |
562 | | C4(K, 4) ^ C5(K, 3) ^ C6(K, 2) ^ C7(K, 1) ^ RC[r]; |
563 | | L1 = C0(K, 1) ^ C1(K, 0) ^ C2(K, 7) ^ C3(K, 6) ^ |
564 | | C4(K, 5) ^ C5(K, 4) ^ C6(K, 3) ^ C7(K, 2); |
565 | | L2 = C0(K, 2) ^ C1(K, 1) ^ C2(K, 0) ^ C3(K, 7) ^ |
566 | | C4(K, 6) ^ C5(K, 5) ^ C6(K, 4) ^ C7(K, 3); |
567 | | L3 = C0(K, 3) ^ C1(K, 2) ^ C2(K, 1) ^ C3(K, 0) ^ |
568 | | C4(K, 7) ^ C5(K, 6) ^ C6(K, 5) ^ C7(K, 4); |
569 | | L4 = C0(K, 4) ^ C1(K, 3) ^ C2(K, 2) ^ C3(K, 1) ^ |
570 | | C4(K, 0) ^ C5(K, 7) ^ C6(K, 6) ^ C7(K, 5); |
571 | | L5 = C0(K, 5) ^ C1(K, 4) ^ C2(K, 3) ^ C3(K, 2) ^ |
572 | | C4(K, 1) ^ C5(K, 0) ^ C6(K, 7) ^ C7(K, 6); |
573 | | L6 = C0(K, 6) ^ C1(K, 5) ^ C2(K, 4) ^ C3(K, 3) ^ |
574 | | C4(K, 2) ^ C5(K, 1) ^ C6(K, 0) ^ C7(K, 7); |
575 | | L7 = C0(K, 7) ^ C1(K, 6) ^ C2(K, 5) ^ C3(K, 4) ^ |
576 | | C4(K, 3) ^ C5(K, 2) ^ C6(K, 1) ^ C7(K, 0); |
577 | | |
578 | | K.q[0] = L0; |
579 | | K.q[1] = L1; |
580 | | K.q[2] = L2; |
581 | | K.q[3] = L3; |
582 | | K.q[4] = L4; |
583 | | K.q[5] = L5; |
584 | | K.q[6] = L6; |
585 | | K.q[7] = L7; |
586 | | |
587 | | L0 ^= C0(S, 0) ^ C1(S, 7) ^ C2(S, 6) ^ C3(S, 5) ^ |
588 | | C4(S, 4) ^ C5(S, 3) ^ C6(S, 2) ^ C7(S, 1); |
589 | | L1 ^= C0(S, 1) ^ C1(S, 0) ^ C2(S, 7) ^ C3(S, 6) ^ |
590 | | C4(S, 5) ^ C5(S, 4) ^ C6(S, 3) ^ C7(S, 2); |
591 | | L2 ^= C0(S, 2) ^ C1(S, 1) ^ C2(S, 0) ^ C3(S, 7) ^ |
592 | | C4(S, 6) ^ C5(S, 5) ^ C6(S, 4) ^ C7(S, 3); |
593 | | L3 ^= C0(S, 3) ^ C1(S, 2) ^ C2(S, 1) ^ C3(S, 0) ^ |
594 | | C4(S, 7) ^ C5(S, 6) ^ C6(S, 5) ^ C7(S, 4); |
595 | | L4 ^= C0(S, 4) ^ C1(S, 3) ^ C2(S, 2) ^ C3(S, 1) ^ |
596 | | C4(S, 0) ^ C5(S, 7) ^ C6(S, 6) ^ C7(S, 5); |
597 | | L5 ^= C0(S, 5) ^ C1(S, 4) ^ C2(S, 3) ^ C3(S, 2) ^ |
598 | | C4(S, 1) ^ C5(S, 0) ^ C6(S, 7) ^ C7(S, 6); |
599 | | L6 ^= C0(S, 6) ^ C1(S, 5) ^ C2(S, 4) ^ C3(S, 3) ^ |
600 | | C4(S, 2) ^ C5(S, 1) ^ C6(S, 0) ^ C7(S, 7); |
601 | | L7 ^= C0(S, 7) ^ C1(S, 6) ^ C2(S, 5) ^ C3(S, 4) ^ |
602 | | C4(S, 3) ^ C5(S, 2) ^ C6(S, 1) ^ C7(S, 0); |
603 | | |
604 | | S.q[0] = L0; |
605 | | S.q[1] = L1; |
606 | | S.q[2] = L2; |
607 | | S.q[3] = L3; |
608 | | S.q[4] = L4; |
609 | | S.q[5] = L5; |
610 | | S.q[6] = L6; |
611 | | S.q[7] = L7; |
612 | | # else |
613 | 0 | L0 = C0(K, 0); |
614 | 0 | L1 = C1(K, 0); |
615 | 0 | L2 = C2(K, 0); |
616 | 0 | L3 = C3(K, 0); |
617 | 0 | L4 = C4(K, 0); |
618 | 0 | L5 = C5(K, 0); |
619 | 0 | L6 = C6(K, 0); |
620 | 0 | L7 = C7(K, 0); |
621 | 0 | L0 ^= RC[r]; |
622 | |
|
623 | 0 | L1 ^= C0(K, 1); |
624 | 0 | L2 ^= C1(K, 1); |
625 | 0 | L3 ^= C2(K, 1); |
626 | 0 | L4 ^= C3(K, 1); |
627 | 0 | L5 ^= C4(K, 1); |
628 | 0 | L6 ^= C5(K, 1); |
629 | 0 | L7 ^= C6(K, 1); |
630 | 0 | L0 ^= C7(K, 1); |
631 | |
|
632 | 0 | L2 ^= C0(K, 2); |
633 | 0 | L3 ^= C1(K, 2); |
634 | 0 | L4 ^= C2(K, 2); |
635 | 0 | L5 ^= C3(K, 2); |
636 | 0 | L6 ^= C4(K, 2); |
637 | 0 | L7 ^= C5(K, 2); |
638 | 0 | L0 ^= C6(K, 2); |
639 | 0 | L1 ^= C7(K, 2); |
640 | |
|
641 | 0 | L3 ^= C0(K, 3); |
642 | 0 | L4 ^= C1(K, 3); |
643 | 0 | L5 ^= C2(K, 3); |
644 | 0 | L6 ^= C3(K, 3); |
645 | 0 | L7 ^= C4(K, 3); |
646 | 0 | L0 ^= C5(K, 3); |
647 | 0 | L1 ^= C6(K, 3); |
648 | 0 | L2 ^= C7(K, 3); |
649 | |
|
650 | 0 | L4 ^= C0(K, 4); |
651 | 0 | L5 ^= C1(K, 4); |
652 | 0 | L6 ^= C2(K, 4); |
653 | 0 | L7 ^= C3(K, 4); |
654 | 0 | L0 ^= C4(K, 4); |
655 | 0 | L1 ^= C5(K, 4); |
656 | 0 | L2 ^= C6(K, 4); |
657 | 0 | L3 ^= C7(K, 4); |
658 | |
|
659 | 0 | L5 ^= C0(K, 5); |
660 | 0 | L6 ^= C1(K, 5); |
661 | 0 | L7 ^= C2(K, 5); |
662 | 0 | L0 ^= C3(K, 5); |
663 | 0 | L1 ^= C4(K, 5); |
664 | 0 | L2 ^= C5(K, 5); |
665 | 0 | L3 ^= C6(K, 5); |
666 | 0 | L4 ^= C7(K, 5); |
667 | |
|
668 | 0 | L6 ^= C0(K, 6); |
669 | 0 | L7 ^= C1(K, 6); |
670 | 0 | L0 ^= C2(K, 6); |
671 | 0 | L1 ^= C3(K, 6); |
672 | 0 | L2 ^= C4(K, 6); |
673 | 0 | L3 ^= C5(K, 6); |
674 | 0 | L4 ^= C6(K, 6); |
675 | 0 | L5 ^= C7(K, 6); |
676 | |
|
677 | 0 | L7 ^= C0(K, 7); |
678 | 0 | L0 ^= C1(K, 7); |
679 | 0 | L1 ^= C2(K, 7); |
680 | 0 | L2 ^= C3(K, 7); |
681 | 0 | L3 ^= C4(K, 7); |
682 | 0 | L4 ^= C5(K, 7); |
683 | 0 | L5 ^= C6(K, 7); |
684 | 0 | L6 ^= C7(K, 7); |
685 | |
|
686 | 0 | K.q[0] = L0; |
687 | 0 | K.q[1] = L1; |
688 | 0 | K.q[2] = L2; |
689 | 0 | K.q[3] = L3; |
690 | 0 | K.q[4] = L4; |
691 | 0 | K.q[5] = L5; |
692 | 0 | K.q[6] = L6; |
693 | 0 | K.q[7] = L7; |
694 | |
|
695 | 0 | L0 ^= C0(S, 0); |
696 | 0 | L1 ^= C1(S, 0); |
697 | 0 | L2 ^= C2(S, 0); |
698 | 0 | L3 ^= C3(S, 0); |
699 | 0 | L4 ^= C4(S, 0); |
700 | 0 | L5 ^= C5(S, 0); |
701 | 0 | L6 ^= C6(S, 0); |
702 | 0 | L7 ^= C7(S, 0); |
703 | |
|
704 | 0 | L1 ^= C0(S, 1); |
705 | 0 | L2 ^= C1(S, 1); |
706 | 0 | L3 ^= C2(S, 1); |
707 | 0 | L4 ^= C3(S, 1); |
708 | 0 | L5 ^= C4(S, 1); |
709 | 0 | L6 ^= C5(S, 1); |
710 | 0 | L7 ^= C6(S, 1); |
711 | 0 | L0 ^= C7(S, 1); |
712 | |
|
713 | 0 | L2 ^= C0(S, 2); |
714 | 0 | L3 ^= C1(S, 2); |
715 | 0 | L4 ^= C2(S, 2); |
716 | 0 | L5 ^= C3(S, 2); |
717 | 0 | L6 ^= C4(S, 2); |
718 | 0 | L7 ^= C5(S, 2); |
719 | 0 | L0 ^= C6(S, 2); |
720 | 0 | L1 ^= C7(S, 2); |
721 | |
|
722 | 0 | L3 ^= C0(S, 3); |
723 | 0 | L4 ^= C1(S, 3); |
724 | 0 | L5 ^= C2(S, 3); |
725 | 0 | L6 ^= C3(S, 3); |
726 | 0 | L7 ^= C4(S, 3); |
727 | 0 | L0 ^= C5(S, 3); |
728 | 0 | L1 ^= C6(S, 3); |
729 | 0 | L2 ^= C7(S, 3); |
730 | |
|
731 | 0 | L4 ^= C0(S, 4); |
732 | 0 | L5 ^= C1(S, 4); |
733 | 0 | L6 ^= C2(S, 4); |
734 | 0 | L7 ^= C3(S, 4); |
735 | 0 | L0 ^= C4(S, 4); |
736 | 0 | L1 ^= C5(S, 4); |
737 | 0 | L2 ^= C6(S, 4); |
738 | 0 | L3 ^= C7(S, 4); |
739 | |
|
740 | 0 | L5 ^= C0(S, 5); |
741 | 0 | L6 ^= C1(S, 5); |
742 | 0 | L7 ^= C2(S, 5); |
743 | 0 | L0 ^= C3(S, 5); |
744 | 0 | L1 ^= C4(S, 5); |
745 | 0 | L2 ^= C5(S, 5); |
746 | 0 | L3 ^= C6(S, 5); |
747 | 0 | L4 ^= C7(S, 5); |
748 | |
|
749 | 0 | L6 ^= C0(S, 6); |
750 | 0 | L7 ^= C1(S, 6); |
751 | 0 | L0 ^= C2(S, 6); |
752 | 0 | L1 ^= C3(S, 6); |
753 | 0 | L2 ^= C4(S, 6); |
754 | 0 | L3 ^= C5(S, 6); |
755 | 0 | L4 ^= C6(S, 6); |
756 | 0 | L5 ^= C7(S, 6); |
757 | |
|
758 | 0 | L7 ^= C0(S, 7); |
759 | 0 | L0 ^= C1(S, 7); |
760 | 0 | L1 ^= C2(S, 7); |
761 | 0 | L2 ^= C3(S, 7); |
762 | 0 | L3 ^= C4(S, 7); |
763 | 0 | L4 ^= C5(S, 7); |
764 | 0 | L5 ^= C6(S, 7); |
765 | 0 | L6 ^= C7(S, 7); |
766 | |
|
767 | 0 | S.q[0] = L0; |
768 | 0 | S.q[1] = L1; |
769 | 0 | S.q[2] = L2; |
770 | 0 | S.q[3] = L3; |
771 | 0 | S.q[4] = L4; |
772 | 0 | S.q[5] = L5; |
773 | 0 | S.q[6] = L6; |
774 | 0 | S.q[7] = L7; |
775 | 0 | # endif |
776 | 0 | } |
777 | |
|
778 | | # ifdef STRICT_ALIGNMENT |
779 | | if ((size_t)p & 7) { |
780 | | int i; |
781 | | for (i = 0; i < 64; i++) |
782 | | H->c[i] ^= S.c[i] ^ p[i]; |
783 | | } else |
784 | | # endif |
785 | 0 | { |
786 | 0 | const u64_aX *pa = (const u64_aX *)p; |
787 | 0 | H->q[0] ^= S.q[0] ^ pa[0]; |
788 | 0 | H->q[1] ^= S.q[1] ^ pa[1]; |
789 | 0 | H->q[2] ^= S.q[2] ^ pa[2]; |
790 | 0 | H->q[3] ^= S.q[3] ^ pa[3]; |
791 | 0 | H->q[4] ^= S.q[4] ^ pa[4]; |
792 | 0 | H->q[5] ^= S.q[5] ^ pa[5]; |
793 | 0 | H->q[6] ^= S.q[6] ^ pa[6]; |
794 | 0 | H->q[7] ^= S.q[7] ^ pa[7]; |
795 | 0 | } |
796 | 0 | #endif |
797 | 0 | p += 64; |
798 | 0 | } while (--n); |
799 | 0 | } |