Coverage Report

Created: 2025-11-24 06:55

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/irssi/src/core/wcwidth.c
Line
Count
Source
1
/*
2
 * This is an implementation of wcwidth() and wcswidth() (defined in
3
 * IEEE Std 1002.1-2001) for Unicode.
4
 *
5
 * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html
6
 * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html
7
 *
8
 * In fixed-width output devices, Latin characters all occupy a single
9
 * "cell" position of equal width, whereas ideographic CJK characters
10
 * occupy two such cells. Interoperability between terminal-line
11
 * applications and (teletype-style) character terminals using the
12
 * UTF-8 encoding requires agreement on which character should advance
13
 * the cursor by how many cell positions. No established formal
14
 * standards exist at present on which Unicode character shall occupy
15
 * how many cell positions on character terminals. These routines are
16
 * a first attempt of defining such behavior based on simple rules
17
 * applied to data provided by the Unicode Consortium.
18
 *
19
 * For some graphical characters, the Unicode standard explicitly
20
 * defines a character-cell width via the definition of the East Asian
21
 * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.
22
 * In all these cases, there is no ambiguity about which width a
23
 * terminal shall use. For characters in the East Asian Ambiguous (A)
24
 * class, the width choice depends purely on a preference of backward
25
 * compatibility with either historic CJK or Western practice.
26
 * Choosing single-width for these characters is easy to justify as
27
 * the appropriate long-term solution, as the CJK practice of
28
 * displaying these characters as double-width comes from historic
29
 * implementation simplicity (8-bit encoded characters were displayed
30
 * single-width and 16-bit ones double-width, even for Greek,
31
 * Cyrillic, etc.) and not any typographic considerations.
32
 *
33
 * Much less clear is the choice of width for the Not East Asian
34
 * (Neutral) class. Existing practice does not dictate a width for any
35
 * of these characters. It would nevertheless make sense
36
 * typographically to allocate two character cells to characters such
37
 * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be
38
 * represented adequately with a single-width glyph. The following
39
 * routines at present merely assign a single-cell width to all
40
 * neutral characters, in the interest of simplicity. This is not
41
 * entirely satisfactory and should be reconsidered before
42
 * establishing a formal standard in this area. At the moment, the
43
 * decision which Not East Asian (Neutral) characters should be
44
 * represented by double-width glyphs cannot yet be answered by
45
 * applying a simple rule from the Unicode database content. Setting
46
 * up a proper standard for the behavior of UTF-8 character terminals
47
 * will require a careful analysis not only of each Unicode character,
48
 * but also of each presentation form, something the author of these
49
 * routines has avoided to do so far.
50
 *
51
 * http://www.unicode.org/unicode/reports/tr11/
52
 *
53
 * Markus Kuhn -- 2007-05-25 (Unicode 5.0)
54
 *
55
 * Permission to use, copy, modify, and distribute this software
56
 * for any purpose and without fee is hereby granted. The author
57
 * disclaims all warranties with regard to this software.
58
 *
59
 * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
60
 */
61
62
#include <irssi/src/core/utf8.h>
63
64
struct interval {
65
  int first;
66
  int last;
67
};
68
69
/* auxiliary function for binary search in interval table */
70
0
static int bisearch(unichar ucs, const struct interval *table, int max) {
71
0
  int min = 0;
72
0
  int mid;
73
74
0
  if (ucs < table[0].first || ucs > table[max].last)
75
0
    return 0;
76
0
  while (max >= min) {
77
0
    mid = (min + max) / 2;
78
0
    if (ucs > table[mid].last)
79
0
      min = mid + 1;
80
0
    else if (ucs < table[mid].first)
81
0
      max = mid - 1;
82
0
    else
83
0
      return 1;
84
0
  }
85
86
0
  return 0;
87
0
}
88
89
90
/* The following two functions define the column width of an ISO 10646
91
 * character as follows:
92
 *
93
 *    - The null character (U+0000) has a column width of 0.
94
 *
95
 *    - Other C0/C1 control characters and DEL will lead to a return
96
 *      value of -1.
97
 *
98
 *    - Non-spacing and enclosing combining characters (general
99
 *      category code Mn or Me in the Unicode database) have a
100
 *      column width of 0.
101
 *
102
 *    - SOFT HYPHEN (U+00AD) has a column width of 1.
103
 *
104
 *    - Other format characters (general category code Cf in the Unicode
105
 *      database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.
106
 *
107
 *    - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)
108
 *      have a column width of 0.
109
 *
110
 *    - Spacing characters in the East Asian Wide (W) or East Asian
111
 *      Full-width (F) category as defined in Unicode Technical
112
 *      Report #11 have a column width of 2.
113
 *
114
 *    - All remaining characters (including all printable
115
 *      ISO 8859-1 and WGL4 characters, Unicode control characters,
116
 *      etc.) have a column width of 1.
117
 *
118
 * This implementation assumes that wchar_t characters are encoded
119
 * in ISO 10646.
120
 */
121
122
int mk_wcwidth(unichar ucs)
123
0
{
124
  /* sorted list of non-overlapping intervals of non-spacing characters */
125
  /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */
126
0
  static const struct interval combining[] = {
127
0
    { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 },
128
0
    { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 },
129
0
    { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 },
130
0
    { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 },
131
0
    { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED },
132
0
    { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A },
133
0
    { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 },
134
0
    { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D },
135
0
    { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 },
136
0
    { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD },
137
0
    { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C },
138
0
    { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D },
139
0
    { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC },
140
0
    { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD },
141
0
    { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C },
142
0
    { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D },
143
0
    { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 },
144
0
    { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 },
145
0
    { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC },
146
0
    { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD },
147
0
    { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D },
148
0
    { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 },
149
0
    { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E },
150
0
    { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC },
151
0
    { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 },
152
0
    { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E },
153
0
    { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 },
154
0
    { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 },
155
0
    { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 },
156
0
    { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F },
157
0
    { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 },
158
0
    { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD },
159
0
    { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD },
160
0
    { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 },
161
0
    { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B },
162
0
    { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 },
163
0
    { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 },
164
0
    { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF },
165
0
    { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 },
166
0
    { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F },
167
0
    { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B },
168
0
    { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F },
169
0
    { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB },
170
0
    { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F },
171
0
    { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 },
172
0
    { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD },
173
0
    { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F },
174
0
    { 0xE0100, 0xE01EF }
175
0
  };
176
177
  /* test for 8-bit control characters */
178
0
  if (ucs == 0)
179
0
    return 0;
180
0
  if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0))
181
0
    return -1;
182
183
  /* binary search in table of non-spacing characters */
184
0
  if (bisearch(ucs, combining,
185
0
         sizeof(combining) / sizeof(struct interval) - 1))
186
0
    return 0;
187
188
  /* if we arrive here, ucs is not a combining or C0/C1 control character */
189
190
0
  return 1 +
191
0
    (ucs >= 0x1100 &&
192
0
     (ucs <= 0x115f ||                    /* Hangul Jamo init. consonants */
193
0
      ucs == 0x2329 || ucs == 0x232a ||
194
0
      (ucs >= 0x2e80 && ucs <= 0xa4cf &&
195
0
       ucs != 0x303f) ||                  /* CJK ... Yi */
196
0
      (ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */
197
0
      (ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */
198
0
      (ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */
199
0
      (ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */
200
0
      (ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */
201
0
      (ucs >= 0xffe0 && ucs <= 0xffe6) ||
202
0
      (ucs >= 0x20000 && ucs <= 0x2fffd) ||
203
0
      (ucs >= 0x30000 && ucs <= 0x3fffd)));
204
0
}
205
206
207
#if 0
208
int mk_wcswidth(const unichar *pwcs, size_t n)
209
{
210
  int w, width = 0;
211
212
  for (;*pwcs && n-- > 0; pwcs++)
213
    if ((w = mk_wcwidth(*pwcs)) < 0)
214
      return -1;
215
    else
216
      width += w;
217
218
  return width;
219
}
220
#endif