Coverage Report

Created: 2025-11-24 06:55

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/irssi/subprojects/openssl-1.1.1l/crypto/bn/bn_sqrt.c
Line
Count
Source
1
/*
2
 * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "bn_local.h"
12
13
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
14
/*
15
 * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
16
 * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
17
 * Theory", algorithm 1.5.1). 'p' must be prime!
18
 */
19
0
{
20
0
    BIGNUM *ret = in;
21
0
    int err = 1;
22
0
    int r;
23
0
    BIGNUM *A, *b, *q, *t, *x, *y;
24
0
    int e, i, j;
25
26
0
    if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
27
0
        if (BN_abs_is_word(p, 2)) {
28
0
            if (ret == NULL)
29
0
                ret = BN_new();
30
0
            if (ret == NULL)
31
0
                goto end;
32
0
            if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
33
0
                if (ret != in)
34
0
                    BN_free(ret);
35
0
                return NULL;
36
0
            }
37
0
            bn_check_top(ret);
38
0
            return ret;
39
0
        }
40
41
0
        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
42
0
        return NULL;
43
0
    }
44
45
0
    if (BN_is_zero(a) || BN_is_one(a)) {
46
0
        if (ret == NULL)
47
0
            ret = BN_new();
48
0
        if (ret == NULL)
49
0
            goto end;
50
0
        if (!BN_set_word(ret, BN_is_one(a))) {
51
0
            if (ret != in)
52
0
                BN_free(ret);
53
0
            return NULL;
54
0
        }
55
0
        bn_check_top(ret);
56
0
        return ret;
57
0
    }
58
59
0
    BN_CTX_start(ctx);
60
0
    A = BN_CTX_get(ctx);
61
0
    b = BN_CTX_get(ctx);
62
0
    q = BN_CTX_get(ctx);
63
0
    t = BN_CTX_get(ctx);
64
0
    x = BN_CTX_get(ctx);
65
0
    y = BN_CTX_get(ctx);
66
0
    if (y == NULL)
67
0
        goto end;
68
69
0
    if (ret == NULL)
70
0
        ret = BN_new();
71
0
    if (ret == NULL)
72
0
        goto end;
73
74
    /* A = a mod p */
75
0
    if (!BN_nnmod(A, a, p, ctx))
76
0
        goto end;
77
78
    /* now write  |p| - 1  as  2^e*q  where  q  is odd */
79
0
    e = 1;
80
0
    while (!BN_is_bit_set(p, e))
81
0
        e++;
82
    /* we'll set  q  later (if needed) */
83
84
0
    if (e == 1) {
85
        /*-
86
         * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
87
         * modulo  (|p|-1)/2,  and square roots can be computed
88
         * directly by modular exponentiation.
89
         * We have
90
         *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
91
         * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
92
         */
93
0
        if (!BN_rshift(q, p, 2))
94
0
            goto end;
95
0
        q->neg = 0;
96
0
        if (!BN_add_word(q, 1))
97
0
            goto end;
98
0
        if (!BN_mod_exp(ret, A, q, p, ctx))
99
0
            goto end;
100
0
        err = 0;
101
0
        goto vrfy;
102
0
    }
103
104
0
    if (e == 2) {
105
        /*-
106
         * |p| == 5  (mod 8)
107
         *
108
         * In this case  2  is always a non-square since
109
         * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
110
         * So if  a  really is a square, then  2*a  is a non-square.
111
         * Thus for
112
         *      b := (2*a)^((|p|-5)/8),
113
         *      i := (2*a)*b^2
114
         * we have
115
         *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
116
         *         = (2*a)^((p-1)/2)
117
         *         = -1;
118
         * so if we set
119
         *      x := a*b*(i-1),
120
         * then
121
         *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
122
         *         = a^2 * b^2 * (-2*i)
123
         *         = a*(-i)*(2*a*b^2)
124
         *         = a*(-i)*i
125
         *         = a.
126
         *
127
         * (This is due to A.O.L. Atkin,
128
         * Subject: Square Roots and Cognate Matters modulo p=8n+5.
129
         * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026
130
         * November 1992.)
131
         */
132
133
        /* t := 2*a */
134
0
        if (!BN_mod_lshift1_quick(t, A, p))
135
0
            goto end;
136
137
        /* b := (2*a)^((|p|-5)/8) */
138
0
        if (!BN_rshift(q, p, 3))
139
0
            goto end;
140
0
        q->neg = 0;
141
0
        if (!BN_mod_exp(b, t, q, p, ctx))
142
0
            goto end;
143
144
        /* y := b^2 */
145
0
        if (!BN_mod_sqr(y, b, p, ctx))
146
0
            goto end;
147
148
        /* t := (2*a)*b^2 - 1 */
149
0
        if (!BN_mod_mul(t, t, y, p, ctx))
150
0
            goto end;
151
0
        if (!BN_sub_word(t, 1))
152
0
            goto end;
153
154
        /* x = a*b*t */
155
0
        if (!BN_mod_mul(x, A, b, p, ctx))
156
0
            goto end;
157
0
        if (!BN_mod_mul(x, x, t, p, ctx))
158
0
            goto end;
159
160
0
        if (!BN_copy(ret, x))
161
0
            goto end;
162
0
        err = 0;
163
0
        goto vrfy;
164
0
    }
165
166
    /*
167
     * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
168
     * find some y that is not a square.
169
     */
170
0
    if (!BN_copy(q, p))
171
0
        goto end;               /* use 'q' as temp */
172
0
    q->neg = 0;
173
0
    i = 2;
174
0
    do {
175
        /*
176
         * For efficiency, try small numbers first; if this fails, try random
177
         * numbers.
178
         */
179
0
        if (i < 22) {
180
0
            if (!BN_set_word(y, i))
181
0
                goto end;
182
0
        } else {
183
0
            if (!BN_priv_rand(y, BN_num_bits(p), 0, 0))
184
0
                goto end;
185
0
            if (BN_ucmp(y, p) >= 0) {
186
0
                if (!(p->neg ? BN_add : BN_sub) (y, y, p))
187
0
                    goto end;
188
0
            }
189
            /* now 0 <= y < |p| */
190
0
            if (BN_is_zero(y))
191
0
                if (!BN_set_word(y, i))
192
0
                    goto end;
193
0
        }
194
195
0
        r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
196
0
        if (r < -1)
197
0
            goto end;
198
0
        if (r == 0) {
199
            /* m divides p */
200
0
            BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
201
0
            goto end;
202
0
        }
203
0
    }
204
0
    while (r == 1 && ++i < 82);
205
206
0
    if (r != -1) {
207
        /*
208
         * Many rounds and still no non-square -- this is more likely a bug
209
         * than just bad luck. Even if p is not prime, we should have found
210
         * some y such that r == -1.
211
         */
212
0
        BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
213
0
        goto end;
214
0
    }
215
216
    /* Here's our actual 'q': */
217
0
    if (!BN_rshift(q, q, e))
218
0
        goto end;
219
220
    /*
221
     * Now that we have some non-square, we can find an element of order 2^e
222
     * by computing its q'th power.
223
     */
224
0
    if (!BN_mod_exp(y, y, q, p, ctx))
225
0
        goto end;
226
0
    if (BN_is_one(y)) {
227
0
        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
228
0
        goto end;
229
0
    }
230
231
    /*-
232
     * Now we know that (if  p  is indeed prime) there is an integer
233
     * k,  0 <= k < 2^e,  such that
234
     *
235
     *      a^q * y^k == 1   (mod p).
236
     *
237
     * As  a^q  is a square and  y  is not,  k  must be even.
238
     * q+1  is even, too, so there is an element
239
     *
240
     *     X := a^((q+1)/2) * y^(k/2),
241
     *
242
     * and it satisfies
243
     *
244
     *     X^2 = a^q * a     * y^k
245
     *         = a,
246
     *
247
     * so it is the square root that we are looking for.
248
     */
249
250
    /* t := (q-1)/2  (note that  q  is odd) */
251
0
    if (!BN_rshift1(t, q))
252
0
        goto end;
253
254
    /* x := a^((q-1)/2) */
255
0
    if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */
256
0
        if (!BN_nnmod(t, A, p, ctx))
257
0
            goto end;
258
0
        if (BN_is_zero(t)) {
259
            /* special case: a == 0  (mod p) */
260
0
            BN_zero(ret);
261
0
            err = 0;
262
0
            goto end;
263
0
        } else if (!BN_one(x))
264
0
            goto end;
265
0
    } else {
266
0
        if (!BN_mod_exp(x, A, t, p, ctx))
267
0
            goto end;
268
0
        if (BN_is_zero(x)) {
269
            /* special case: a == 0  (mod p) */
270
0
            BN_zero(ret);
271
0
            err = 0;
272
0
            goto end;
273
0
        }
274
0
    }
275
276
    /* b := a*x^2  (= a^q) */
277
0
    if (!BN_mod_sqr(b, x, p, ctx))
278
0
        goto end;
279
0
    if (!BN_mod_mul(b, b, A, p, ctx))
280
0
        goto end;
281
282
    /* x := a*x    (= a^((q+1)/2)) */
283
0
    if (!BN_mod_mul(x, x, A, p, ctx))
284
0
        goto end;
285
286
0
    while (1) {
287
        /*-
288
         * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
289
         * where  E  refers to the original value of  e,  which we
290
         * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
291
         *
292
         * We have  a*b = x^2,
293
         *    y^2^(e-1) = -1,
294
         *    b^2^(e-1) = 1.
295
         */
296
297
0
        if (BN_is_one(b)) {
298
0
            if (!BN_copy(ret, x))
299
0
                goto end;
300
0
            err = 0;
301
0
            goto vrfy;
302
0
        }
303
304
        /* find smallest  i  such that  b^(2^i) = 1 */
305
0
        i = 1;
306
0
        if (!BN_mod_sqr(t, b, p, ctx))
307
0
            goto end;
308
0
        while (!BN_is_one(t)) {
309
0
            i++;
310
0
            if (i == e) {
311
0
                BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
312
0
                goto end;
313
0
            }
314
0
            if (!BN_mod_mul(t, t, t, p, ctx))
315
0
                goto end;
316
0
        }
317
318
        /* t := y^2^(e - i - 1) */
319
0
        if (!BN_copy(t, y))
320
0
            goto end;
321
0
        for (j = e - i - 1; j > 0; j--) {
322
0
            if (!BN_mod_sqr(t, t, p, ctx))
323
0
                goto end;
324
0
        }
325
0
        if (!BN_mod_mul(y, t, t, p, ctx))
326
0
            goto end;
327
0
        if (!BN_mod_mul(x, x, t, p, ctx))
328
0
            goto end;
329
0
        if (!BN_mod_mul(b, b, y, p, ctx))
330
0
            goto end;
331
0
        e = i;
332
0
    }
333
334
0
 vrfy:
335
0
    if (!err) {
336
        /*
337
         * verify the result -- the input might have been not a square (test
338
         * added in 0.9.8)
339
         */
340
341
0
        if (!BN_mod_sqr(x, ret, p, ctx))
342
0
            err = 1;
343
344
0
        if (!err && 0 != BN_cmp(x, A)) {
345
0
            BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
346
0
            err = 1;
347
0
        }
348
0
    }
349
350
0
 end:
351
0
    if (err) {
352
0
        if (ret != in)
353
0
            BN_clear_free(ret);
354
        ret = NULL;
355
0
    }
356
0
    BN_CTX_end(ctx);
357
0
    bn_check_top(ret);
358
0
    return ret;
359
0
}