Coverage Report

Created: 2025-02-25 06:39

/rust/registry/src/index.crates.io-6f17d22bba15001f/half-2.4.1/src/binary16.rs
Line
Count
Source (jump to first uncovered line)
1
#[cfg(all(feature = "serde", feature = "alloc"))]
2
#[allow(unused_imports)]
3
use alloc::string::ToString;
4
#[cfg(feature = "bytemuck")]
5
use bytemuck::{Pod, Zeroable};
6
use core::{
7
    cmp::Ordering,
8
    iter::{Product, Sum},
9
    num::FpCategory,
10
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
11
};
12
#[cfg(not(target_arch = "spirv"))]
13
use core::{
14
    fmt::{
15
        Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
16
    },
17
    num::ParseFloatError,
18
    str::FromStr,
19
};
20
#[cfg(feature = "serde")]
21
use serde::{Deserialize, Serialize};
22
#[cfg(feature = "zerocopy")]
23
use zerocopy::{AsBytes, FromBytes};
24
25
pub(crate) mod arch;
26
27
/// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half"
28
/// format.
29
///
30
/// This 16-bit floating point type is intended for efficient storage where the full range and
31
/// precision of a larger floating point value is not required.
32
///
33
/// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
34
#[allow(non_camel_case_types)]
35
#[derive(Clone, Copy, Default)]
36
#[repr(transparent)]
37
#[cfg_attr(feature = "serde", derive(Serialize))]
38
#[cfg_attr(
39
    feature = "rkyv",
40
    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
41
)]
42
#[cfg_attr(feature = "rkyv", archive(resolver = "F16Resolver"))]
43
#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
44
#[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))]
45
#[cfg_attr(kani, derive(kani::Arbitrary))]
46
pub struct f16(u16);
47
48
impl f16 {
49
    /// Constructs a 16-bit floating point value from the raw bits.
50
    #[inline]
51
    #[must_use]
52
0
    pub const fn from_bits(bits: u16) -> f16 {
53
0
        f16(bits)
54
0
    }
Unexecuted instantiation: <half::binary16::f16>::from_bits
Unexecuted instantiation: <half::binary16::f16>::from_bits
55
56
    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
57
    ///
58
    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
59
    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
60
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
61
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
62
    /// 16-bit value.
63
    #[inline]
64
    #[must_use]
65
0
    pub fn from_f32(value: f32) -> f16 {
66
0
        f16(arch::f32_to_f16(value))
67
0
    }
68
69
    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
70
    ///
71
    /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
72
    /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
73
    /// in any non-`const` context.
74
    ///
75
    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
76
    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
77
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
78
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
79
    /// 16-bit value.
80
    #[inline]
81
    #[must_use]
82
0
    pub const fn from_f32_const(value: f32) -> f16 {
83
0
        f16(arch::f32_to_f16_fallback(value))
84
0
    }
85
86
    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
87
    ///
88
    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
89
    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
90
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
91
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
92
    /// 16-bit value.
93
    #[inline]
94
    #[must_use]
95
0
    pub fn from_f64(value: f64) -> f16 {
96
0
        f16(arch::f64_to_f16(value))
97
0
    }
Unexecuted instantiation: <half::binary16::f16>::from_f64
Unexecuted instantiation: <half::binary16::f16>::from_f64
98
99
    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
100
    ///
101
    /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
102
    /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
103
    /// in any non-`const` context.
104
    ///
105
    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
106
    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
107
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
108
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
109
    /// 16-bit value.
110
    #[inline]
111
    #[must_use]
112
0
    pub const fn from_f64_const(value: f64) -> f16 {
113
0
        f16(arch::f64_to_f16_fallback(value))
114
0
    }
115
116
    /// Converts a [`f16`] into the underlying bit representation.
117
    #[inline]
118
    #[must_use]
119
0
    pub const fn to_bits(self) -> u16 {
120
0
        self.0
121
0
    }
122
123
    /// Returns the memory representation of the underlying bit representation as a byte array in
124
    /// little-endian byte order.
125
    ///
126
    /// # Examples
127
    ///
128
    /// ```rust
129
    /// # use half::prelude::*;
130
    /// let bytes = f16::from_f32(12.5).to_le_bytes();
131
    /// assert_eq!(bytes, [0x40, 0x4A]);
132
    /// ```
133
    #[inline]
134
    #[must_use]
135
0
    pub const fn to_le_bytes(self) -> [u8; 2] {
136
0
        self.0.to_le_bytes()
137
0
    }
138
139
    /// Returns the memory representation of the underlying bit representation as a byte array in
140
    /// big-endian (network) byte order.
141
    ///
142
    /// # Examples
143
    ///
144
    /// ```rust
145
    /// # use half::prelude::*;
146
    /// let bytes = f16::from_f32(12.5).to_be_bytes();
147
    /// assert_eq!(bytes, [0x4A, 0x40]);
148
    /// ```
149
    #[inline]
150
    #[must_use]
151
0
    pub const fn to_be_bytes(self) -> [u8; 2] {
152
0
        self.0.to_be_bytes()
153
0
    }
Unexecuted instantiation: <half::binary16::f16>::to_be_bytes
Unexecuted instantiation: <half::binary16::f16>::to_be_bytes
154
155
    /// Returns the memory representation of the underlying bit representation as a byte array in
156
    /// native byte order.
157
    ///
158
    /// As the target platform's native endianness is used, portable code should use
159
    /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate,
160
    /// instead.
161
    ///
162
    /// # Examples
163
    ///
164
    /// ```rust
165
    /// # use half::prelude::*;
166
    /// let bytes = f16::from_f32(12.5).to_ne_bytes();
167
    /// assert_eq!(bytes, if cfg!(target_endian = "big") {
168
    ///     [0x4A, 0x40]
169
    /// } else {
170
    ///     [0x40, 0x4A]
171
    /// });
172
    /// ```
173
    #[inline]
174
    #[must_use]
175
0
    pub const fn to_ne_bytes(self) -> [u8; 2] {
176
0
        self.0.to_ne_bytes()
177
0
    }
178
179
    /// Creates a floating point value from its representation as a byte array in little endian.
180
    ///
181
    /// # Examples
182
    ///
183
    /// ```rust
184
    /// # use half::prelude::*;
185
    /// let value = f16::from_le_bytes([0x40, 0x4A]);
186
    /// assert_eq!(value, f16::from_f32(12.5));
187
    /// ```
188
    #[inline]
189
    #[must_use]
190
0
    pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 {
191
0
        f16::from_bits(u16::from_le_bytes(bytes))
192
0
    }
193
194
    /// Creates a floating point value from its representation as a byte array in big endian.
195
    ///
196
    /// # Examples
197
    ///
198
    /// ```rust
199
    /// # use half::prelude::*;
200
    /// let value = f16::from_be_bytes([0x4A, 0x40]);
201
    /// assert_eq!(value, f16::from_f32(12.5));
202
    /// ```
203
    #[inline]
204
    #[must_use]
205
0
    pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 {
206
0
        f16::from_bits(u16::from_be_bytes(bytes))
207
0
    }
Unexecuted instantiation: <half::binary16::f16>::from_be_bytes
Unexecuted instantiation: <half::binary16::f16>::from_be_bytes
208
209
    /// Creates a floating point value from its representation as a byte array in native endian.
210
    ///
211
    /// As the target platform's native endianness is used, portable code likely wants to use
212
    /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as
213
    /// appropriate instead.
214
    ///
215
    /// # Examples
216
    ///
217
    /// ```rust
218
    /// # use half::prelude::*;
219
    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
220
    ///     [0x4A, 0x40]
221
    /// } else {
222
    ///     [0x40, 0x4A]
223
    /// });
224
    /// assert_eq!(value, f16::from_f32(12.5));
225
    /// ```
226
    #[inline]
227
    #[must_use]
228
0
    pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
229
0
        f16::from_bits(u16::from_ne_bytes(bytes))
230
0
    }
231
232
    /// Converts a [`f16`] value into a `f32` value.
233
    ///
234
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
235
    /// in 32-bit floating point.
236
    #[inline]
237
    #[must_use]
238
0
    pub fn to_f32(self) -> f32 {
239
0
        arch::f16_to_f32(self.0)
240
0
    }
241
242
    /// Converts a [`f16`] value into a `f32` value.
243
    ///
244
    /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
245
    /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
246
    /// in any non-`const` context.
247
    ///
248
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
249
    /// in 32-bit floating point.
250
    #[inline]
251
    #[must_use]
252
0
    pub const fn to_f32_const(self) -> f32 {
253
0
        arch::f16_to_f32_fallback(self.0)
254
0
    }
255
256
    /// Converts a [`f16`] value into a `f64` value.
257
    ///
258
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
259
    /// in 64-bit floating point.
260
    #[inline]
261
    #[must_use]
262
0
    pub fn to_f64(self) -> f64 {
263
0
        arch::f16_to_f64(self.0)
264
0
    }
Unexecuted instantiation: <half::binary16::f16>::to_f64
Unexecuted instantiation: <half::binary16::f16>::to_f64
265
266
    /// Converts a [`f16`] value into a `f64` value.
267
    ///
268
    /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
269
    /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
270
    /// in any non-`const` context.
271
    ///
272
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
273
    /// in 64-bit floating point.
274
    #[inline]
275
    #[must_use]
276
0
    pub const fn to_f64_const(self) -> f64 {
277
0
        arch::f16_to_f64_fallback(self.0)
278
0
    }
279
280
    /// Returns `true` if this value is `NaN` and `false` otherwise.
281
    ///
282
    /// # Examples
283
    ///
284
    /// ```rust
285
    /// # use half::prelude::*;
286
    ///
287
    /// let nan = f16::NAN;
288
    /// let f = f16::from_f32(7.0_f32);
289
    ///
290
    /// assert!(nan.is_nan());
291
    /// assert!(!f.is_nan());
292
    /// ```
293
    #[inline]
294
    #[must_use]
295
0
    pub const fn is_nan(self) -> bool {
296
0
        self.0 & 0x7FFFu16 > 0x7C00u16
297
0
    }
298
299
    /// Returns `true` if this value is ±∞ and `false`.
300
    /// otherwise.
301
    ///
302
    /// # Examples
303
    ///
304
    /// ```rust
305
    /// # use half::prelude::*;
306
    ///
307
    /// let f = f16::from_f32(7.0f32);
308
    /// let inf = f16::INFINITY;
309
    /// let neg_inf = f16::NEG_INFINITY;
310
    /// let nan = f16::NAN;
311
    ///
312
    /// assert!(!f.is_infinite());
313
    /// assert!(!nan.is_infinite());
314
    ///
315
    /// assert!(inf.is_infinite());
316
    /// assert!(neg_inf.is_infinite());
317
    /// ```
318
    #[inline]
319
    #[must_use]
320
0
    pub const fn is_infinite(self) -> bool {
321
0
        self.0 & 0x7FFFu16 == 0x7C00u16
322
0
    }
323
324
    /// Returns `true` if this number is neither infinite nor `NaN`.
325
    ///
326
    /// # Examples
327
    ///
328
    /// ```rust
329
    /// # use half::prelude::*;
330
    ///
331
    /// let f = f16::from_f32(7.0f32);
332
    /// let inf = f16::INFINITY;
333
    /// let neg_inf = f16::NEG_INFINITY;
334
    /// let nan = f16::NAN;
335
    ///
336
    /// assert!(f.is_finite());
337
    ///
338
    /// assert!(!nan.is_finite());
339
    /// assert!(!inf.is_finite());
340
    /// assert!(!neg_inf.is_finite());
341
    /// ```
342
    #[inline]
343
    #[must_use]
344
0
    pub const fn is_finite(self) -> bool {
345
0
        self.0 & 0x7C00u16 != 0x7C00u16
346
0
    }
347
348
    /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
349
    ///
350
    /// # Examples
351
    ///
352
    /// ```rust
353
    /// # use half::prelude::*;
354
    ///
355
    /// let min = f16::MIN_POSITIVE;
356
    /// let max = f16::MAX;
357
    /// let lower_than_min = f16::from_f32(1.0e-10_f32);
358
    /// let zero = f16::from_f32(0.0_f32);
359
    ///
360
    /// assert!(min.is_normal());
361
    /// assert!(max.is_normal());
362
    ///
363
    /// assert!(!zero.is_normal());
364
    /// assert!(!f16::NAN.is_normal());
365
    /// assert!(!f16::INFINITY.is_normal());
366
    /// // Values between `0` and `min` are Subnormal.
367
    /// assert!(!lower_than_min.is_normal());
368
    /// ```
369
    #[inline]
370
    #[must_use]
371
0
    pub const fn is_normal(self) -> bool {
372
0
        let exp = self.0 & 0x7C00u16;
373
0
        exp != 0x7C00u16 && exp != 0
374
0
    }
375
376
    /// Returns the floating point category of the number.
377
    ///
378
    /// If only one property is going to be tested, it is generally faster to use the specific
379
    /// predicate instead.
380
    ///
381
    /// # Examples
382
    ///
383
    /// ```rust
384
    /// use std::num::FpCategory;
385
    /// # use half::prelude::*;
386
    ///
387
    /// let num = f16::from_f32(12.4_f32);
388
    /// let inf = f16::INFINITY;
389
    ///
390
    /// assert_eq!(num.classify(), FpCategory::Normal);
391
    /// assert_eq!(inf.classify(), FpCategory::Infinite);
392
    /// ```
393
    #[must_use]
394
0
    pub const fn classify(self) -> FpCategory {
395
0
        let exp = self.0 & 0x7C00u16;
396
0
        let man = self.0 & 0x03FFu16;
397
0
        match (exp, man) {
398
0
            (0, 0) => FpCategory::Zero,
399
0
            (0, _) => FpCategory::Subnormal,
400
0
            (0x7C00u16, 0) => FpCategory::Infinite,
401
0
            (0x7C00u16, _) => FpCategory::Nan,
402
0
            _ => FpCategory::Normal,
403
        }
404
0
    }
405
406
    /// Returns a number that represents the sign of `self`.
407
    ///
408
    /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY]
409
    /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY]
410
    /// * [`NAN`][f16::NAN] if the number is `NaN`
411
    ///
412
    /// # Examples
413
    ///
414
    /// ```rust
415
    /// # use half::prelude::*;
416
    ///
417
    /// let f = f16::from_f32(3.5_f32);
418
    ///
419
    /// assert_eq!(f.signum(), f16::from_f32(1.0));
420
    /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
421
    ///
422
    /// assert!(f16::NAN.signum().is_nan());
423
    /// ```
424
    #[must_use]
425
0
    pub const fn signum(self) -> f16 {
426
0
        if self.is_nan() {
427
0
            self
428
0
        } else if self.0 & 0x8000u16 != 0 {
429
0
            Self::NEG_ONE
430
        } else {
431
0
            Self::ONE
432
        }
433
0
    }
434
435
    /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
436
    /// positive sign bit and +∞.
437
    ///
438
    /// # Examples
439
    ///
440
    /// ```rust
441
    /// # use half::prelude::*;
442
    ///
443
    /// let nan = f16::NAN;
444
    /// let f = f16::from_f32(7.0_f32);
445
    /// let g = f16::from_f32(-7.0_f32);
446
    ///
447
    /// assert!(f.is_sign_positive());
448
    /// assert!(!g.is_sign_positive());
449
    /// // `NaN` can be either positive or negative
450
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
451
    /// ```
452
    #[inline]
453
    #[must_use]
454
0
    pub const fn is_sign_positive(self) -> bool {
455
0
        self.0 & 0x8000u16 == 0
456
0
    }
457
458
    /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
459
    /// negative sign bit and −∞.
460
    ///
461
    /// # Examples
462
    ///
463
    /// ```rust
464
    /// # use half::prelude::*;
465
    ///
466
    /// let nan = f16::NAN;
467
    /// let f = f16::from_f32(7.0f32);
468
    /// let g = f16::from_f32(-7.0f32);
469
    ///
470
    /// assert!(!f.is_sign_negative());
471
    /// assert!(g.is_sign_negative());
472
    /// // `NaN` can be either positive or negative
473
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
474
    /// ```
475
    #[inline]
476
    #[must_use]
477
0
    pub const fn is_sign_negative(self) -> bool {
478
0
        self.0 & 0x8000u16 != 0
479
0
    }
480
481
    /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
482
    ///
483
    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
484
    /// If `self` is NaN, then NaN with the sign of `sign` is returned.
485
    ///
486
    /// # Examples
487
    ///
488
    /// ```
489
    /// # use half::prelude::*;
490
    /// let f = f16::from_f32(3.5);
491
    ///
492
    /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
493
    /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
494
    /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
495
    /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
496
    ///
497
    /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
498
    /// ```
499
    #[inline]
500
    #[must_use]
501
0
    pub const fn copysign(self, sign: f16) -> f16 {
502
0
        f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
503
0
    }
504
505
    /// Returns the maximum of the two numbers.
506
    ///
507
    /// If one of the arguments is NaN, then the other argument is returned.
508
    ///
509
    /// # Examples
510
    ///
511
    /// ```
512
    /// # use half::prelude::*;
513
    /// let x = f16::from_f32(1.0);
514
    /// let y = f16::from_f32(2.0);
515
    ///
516
    /// assert_eq!(x.max(y), y);
517
    /// ```
518
    #[inline]
519
    #[must_use]
520
0
    pub fn max(self, other: f16) -> f16 {
521
0
        if other > self && !other.is_nan() {
522
0
            other
523
        } else {
524
0
            self
525
        }
526
0
    }
527
528
    /// Returns the minimum of the two numbers.
529
    ///
530
    /// If one of the arguments is NaN, then the other argument is returned.
531
    ///
532
    /// # Examples
533
    ///
534
    /// ```
535
    /// # use half::prelude::*;
536
    /// let x = f16::from_f32(1.0);
537
    /// let y = f16::from_f32(2.0);
538
    ///
539
    /// assert_eq!(x.min(y), x);
540
    /// ```
541
    #[inline]
542
    #[must_use]
543
0
    pub fn min(self, other: f16) -> f16 {
544
0
        if other < self && !other.is_nan() {
545
0
            other
546
        } else {
547
0
            self
548
        }
549
0
    }
550
551
    /// Restrict a value to a certain interval unless it is NaN.
552
    ///
553
    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
554
    /// Otherwise this returns `self`.
555
    ///
556
    /// Note that this function returns NaN if the initial value was NaN as well.
557
    ///
558
    /// # Panics
559
    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
560
    ///
561
    /// # Examples
562
    ///
563
    /// ```
564
    /// # use half::prelude::*;
565
    /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
566
    /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
567
    /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
568
    /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
569
    /// ```
570
    #[inline]
571
    #[must_use]
572
0
    pub fn clamp(self, min: f16, max: f16) -> f16 {
573
0
        assert!(min <= max);
574
0
        let mut x = self;
575
0
        if x < min {
576
0
            x = min;
577
0
        }
578
0
        if x > max {
579
0
            x = max;
580
0
        }
581
0
        x
582
0
    }
583
584
    /// Returns the ordering between `self` and `other`.
585
    ///
586
    /// Unlike the standard partial comparison between floating point numbers,
587
    /// this comparison always produces an ordering in accordance to
588
    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
589
    /// floating point standard. The values are ordered in the following sequence:
590
    ///
591
    /// - negative quiet NaN
592
    /// - negative signaling NaN
593
    /// - negative infinity
594
    /// - negative numbers
595
    /// - negative subnormal numbers
596
    /// - negative zero
597
    /// - positive zero
598
    /// - positive subnormal numbers
599
    /// - positive numbers
600
    /// - positive infinity
601
    /// - positive signaling NaN
602
    /// - positive quiet NaN.
603
    ///
604
    /// The ordering established by this function does not always agree with the
605
    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
606
    /// they consider negative and positive zero equal, while `total_cmp`
607
    /// doesn't.
608
    ///
609
    /// The interpretation of the signaling NaN bit follows the definition in
610
    /// the IEEE 754 standard, which may not match the interpretation by some of
611
    /// the older, non-conformant (e.g. MIPS) hardware implementations.
612
    ///
613
    /// # Examples
614
    /// ```
615
    /// # use half::f16;
616
    /// let mut v: Vec<f16> = vec![];
617
    /// v.push(f16::ONE);
618
    /// v.push(f16::INFINITY);
619
    /// v.push(f16::NEG_INFINITY);
620
    /// v.push(f16::NAN);
621
    /// v.push(f16::MAX_SUBNORMAL);
622
    /// v.push(-f16::MAX_SUBNORMAL);
623
    /// v.push(f16::ZERO);
624
    /// v.push(f16::NEG_ZERO);
625
    /// v.push(f16::NEG_ONE);
626
    /// v.push(f16::MIN_POSITIVE);
627
    ///
628
    /// v.sort_by(|a, b| a.total_cmp(&b));
629
    ///
630
    /// assert!(v
631
    ///     .into_iter()
632
    ///     .zip(
633
    ///         [
634
    ///             f16::NEG_INFINITY,
635
    ///             f16::NEG_ONE,
636
    ///             -f16::MAX_SUBNORMAL,
637
    ///             f16::NEG_ZERO,
638
    ///             f16::ZERO,
639
    ///             f16::MAX_SUBNORMAL,
640
    ///             f16::MIN_POSITIVE,
641
    ///             f16::ONE,
642
    ///             f16::INFINITY,
643
    ///             f16::NAN
644
    ///         ]
645
    ///         .iter()
646
    ///     )
647
    ///     .all(|(a, b)| a.to_bits() == b.to_bits()));
648
    /// ```
649
    // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
650
    #[inline]
651
    #[must_use]
652
0
    pub fn total_cmp(&self, other: &Self) -> Ordering {
653
0
        let mut left = self.to_bits() as i16;
654
0
        let mut right = other.to_bits() as i16;
655
0
        left ^= (((left >> 15) as u16) >> 1) as i16;
656
0
        right ^= (((right >> 15) as u16) >> 1) as i16;
657
0
        left.cmp(&right)
658
0
    }
659
660
    /// Alternate serialize adapter for serializing as a float.
661
    ///
662
    /// By default, [`f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
663
    /// implementation that serializes as an [`f32`] value. It is designed for use with
664
    /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
665
    /// the default deserialize implementation.
666
    ///
667
    /// # Examples
668
    ///
669
    /// A demonstration on how to use this adapater:
670
    ///
671
    /// ```
672
    /// use serde::{Serialize, Deserialize};
673
    /// use half::f16;
674
    ///
675
    /// #[derive(Serialize, Deserialize)]
676
    /// struct MyStruct {
677
    ///     #[serde(serialize_with = "f16::serialize_as_f32")]
678
    ///     value: f16 // Will be serialized as f32 instead of u16
679
    /// }
680
    /// ```
681
    #[cfg(feature = "serde")]
682
    pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
683
        serializer.serialize_f32(self.to_f32())
684
    }
685
686
    /// Alternate serialize adapter for serializing as a string.
687
    ///
688
    /// By default, [`f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
689
    /// implementation that serializes as a string value. It is designed for use with
690
    /// `serialize_with` serde attributes. Deserialization from string values is already supported
691
    /// by the default deserialize implementation.
692
    ///
693
    /// # Examples
694
    ///
695
    /// A demonstration on how to use this adapater:
696
    ///
697
    /// ```
698
    /// use serde::{Serialize, Deserialize};
699
    /// use half::f16;
700
    ///
701
    /// #[derive(Serialize, Deserialize)]
702
    /// struct MyStruct {
703
    ///     #[serde(serialize_with = "f16::serialize_as_string")]
704
    ///     value: f16 // Will be serialized as a string instead of u16
705
    /// }
706
    /// ```
707
    #[cfg(all(feature = "serde", feature = "alloc"))]
708
    pub fn serialize_as_string<S: serde::Serializer>(
709
        &self,
710
        serializer: S,
711
    ) -> Result<S::Ok, S::Error> {
712
        serializer.serialize_str(&self.to_string())
713
    }
714
715
    /// Approximate number of [`f16`] significant digits in base 10
716
    pub const DIGITS: u32 = 3;
717
    /// [`f16`]
718
    /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
719
    ///
720
    /// This is the difference between 1.0 and the next largest representable number.
721
    pub const EPSILON: f16 = f16(0x1400u16);
722
    /// [`f16`] positive Infinity (+∞)
723
    pub const INFINITY: f16 = f16(0x7C00u16);
724
    /// Number of [`f16`] significant digits in base 2
725
    pub const MANTISSA_DIGITS: u32 = 11;
726
    /// Largest finite [`f16`] value
727
    pub const MAX: f16 = f16(0x7BFF);
728
    /// Maximum possible [`f16`] power of 10 exponent
729
    pub const MAX_10_EXP: i32 = 4;
730
    /// Maximum possible [`f16`] power of 2 exponent
731
    pub const MAX_EXP: i32 = 16;
732
    /// Smallest finite [`f16`] value
733
    pub const MIN: f16 = f16(0xFBFF);
734
    /// Minimum possible normal [`f16`] power of 10 exponent
735
    pub const MIN_10_EXP: i32 = -4;
736
    /// One greater than the minimum possible normal [`f16`] power of 2 exponent
737
    pub const MIN_EXP: i32 = -13;
738
    /// Smallest positive normal [`f16`] value
739
    pub const MIN_POSITIVE: f16 = f16(0x0400u16);
740
    /// [`f16`] Not a Number (NaN)
741
    pub const NAN: f16 = f16(0x7E00u16);
742
    /// [`f16`] negative infinity (-∞)
743
    pub const NEG_INFINITY: f16 = f16(0xFC00u16);
744
    /// The radix or base of the internal representation of [`f16`]
745
    pub const RADIX: u32 = 2;
746
747
    /// Minimum positive subnormal [`f16`] value
748
    pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
749
    /// Maximum subnormal [`f16`] value
750
    pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
751
752
    /// [`f16`] 1
753
    pub const ONE: f16 = f16(0x3C00u16);
754
    /// [`f16`] 0
755
    pub const ZERO: f16 = f16(0x0000u16);
756
    /// [`f16`] -0
757
    pub const NEG_ZERO: f16 = f16(0x8000u16);
758
    /// [`f16`] -1
759
    pub const NEG_ONE: f16 = f16(0xBC00u16);
760
761
    /// [`f16`] Euler's number (ℯ)
762
    pub const E: f16 = f16(0x4170u16);
763
    /// [`f16`] Archimedes' constant (π)
764
    pub const PI: f16 = f16(0x4248u16);
765
    /// [`f16`] 1/π
766
    pub const FRAC_1_PI: f16 = f16(0x3518u16);
767
    /// [`f16`] 1/√2
768
    pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
769
    /// [`f16`] 2/π
770
    pub const FRAC_2_PI: f16 = f16(0x3918u16);
771
    /// [`f16`] 2/√π
772
    pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
773
    /// [`f16`] π/2
774
    pub const FRAC_PI_2: f16 = f16(0x3E48u16);
775
    /// [`f16`] π/3
776
    pub const FRAC_PI_3: f16 = f16(0x3C30u16);
777
    /// [`f16`] π/4
778
    pub const FRAC_PI_4: f16 = f16(0x3A48u16);
779
    /// [`f16`] π/6
780
    pub const FRAC_PI_6: f16 = f16(0x3830u16);
781
    /// [`f16`] π/8
782
    pub const FRAC_PI_8: f16 = f16(0x3648u16);
783
    /// [`f16`] 𝗅𝗇 10
784
    pub const LN_10: f16 = f16(0x409Bu16);
785
    /// [`f16`] 𝗅𝗇 2
786
    pub const LN_2: f16 = f16(0x398Cu16);
787
    /// [`f16`] 𝗅𝗈𝗀₁₀ℯ
788
    pub const LOG10_E: f16 = f16(0x36F3u16);
789
    /// [`f16`] 𝗅𝗈𝗀₁₀2
790
    pub const LOG10_2: f16 = f16(0x34D1u16);
791
    /// [`f16`] 𝗅𝗈𝗀₂ℯ
792
    pub const LOG2_E: f16 = f16(0x3DC5u16);
793
    /// [`f16`] 𝗅𝗈𝗀₂10
794
    pub const LOG2_10: f16 = f16(0x42A5u16);
795
    /// [`f16`] √2
796
    pub const SQRT_2: f16 = f16(0x3DA8u16);
797
}
798
799
impl From<f16> for f32 {
800
    #[inline]
801
0
    fn from(x: f16) -> f32 {
802
0
        x.to_f32()
803
0
    }
804
}
805
806
impl From<f16> for f64 {
807
    #[inline]
808
0
    fn from(x: f16) -> f64 {
809
0
        x.to_f64()
810
0
    }
Unexecuted instantiation: <f64 as core::convert::From<half::binary16::f16>>::from
Unexecuted instantiation: <f64 as core::convert::From<half::binary16::f16>>::from
811
}
812
813
impl From<i8> for f16 {
814
    #[inline]
815
0
    fn from(x: i8) -> f16 {
816
0
        // Convert to f32, then to f16
817
0
        f16::from_f32(f32::from(x))
818
0
    }
819
}
820
821
impl From<u8> for f16 {
822
    #[inline]
823
0
    fn from(x: u8) -> f16 {
824
0
        // Convert to f32, then to f16
825
0
        f16::from_f32(f32::from(x))
826
0
    }
827
}
828
829
impl PartialEq for f16 {
830
0
    fn eq(&self, other: &f16) -> bool {
831
0
        if self.is_nan() || other.is_nan() {
832
0
            false
833
        } else {
834
0
            (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
835
        }
836
0
    }
837
}
838
839
impl PartialOrd for f16 {
840
0
    fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
841
0
        if self.is_nan() || other.is_nan() {
842
0
            None
843
        } else {
844
0
            let neg = self.0 & 0x8000u16 != 0;
845
0
            let other_neg = other.0 & 0x8000u16 != 0;
846
0
            match (neg, other_neg) {
847
0
                (false, false) => Some(self.0.cmp(&other.0)),
848
                (false, true) => {
849
0
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
850
0
                        Some(Ordering::Equal)
851
                    } else {
852
0
                        Some(Ordering::Greater)
853
                    }
854
                }
855
                (true, false) => {
856
0
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
857
0
                        Some(Ordering::Equal)
858
                    } else {
859
0
                        Some(Ordering::Less)
860
                    }
861
                }
862
0
                (true, true) => Some(other.0.cmp(&self.0)),
863
            }
864
        }
865
0
    }
866
867
0
    fn lt(&self, other: &f16) -> bool {
868
0
        if self.is_nan() || other.is_nan() {
869
0
            false
870
        } else {
871
0
            let neg = self.0 & 0x8000u16 != 0;
872
0
            let other_neg = other.0 & 0x8000u16 != 0;
873
0
            match (neg, other_neg) {
874
0
                (false, false) => self.0 < other.0,
875
0
                (false, true) => false,
876
0
                (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
877
0
                (true, true) => self.0 > other.0,
878
            }
879
        }
880
0
    }
881
882
0
    fn le(&self, other: &f16) -> bool {
883
0
        if self.is_nan() || other.is_nan() {
884
0
            false
885
        } else {
886
0
            let neg = self.0 & 0x8000u16 != 0;
887
0
            let other_neg = other.0 & 0x8000u16 != 0;
888
0
            match (neg, other_neg) {
889
0
                (false, false) => self.0 <= other.0,
890
0
                (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
891
0
                (true, false) => true,
892
0
                (true, true) => self.0 >= other.0,
893
            }
894
        }
895
0
    }
896
897
0
    fn gt(&self, other: &f16) -> bool {
898
0
        if self.is_nan() || other.is_nan() {
899
0
            false
900
        } else {
901
0
            let neg = self.0 & 0x8000u16 != 0;
902
0
            let other_neg = other.0 & 0x8000u16 != 0;
903
0
            match (neg, other_neg) {
904
0
                (false, false) => self.0 > other.0,
905
0
                (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
906
0
                (true, false) => false,
907
0
                (true, true) => self.0 < other.0,
908
            }
909
        }
910
0
    }
911
912
0
    fn ge(&self, other: &f16) -> bool {
913
0
        if self.is_nan() || other.is_nan() {
914
0
            false
915
        } else {
916
0
            let neg = self.0 & 0x8000u16 != 0;
917
0
            let other_neg = other.0 & 0x8000u16 != 0;
918
0
            match (neg, other_neg) {
919
0
                (false, false) => self.0 >= other.0,
920
0
                (false, true) => true,
921
0
                (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
922
0
                (true, true) => self.0 <= other.0,
923
            }
924
        }
925
0
    }
926
}
927
928
#[cfg(not(target_arch = "spirv"))]
929
impl FromStr for f16 {
930
    type Err = ParseFloatError;
931
0
    fn from_str(src: &str) -> Result<f16, ParseFloatError> {
932
0
        f32::from_str(src).map(f16::from_f32)
933
0
    }
934
}
935
936
#[cfg(not(target_arch = "spirv"))]
937
impl Debug for f16 {
938
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
939
0
        Debug::fmt(&self.to_f32(), f)
940
0
    }
941
}
942
943
#[cfg(not(target_arch = "spirv"))]
944
impl Display for f16 {
945
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
946
0
        Display::fmt(&self.to_f32(), f)
947
0
    }
948
}
949
950
#[cfg(not(target_arch = "spirv"))]
951
impl LowerExp for f16 {
952
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
953
0
        write!(f, "{:e}", self.to_f32())
954
0
    }
955
}
956
957
#[cfg(not(target_arch = "spirv"))]
958
impl UpperExp for f16 {
959
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
960
0
        write!(f, "{:E}", self.to_f32())
961
0
    }
962
}
963
964
#[cfg(not(target_arch = "spirv"))]
965
impl Binary for f16 {
966
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
967
0
        write!(f, "{:b}", self.0)
968
0
    }
969
}
970
971
#[cfg(not(target_arch = "spirv"))]
972
impl Octal for f16 {
973
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
974
0
        write!(f, "{:o}", self.0)
975
0
    }
976
}
977
978
#[cfg(not(target_arch = "spirv"))]
979
impl LowerHex for f16 {
980
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
981
0
        write!(f, "{:x}", self.0)
982
0
    }
983
}
984
985
#[cfg(not(target_arch = "spirv"))]
986
impl UpperHex for f16 {
987
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
988
0
        write!(f, "{:X}", self.0)
989
0
    }
990
}
991
992
impl Neg for f16 {
993
    type Output = Self;
994
995
    #[inline]
996
0
    fn neg(self) -> Self::Output {
997
0
        Self(self.0 ^ 0x8000)
998
0
    }
999
}
1000
1001
impl Neg for &f16 {
1002
    type Output = <f16 as Neg>::Output;
1003
1004
    #[inline]
1005
0
    fn neg(self) -> Self::Output {
1006
0
        Neg::neg(*self)
1007
0
    }
1008
}
1009
1010
impl Add for f16 {
1011
    type Output = Self;
1012
1013
    #[inline]
1014
0
    fn add(self, rhs: Self) -> Self::Output {
1015
0
        f16(arch::add_f16(self.0, rhs.0))
1016
0
    }
1017
}
1018
1019
impl Add<&f16> for f16 {
1020
    type Output = <f16 as Add<f16>>::Output;
1021
1022
    #[inline]
1023
0
    fn add(self, rhs: &f16) -> Self::Output {
1024
0
        self.add(*rhs)
1025
0
    }
1026
}
1027
1028
impl Add<&f16> for &f16 {
1029
    type Output = <f16 as Add<f16>>::Output;
1030
1031
    #[inline]
1032
0
    fn add(self, rhs: &f16) -> Self::Output {
1033
0
        (*self).add(*rhs)
1034
0
    }
1035
}
1036
1037
impl Add<f16> for &f16 {
1038
    type Output = <f16 as Add<f16>>::Output;
1039
1040
    #[inline]
1041
0
    fn add(self, rhs: f16) -> Self::Output {
1042
0
        (*self).add(rhs)
1043
0
    }
1044
}
1045
1046
impl AddAssign for f16 {
1047
    #[inline]
1048
0
    fn add_assign(&mut self, rhs: Self) {
1049
0
        *self = (*self).add(rhs);
1050
0
    }
1051
}
1052
1053
impl AddAssign<&f16> for f16 {
1054
    #[inline]
1055
0
    fn add_assign(&mut self, rhs: &f16) {
1056
0
        *self = (*self).add(rhs);
1057
0
    }
1058
}
1059
1060
impl Sub for f16 {
1061
    type Output = Self;
1062
1063
    #[inline]
1064
0
    fn sub(self, rhs: Self) -> Self::Output {
1065
0
        f16(arch::subtract_f16(self.0, rhs.0))
1066
0
    }
1067
}
1068
1069
impl Sub<&f16> for f16 {
1070
    type Output = <f16 as Sub<f16>>::Output;
1071
1072
    #[inline]
1073
0
    fn sub(self, rhs: &f16) -> Self::Output {
1074
0
        self.sub(*rhs)
1075
0
    }
1076
}
1077
1078
impl Sub<&f16> for &f16 {
1079
    type Output = <f16 as Sub<f16>>::Output;
1080
1081
    #[inline]
1082
0
    fn sub(self, rhs: &f16) -> Self::Output {
1083
0
        (*self).sub(*rhs)
1084
0
    }
1085
}
1086
1087
impl Sub<f16> for &f16 {
1088
    type Output = <f16 as Sub<f16>>::Output;
1089
1090
    #[inline]
1091
0
    fn sub(self, rhs: f16) -> Self::Output {
1092
0
        (*self).sub(rhs)
1093
0
    }
1094
}
1095
1096
impl SubAssign for f16 {
1097
    #[inline]
1098
0
    fn sub_assign(&mut self, rhs: Self) {
1099
0
        *self = (*self).sub(rhs);
1100
0
    }
1101
}
1102
1103
impl SubAssign<&f16> for f16 {
1104
    #[inline]
1105
0
    fn sub_assign(&mut self, rhs: &f16) {
1106
0
        *self = (*self).sub(rhs);
1107
0
    }
1108
}
1109
1110
impl Mul for f16 {
1111
    type Output = Self;
1112
1113
    #[inline]
1114
0
    fn mul(self, rhs: Self) -> Self::Output {
1115
0
        f16(arch::multiply_f16(self.0, rhs.0))
1116
0
    }
1117
}
1118
1119
impl Mul<&f16> for f16 {
1120
    type Output = <f16 as Mul<f16>>::Output;
1121
1122
    #[inline]
1123
0
    fn mul(self, rhs: &f16) -> Self::Output {
1124
0
        self.mul(*rhs)
1125
0
    }
1126
}
1127
1128
impl Mul<&f16> for &f16 {
1129
    type Output = <f16 as Mul<f16>>::Output;
1130
1131
    #[inline]
1132
0
    fn mul(self, rhs: &f16) -> Self::Output {
1133
0
        (*self).mul(*rhs)
1134
0
    }
1135
}
1136
1137
impl Mul<f16> for &f16 {
1138
    type Output = <f16 as Mul<f16>>::Output;
1139
1140
    #[inline]
1141
0
    fn mul(self, rhs: f16) -> Self::Output {
1142
0
        (*self).mul(rhs)
1143
0
    }
1144
}
1145
1146
impl MulAssign for f16 {
1147
    #[inline]
1148
0
    fn mul_assign(&mut self, rhs: Self) {
1149
0
        *self = (*self).mul(rhs);
1150
0
    }
1151
}
1152
1153
impl MulAssign<&f16> for f16 {
1154
    #[inline]
1155
0
    fn mul_assign(&mut self, rhs: &f16) {
1156
0
        *self = (*self).mul(rhs);
1157
0
    }
1158
}
1159
1160
impl Div for f16 {
1161
    type Output = Self;
1162
1163
    #[inline]
1164
0
    fn div(self, rhs: Self) -> Self::Output {
1165
0
        f16(arch::divide_f16(self.0, rhs.0))
1166
0
    }
1167
}
1168
1169
impl Div<&f16> for f16 {
1170
    type Output = <f16 as Div<f16>>::Output;
1171
1172
    #[inline]
1173
0
    fn div(self, rhs: &f16) -> Self::Output {
1174
0
        self.div(*rhs)
1175
0
    }
1176
}
1177
1178
impl Div<&f16> for &f16 {
1179
    type Output = <f16 as Div<f16>>::Output;
1180
1181
    #[inline]
1182
0
    fn div(self, rhs: &f16) -> Self::Output {
1183
0
        (*self).div(*rhs)
1184
0
    }
1185
}
1186
1187
impl Div<f16> for &f16 {
1188
    type Output = <f16 as Div<f16>>::Output;
1189
1190
    #[inline]
1191
0
    fn div(self, rhs: f16) -> Self::Output {
1192
0
        (*self).div(rhs)
1193
0
    }
1194
}
1195
1196
impl DivAssign for f16 {
1197
    #[inline]
1198
0
    fn div_assign(&mut self, rhs: Self) {
1199
0
        *self = (*self).div(rhs);
1200
0
    }
1201
}
1202
1203
impl DivAssign<&f16> for f16 {
1204
    #[inline]
1205
0
    fn div_assign(&mut self, rhs: &f16) {
1206
0
        *self = (*self).div(rhs);
1207
0
    }
1208
}
1209
1210
impl Rem for f16 {
1211
    type Output = Self;
1212
1213
    #[inline]
1214
0
    fn rem(self, rhs: Self) -> Self::Output {
1215
0
        f16(arch::remainder_f16(self.0, rhs.0))
1216
0
    }
1217
}
1218
1219
impl Rem<&f16> for f16 {
1220
    type Output = <f16 as Rem<f16>>::Output;
1221
1222
    #[inline]
1223
0
    fn rem(self, rhs: &f16) -> Self::Output {
1224
0
        self.rem(*rhs)
1225
0
    }
1226
}
1227
1228
impl Rem<&f16> for &f16 {
1229
    type Output = <f16 as Rem<f16>>::Output;
1230
1231
    #[inline]
1232
0
    fn rem(self, rhs: &f16) -> Self::Output {
1233
0
        (*self).rem(*rhs)
1234
0
    }
1235
}
1236
1237
impl Rem<f16> for &f16 {
1238
    type Output = <f16 as Rem<f16>>::Output;
1239
1240
    #[inline]
1241
0
    fn rem(self, rhs: f16) -> Self::Output {
1242
0
        (*self).rem(rhs)
1243
0
    }
1244
}
1245
1246
impl RemAssign for f16 {
1247
    #[inline]
1248
0
    fn rem_assign(&mut self, rhs: Self) {
1249
0
        *self = (*self).rem(rhs);
1250
0
    }
1251
}
1252
1253
impl RemAssign<&f16> for f16 {
1254
    #[inline]
1255
0
    fn rem_assign(&mut self, rhs: &f16) {
1256
0
        *self = (*self).rem(rhs);
1257
0
    }
1258
}
1259
1260
impl Product for f16 {
1261
    #[inline]
1262
0
    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
1263
0
        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1264
0
    }
1265
}
1266
1267
impl<'a> Product<&'a f16> for f16 {
1268
    #[inline]
1269
0
    fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1270
0
        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1271
0
    }
1272
}
1273
1274
impl Sum for f16 {
1275
    #[inline]
1276
0
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
1277
0
        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1278
0
    }
1279
}
1280
1281
impl<'a> Sum<&'a f16> for f16 {
1282
    #[inline]
1283
0
    fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1284
0
        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1285
0
    }
1286
}
1287
1288
#[cfg(feature = "serde")]
1289
struct Visitor;
1290
1291
#[cfg(feature = "serde")]
1292
impl<'de> Deserialize<'de> for f16 {
1293
    fn deserialize<D>(deserializer: D) -> Result<f16, D::Error>
1294
    where
1295
        D: serde::de::Deserializer<'de>,
1296
    {
1297
        deserializer.deserialize_newtype_struct("f16", Visitor)
1298
    }
1299
}
1300
1301
#[cfg(feature = "serde")]
1302
impl<'de> serde::de::Visitor<'de> for Visitor {
1303
    type Value = f16;
1304
1305
    fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
1306
        write!(formatter, "tuple struct f16")
1307
    }
1308
1309
    fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1310
    where
1311
        D: serde::Deserializer<'de>,
1312
    {
1313
        Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?))
1314
    }
1315
1316
    fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1317
    where
1318
        E: serde::de::Error,
1319
    {
1320
        v.parse().map_err(|_| {
1321
            serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string")
1322
        })
1323
    }
1324
1325
    fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1326
    where
1327
        E: serde::de::Error,
1328
    {
1329
        Ok(f16::from_f32(v))
1330
    }
1331
1332
    fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1333
    where
1334
        E: serde::de::Error,
1335
    {
1336
        Ok(f16::from_f64(v))
1337
    }
1338
}
1339
1340
#[allow(
1341
    clippy::cognitive_complexity,
1342
    clippy::float_cmp,
1343
    clippy::neg_cmp_op_on_partial_ord
1344
)]
1345
#[cfg(test)]
1346
mod test {
1347
    use super::*;
1348
    #[allow(unused_imports)]
1349
    use core::cmp::Ordering;
1350
    #[cfg(feature = "num-traits")]
1351
    use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive};
1352
    use quickcheck_macros::quickcheck;
1353
1354
    #[cfg(feature = "num-traits")]
1355
    #[test]
1356
    fn as_primitive() {
1357
        let two = f16::from_f32(2.0);
1358
        assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two);
1359
        assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2);
1360
1361
        assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two);
1362
        assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0);
1363
1364
        assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two);
1365
        assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0);
1366
    }
1367
1368
    #[cfg(feature = "num-traits")]
1369
    #[test]
1370
    fn to_primitive() {
1371
        let two = f16::from_f32(2.0);
1372
        assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
1373
        assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
1374
        assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
1375
    }
1376
1377
    #[cfg(feature = "num-traits")]
1378
    #[test]
1379
    fn from_primitive() {
1380
        let two = f16::from_f32(2.0);
1381
        assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two);
1382
        assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
1383
        assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
1384
    }
1385
1386
    #[test]
1387
    fn test_f16_consts() {
1388
        // DIGITS
1389
        let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1390
        assert_eq!(f16::DIGITS, digits);
1391
        // sanity check to show test is good
1392
        let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1393
        assert_eq!(core::f32::DIGITS, digits32);
1394
1395
        // EPSILON
1396
        let one = f16::from_f32(1.0);
1397
        let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
1398
        let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
1399
        assert_eq!(f16::EPSILON, epsilon);
1400
        // sanity check to show test is good
1401
        let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
1402
        let epsilon32 = one_plus_epsilon32 - 1f32;
1403
        assert_eq!(core::f32::EPSILON, epsilon32);
1404
1405
        // MAX, MIN and MIN_POSITIVE
1406
        let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
1407
        let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
1408
        let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
1409
        assert_eq!(f16::MAX, max);
1410
        assert_eq!(f16::MIN, min);
1411
        assert_eq!(f16::MIN_POSITIVE, min_pos);
1412
        // sanity check to show test is good
1413
        let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
1414
        let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
1415
        let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
1416
        assert_eq!(core::f32::MAX, max32);
1417
        assert_eq!(core::f32::MIN, min32);
1418
        assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
1419
1420
        // MIN_10_EXP and MAX_10_EXP
1421
        let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
1422
        assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
1423
        assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
1424
        let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
1425
        assert!(ten_to_max < f16::MAX.to_f32());
1426
        assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
1427
        // sanity check to show test is good
1428
        let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
1429
        assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
1430
        assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
1431
        let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
1432
        assert!(ten_to_max32 < f64::from(core::f32::MAX));
1433
        assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
1434
    }
1435
1436
    #[test]
1437
    fn test_f16_consts_from_f32() {
1438
        let one = f16::from_f32(1.0);
1439
        let zero = f16::from_f32(0.0);
1440
        let neg_zero = f16::from_f32(-0.0);
1441
        let neg_one = f16::from_f32(-1.0);
1442
        let inf = f16::from_f32(core::f32::INFINITY);
1443
        let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
1444
        let nan = f16::from_f32(core::f32::NAN);
1445
1446
        assert_eq!(f16::ONE, one);
1447
        assert_eq!(f16::ZERO, zero);
1448
        assert!(zero.is_sign_positive());
1449
        assert_eq!(f16::NEG_ZERO, neg_zero);
1450
        assert!(neg_zero.is_sign_negative());
1451
        assert_eq!(f16::NEG_ONE, neg_one);
1452
        assert!(neg_one.is_sign_negative());
1453
        assert_eq!(f16::INFINITY, inf);
1454
        assert_eq!(f16::NEG_INFINITY, neg_inf);
1455
        assert!(nan.is_nan());
1456
        assert!(f16::NAN.is_nan());
1457
1458
        let e = f16::from_f32(core::f32::consts::E);
1459
        let pi = f16::from_f32(core::f32::consts::PI);
1460
        let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
1461
        let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
1462
        let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
1463
        let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
1464
        let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
1465
        let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
1466
        let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
1467
        let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
1468
        let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
1469
        let ln_10 = f16::from_f32(core::f32::consts::LN_10);
1470
        let ln_2 = f16::from_f32(core::f32::consts::LN_2);
1471
        let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
1472
        // core::f32::consts::LOG10_2 requires rustc 1.43.0
1473
        let log10_2 = f16::from_f32(2f32.log10());
1474
        let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
1475
        // core::f32::consts::LOG2_10 requires rustc 1.43.0
1476
        let log2_10 = f16::from_f32(10f32.log2());
1477
        let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
1478
1479
        assert_eq!(f16::E, e);
1480
        assert_eq!(f16::PI, pi);
1481
        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1482
        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1483
        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1484
        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1485
        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1486
        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1487
        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1488
        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1489
        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1490
        assert_eq!(f16::LN_10, ln_10);
1491
        assert_eq!(f16::LN_2, ln_2);
1492
        assert_eq!(f16::LOG10_E, log10_e);
1493
        assert_eq!(f16::LOG10_2, log10_2);
1494
        assert_eq!(f16::LOG2_E, log2_e);
1495
        assert_eq!(f16::LOG2_10, log2_10);
1496
        assert_eq!(f16::SQRT_2, sqrt_2);
1497
    }
1498
1499
    #[test]
1500
    fn test_f16_consts_from_f64() {
1501
        let one = f16::from_f64(1.0);
1502
        let zero = f16::from_f64(0.0);
1503
        let neg_zero = f16::from_f64(-0.0);
1504
        let inf = f16::from_f64(core::f64::INFINITY);
1505
        let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
1506
        let nan = f16::from_f64(core::f64::NAN);
1507
1508
        assert_eq!(f16::ONE, one);
1509
        assert_eq!(f16::ZERO, zero);
1510
        assert!(zero.is_sign_positive());
1511
        assert_eq!(f16::NEG_ZERO, neg_zero);
1512
        assert!(neg_zero.is_sign_negative());
1513
        assert_eq!(f16::INFINITY, inf);
1514
        assert_eq!(f16::NEG_INFINITY, neg_inf);
1515
        assert!(nan.is_nan());
1516
        assert!(f16::NAN.is_nan());
1517
1518
        let e = f16::from_f64(core::f64::consts::E);
1519
        let pi = f16::from_f64(core::f64::consts::PI);
1520
        let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
1521
        let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
1522
        let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
1523
        let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
1524
        let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
1525
        let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
1526
        let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
1527
        let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
1528
        let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
1529
        let ln_10 = f16::from_f64(core::f64::consts::LN_10);
1530
        let ln_2 = f16::from_f64(core::f64::consts::LN_2);
1531
        let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
1532
        // core::f64::consts::LOG10_2 requires rustc 1.43.0
1533
        let log10_2 = f16::from_f64(2f64.log10());
1534
        let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
1535
        // core::f64::consts::LOG2_10 requires rustc 1.43.0
1536
        let log2_10 = f16::from_f64(10f64.log2());
1537
        let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
1538
1539
        assert_eq!(f16::E, e);
1540
        assert_eq!(f16::PI, pi);
1541
        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1542
        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1543
        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1544
        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1545
        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1546
        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1547
        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1548
        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1549
        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1550
        assert_eq!(f16::LN_10, ln_10);
1551
        assert_eq!(f16::LN_2, ln_2);
1552
        assert_eq!(f16::LOG10_E, log10_e);
1553
        assert_eq!(f16::LOG10_2, log10_2);
1554
        assert_eq!(f16::LOG2_E, log2_e);
1555
        assert_eq!(f16::LOG2_10, log2_10);
1556
        assert_eq!(f16::SQRT_2, sqrt_2);
1557
    }
1558
1559
    #[test]
1560
    fn test_nan_conversion_to_smaller() {
1561
        let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
1562
        let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
1563
        let nan32 = f32::from_bits(0x7F80_0001u32);
1564
        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1565
        let nan32_from_64 = nan64 as f32;
1566
        let neg_nan32_from_64 = neg_nan64 as f32;
1567
        let nan16_from_64 = f16::from_f64(nan64);
1568
        let neg_nan16_from_64 = f16::from_f64(neg_nan64);
1569
        let nan16_from_32 = f16::from_f32(nan32);
1570
        let neg_nan16_from_32 = f16::from_f32(neg_nan32);
1571
1572
        assert!(nan64.is_nan() && nan64.is_sign_positive());
1573
        assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
1574
        assert!(nan32.is_nan() && nan32.is_sign_positive());
1575
        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1576
1577
        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1578
        assert!(nan32_from_64.is_nan());
1579
        assert!(neg_nan32_from_64.is_nan());
1580
        assert!(nan16_from_64.is_nan());
1581
        assert!(neg_nan16_from_64.is_nan());
1582
        assert!(nan16_from_32.is_nan());
1583
        assert!(neg_nan16_from_32.is_nan());
1584
    }
1585
1586
    #[test]
1587
    fn test_nan_conversion_to_larger() {
1588
        let nan16 = f16::from_bits(0x7C01u16);
1589
        let neg_nan16 = f16::from_bits(0xFC01u16);
1590
        let nan32 = f32::from_bits(0x7F80_0001u32);
1591
        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1592
        let nan32_from_16 = f32::from(nan16);
1593
        let neg_nan32_from_16 = f32::from(neg_nan16);
1594
        let nan64_from_16 = f64::from(nan16);
1595
        let neg_nan64_from_16 = f64::from(neg_nan16);
1596
        let nan64_from_32 = f64::from(nan32);
1597
        let neg_nan64_from_32 = f64::from(neg_nan32);
1598
1599
        assert!(nan16.is_nan() && nan16.is_sign_positive());
1600
        assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
1601
        assert!(nan32.is_nan() && nan32.is_sign_positive());
1602
        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1603
1604
        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1605
        assert!(nan32_from_16.is_nan());
1606
        assert!(neg_nan32_from_16.is_nan());
1607
        assert!(nan64_from_16.is_nan());
1608
        assert!(neg_nan64_from_16.is_nan());
1609
        assert!(nan64_from_32.is_nan());
1610
        assert!(neg_nan64_from_32.is_nan());
1611
    }
1612
1613
    #[test]
1614
    fn test_f16_to_f32() {
1615
        let f = f16::from_f32(7.0);
1616
        assert_eq!(f.to_f32(), 7.0f32);
1617
1618
        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1619
        let f = f16::from_f32(7.1);
1620
        let diff = (f.to_f32() - 7.1f32).abs();
1621
        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1622
        assert!(diff <= 4.0 * f16::EPSILON.to_f32());
1623
1624
        assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
1625
        assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
1626
1627
        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
1628
        assert_eq!(
1629
            f16::from_bits(0x0000_0005),
1630
            f16::from_f32(5.0 * 2.0f32.powi(-24))
1631
        );
1632
    }
1633
1634
    #[test]
1635
    fn test_f16_to_f64() {
1636
        let f = f16::from_f64(7.0);
1637
        assert_eq!(f.to_f64(), 7.0f64);
1638
1639
        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1640
        let f = f16::from_f64(7.1);
1641
        let diff = (f.to_f64() - 7.1f64).abs();
1642
        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1643
        assert!(diff <= 4.0 * f16::EPSILON.to_f64());
1644
1645
        assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
1646
        assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
1647
1648
        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
1649
        assert_eq!(
1650
            f16::from_bits(0x0000_0005),
1651
            f16::from_f64(5.0 * 2.0f64.powi(-24))
1652
        );
1653
    }
1654
1655
    #[test]
1656
    fn test_comparisons() {
1657
        let zero = f16::from_f64(0.0);
1658
        let one = f16::from_f64(1.0);
1659
        let neg_zero = f16::from_f64(-0.0);
1660
        let neg_one = f16::from_f64(-1.0);
1661
1662
        assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
1663
        assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
1664
        assert!(zero == neg_zero);
1665
        assert!(neg_zero == zero);
1666
        assert!(!(zero != neg_zero));
1667
        assert!(!(neg_zero != zero));
1668
        assert!(!(zero < neg_zero));
1669
        assert!(!(neg_zero < zero));
1670
        assert!(zero <= neg_zero);
1671
        assert!(neg_zero <= zero);
1672
        assert!(!(zero > neg_zero));
1673
        assert!(!(neg_zero > zero));
1674
        assert!(zero >= neg_zero);
1675
        assert!(neg_zero >= zero);
1676
1677
        assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
1678
        assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
1679
        assert!(!(one == neg_zero));
1680
        assert!(!(neg_zero == one));
1681
        assert!(one != neg_zero);
1682
        assert!(neg_zero != one);
1683
        assert!(!(one < neg_zero));
1684
        assert!(neg_zero < one);
1685
        assert!(!(one <= neg_zero));
1686
        assert!(neg_zero <= one);
1687
        assert!(one > neg_zero);
1688
        assert!(!(neg_zero > one));
1689
        assert!(one >= neg_zero);
1690
        assert!(!(neg_zero >= one));
1691
1692
        assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
1693
        assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
1694
        assert!(!(one == neg_one));
1695
        assert!(!(neg_one == one));
1696
        assert!(one != neg_one);
1697
        assert!(neg_one != one);
1698
        assert!(!(one < neg_one));
1699
        assert!(neg_one < one);
1700
        assert!(!(one <= neg_one));
1701
        assert!(neg_one <= one);
1702
        assert!(one > neg_one);
1703
        assert!(!(neg_one > one));
1704
        assert!(one >= neg_one);
1705
        assert!(!(neg_one >= one));
1706
    }
1707
1708
    #[test]
1709
    #[allow(clippy::erasing_op, clippy::identity_op)]
1710
    fn round_to_even_f32() {
1711
        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1712
        let min_sub = f16::from_bits(1);
1713
        let min_sub_f = (-24f32).exp2();
1714
        assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
1715
        assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
1716
1717
        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1718
        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1719
        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1720
        assert_eq!(
1721
            f16::from_f32(min_sub_f * 0.49).to_bits(),
1722
            min_sub.to_bits() * 0
1723
        );
1724
        assert_eq!(
1725
            f16::from_f32(min_sub_f * 0.50).to_bits(),
1726
            min_sub.to_bits() * 0
1727
        );
1728
        assert_eq!(
1729
            f16::from_f32(min_sub_f * 0.51).to_bits(),
1730
            min_sub.to_bits() * 1
1731
        );
1732
1733
        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1734
        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1735
        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1736
        assert_eq!(
1737
            f16::from_f32(min_sub_f * 1.49).to_bits(),
1738
            min_sub.to_bits() * 1
1739
        );
1740
        assert_eq!(
1741
            f16::from_f32(min_sub_f * 1.50).to_bits(),
1742
            min_sub.to_bits() * 2
1743
        );
1744
        assert_eq!(
1745
            f16::from_f32(min_sub_f * 1.51).to_bits(),
1746
            min_sub.to_bits() * 2
1747
        );
1748
1749
        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1750
        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1751
        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1752
        assert_eq!(
1753
            f16::from_f32(min_sub_f * 2.49).to_bits(),
1754
            min_sub.to_bits() * 2
1755
        );
1756
        assert_eq!(
1757
            f16::from_f32(min_sub_f * 2.50).to_bits(),
1758
            min_sub.to_bits() * 2
1759
        );
1760
        assert_eq!(
1761
            f16::from_f32(min_sub_f * 2.51).to_bits(),
1762
            min_sub.to_bits() * 3
1763
        );
1764
1765
        assert_eq!(
1766
            f16::from_f32(2000.49f32).to_bits(),
1767
            f16::from_f32(2000.0).to_bits()
1768
        );
1769
        assert_eq!(
1770
            f16::from_f32(2000.50f32).to_bits(),
1771
            f16::from_f32(2000.0).to_bits()
1772
        );
1773
        assert_eq!(
1774
            f16::from_f32(2000.51f32).to_bits(),
1775
            f16::from_f32(2001.0).to_bits()
1776
        );
1777
        assert_eq!(
1778
            f16::from_f32(2001.49f32).to_bits(),
1779
            f16::from_f32(2001.0).to_bits()
1780
        );
1781
        assert_eq!(
1782
            f16::from_f32(2001.50f32).to_bits(),
1783
            f16::from_f32(2002.0).to_bits()
1784
        );
1785
        assert_eq!(
1786
            f16::from_f32(2001.51f32).to_bits(),
1787
            f16::from_f32(2002.0).to_bits()
1788
        );
1789
        assert_eq!(
1790
            f16::from_f32(2002.49f32).to_bits(),
1791
            f16::from_f32(2002.0).to_bits()
1792
        );
1793
        assert_eq!(
1794
            f16::from_f32(2002.50f32).to_bits(),
1795
            f16::from_f32(2002.0).to_bits()
1796
        );
1797
        assert_eq!(
1798
            f16::from_f32(2002.51f32).to_bits(),
1799
            f16::from_f32(2003.0).to_bits()
1800
        );
1801
    }
1802
1803
    #[test]
1804
    #[allow(clippy::erasing_op, clippy::identity_op)]
1805
    fn round_to_even_f64() {
1806
        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1807
        let min_sub = f16::from_bits(1);
1808
        let min_sub_f = (-24f64).exp2();
1809
        assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
1810
        assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
1811
1812
        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1813
        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1814
        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1815
        assert_eq!(
1816
            f16::from_f64(min_sub_f * 0.49).to_bits(),
1817
            min_sub.to_bits() * 0
1818
        );
1819
        assert_eq!(
1820
            f16::from_f64(min_sub_f * 0.50).to_bits(),
1821
            min_sub.to_bits() * 0
1822
        );
1823
        assert_eq!(
1824
            f16::from_f64(min_sub_f * 0.51).to_bits(),
1825
            min_sub.to_bits() * 1
1826
        );
1827
1828
        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1829
        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1830
        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1831
        assert_eq!(
1832
            f16::from_f64(min_sub_f * 1.49).to_bits(),
1833
            min_sub.to_bits() * 1
1834
        );
1835
        assert_eq!(
1836
            f16::from_f64(min_sub_f * 1.50).to_bits(),
1837
            min_sub.to_bits() * 2
1838
        );
1839
        assert_eq!(
1840
            f16::from_f64(min_sub_f * 1.51).to_bits(),
1841
            min_sub.to_bits() * 2
1842
        );
1843
1844
        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1845
        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1846
        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1847
        assert_eq!(
1848
            f16::from_f64(min_sub_f * 2.49).to_bits(),
1849
            min_sub.to_bits() * 2
1850
        );
1851
        assert_eq!(
1852
            f16::from_f64(min_sub_f * 2.50).to_bits(),
1853
            min_sub.to_bits() * 2
1854
        );
1855
        assert_eq!(
1856
            f16::from_f64(min_sub_f * 2.51).to_bits(),
1857
            min_sub.to_bits() * 3
1858
        );
1859
1860
        assert_eq!(
1861
            f16::from_f64(2000.49f64).to_bits(),
1862
            f16::from_f64(2000.0).to_bits()
1863
        );
1864
        assert_eq!(
1865
            f16::from_f64(2000.50f64).to_bits(),
1866
            f16::from_f64(2000.0).to_bits()
1867
        );
1868
        assert_eq!(
1869
            f16::from_f64(2000.51f64).to_bits(),
1870
            f16::from_f64(2001.0).to_bits()
1871
        );
1872
        assert_eq!(
1873
            f16::from_f64(2001.49f64).to_bits(),
1874
            f16::from_f64(2001.0).to_bits()
1875
        );
1876
        assert_eq!(
1877
            f16::from_f64(2001.50f64).to_bits(),
1878
            f16::from_f64(2002.0).to_bits()
1879
        );
1880
        assert_eq!(
1881
            f16::from_f64(2001.51f64).to_bits(),
1882
            f16::from_f64(2002.0).to_bits()
1883
        );
1884
        assert_eq!(
1885
            f16::from_f64(2002.49f64).to_bits(),
1886
            f16::from_f64(2002.0).to_bits()
1887
        );
1888
        assert_eq!(
1889
            f16::from_f64(2002.50f64).to_bits(),
1890
            f16::from_f64(2002.0).to_bits()
1891
        );
1892
        assert_eq!(
1893
            f16::from_f64(2002.51f64).to_bits(),
1894
            f16::from_f64(2003.0).to_bits()
1895
        );
1896
    }
1897
1898
    #[test]
1899
    fn arithmetic() {
1900
        assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.));
1901
        assert_eq!(f16::ONE - f16::ONE, f16::ZERO);
1902
        assert_eq!(f16::ONE * f16::ONE, f16::ONE);
1903
        assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.));
1904
        assert_eq!(f16::ONE / f16::ONE, f16::ONE);
1905
        assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.));
1906
        assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.));
1907
    }
1908
1909
    #[cfg(feature = "std")]
1910
    #[test]
1911
    fn formatting() {
1912
        let f = f16::from_f32(0.1152344);
1913
1914
        assert_eq!(format!("{:.3}", f), "0.115");
1915
        assert_eq!(format!("{:.4}", f), "0.1152");
1916
        assert_eq!(format!("{:+.4}", f), "+0.1152");
1917
        assert_eq!(format!("{:>+10.4}", f), "   +0.1152");
1918
1919
        assert_eq!(format!("{:.3?}", f), "0.115");
1920
        assert_eq!(format!("{:.4?}", f), "0.1152");
1921
        assert_eq!(format!("{:+.4?}", f), "+0.1152");
1922
        assert_eq!(format!("{:>+10.4?}", f), "   +0.1152");
1923
    }
1924
1925
    impl quickcheck::Arbitrary for f16 {
1926
        fn arbitrary(g: &mut quickcheck::Gen) -> Self {
1927
            f16(u16::arbitrary(g))
1928
        }
1929
    }
1930
1931
    #[quickcheck]
1932
    fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
1933
        let roundtrip = f16::from_f32(f.to_f32());
1934
        if f.is_nan() {
1935
            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1936
        } else {
1937
            f.0 == roundtrip.0
1938
        }
1939
    }
1940
1941
    #[quickcheck]
1942
    fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
1943
        let roundtrip = f16::from_f64(f.to_f64());
1944
        if f.is_nan() {
1945
            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1946
        } else {
1947
            f.0 == roundtrip.0
1948
        }
1949
    }
1950
}