/rust/registry/src/index.crates.io-6f17d22bba15001f/lock_api-0.4.12/src/remutex.rs
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2018 Amanieu d'Antras |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or |
4 | | // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or |
5 | | // http://opensource.org/licenses/MIT>, at your option. This file may not be |
6 | | // copied, modified, or distributed except according to those terms. |
7 | | |
8 | | use crate::{ |
9 | | mutex::{RawMutex, RawMutexFair, RawMutexTimed}, |
10 | | GuardNoSend, |
11 | | }; |
12 | | use core::{ |
13 | | cell::{Cell, UnsafeCell}, |
14 | | fmt, |
15 | | marker::PhantomData, |
16 | | mem, |
17 | | num::NonZeroUsize, |
18 | | ops::Deref, |
19 | | sync::atomic::{AtomicUsize, Ordering}, |
20 | | }; |
21 | | |
22 | | #[cfg(feature = "arc_lock")] |
23 | | use alloc::sync::Arc; |
24 | | #[cfg(feature = "arc_lock")] |
25 | | use core::mem::ManuallyDrop; |
26 | | #[cfg(feature = "arc_lock")] |
27 | | use core::ptr; |
28 | | |
29 | | #[cfg(feature = "owning_ref")] |
30 | | use owning_ref::StableAddress; |
31 | | |
32 | | #[cfg(feature = "serde")] |
33 | | use serde::{Deserialize, Deserializer, Serialize, Serializer}; |
34 | | |
35 | | /// Helper trait which returns a non-zero thread ID. |
36 | | /// |
37 | | /// The simplest way to implement this trait is to return the address of a |
38 | | /// thread-local variable. |
39 | | /// |
40 | | /// # Safety |
41 | | /// |
42 | | /// Implementations of this trait must ensure that no two active threads share |
43 | | /// the same thread ID. However the ID of a thread that has exited can be |
44 | | /// re-used since that thread is no longer active. |
45 | | pub unsafe trait GetThreadId { |
46 | | /// Initial value. |
47 | | // A “non-constant” const item is a legacy way to supply an initialized value to downstream |
48 | | // static items. Can hopefully be replaced with `const fn new() -> Self` at some point. |
49 | | #[allow(clippy::declare_interior_mutable_const)] |
50 | | const INIT: Self; |
51 | | |
52 | | /// Returns a non-zero thread ID which identifies the current thread of |
53 | | /// execution. |
54 | | fn nonzero_thread_id(&self) -> NonZeroUsize; |
55 | | } |
56 | | |
57 | | /// A raw mutex type that wraps another raw mutex to provide reentrancy. |
58 | | /// |
59 | | /// Although this has the same methods as the [`RawMutex`] trait, it does |
60 | | /// not implement it, and should not be used in the same way, since this |
61 | | /// mutex can successfully acquire a lock multiple times in the same thread. |
62 | | /// Only use this when you know you want a raw mutex that can be locked |
63 | | /// reentrantly; you probably want [`ReentrantMutex`] instead. |
64 | | pub struct RawReentrantMutex<R, G> { |
65 | | owner: AtomicUsize, |
66 | | lock_count: Cell<usize>, |
67 | | mutex: R, |
68 | | get_thread_id: G, |
69 | | } |
70 | | |
71 | | unsafe impl<R: RawMutex + Send, G: GetThreadId + Send> Send for RawReentrantMutex<R, G> {} |
72 | | unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync> Sync for RawReentrantMutex<R, G> {} |
73 | | |
74 | | impl<R: RawMutex, G: GetThreadId> RawReentrantMutex<R, G> { |
75 | | /// Initial value for an unlocked mutex. |
76 | | #[allow(clippy::declare_interior_mutable_const)] |
77 | | pub const INIT: Self = RawReentrantMutex { |
78 | | owner: AtomicUsize::new(0), |
79 | | lock_count: Cell::new(0), |
80 | | mutex: R::INIT, |
81 | | get_thread_id: G::INIT, |
82 | | }; |
83 | | |
84 | | #[inline] |
85 | 0 | fn lock_internal<F: FnOnce() -> bool>(&self, try_lock: F) -> bool { |
86 | 0 | let id = self.get_thread_id.nonzero_thread_id().get(); |
87 | 0 | if self.owner.load(Ordering::Relaxed) == id { |
88 | 0 | self.lock_count.set( |
89 | 0 | self.lock_count |
90 | 0 | .get() |
91 | 0 | .checked_add(1) |
92 | 0 | .expect("ReentrantMutex lock count overflow"), |
93 | 0 | ); |
94 | 0 | } else { |
95 | 0 | if !try_lock() { |
96 | 0 | return false; |
97 | 0 | } |
98 | 0 | self.owner.store(id, Ordering::Relaxed); |
99 | 0 | debug_assert_eq!(self.lock_count.get(), 0); |
100 | 0 | self.lock_count.set(1); |
101 | | } |
102 | 0 | true |
103 | 0 | } |
104 | | |
105 | | /// Acquires this mutex, blocking if it's held by another thread. |
106 | | #[inline] |
107 | 0 | pub fn lock(&self) { |
108 | 0 | self.lock_internal(|| { |
109 | 0 | self.mutex.lock(); |
110 | 0 | true |
111 | 0 | }); |
112 | 0 | } |
113 | | |
114 | | /// Attempts to acquire this mutex without blocking. Returns `true` |
115 | | /// if the lock was successfully acquired and `false` otherwise. |
116 | | #[inline] |
117 | 0 | pub fn try_lock(&self) -> bool { |
118 | 0 | self.lock_internal(|| self.mutex.try_lock()) |
119 | 0 | } |
120 | | |
121 | | /// Unlocks this mutex. The inner mutex may not be unlocked if |
122 | | /// this mutex was acquired previously in the current thread. |
123 | | /// |
124 | | /// # Safety |
125 | | /// |
126 | | /// This method may only be called if the mutex is held by the current thread. |
127 | | #[inline] |
128 | 0 | pub unsafe fn unlock(&self) { |
129 | 0 | let lock_count = self.lock_count.get() - 1; |
130 | 0 | self.lock_count.set(lock_count); |
131 | 0 | if lock_count == 0 { |
132 | 0 | self.owner.store(0, Ordering::Relaxed); |
133 | 0 | self.mutex.unlock(); |
134 | 0 | } |
135 | 0 | } |
136 | | |
137 | | /// Checks whether the mutex is currently locked. |
138 | | #[inline] |
139 | 0 | pub fn is_locked(&self) -> bool { |
140 | 0 | self.mutex.is_locked() |
141 | 0 | } |
142 | | |
143 | | /// Checks whether the mutex is currently held by the current thread. |
144 | | #[inline] |
145 | 0 | pub fn is_owned_by_current_thread(&self) -> bool { |
146 | 0 | let id = self.get_thread_id.nonzero_thread_id().get(); |
147 | 0 | self.owner.load(Ordering::Relaxed) == id |
148 | 0 | } |
149 | | } |
150 | | |
151 | | impl<R: RawMutexFair, G: GetThreadId> RawReentrantMutex<R, G> { |
152 | | /// Unlocks this mutex using a fair unlock protocol. The inner mutex |
153 | | /// may not be unlocked if this mutex was acquired previously in the |
154 | | /// current thread. |
155 | | /// |
156 | | /// # Safety |
157 | | /// |
158 | | /// This method may only be called if the mutex is held by the current thread. |
159 | | #[inline] |
160 | 0 | pub unsafe fn unlock_fair(&self) { |
161 | 0 | let lock_count = self.lock_count.get() - 1; |
162 | 0 | self.lock_count.set(lock_count); |
163 | 0 | if lock_count == 0 { |
164 | 0 | self.owner.store(0, Ordering::Relaxed); |
165 | 0 | self.mutex.unlock_fair(); |
166 | 0 | } |
167 | 0 | } |
168 | | |
169 | | /// Temporarily yields the mutex to a waiting thread if there is one. |
170 | | /// |
171 | | /// This method is functionally equivalent to calling `unlock_fair` followed |
172 | | /// by `lock`, however it can be much more efficient in the case where there |
173 | | /// are no waiting threads. |
174 | | /// |
175 | | /// # Safety |
176 | | /// |
177 | | /// This method may only be called if the mutex is held by the current thread. |
178 | | #[inline] |
179 | 0 | pub unsafe fn bump(&self) { |
180 | 0 | if self.lock_count.get() == 1 { |
181 | 0 | let id = self.owner.load(Ordering::Relaxed); |
182 | 0 | self.owner.store(0, Ordering::Relaxed); |
183 | 0 | self.lock_count.set(0); |
184 | 0 | self.mutex.bump(); |
185 | 0 | self.owner.store(id, Ordering::Relaxed); |
186 | 0 | self.lock_count.set(1); |
187 | 0 | } |
188 | 0 | } |
189 | | } |
190 | | |
191 | | impl<R: RawMutexTimed, G: GetThreadId> RawReentrantMutex<R, G> { |
192 | | /// Attempts to acquire this lock until a timeout is reached. |
193 | | #[inline] |
194 | 0 | pub fn try_lock_until(&self, timeout: R::Instant) -> bool { |
195 | 0 | self.lock_internal(|| self.mutex.try_lock_until(timeout)) |
196 | 0 | } |
197 | | |
198 | | /// Attempts to acquire this lock until a timeout is reached. |
199 | | #[inline] |
200 | 0 | pub fn try_lock_for(&self, timeout: R::Duration) -> bool { |
201 | 0 | self.lock_internal(|| self.mutex.try_lock_for(timeout)) |
202 | 0 | } |
203 | | } |
204 | | |
205 | | /// A mutex which can be recursively locked by a single thread. |
206 | | /// |
207 | | /// This type is identical to `Mutex` except for the following points: |
208 | | /// |
209 | | /// - Locking multiple times from the same thread will work correctly instead of |
210 | | /// deadlocking. |
211 | | /// - `ReentrantMutexGuard` does not give mutable references to the locked data. |
212 | | /// Use a `RefCell` if you need this. |
213 | | /// |
214 | | /// See [`Mutex`](crate::Mutex) for more details about the underlying mutex |
215 | | /// primitive. |
216 | | pub struct ReentrantMutex<R, G, T: ?Sized> { |
217 | | raw: RawReentrantMutex<R, G>, |
218 | | data: UnsafeCell<T>, |
219 | | } |
220 | | |
221 | | unsafe impl<R: RawMutex + Send, G: GetThreadId + Send, T: ?Sized + Send> Send |
222 | | for ReentrantMutex<R, G, T> |
223 | | { |
224 | | } |
225 | | unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync, T: ?Sized + Send> Sync |
226 | | for ReentrantMutex<R, G, T> |
227 | | { |
228 | | } |
229 | | |
230 | | impl<R: RawMutex, G: GetThreadId, T> ReentrantMutex<R, G, T> { |
231 | | /// Creates a new reentrant mutex in an unlocked state ready for use. |
232 | | #[cfg(has_const_fn_trait_bound)] |
233 | | #[inline] |
234 | 0 | pub const fn new(val: T) -> ReentrantMutex<R, G, T> { |
235 | 0 | ReentrantMutex { |
236 | 0 | data: UnsafeCell::new(val), |
237 | 0 | raw: RawReentrantMutex { |
238 | 0 | owner: AtomicUsize::new(0), |
239 | 0 | lock_count: Cell::new(0), |
240 | 0 | mutex: R::INIT, |
241 | 0 | get_thread_id: G::INIT, |
242 | 0 | }, |
243 | 0 | } |
244 | 0 | } |
245 | | |
246 | | /// Creates a new reentrant mutex in an unlocked state ready for use. |
247 | | #[cfg(not(has_const_fn_trait_bound))] |
248 | | #[inline] |
249 | | pub fn new(val: T) -> ReentrantMutex<R, G, T> { |
250 | | ReentrantMutex { |
251 | | data: UnsafeCell::new(val), |
252 | | raw: RawReentrantMutex { |
253 | | owner: AtomicUsize::new(0), |
254 | | lock_count: Cell::new(0), |
255 | | mutex: R::INIT, |
256 | | get_thread_id: G::INIT, |
257 | | }, |
258 | | } |
259 | | } |
260 | | |
261 | | /// Consumes this mutex, returning the underlying data. |
262 | | #[inline] |
263 | 0 | pub fn into_inner(self) -> T { |
264 | 0 | self.data.into_inner() |
265 | 0 | } |
266 | | } |
267 | | |
268 | | impl<R, G, T> ReentrantMutex<R, G, T> { |
269 | | /// Creates a new reentrant mutex based on a pre-existing raw mutex and a |
270 | | /// helper to get the thread ID. |
271 | | #[inline] |
272 | 0 | pub const fn from_raw(raw_mutex: R, get_thread_id: G, val: T) -> ReentrantMutex<R, G, T> { |
273 | 0 | ReentrantMutex { |
274 | 0 | data: UnsafeCell::new(val), |
275 | 0 | raw: RawReentrantMutex { |
276 | 0 | owner: AtomicUsize::new(0), |
277 | 0 | lock_count: Cell::new(0), |
278 | 0 | mutex: raw_mutex, |
279 | 0 | get_thread_id, |
280 | 0 | }, |
281 | 0 | } |
282 | 0 | } |
283 | | |
284 | | /// Creates a new reentrant mutex based on a pre-existing raw mutex and a |
285 | | /// helper to get the thread ID. |
286 | | /// |
287 | | /// This allows creating a reentrant mutex in a constant context on stable |
288 | | /// Rust. |
289 | | /// |
290 | | /// This method is a legacy alias for [`from_raw`](Self::from_raw). |
291 | | #[inline] |
292 | 0 | pub const fn const_new(raw_mutex: R, get_thread_id: G, val: T) -> ReentrantMutex<R, G, T> { |
293 | 0 | Self::from_raw(raw_mutex, get_thread_id, val) |
294 | 0 | } |
295 | | } |
296 | | |
297 | | impl<R: RawMutex, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
298 | | /// Creates a new `ReentrantMutexGuard` without checking if the lock is held. |
299 | | /// |
300 | | /// # Safety |
301 | | /// |
302 | | /// This method must only be called if the thread logically holds the lock. |
303 | | /// |
304 | | /// Calling this function when a guard has already been produced is undefined behaviour unless |
305 | | /// the guard was forgotten with `mem::forget`. |
306 | | #[inline] |
307 | 0 | pub unsafe fn make_guard_unchecked(&self) -> ReentrantMutexGuard<'_, R, G, T> { |
308 | 0 | ReentrantMutexGuard { |
309 | 0 | remutex: &self, |
310 | 0 | marker: PhantomData, |
311 | 0 | } |
312 | 0 | } |
313 | | |
314 | | /// Acquires a reentrant mutex, blocking the current thread until it is able |
315 | | /// to do so. |
316 | | /// |
317 | | /// If the mutex is held by another thread then this function will block the |
318 | | /// local thread until it is available to acquire the mutex. If the mutex is |
319 | | /// already held by the current thread then this function will increment the |
320 | | /// lock reference count and return immediately. Upon returning, |
321 | | /// the thread is the only thread with the mutex held. An RAII guard is |
322 | | /// returned to allow scoped unlock of the lock. When the guard goes out of |
323 | | /// scope, the mutex will be unlocked. |
324 | | #[inline] |
325 | 0 | pub fn lock(&self) -> ReentrantMutexGuard<'_, R, G, T> { |
326 | 0 | self.raw.lock(); |
327 | 0 | // SAFETY: The lock is held, as required. |
328 | 0 | unsafe { self.make_guard_unchecked() } |
329 | 0 | } |
330 | | |
331 | | /// Attempts to acquire this lock. |
332 | | /// |
333 | | /// If the lock could not be acquired at this time, then `None` is returned. |
334 | | /// Otherwise, an RAII guard is returned. The lock will be unlocked when the |
335 | | /// guard is dropped. |
336 | | /// |
337 | | /// This function does not block. |
338 | | #[inline] |
339 | 0 | pub fn try_lock(&self) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
340 | 0 | if self.raw.try_lock() { |
341 | | // SAFETY: The lock is held, as required. |
342 | 0 | Some(unsafe { self.make_guard_unchecked() }) |
343 | | } else { |
344 | 0 | None |
345 | | } |
346 | 0 | } |
347 | | |
348 | | /// Returns a mutable reference to the underlying data. |
349 | | /// |
350 | | /// Since this call borrows the `ReentrantMutex` mutably, no actual locking needs to |
351 | | /// take place---the mutable borrow statically guarantees no locks exist. |
352 | | #[inline] |
353 | 0 | pub fn get_mut(&mut self) -> &mut T { |
354 | 0 | unsafe { &mut *self.data.get() } |
355 | 0 | } |
356 | | |
357 | | /// Checks whether the mutex is currently locked. |
358 | | #[inline] |
359 | 0 | pub fn is_locked(&self) -> bool { |
360 | 0 | self.raw.is_locked() |
361 | 0 | } |
362 | | |
363 | | /// Checks whether the mutex is currently held by the current thread. |
364 | | #[inline] |
365 | 0 | pub fn is_owned_by_current_thread(&self) -> bool { |
366 | 0 | self.raw.is_owned_by_current_thread() |
367 | 0 | } |
368 | | |
369 | | /// Forcibly unlocks the mutex. |
370 | | /// |
371 | | /// This is useful when combined with `mem::forget` to hold a lock without |
372 | | /// the need to maintain a `ReentrantMutexGuard` object alive, for example when |
373 | | /// dealing with FFI. |
374 | | /// |
375 | | /// # Safety |
376 | | /// |
377 | | /// This method must only be called if the current thread logically owns a |
378 | | /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`. |
379 | | /// Behavior is undefined if a mutex is unlocked when not locked. |
380 | | #[inline] |
381 | 0 | pub unsafe fn force_unlock(&self) { |
382 | 0 | self.raw.unlock(); |
383 | 0 | } |
384 | | |
385 | | /// Returns the underlying raw mutex object. |
386 | | /// |
387 | | /// Note that you will most likely need to import the `RawMutex` trait from |
388 | | /// `lock_api` to be able to call functions on the raw mutex. |
389 | | /// |
390 | | /// # Safety |
391 | | /// |
392 | | /// This method is unsafe because it allows unlocking a mutex while |
393 | | /// still holding a reference to a `ReentrantMutexGuard`. |
394 | | #[inline] |
395 | 0 | pub unsafe fn raw(&self) -> &R { |
396 | 0 | &self.raw.mutex |
397 | 0 | } |
398 | | |
399 | | /// Returns a raw pointer to the underlying data. |
400 | | /// |
401 | | /// This is useful when combined with `mem::forget` to hold a lock without |
402 | | /// the need to maintain a `ReentrantMutexGuard` object alive, for example |
403 | | /// when dealing with FFI. |
404 | | /// |
405 | | /// # Safety |
406 | | /// |
407 | | /// You must ensure that there are no data races when dereferencing the |
408 | | /// returned pointer, for example if the current thread logically owns a |
409 | | /// `ReentrantMutexGuard` but that guard has been discarded using |
410 | | /// `mem::forget`. |
411 | | #[inline] |
412 | 0 | pub fn data_ptr(&self) -> *mut T { |
413 | 0 | self.data.get() |
414 | 0 | } |
415 | | |
416 | | /// Creates a new `ArcReentrantMutexGuard` without checking if the lock is held. |
417 | | /// |
418 | | /// # Safety |
419 | | /// |
420 | | /// This method must only be called if the thread logically holds the lock. |
421 | | /// |
422 | | /// Calling this function when a guard has already been produced is undefined behaviour unless |
423 | | /// the guard was forgotten with `mem::forget`. |
424 | | #[cfg(feature = "arc_lock")] |
425 | | #[inline] |
426 | | pub unsafe fn make_arc_guard_unchecked(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> { |
427 | | ArcReentrantMutexGuard { |
428 | | remutex: self.clone(), |
429 | | marker: PhantomData, |
430 | | } |
431 | | } |
432 | | |
433 | | /// Acquires a reentrant mutex through an `Arc`. |
434 | | /// |
435 | | /// This method is similar to the `lock` method; however, it requires the `ReentrantMutex` to be inside of an |
436 | | /// `Arc` and the resulting mutex guard has no lifetime requirements. |
437 | | #[cfg(feature = "arc_lock")] |
438 | | #[inline] |
439 | | pub fn lock_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> { |
440 | | self.raw.lock(); |
441 | | // SAFETY: locking guarantee is upheld |
442 | | unsafe { self.make_arc_guard_unchecked() } |
443 | | } |
444 | | |
445 | | /// Attempts to acquire a reentrant mutex through an `Arc`. |
446 | | /// |
447 | | /// This method is similar to the `try_lock` method; however, it requires the `ReentrantMutex` to be inside |
448 | | /// of an `Arc` and the resulting mutex guard has no lifetime requirements. |
449 | | #[cfg(feature = "arc_lock")] |
450 | | #[inline] |
451 | | pub fn try_lock_arc(self: &Arc<Self>) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
452 | | if self.raw.try_lock() { |
453 | | // SAFETY: locking guarantee is upheld |
454 | | Some(unsafe { self.make_arc_guard_unchecked() }) |
455 | | } else { |
456 | | None |
457 | | } |
458 | | } |
459 | | } |
460 | | |
461 | | impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
462 | | /// Forcibly unlocks the mutex using a fair unlock protocol. |
463 | | /// |
464 | | /// This is useful when combined with `mem::forget` to hold a lock without |
465 | | /// the need to maintain a `ReentrantMutexGuard` object alive, for example when |
466 | | /// dealing with FFI. |
467 | | /// |
468 | | /// # Safety |
469 | | /// |
470 | | /// This method must only be called if the current thread logically owns a |
471 | | /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`. |
472 | | /// Behavior is undefined if a mutex is unlocked when not locked. |
473 | | #[inline] |
474 | 0 | pub unsafe fn force_unlock_fair(&self) { |
475 | 0 | self.raw.unlock_fair(); |
476 | 0 | } |
477 | | } |
478 | | |
479 | | impl<R: RawMutexTimed, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
480 | | /// Attempts to acquire this lock until a timeout is reached. |
481 | | /// |
482 | | /// If the lock could not be acquired before the timeout expired, then |
483 | | /// `None` is returned. Otherwise, an RAII guard is returned. The lock will |
484 | | /// be unlocked when the guard is dropped. |
485 | | #[inline] |
486 | 0 | pub fn try_lock_for(&self, timeout: R::Duration) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
487 | 0 | if self.raw.try_lock_for(timeout) { |
488 | | // SAFETY: The lock is held, as required. |
489 | 0 | Some(unsafe { self.make_guard_unchecked() }) |
490 | | } else { |
491 | 0 | None |
492 | | } |
493 | 0 | } |
494 | | |
495 | | /// Attempts to acquire this lock until a timeout is reached. |
496 | | /// |
497 | | /// If the lock could not be acquired before the timeout expired, then |
498 | | /// `None` is returned. Otherwise, an RAII guard is returned. The lock will |
499 | | /// be unlocked when the guard is dropped. |
500 | | #[inline] |
501 | 0 | pub fn try_lock_until(&self, timeout: R::Instant) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
502 | 0 | if self.raw.try_lock_until(timeout) { |
503 | | // SAFETY: The lock is held, as required. |
504 | 0 | Some(unsafe { self.make_guard_unchecked() }) |
505 | | } else { |
506 | 0 | None |
507 | | } |
508 | 0 | } |
509 | | |
510 | | /// Attempts to acquire this lock until a timeout is reached, through an `Arc`. |
511 | | /// |
512 | | /// This method is similar to the `try_lock_for` method; however, it requires the `ReentrantMutex` to be |
513 | | /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements. |
514 | | #[cfg(feature = "arc_lock")] |
515 | | #[inline] |
516 | | pub fn try_lock_arc_for( |
517 | | self: &Arc<Self>, |
518 | | timeout: R::Duration, |
519 | | ) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
520 | | if self.raw.try_lock_for(timeout) { |
521 | | // SAFETY: locking guarantee is upheld |
522 | | Some(unsafe { self.make_arc_guard_unchecked() }) |
523 | | } else { |
524 | | None |
525 | | } |
526 | | } |
527 | | |
528 | | /// Attempts to acquire this lock until a timeout is reached, through an `Arc`. |
529 | | /// |
530 | | /// This method is similar to the `try_lock_until` method; however, it requires the `ReentrantMutex` to be |
531 | | /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements. |
532 | | #[cfg(feature = "arc_lock")] |
533 | | #[inline] |
534 | | pub fn try_lock_arc_until( |
535 | | self: &Arc<Self>, |
536 | | timeout: R::Instant, |
537 | | ) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
538 | | if self.raw.try_lock_until(timeout) { |
539 | | // SAFETY: locking guarantee is upheld |
540 | | Some(unsafe { self.make_arc_guard_unchecked() }) |
541 | | } else { |
542 | | None |
543 | | } |
544 | | } |
545 | | } |
546 | | |
547 | | impl<R: RawMutex, G: GetThreadId, T: ?Sized + Default> Default for ReentrantMutex<R, G, T> { |
548 | | #[inline] |
549 | 0 | fn default() -> ReentrantMutex<R, G, T> { |
550 | 0 | ReentrantMutex::new(Default::default()) |
551 | 0 | } |
552 | | } |
553 | | |
554 | | impl<R: RawMutex, G: GetThreadId, T> From<T> for ReentrantMutex<R, G, T> { |
555 | | #[inline] |
556 | 0 | fn from(t: T) -> ReentrantMutex<R, G, T> { |
557 | 0 | ReentrantMutex::new(t) |
558 | 0 | } |
559 | | } |
560 | | |
561 | | impl<R: RawMutex, G: GetThreadId, T: ?Sized + fmt::Debug> fmt::Debug for ReentrantMutex<R, G, T> { |
562 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
563 | 0 | match self.try_lock() { |
564 | 0 | Some(guard) => f |
565 | 0 | .debug_struct("ReentrantMutex") |
566 | 0 | .field("data", &&*guard) |
567 | 0 | .finish(), |
568 | | None => { |
569 | | struct LockedPlaceholder; |
570 | | impl fmt::Debug for LockedPlaceholder { |
571 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
572 | 0 | f.write_str("<locked>") |
573 | 0 | } |
574 | | } |
575 | | |
576 | 0 | f.debug_struct("ReentrantMutex") |
577 | 0 | .field("data", &LockedPlaceholder) |
578 | 0 | .finish() |
579 | | } |
580 | | } |
581 | 0 | } |
582 | | } |
583 | | |
584 | | // Copied and modified from serde |
585 | | #[cfg(feature = "serde")] |
586 | | impl<R, G, T> Serialize for ReentrantMutex<R, G, T> |
587 | | where |
588 | | R: RawMutex, |
589 | | G: GetThreadId, |
590 | | T: Serialize + ?Sized, |
591 | | { |
592 | | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
593 | | where |
594 | | S: Serializer, |
595 | | { |
596 | | self.lock().serialize(serializer) |
597 | | } |
598 | | } |
599 | | |
600 | | #[cfg(feature = "serde")] |
601 | | impl<'de, R, G, T> Deserialize<'de> for ReentrantMutex<R, G, T> |
602 | | where |
603 | | R: RawMutex, |
604 | | G: GetThreadId, |
605 | | T: Deserialize<'de> + ?Sized, |
606 | | { |
607 | | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
608 | | where |
609 | | D: Deserializer<'de>, |
610 | | { |
611 | | Deserialize::deserialize(deserializer).map(ReentrantMutex::new) |
612 | | } |
613 | | } |
614 | | |
615 | | /// An RAII implementation of a "scoped lock" of a reentrant mutex. When this structure |
616 | | /// is dropped (falls out of scope), the lock will be unlocked. |
617 | | /// |
618 | | /// The data protected by the mutex can be accessed through this guard via its |
619 | | /// `Deref` implementation. |
620 | | #[clippy::has_significant_drop] |
621 | | #[must_use = "if unused the ReentrantMutex will immediately unlock"] |
622 | | pub struct ReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> { |
623 | | remutex: &'a ReentrantMutex<R, G, T>, |
624 | | marker: PhantomData<(&'a T, GuardNoSend)>, |
625 | | } |
626 | | |
627 | | unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync |
628 | | for ReentrantMutexGuard<'a, R, G, T> |
629 | | { |
630 | | } |
631 | | |
632 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> ReentrantMutexGuard<'a, R, G, T> { |
633 | | /// Returns a reference to the original `ReentrantMutex` object. |
634 | 0 | pub fn remutex(s: &Self) -> &'a ReentrantMutex<R, G, T> { |
635 | 0 | s.remutex |
636 | 0 | } |
637 | | |
638 | | /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data. |
639 | | /// |
640 | | /// This operation cannot fail as the `ReentrantMutexGuard` passed |
641 | | /// in already locked the mutex. |
642 | | /// |
643 | | /// This is an associated function that needs to be |
644 | | /// used as `ReentrantMutexGuard::map(...)`. A method would interfere with methods of |
645 | | /// the same name on the contents of the locked data. |
646 | | #[inline] |
647 | 0 | pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U> |
648 | 0 | where |
649 | 0 | F: FnOnce(&T) -> &U, |
650 | 0 | { |
651 | 0 | let raw = &s.remutex.raw; |
652 | 0 | let data = f(unsafe { &*s.remutex.data.get() }); |
653 | 0 | mem::forget(s); |
654 | 0 | MappedReentrantMutexGuard { |
655 | 0 | raw, |
656 | 0 | data, |
657 | 0 | marker: PhantomData, |
658 | 0 | } |
659 | 0 | } |
660 | | |
661 | | /// Attempts to make a new `MappedReentrantMutexGuard` for a component of the |
662 | | /// locked data. The original guard is return if the closure returns `None`. |
663 | | /// |
664 | | /// This operation cannot fail as the `ReentrantMutexGuard` passed |
665 | | /// in already locked the mutex. |
666 | | /// |
667 | | /// This is an associated function that needs to be |
668 | | /// used as `ReentrantMutexGuard::try_map(...)`. A method would interfere with methods of |
669 | | /// the same name on the contents of the locked data. |
670 | | #[inline] |
671 | 0 | pub fn try_map<U: ?Sized, F>( |
672 | 0 | s: Self, |
673 | 0 | f: F, |
674 | 0 | ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self> |
675 | 0 | where |
676 | 0 | F: FnOnce(&T) -> Option<&U>, |
677 | 0 | { |
678 | 0 | let raw = &s.remutex.raw; |
679 | 0 | let data = match f(unsafe { &*s.remutex.data.get() }) { |
680 | 0 | Some(data) => data, |
681 | 0 | None => return Err(s), |
682 | | }; |
683 | 0 | mem::forget(s); |
684 | 0 | Ok(MappedReentrantMutexGuard { |
685 | 0 | raw, |
686 | 0 | data, |
687 | 0 | marker: PhantomData, |
688 | 0 | }) |
689 | 0 | } |
690 | | |
691 | | /// Temporarily unlocks the mutex to execute the given function. |
692 | | /// |
693 | | /// This is safe because `&mut` guarantees that there exist no other |
694 | | /// references to the data protected by the mutex. |
695 | | #[inline] |
696 | 0 | pub fn unlocked<F, U>(s: &mut Self, f: F) -> U |
697 | 0 | where |
698 | 0 | F: FnOnce() -> U, |
699 | 0 | { |
700 | 0 | // Safety: A ReentrantMutexGuard always holds the lock. |
701 | 0 | unsafe { |
702 | 0 | s.remutex.raw.unlock(); |
703 | 0 | } |
704 | 0 | defer!(s.remutex.raw.lock()); |
705 | 0 | f() |
706 | 0 | } |
707 | | } |
708 | | |
709 | | impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
710 | | ReentrantMutexGuard<'a, R, G, T> |
711 | | { |
712 | | /// Unlocks the mutex using a fair unlock protocol. |
713 | | /// |
714 | | /// By default, mutexes are unfair and allow the current thread to re-lock |
715 | | /// the mutex before another has the chance to acquire the lock, even if |
716 | | /// that thread has been blocked on the mutex for a long time. This is the |
717 | | /// default because it allows much higher throughput as it avoids forcing a |
718 | | /// context switch on every mutex unlock. This can result in one thread |
719 | | /// acquiring a mutex many more times than other threads. |
720 | | /// |
721 | | /// However in some cases it can be beneficial to ensure fairness by forcing |
722 | | /// the lock to pass on to a waiting thread if there is one. This is done by |
723 | | /// using this method instead of dropping the `ReentrantMutexGuard` normally. |
724 | | #[inline] |
725 | 0 | pub fn unlock_fair(s: Self) { |
726 | 0 | // Safety: A ReentrantMutexGuard always holds the lock |
727 | 0 | unsafe { |
728 | 0 | s.remutex.raw.unlock_fair(); |
729 | 0 | } |
730 | 0 | mem::forget(s); |
731 | 0 | } |
732 | | |
733 | | /// Temporarily unlocks the mutex to execute the given function. |
734 | | /// |
735 | | /// The mutex is unlocked a fair unlock protocol. |
736 | | /// |
737 | | /// This is safe because `&mut` guarantees that there exist no other |
738 | | /// references to the data protected by the mutex. |
739 | | #[inline] |
740 | 0 | pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U |
741 | 0 | where |
742 | 0 | F: FnOnce() -> U, |
743 | 0 | { |
744 | 0 | // Safety: A ReentrantMutexGuard always holds the lock |
745 | 0 | unsafe { |
746 | 0 | s.remutex.raw.unlock_fair(); |
747 | 0 | } |
748 | 0 | defer!(s.remutex.raw.lock()); |
749 | 0 | f() |
750 | 0 | } |
751 | | |
752 | | /// Temporarily yields the mutex to a waiting thread if there is one. |
753 | | /// |
754 | | /// This method is functionally equivalent to calling `unlock_fair` followed |
755 | | /// by `lock`, however it can be much more efficient in the case where there |
756 | | /// are no waiting threads. |
757 | | #[inline] |
758 | 0 | pub fn bump(s: &mut Self) { |
759 | 0 | // Safety: A ReentrantMutexGuard always holds the lock |
760 | 0 | unsafe { |
761 | 0 | s.remutex.raw.bump(); |
762 | 0 | } |
763 | 0 | } |
764 | | } |
765 | | |
766 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref |
767 | | for ReentrantMutexGuard<'a, R, G, T> |
768 | | { |
769 | | type Target = T; |
770 | | #[inline] |
771 | 0 | fn deref(&self) -> &T { |
772 | 0 | unsafe { &*self.remutex.data.get() } |
773 | 0 | } |
774 | | } |
775 | | |
776 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop |
777 | | for ReentrantMutexGuard<'a, R, G, T> |
778 | | { |
779 | | #[inline] |
780 | 0 | fn drop(&mut self) { |
781 | 0 | // Safety: A ReentrantMutexGuard always holds the lock. |
782 | 0 | unsafe { |
783 | 0 | self.remutex.raw.unlock(); |
784 | 0 | } |
785 | 0 | } |
786 | | } |
787 | | |
788 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug |
789 | | for ReentrantMutexGuard<'a, R, G, T> |
790 | | { |
791 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
792 | 0 | fmt::Debug::fmt(&**self, f) |
793 | 0 | } |
794 | | } |
795 | | |
796 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display |
797 | | for ReentrantMutexGuard<'a, R, G, T> |
798 | | { |
799 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
800 | 0 | (**self).fmt(f) |
801 | 0 | } |
802 | | } |
803 | | |
804 | | #[cfg(feature = "owning_ref")] |
805 | | unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress |
806 | | for ReentrantMutexGuard<'a, R, G, T> |
807 | | { |
808 | | } |
809 | | |
810 | | /// An RAII mutex guard returned by the `Arc` locking operations on `ReentrantMutex`. |
811 | | /// |
812 | | /// This is similar to the `ReentrantMutexGuard` struct, except instead of using a reference to unlock the |
813 | | /// `Mutex` it uses an `Arc<ReentrantMutex>`. This has several advantages, most notably that it has an `'static` |
814 | | /// lifetime. |
815 | | #[cfg(feature = "arc_lock")] |
816 | | #[clippy::has_significant_drop] |
817 | | #[must_use = "if unused the ReentrantMutex will immediately unlock"] |
818 | | pub struct ArcReentrantMutexGuard<R: RawMutex, G: GetThreadId, T: ?Sized> { |
819 | | remutex: Arc<ReentrantMutex<R, G, T>>, |
820 | | marker: PhantomData<GuardNoSend>, |
821 | | } |
822 | | |
823 | | #[cfg(feature = "arc_lock")] |
824 | | impl<R: RawMutex, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> { |
825 | | /// Returns a reference to the `ReentrantMutex` this object is guarding, contained in its `Arc`. |
826 | | pub fn remutex(s: &Self) -> &Arc<ReentrantMutex<R, G, T>> { |
827 | | &s.remutex |
828 | | } |
829 | | |
830 | | /// Temporarily unlocks the mutex to execute the given function. |
831 | | /// |
832 | | /// This is safe because `&mut` guarantees that there exist no other |
833 | | /// references to the data protected by the mutex. |
834 | | #[inline] |
835 | | pub fn unlocked<F, U>(s: &mut Self, f: F) -> U |
836 | | where |
837 | | F: FnOnce() -> U, |
838 | | { |
839 | | // Safety: A ReentrantMutexGuard always holds the lock. |
840 | | unsafe { |
841 | | s.remutex.raw.unlock(); |
842 | | } |
843 | | defer!(s.remutex.raw.lock()); |
844 | | f() |
845 | | } |
846 | | } |
847 | | |
848 | | #[cfg(feature = "arc_lock")] |
849 | | impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> { |
850 | | /// Unlocks the mutex using a fair unlock protocol. |
851 | | /// |
852 | | /// This is functionally identical to the `unlock_fair` method on [`ReentrantMutexGuard`]. |
853 | | #[inline] |
854 | | pub fn unlock_fair(s: Self) { |
855 | | // Safety: A ReentrantMutexGuard always holds the lock |
856 | | unsafe { |
857 | | s.remutex.raw.unlock_fair(); |
858 | | } |
859 | | |
860 | | // SAFETY: ensure that the Arc's refcount is decremented |
861 | | let mut s = ManuallyDrop::new(s); |
862 | | unsafe { ptr::drop_in_place(&mut s.remutex) }; |
863 | | } |
864 | | |
865 | | /// Temporarily unlocks the mutex to execute the given function. |
866 | | /// |
867 | | /// This is functionally identical to the `unlocked_fair` method on [`ReentrantMutexGuard`]. |
868 | | #[inline] |
869 | | pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U |
870 | | where |
871 | | F: FnOnce() -> U, |
872 | | { |
873 | | // Safety: A ReentrantMutexGuard always holds the lock |
874 | | unsafe { |
875 | | s.remutex.raw.unlock_fair(); |
876 | | } |
877 | | defer!(s.remutex.raw.lock()); |
878 | | f() |
879 | | } |
880 | | |
881 | | /// Temporarily yields the mutex to a waiting thread if there is one. |
882 | | /// |
883 | | /// This is functionally equivalent to the `bump` method on [`ReentrantMutexGuard`]. |
884 | | #[inline] |
885 | | pub fn bump(s: &mut Self) { |
886 | | // Safety: A ReentrantMutexGuard always holds the lock |
887 | | unsafe { |
888 | | s.remutex.raw.bump(); |
889 | | } |
890 | | } |
891 | | } |
892 | | |
893 | | #[cfg(feature = "arc_lock")] |
894 | | impl<R: RawMutex, G: GetThreadId, T: ?Sized> Deref for ArcReentrantMutexGuard<R, G, T> { |
895 | | type Target = T; |
896 | | #[inline] |
897 | | fn deref(&self) -> &T { |
898 | | unsafe { &*self.remutex.data.get() } |
899 | | } |
900 | | } |
901 | | |
902 | | #[cfg(feature = "arc_lock")] |
903 | | impl<R: RawMutex, G: GetThreadId, T: ?Sized> Drop for ArcReentrantMutexGuard<R, G, T> { |
904 | | #[inline] |
905 | | fn drop(&mut self) { |
906 | | // Safety: A ReentrantMutexGuard always holds the lock. |
907 | | unsafe { |
908 | | self.remutex.raw.unlock(); |
909 | | } |
910 | | } |
911 | | } |
912 | | |
913 | | /// An RAII mutex guard returned by `ReentrantMutexGuard::map`, which can point to a |
914 | | /// subfield of the protected data. |
915 | | /// |
916 | | /// The main difference between `MappedReentrantMutexGuard` and `ReentrantMutexGuard` is that the |
917 | | /// former doesn't support temporarily unlocking and re-locking, since that |
918 | | /// could introduce soundness issues if the locked object is modified by another |
919 | | /// thread. |
920 | | #[clippy::has_significant_drop] |
921 | | #[must_use = "if unused the ReentrantMutex will immediately unlock"] |
922 | | pub struct MappedReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> { |
923 | | raw: &'a RawReentrantMutex<R, G>, |
924 | | data: *const T, |
925 | | marker: PhantomData<&'a T>, |
926 | | } |
927 | | |
928 | | unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync |
929 | | for MappedReentrantMutexGuard<'a, R, G, T> |
930 | | { |
931 | | } |
932 | | |
933 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
934 | | MappedReentrantMutexGuard<'a, R, G, T> |
935 | | { |
936 | | /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data. |
937 | | /// |
938 | | /// This operation cannot fail as the `MappedReentrantMutexGuard` passed |
939 | | /// in already locked the mutex. |
940 | | /// |
941 | | /// This is an associated function that needs to be |
942 | | /// used as `MappedReentrantMutexGuard::map(...)`. A method would interfere with methods of |
943 | | /// the same name on the contents of the locked data. |
944 | | #[inline] |
945 | 0 | pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U> |
946 | 0 | where |
947 | 0 | F: FnOnce(&T) -> &U, |
948 | 0 | { |
949 | 0 | let raw = s.raw; |
950 | 0 | let data = f(unsafe { &*s.data }); |
951 | 0 | mem::forget(s); |
952 | 0 | MappedReentrantMutexGuard { |
953 | 0 | raw, |
954 | 0 | data, |
955 | 0 | marker: PhantomData, |
956 | 0 | } |
957 | 0 | } |
958 | | |
959 | | /// Attempts to make a new `MappedReentrantMutexGuard` for a component of the |
960 | | /// locked data. The original guard is return if the closure returns `None`. |
961 | | /// |
962 | | /// This operation cannot fail as the `MappedReentrantMutexGuard` passed |
963 | | /// in already locked the mutex. |
964 | | /// |
965 | | /// This is an associated function that needs to be |
966 | | /// used as `MappedReentrantMutexGuard::try_map(...)`. A method would interfere with methods of |
967 | | /// the same name on the contents of the locked data. |
968 | | #[inline] |
969 | 0 | pub fn try_map<U: ?Sized, F>( |
970 | 0 | s: Self, |
971 | 0 | f: F, |
972 | 0 | ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self> |
973 | 0 | where |
974 | 0 | F: FnOnce(&T) -> Option<&U>, |
975 | 0 | { |
976 | 0 | let raw = s.raw; |
977 | 0 | let data = match f(unsafe { &*s.data }) { |
978 | 0 | Some(data) => data, |
979 | 0 | None => return Err(s), |
980 | | }; |
981 | 0 | mem::forget(s); |
982 | 0 | Ok(MappedReentrantMutexGuard { |
983 | 0 | raw, |
984 | 0 | data, |
985 | 0 | marker: PhantomData, |
986 | 0 | }) |
987 | 0 | } |
988 | | } |
989 | | |
990 | | impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
991 | | MappedReentrantMutexGuard<'a, R, G, T> |
992 | | { |
993 | | /// Unlocks the mutex using a fair unlock protocol. |
994 | | /// |
995 | | /// By default, mutexes are unfair and allow the current thread to re-lock |
996 | | /// the mutex before another has the chance to acquire the lock, even if |
997 | | /// that thread has been blocked on the mutex for a long time. This is the |
998 | | /// default because it allows much higher throughput as it avoids forcing a |
999 | | /// context switch on every mutex unlock. This can result in one thread |
1000 | | /// acquiring a mutex many more times than other threads. |
1001 | | /// |
1002 | | /// However in some cases it can be beneficial to ensure fairness by forcing |
1003 | | /// the lock to pass on to a waiting thread if there is one. This is done by |
1004 | | /// using this method instead of dropping the `ReentrantMutexGuard` normally. |
1005 | | #[inline] |
1006 | 0 | pub fn unlock_fair(s: Self) { |
1007 | 0 | // Safety: A MappedReentrantMutexGuard always holds the lock |
1008 | 0 | unsafe { |
1009 | 0 | s.raw.unlock_fair(); |
1010 | 0 | } |
1011 | 0 | mem::forget(s); |
1012 | 0 | } |
1013 | | } |
1014 | | |
1015 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref |
1016 | | for MappedReentrantMutexGuard<'a, R, G, T> |
1017 | | { |
1018 | | type Target = T; |
1019 | | #[inline] |
1020 | 0 | fn deref(&self) -> &T { |
1021 | 0 | unsafe { &*self.data } |
1022 | 0 | } |
1023 | | } |
1024 | | |
1025 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop |
1026 | | for MappedReentrantMutexGuard<'a, R, G, T> |
1027 | | { |
1028 | | #[inline] |
1029 | 0 | fn drop(&mut self) { |
1030 | 0 | // Safety: A MappedReentrantMutexGuard always holds the lock. |
1031 | 0 | unsafe { |
1032 | 0 | self.raw.unlock(); |
1033 | 0 | } |
1034 | 0 | } |
1035 | | } |
1036 | | |
1037 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug |
1038 | | for MappedReentrantMutexGuard<'a, R, G, T> |
1039 | | { |
1040 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1041 | 0 | fmt::Debug::fmt(&**self, f) |
1042 | 0 | } |
1043 | | } |
1044 | | |
1045 | | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display |
1046 | | for MappedReentrantMutexGuard<'a, R, G, T> |
1047 | | { |
1048 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1049 | 0 | (**self).fmt(f) |
1050 | 0 | } |
1051 | | } |
1052 | | |
1053 | | #[cfg(feature = "owning_ref")] |
1054 | | unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress |
1055 | | for MappedReentrantMutexGuard<'a, R, G, T> |
1056 | | { |
1057 | | } |