/rust/registry/src/index.crates.io-6f17d22bba15001f/parking_lot-0.12.3/src/condvar.rs
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2016 Amanieu d'Antras |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or |
4 | | // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or |
5 | | // http://opensource.org/licenses/MIT>, at your option. This file may not be |
6 | | // copied, modified, or distributed except according to those terms. |
7 | | |
8 | | use crate::mutex::MutexGuard; |
9 | | use crate::raw_mutex::{RawMutex, TOKEN_HANDOFF, TOKEN_NORMAL}; |
10 | | use crate::{deadlock, util}; |
11 | | use core::{ |
12 | | fmt, ptr, |
13 | | sync::atomic::{AtomicPtr, Ordering}, |
14 | | }; |
15 | | use lock_api::RawMutex as RawMutex_; |
16 | | use parking_lot_core::{self, ParkResult, RequeueOp, UnparkResult, DEFAULT_PARK_TOKEN}; |
17 | | use std::ops::DerefMut; |
18 | | use std::time::{Duration, Instant}; |
19 | | |
20 | | /// A type indicating whether a timed wait on a condition variable returned |
21 | | /// due to a time out or not. |
22 | | #[derive(Debug, PartialEq, Eq, Copy, Clone)] |
23 | | pub struct WaitTimeoutResult(bool); |
24 | | |
25 | | impl WaitTimeoutResult { |
26 | | /// Returns whether the wait was known to have timed out. |
27 | | #[inline] |
28 | 0 | pub fn timed_out(self) -> bool { |
29 | 0 | self.0 |
30 | 0 | } Unexecuted instantiation: <parking_lot::condvar::WaitTimeoutResult>::timed_out Unexecuted instantiation: <parking_lot::condvar::WaitTimeoutResult>::timed_out |
31 | | } |
32 | | |
33 | | /// A Condition Variable |
34 | | /// |
35 | | /// Condition variables represent the ability to block a thread such that it |
36 | | /// consumes no CPU time while waiting for an event to occur. Condition |
37 | | /// variables are typically associated with a boolean predicate (a condition) |
38 | | /// and a mutex. The predicate is always verified inside of the mutex before |
39 | | /// determining that thread must block. |
40 | | /// |
41 | | /// Note that this module places one additional restriction over the system |
42 | | /// condition variables: each condvar can be used with only one mutex at a |
43 | | /// time. Any attempt to use multiple mutexes on the same condition variable |
44 | | /// simultaneously will result in a runtime panic. However it is possible to |
45 | | /// switch to a different mutex if there are no threads currently waiting on |
46 | | /// the condition variable. |
47 | | /// |
48 | | /// # Differences from the standard library `Condvar` |
49 | | /// |
50 | | /// - No spurious wakeups: A wait will only return a non-timeout result if it |
51 | | /// was woken up by `notify_one` or `notify_all`. |
52 | | /// - `Condvar::notify_all` will only wake up a single thread, the rest are |
53 | | /// requeued to wait for the `Mutex` to be unlocked by the thread that was |
54 | | /// woken up. |
55 | | /// - Only requires 1 word of space, whereas the standard library boxes the |
56 | | /// `Condvar` due to platform limitations. |
57 | | /// - Can be statically constructed. |
58 | | /// - Does not require any drop glue when dropped. |
59 | | /// - Inline fast path for the uncontended case. |
60 | | /// |
61 | | /// # Examples |
62 | | /// |
63 | | /// ``` |
64 | | /// use parking_lot::{Mutex, Condvar}; |
65 | | /// use std::sync::Arc; |
66 | | /// use std::thread; |
67 | | /// |
68 | | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
69 | | /// let pair2 = pair.clone(); |
70 | | /// |
71 | | /// // Inside of our lock, spawn a new thread, and then wait for it to start |
72 | | /// thread::spawn(move|| { |
73 | | /// let &(ref lock, ref cvar) = &*pair2; |
74 | | /// let mut started = lock.lock(); |
75 | | /// *started = true; |
76 | | /// cvar.notify_one(); |
77 | | /// }); |
78 | | /// |
79 | | /// // wait for the thread to start up |
80 | | /// let &(ref lock, ref cvar) = &*pair; |
81 | | /// let mut started = lock.lock(); |
82 | | /// if !*started { |
83 | | /// cvar.wait(&mut started); |
84 | | /// } |
85 | | /// // Note that we used an if instead of a while loop above. This is only |
86 | | /// // possible because parking_lot's Condvar will never spuriously wake up. |
87 | | /// // This means that wait() will only return after notify_one or notify_all is |
88 | | /// // called. |
89 | | /// ``` |
90 | | pub struct Condvar { |
91 | | state: AtomicPtr<RawMutex>, |
92 | | } |
93 | | |
94 | | impl Condvar { |
95 | | /// Creates a new condition variable which is ready to be waited on and |
96 | | /// notified. |
97 | | #[inline] |
98 | 0 | pub const fn new() -> Condvar { |
99 | 0 | Condvar { |
100 | 0 | state: AtomicPtr::new(ptr::null_mut()), |
101 | 0 | } |
102 | 0 | } Unexecuted instantiation: <parking_lot::condvar::Condvar>::new Unexecuted instantiation: <parking_lot::condvar::Condvar>::new |
103 | | |
104 | | /// Wakes up one blocked thread on this condvar. |
105 | | /// |
106 | | /// Returns whether a thread was woken up. |
107 | | /// |
108 | | /// If there is a blocked thread on this condition variable, then it will |
109 | | /// be woken up from its call to `wait` or `wait_timeout`. Calls to |
110 | | /// `notify_one` are not buffered in any way. |
111 | | /// |
112 | | /// To wake up all threads, see `notify_all()`. |
113 | | /// |
114 | | /// # Examples |
115 | | /// |
116 | | /// ``` |
117 | | /// use parking_lot::Condvar; |
118 | | /// |
119 | | /// let condvar = Condvar::new(); |
120 | | /// |
121 | | /// // do something with condvar, share it with other threads |
122 | | /// |
123 | | /// if !condvar.notify_one() { |
124 | | /// println!("Nobody was listening for this."); |
125 | | /// } |
126 | | /// ``` |
127 | | #[inline] |
128 | 0 | pub fn notify_one(&self) -> bool { |
129 | 0 | // Nothing to do if there are no waiting threads |
130 | 0 | let state = self.state.load(Ordering::Relaxed); |
131 | 0 | if state.is_null() { |
132 | 0 | return false; |
133 | 0 | } |
134 | 0 |
|
135 | 0 | self.notify_one_slow(state) |
136 | 0 | } Unexecuted instantiation: <parking_lot::condvar::Condvar>::notify_one Unexecuted instantiation: <parking_lot::condvar::Condvar>::notify_one |
137 | | |
138 | | #[cold] |
139 | 0 | fn notify_one_slow(&self, mutex: *mut RawMutex) -> bool { |
140 | 0 | // Unpark one thread and requeue the rest onto the mutex |
141 | 0 | let from = self as *const _ as usize; |
142 | 0 | let to = mutex as usize; |
143 | 0 | let validate = || { |
144 | 0 | // Make sure that our atomic state still points to the same |
145 | 0 | // mutex. If not then it means that all threads on the current |
146 | 0 | // mutex were woken up and a new waiting thread switched to a |
147 | 0 | // different mutex. In that case we can get away with doing |
148 | 0 | // nothing. |
149 | 0 | if self.state.load(Ordering::Relaxed) != mutex { |
150 | 0 | return RequeueOp::Abort; |
151 | 0 | } |
152 | 0 |
|
153 | 0 | // Unpark one thread if the mutex is unlocked, otherwise just |
154 | 0 | // requeue everything to the mutex. This is safe to do here |
155 | 0 | // since unlocking the mutex when the parked bit is set requires |
156 | 0 | // locking the queue. There is the possibility of a race if the |
157 | 0 | // mutex gets locked after we check, but that doesn't matter in |
158 | 0 | // this case. |
159 | 0 | if unsafe { (*mutex).mark_parked_if_locked() } { |
160 | 0 | RequeueOp::RequeueOne |
161 | | } else { |
162 | 0 | RequeueOp::UnparkOne |
163 | | } |
164 | 0 | }; |
165 | 0 | let callback = |_op, result: UnparkResult| { |
166 | 0 | // Clear our state if there are no more waiting threads |
167 | 0 | if !result.have_more_threads { |
168 | 0 | self.state.store(ptr::null_mut(), Ordering::Relaxed); |
169 | 0 | } |
170 | 0 | TOKEN_NORMAL |
171 | 0 | }; |
172 | 0 | let res = unsafe { parking_lot_core::unpark_requeue(from, to, validate, callback) }; |
173 | 0 |
|
174 | 0 | res.unparked_threads + res.requeued_threads != 0 |
175 | 0 | } |
176 | | |
177 | | /// Wakes up all blocked threads on this condvar. |
178 | | /// |
179 | | /// Returns the number of threads woken up. |
180 | | /// |
181 | | /// This method will ensure that any current waiters on the condition |
182 | | /// variable are awoken. Calls to `notify_all()` are not buffered in any |
183 | | /// way. |
184 | | /// |
185 | | /// To wake up only one thread, see `notify_one()`. |
186 | | #[inline] |
187 | 0 | pub fn notify_all(&self) -> usize { |
188 | 0 | // Nothing to do if there are no waiting threads |
189 | 0 | let state = self.state.load(Ordering::Relaxed); |
190 | 0 | if state.is_null() { |
191 | 0 | return 0; |
192 | 0 | } |
193 | 0 |
|
194 | 0 | self.notify_all_slow(state) |
195 | 0 | } Unexecuted instantiation: <parking_lot::condvar::Condvar>::notify_all Unexecuted instantiation: <parking_lot::condvar::Condvar>::notify_all |
196 | | |
197 | | #[cold] |
198 | 0 | fn notify_all_slow(&self, mutex: *mut RawMutex) -> usize { |
199 | 0 | // Unpark one thread and requeue the rest onto the mutex |
200 | 0 | let from = self as *const _ as usize; |
201 | 0 | let to = mutex as usize; |
202 | 0 | let validate = || { |
203 | 0 | // Make sure that our atomic state still points to the same |
204 | 0 | // mutex. If not then it means that all threads on the current |
205 | 0 | // mutex were woken up and a new waiting thread switched to a |
206 | 0 | // different mutex. In that case we can get away with doing |
207 | 0 | // nothing. |
208 | 0 | if self.state.load(Ordering::Relaxed) != mutex { |
209 | 0 | return RequeueOp::Abort; |
210 | 0 | } |
211 | 0 |
|
212 | 0 | // Clear our state since we are going to unpark or requeue all |
213 | 0 | // threads. |
214 | 0 | self.state.store(ptr::null_mut(), Ordering::Relaxed); |
215 | 0 |
|
216 | 0 | // Unpark one thread if the mutex is unlocked, otherwise just |
217 | 0 | // requeue everything to the mutex. This is safe to do here |
218 | 0 | // since unlocking the mutex when the parked bit is set requires |
219 | 0 | // locking the queue. There is the possibility of a race if the |
220 | 0 | // mutex gets locked after we check, but that doesn't matter in |
221 | 0 | // this case. |
222 | 0 | if unsafe { (*mutex).mark_parked_if_locked() } { |
223 | 0 | RequeueOp::RequeueAll |
224 | | } else { |
225 | 0 | RequeueOp::UnparkOneRequeueRest |
226 | | } |
227 | 0 | }; |
228 | 0 | let callback = |op, result: UnparkResult| { |
229 | 0 | // If we requeued threads to the mutex, mark it as having |
230 | 0 | // parked threads. The RequeueAll case is already handled above. |
231 | 0 | if op == RequeueOp::UnparkOneRequeueRest && result.requeued_threads != 0 { |
232 | 0 | unsafe { (*mutex).mark_parked() }; |
233 | 0 | } |
234 | 0 | TOKEN_NORMAL |
235 | 0 | }; |
236 | 0 | let res = unsafe { parking_lot_core::unpark_requeue(from, to, validate, callback) }; |
237 | 0 |
|
238 | 0 | res.unparked_threads + res.requeued_threads |
239 | 0 | } |
240 | | |
241 | | /// Blocks the current thread until this condition variable receives a |
242 | | /// notification. |
243 | | /// |
244 | | /// This function will atomically unlock the mutex specified (represented by |
245 | | /// `mutex_guard`) and block the current thread. This means that any calls |
246 | | /// to `notify_*()` which happen logically after the mutex is unlocked are |
247 | | /// candidates to wake this thread up. When this function call returns, the |
248 | | /// lock specified will have been re-acquired. |
249 | | /// |
250 | | /// # Panics |
251 | | /// |
252 | | /// This function will panic if another thread is waiting on the `Condvar` |
253 | | /// with a different `Mutex` object. |
254 | | #[inline] |
255 | 0 | pub fn wait<T: ?Sized>(&self, mutex_guard: &mut MutexGuard<'_, T>) { |
256 | 0 | self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, None); |
257 | 0 | } Unexecuted instantiation: <parking_lot::condvar::Condvar>::wait::<()> Unexecuted instantiation: <parking_lot::condvar::Condvar>::wait::<_> |
258 | | |
259 | | /// Waits on this condition variable for a notification, timing out after |
260 | | /// the specified time instant. |
261 | | /// |
262 | | /// The semantics of this function are equivalent to `wait()` except that |
263 | | /// the thread will be blocked roughly until `timeout` is reached. This |
264 | | /// method should not be used for precise timing due to anomalies such as |
265 | | /// preemption or platform differences that may not cause the maximum |
266 | | /// amount of time waited to be precisely `timeout`. |
267 | | /// |
268 | | /// Note that the best effort is made to ensure that the time waited is |
269 | | /// measured with a monotonic clock, and not affected by the changes made to |
270 | | /// the system time. |
271 | | /// |
272 | | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
273 | | /// known to have elapsed. |
274 | | /// |
275 | | /// Like `wait`, the lock specified will be re-acquired when this function |
276 | | /// returns, regardless of whether the timeout elapsed or not. |
277 | | /// |
278 | | /// # Panics |
279 | | /// |
280 | | /// This function will panic if another thread is waiting on the `Condvar` |
281 | | /// with a different `Mutex` object. |
282 | | #[inline] |
283 | 0 | pub fn wait_until<T: ?Sized>( |
284 | 0 | &self, |
285 | 0 | mutex_guard: &mut MutexGuard<'_, T>, |
286 | 0 | timeout: Instant, |
287 | 0 | ) -> WaitTimeoutResult { |
288 | 0 | self.wait_until_internal( |
289 | 0 | unsafe { MutexGuard::mutex(mutex_guard).raw() }, |
290 | 0 | Some(timeout), |
291 | 0 | ) |
292 | 0 | } |
293 | | |
294 | | // This is a non-generic function to reduce the monomorphization cost of |
295 | | // using `wait_until`. |
296 | 0 | fn wait_until_internal(&self, mutex: &RawMutex, timeout: Option<Instant>) -> WaitTimeoutResult { |
297 | 0 | let result; |
298 | 0 | let mut bad_mutex = false; |
299 | 0 | let mut requeued = false; |
300 | 0 | { |
301 | 0 | let addr = self as *const _ as usize; |
302 | 0 | let lock_addr = mutex as *const _ as *mut _; |
303 | 0 | let validate = || { |
304 | 0 | // Ensure we don't use two different mutexes with the same |
305 | 0 | // Condvar at the same time. This is done while locked to |
306 | 0 | // avoid races with notify_one |
307 | 0 | let state = self.state.load(Ordering::Relaxed); |
308 | 0 | if state.is_null() { |
309 | 0 | self.state.store(lock_addr, Ordering::Relaxed); |
310 | 0 | } else if state != lock_addr { |
311 | 0 | bad_mutex = true; |
312 | 0 | return false; |
313 | 0 | } |
314 | 0 | true |
315 | 0 | }; |
316 | 0 | let before_sleep = || { |
317 | 0 | // Unlock the mutex before sleeping... |
318 | 0 | unsafe { mutex.unlock() }; |
319 | 0 | }; |
320 | 0 | let timed_out = |k, was_last_thread| { |
321 | 0 | // If we were requeued to a mutex, then we did not time out. |
322 | 0 | // We'll just park ourselves on the mutex again when we try |
323 | 0 | // to lock it later. |
324 | 0 | requeued = k != addr; |
325 | 0 |
|
326 | 0 | // If we were the last thread on the queue then we need to |
327 | 0 | // clear our state. This is normally done by the |
328 | 0 | // notify_{one,all} functions when not timing out. |
329 | 0 | if !requeued && was_last_thread { |
330 | 0 | self.state.store(ptr::null_mut(), Ordering::Relaxed); |
331 | 0 | } |
332 | 0 | }; |
333 | 0 | result = unsafe { |
334 | 0 | parking_lot_core::park( |
335 | 0 | addr, |
336 | 0 | validate, |
337 | 0 | before_sleep, |
338 | 0 | timed_out, |
339 | 0 | DEFAULT_PARK_TOKEN, |
340 | 0 | timeout, |
341 | 0 | ) |
342 | 0 | }; |
343 | 0 | } |
344 | 0 |
|
345 | 0 | // Panic if we tried to use multiple mutexes with a Condvar. Note |
346 | 0 | // that at this point the MutexGuard is still locked. It will be |
347 | 0 | // unlocked by the unwinding logic. |
348 | 0 | if bad_mutex { |
349 | 0 | panic!("attempted to use a condition variable with more than one mutex"); |
350 | 0 | } |
351 | 0 |
|
352 | 0 | // ... and re-lock it once we are done sleeping |
353 | 0 | if result == ParkResult::Unparked(TOKEN_HANDOFF) { |
354 | 0 | unsafe { deadlock::acquire_resource(mutex as *const _ as usize) }; |
355 | 0 | } else { |
356 | 0 | mutex.lock(); |
357 | 0 | } |
358 | | |
359 | 0 | WaitTimeoutResult(!(result.is_unparked() || requeued)) |
360 | 0 | } |
361 | | |
362 | | /// Waits on this condition variable for a notification, timing out after a |
363 | | /// specified duration. |
364 | | /// |
365 | | /// The semantics of this function are equivalent to `wait()` except that |
366 | | /// the thread will be blocked for roughly no longer than `timeout`. This |
367 | | /// method should not be used for precise timing due to anomalies such as |
368 | | /// preemption or platform differences that may not cause the maximum |
369 | | /// amount of time waited to be precisely `timeout`. |
370 | | /// |
371 | | /// Note that the best effort is made to ensure that the time waited is |
372 | | /// measured with a monotonic clock, and not affected by the changes made to |
373 | | /// the system time. |
374 | | /// |
375 | | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
376 | | /// known to have elapsed. |
377 | | /// |
378 | | /// Like `wait`, the lock specified will be re-acquired when this function |
379 | | /// returns, regardless of whether the timeout elapsed or not. |
380 | | #[inline] |
381 | 0 | pub fn wait_for<T: ?Sized>( |
382 | 0 | &self, |
383 | 0 | mutex_guard: &mut MutexGuard<'_, T>, |
384 | 0 | timeout: Duration, |
385 | 0 | ) -> WaitTimeoutResult { |
386 | 0 | let deadline = util::to_deadline(timeout); |
387 | 0 | self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, deadline) |
388 | 0 | } Unexecuted instantiation: <parking_lot::condvar::Condvar>::wait_for::<tokio::runtime::blocking::pool::Shared> Unexecuted instantiation: <parking_lot::condvar::Condvar>::wait_for::<()> Unexecuted instantiation: <parking_lot::condvar::Condvar>::wait_for::<_> |
389 | | |
390 | | #[inline] |
391 | 0 | fn wait_while_until_internal<T, F>( |
392 | 0 | &self, |
393 | 0 | mutex_guard: &mut MutexGuard<'_, T>, |
394 | 0 | mut condition: F, |
395 | 0 | timeout: Option<Instant>, |
396 | 0 | ) -> WaitTimeoutResult |
397 | 0 | where |
398 | 0 | T: ?Sized, |
399 | 0 | F: FnMut(&mut T) -> bool, |
400 | 0 | { |
401 | 0 | let mut result = WaitTimeoutResult(false); |
402 | | |
403 | 0 | while !result.timed_out() && condition(mutex_guard.deref_mut()) { |
404 | 0 | result = |
405 | 0 | self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, timeout); |
406 | 0 | } |
407 | | |
408 | 0 | result |
409 | 0 | } |
410 | | /// Blocks the current thread until this condition variable receives a |
411 | | /// notification. If the provided condition evaluates to `false`, then the |
412 | | /// thread is no longer blocked and the operation is completed. If the |
413 | | /// condition evaluates to `true`, then the thread is blocked again and |
414 | | /// waits for another notification before repeating this process. |
415 | | /// |
416 | | /// This function will atomically unlock the mutex specified (represented by |
417 | | /// `mutex_guard`) and block the current thread. This means that any calls |
418 | | /// to `notify_*()` which happen logically after the mutex is unlocked are |
419 | | /// candidates to wake this thread up. When this function call returns, the |
420 | | /// lock specified will have been re-acquired. |
421 | | /// |
422 | | /// # Panics |
423 | | /// |
424 | | /// This function will panic if another thread is waiting on the `Condvar` |
425 | | /// with a different `Mutex` object. |
426 | | #[inline] |
427 | 0 | pub fn wait_while<T, F>(&self, mutex_guard: &mut MutexGuard<'_, T>, condition: F) |
428 | 0 | where |
429 | 0 | T: ?Sized, |
430 | 0 | F: FnMut(&mut T) -> bool, |
431 | 0 | { |
432 | 0 | self.wait_while_until_internal(mutex_guard, condition, None); |
433 | 0 | } |
434 | | |
435 | | /// Waits on this condition variable for a notification, timing out after |
436 | | /// the specified time instant. If the provided condition evaluates to |
437 | | /// `false`, then the thread is no longer blocked and the operation is |
438 | | /// completed. If the condition evaluates to `true`, then the thread is |
439 | | /// blocked again and waits for another notification before repeating |
440 | | /// this process. |
441 | | /// |
442 | | /// The semantics of this function are equivalent to `wait()` except that |
443 | | /// the thread will be blocked roughly until `timeout` is reached. This |
444 | | /// method should not be used for precise timing due to anomalies such as |
445 | | /// preemption or platform differences that may not cause the maximum |
446 | | /// amount of time waited to be precisely `timeout`. |
447 | | /// |
448 | | /// Note that the best effort is made to ensure that the time waited is |
449 | | /// measured with a monotonic clock, and not affected by the changes made to |
450 | | /// the system time. |
451 | | /// |
452 | | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
453 | | /// known to have elapsed. |
454 | | /// |
455 | | /// Like `wait`, the lock specified will be re-acquired when this function |
456 | | /// returns, regardless of whether the timeout elapsed or not. |
457 | | /// |
458 | | /// # Panics |
459 | | /// |
460 | | /// This function will panic if another thread is waiting on the `Condvar` |
461 | | /// with a different `Mutex` object. |
462 | | #[inline] |
463 | 0 | pub fn wait_while_until<T, F>( |
464 | 0 | &self, |
465 | 0 | mutex_guard: &mut MutexGuard<'_, T>, |
466 | 0 | condition: F, |
467 | 0 | timeout: Instant, |
468 | 0 | ) -> WaitTimeoutResult |
469 | 0 | where |
470 | 0 | T: ?Sized, |
471 | 0 | F: FnMut(&mut T) -> bool, |
472 | 0 | { |
473 | 0 | self.wait_while_until_internal(mutex_guard, condition, Some(timeout)) |
474 | 0 | } |
475 | | |
476 | | /// Waits on this condition variable for a notification, timing out after a |
477 | | /// specified duration. If the provided condition evaluates to `false`, |
478 | | /// then the thread is no longer blocked and the operation is completed. |
479 | | /// If the condition evaluates to `true`, then the thread is blocked again |
480 | | /// and waits for another notification before repeating this process. |
481 | | /// |
482 | | /// The semantics of this function are equivalent to `wait()` except that |
483 | | /// the thread will be blocked for roughly no longer than `timeout`. This |
484 | | /// method should not be used for precise timing due to anomalies such as |
485 | | /// preemption or platform differences that may not cause the maximum |
486 | | /// amount of time waited to be precisely `timeout`. |
487 | | /// |
488 | | /// Note that the best effort is made to ensure that the time waited is |
489 | | /// measured with a monotonic clock, and not affected by the changes made to |
490 | | /// the system time. |
491 | | /// |
492 | | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
493 | | /// known to have elapsed. |
494 | | /// |
495 | | /// Like `wait`, the lock specified will be re-acquired when this function |
496 | | /// returns, regardless of whether the timeout elapsed or not. |
497 | | #[inline] |
498 | 0 | pub fn wait_while_for<T: ?Sized, F>( |
499 | 0 | &self, |
500 | 0 | mutex_guard: &mut MutexGuard<'_, T>, |
501 | 0 | condition: F, |
502 | 0 | timeout: Duration, |
503 | 0 | ) -> WaitTimeoutResult |
504 | 0 | where |
505 | 0 | F: FnMut(&mut T) -> bool, |
506 | 0 | { |
507 | 0 | let deadline = util::to_deadline(timeout); |
508 | 0 | self.wait_while_until_internal(mutex_guard, condition, deadline) |
509 | 0 | } |
510 | | } |
511 | | |
512 | | impl Default for Condvar { |
513 | | #[inline] |
514 | 0 | fn default() -> Condvar { |
515 | 0 | Condvar::new() |
516 | 0 | } |
517 | | } |
518 | | |
519 | | impl fmt::Debug for Condvar { |
520 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
521 | 0 | f.pad("Condvar { .. }") |
522 | 0 | } |
523 | | } |
524 | | |
525 | | #[cfg(test)] |
526 | | mod tests { |
527 | | use crate::{Condvar, Mutex, MutexGuard}; |
528 | | use std::sync::mpsc::channel; |
529 | | use std::sync::Arc; |
530 | | use std::thread; |
531 | | use std::thread::sleep; |
532 | | use std::thread::JoinHandle; |
533 | | use std::time::Duration; |
534 | | use std::time::Instant; |
535 | | |
536 | | #[test] |
537 | | fn smoke() { |
538 | | let c = Condvar::new(); |
539 | | c.notify_one(); |
540 | | c.notify_all(); |
541 | | } |
542 | | |
543 | | #[test] |
544 | | fn notify_one() { |
545 | | let m = Arc::new(Mutex::new(())); |
546 | | let m2 = m.clone(); |
547 | | let c = Arc::new(Condvar::new()); |
548 | | let c2 = c.clone(); |
549 | | |
550 | | let mut g = m.lock(); |
551 | | let _t = thread::spawn(move || { |
552 | | let _g = m2.lock(); |
553 | | c2.notify_one(); |
554 | | }); |
555 | | c.wait(&mut g); |
556 | | } |
557 | | |
558 | | #[test] |
559 | | fn notify_all() { |
560 | | const N: usize = 10; |
561 | | |
562 | | let data = Arc::new((Mutex::new(0), Condvar::new())); |
563 | | let (tx, rx) = channel(); |
564 | | for _ in 0..N { |
565 | | let data = data.clone(); |
566 | | let tx = tx.clone(); |
567 | | thread::spawn(move || { |
568 | | let (lock, cond) = &*data; |
569 | | let mut cnt = lock.lock(); |
570 | | *cnt += 1; |
571 | | if *cnt == N { |
572 | | tx.send(()).unwrap(); |
573 | | } |
574 | | while *cnt != 0 { |
575 | | cond.wait(&mut cnt); |
576 | | } |
577 | | tx.send(()).unwrap(); |
578 | | }); |
579 | | } |
580 | | drop(tx); |
581 | | |
582 | | let (lock, cond) = &*data; |
583 | | rx.recv().unwrap(); |
584 | | let mut cnt = lock.lock(); |
585 | | *cnt = 0; |
586 | | cond.notify_all(); |
587 | | drop(cnt); |
588 | | |
589 | | for _ in 0..N { |
590 | | rx.recv().unwrap(); |
591 | | } |
592 | | } |
593 | | |
594 | | #[test] |
595 | | fn notify_one_return_true() { |
596 | | let m = Arc::new(Mutex::new(())); |
597 | | let m2 = m.clone(); |
598 | | let c = Arc::new(Condvar::new()); |
599 | | let c2 = c.clone(); |
600 | | |
601 | | let mut g = m.lock(); |
602 | | let _t = thread::spawn(move || { |
603 | | let _g = m2.lock(); |
604 | | assert!(c2.notify_one()); |
605 | | }); |
606 | | c.wait(&mut g); |
607 | | } |
608 | | |
609 | | #[test] |
610 | | fn notify_one_return_false() { |
611 | | let m = Arc::new(Mutex::new(())); |
612 | | let c = Arc::new(Condvar::new()); |
613 | | |
614 | | let _t = thread::spawn(move || { |
615 | | let _g = m.lock(); |
616 | | assert!(!c.notify_one()); |
617 | | }); |
618 | | } |
619 | | |
620 | | #[test] |
621 | | fn notify_all_return() { |
622 | | const N: usize = 10; |
623 | | |
624 | | let data = Arc::new((Mutex::new(0), Condvar::new())); |
625 | | let (tx, rx) = channel(); |
626 | | for _ in 0..N { |
627 | | let data = data.clone(); |
628 | | let tx = tx.clone(); |
629 | | thread::spawn(move || { |
630 | | let (lock, cond) = &*data; |
631 | | let mut cnt = lock.lock(); |
632 | | *cnt += 1; |
633 | | if *cnt == N { |
634 | | tx.send(()).unwrap(); |
635 | | } |
636 | | while *cnt != 0 { |
637 | | cond.wait(&mut cnt); |
638 | | } |
639 | | tx.send(()).unwrap(); |
640 | | }); |
641 | | } |
642 | | drop(tx); |
643 | | |
644 | | let (lock, cond) = &*data; |
645 | | rx.recv().unwrap(); |
646 | | let mut cnt = lock.lock(); |
647 | | *cnt = 0; |
648 | | assert_eq!(cond.notify_all(), N); |
649 | | drop(cnt); |
650 | | |
651 | | for _ in 0..N { |
652 | | rx.recv().unwrap(); |
653 | | } |
654 | | |
655 | | assert_eq!(cond.notify_all(), 0); |
656 | | } |
657 | | |
658 | | #[test] |
659 | | fn wait_for() { |
660 | | let m = Arc::new(Mutex::new(())); |
661 | | let m2 = m.clone(); |
662 | | let c = Arc::new(Condvar::new()); |
663 | | let c2 = c.clone(); |
664 | | |
665 | | let mut g = m.lock(); |
666 | | let no_timeout = c.wait_for(&mut g, Duration::from_millis(1)); |
667 | | assert!(no_timeout.timed_out()); |
668 | | |
669 | | let _t = thread::spawn(move || { |
670 | | let _g = m2.lock(); |
671 | | c2.notify_one(); |
672 | | }); |
673 | | let timeout_res = c.wait_for(&mut g, Duration::from_secs(u64::max_value())); |
674 | | assert!(!timeout_res.timed_out()); |
675 | | |
676 | | drop(g); |
677 | | } |
678 | | |
679 | | #[test] |
680 | | fn wait_until() { |
681 | | let m = Arc::new(Mutex::new(())); |
682 | | let m2 = m.clone(); |
683 | | let c = Arc::new(Condvar::new()); |
684 | | let c2 = c.clone(); |
685 | | |
686 | | let mut g = m.lock(); |
687 | | let no_timeout = c.wait_until(&mut g, Instant::now() + Duration::from_millis(1)); |
688 | | assert!(no_timeout.timed_out()); |
689 | | let _t = thread::spawn(move || { |
690 | | let _g = m2.lock(); |
691 | | c2.notify_one(); |
692 | | }); |
693 | | let timeout_res = c.wait_until( |
694 | | &mut g, |
695 | | Instant::now() + Duration::from_millis(u32::max_value() as u64), |
696 | | ); |
697 | | assert!(!timeout_res.timed_out()); |
698 | | drop(g); |
699 | | } |
700 | | |
701 | | fn spawn_wait_while_notifier( |
702 | | mutex: Arc<Mutex<u32>>, |
703 | | cv: Arc<Condvar>, |
704 | | num_iters: u32, |
705 | | timeout: Option<Instant>, |
706 | | ) -> JoinHandle<()> { |
707 | | thread::spawn(move || { |
708 | | for epoch in 1..=num_iters { |
709 | | // spin to wait for main test thread to block |
710 | | // before notifying it to wake back up and check |
711 | | // its condition. |
712 | | let mut sleep_backoff = Duration::from_millis(1); |
713 | | let _mutex_guard = loop { |
714 | | let mutex_guard = mutex.lock(); |
715 | | |
716 | | if let Some(timeout) = timeout { |
717 | | if Instant::now() >= timeout { |
718 | | return; |
719 | | } |
720 | | } |
721 | | |
722 | | if *mutex_guard == epoch { |
723 | | break mutex_guard; |
724 | | } |
725 | | |
726 | | drop(mutex_guard); |
727 | | |
728 | | // give main test thread a good chance to |
729 | | // acquire the lock before this thread does. |
730 | | sleep(sleep_backoff); |
731 | | sleep_backoff *= 2; |
732 | | }; |
733 | | |
734 | | cv.notify_one(); |
735 | | } |
736 | | }) |
737 | | } |
738 | | |
739 | | #[test] |
740 | | fn wait_while_until_internal_does_not_wait_if_initially_false() { |
741 | | let mutex = Arc::new(Mutex::new(0)); |
742 | | let cv = Arc::new(Condvar::new()); |
743 | | |
744 | | let condition = |counter: &mut u32| { |
745 | | *counter += 1; |
746 | | false |
747 | | }; |
748 | | |
749 | | let mut mutex_guard = mutex.lock(); |
750 | | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, None); |
751 | | |
752 | | assert!(!timeout_result.timed_out()); |
753 | | assert!(*mutex_guard == 1); |
754 | | } |
755 | | |
756 | | #[test] |
757 | | fn wait_while_until_internal_times_out_before_false() { |
758 | | let mutex = Arc::new(Mutex::new(0)); |
759 | | let cv = Arc::new(Condvar::new()); |
760 | | |
761 | | let num_iters = 3; |
762 | | let condition = |counter: &mut u32| { |
763 | | *counter += 1; |
764 | | true |
765 | | }; |
766 | | |
767 | | let mut mutex_guard = mutex.lock(); |
768 | | let timeout = Some(Instant::now() + Duration::from_millis(500)); |
769 | | let handle = spawn_wait_while_notifier(mutex.clone(), cv.clone(), num_iters, timeout); |
770 | | |
771 | | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, timeout); |
772 | | |
773 | | assert!(timeout_result.timed_out()); |
774 | | assert!(*mutex_guard == num_iters + 1); |
775 | | |
776 | | // prevent deadlock with notifier |
777 | | drop(mutex_guard); |
778 | | handle.join().unwrap(); |
779 | | } |
780 | | |
781 | | #[test] |
782 | | fn wait_while_until_internal() { |
783 | | let mutex = Arc::new(Mutex::new(0)); |
784 | | let cv = Arc::new(Condvar::new()); |
785 | | |
786 | | let num_iters = 4; |
787 | | |
788 | | let condition = |counter: &mut u32| { |
789 | | *counter += 1; |
790 | | *counter <= num_iters |
791 | | }; |
792 | | |
793 | | let mut mutex_guard = mutex.lock(); |
794 | | let handle = spawn_wait_while_notifier(mutex.clone(), cv.clone(), num_iters, None); |
795 | | |
796 | | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, None); |
797 | | |
798 | | assert!(!timeout_result.timed_out()); |
799 | | assert!(*mutex_guard == num_iters + 1); |
800 | | |
801 | | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, None); |
802 | | handle.join().unwrap(); |
803 | | |
804 | | assert!(!timeout_result.timed_out()); |
805 | | assert!(*mutex_guard == num_iters + 2); |
806 | | } |
807 | | |
808 | | #[test] |
809 | | #[should_panic] |
810 | | fn two_mutexes() { |
811 | | let m = Arc::new(Mutex::new(())); |
812 | | let m2 = m.clone(); |
813 | | let m3 = Arc::new(Mutex::new(())); |
814 | | let c = Arc::new(Condvar::new()); |
815 | | let c2 = c.clone(); |
816 | | |
817 | | // Make sure we don't leave the child thread dangling |
818 | | struct PanicGuard<'a>(&'a Condvar); |
819 | | impl<'a> Drop for PanicGuard<'a> { |
820 | | fn drop(&mut self) { |
821 | | self.0.notify_one(); |
822 | | } |
823 | | } |
824 | | |
825 | | let (tx, rx) = channel(); |
826 | | let g = m.lock(); |
827 | | let _t = thread::spawn(move || { |
828 | | let mut g = m2.lock(); |
829 | | tx.send(()).unwrap(); |
830 | | c2.wait(&mut g); |
831 | | }); |
832 | | drop(g); |
833 | | rx.recv().unwrap(); |
834 | | let _g = m.lock(); |
835 | | let _guard = PanicGuard(&c); |
836 | | c.wait(&mut m3.lock()); |
837 | | } |
838 | | |
839 | | #[test] |
840 | | fn two_mutexes_disjoint() { |
841 | | let m = Arc::new(Mutex::new(())); |
842 | | let m2 = m.clone(); |
843 | | let m3 = Arc::new(Mutex::new(())); |
844 | | let c = Arc::new(Condvar::new()); |
845 | | let c2 = c.clone(); |
846 | | |
847 | | let mut g = m.lock(); |
848 | | let _t = thread::spawn(move || { |
849 | | let _g = m2.lock(); |
850 | | c2.notify_one(); |
851 | | }); |
852 | | c.wait(&mut g); |
853 | | drop(g); |
854 | | |
855 | | let _ = c.wait_for(&mut m3.lock(), Duration::from_millis(1)); |
856 | | } |
857 | | |
858 | | #[test] |
859 | | fn test_debug_condvar() { |
860 | | let c = Condvar::new(); |
861 | | assert_eq!(format!("{:?}", c), "Condvar { .. }"); |
862 | | } |
863 | | |
864 | | #[test] |
865 | | fn test_condvar_requeue() { |
866 | | let m = Arc::new(Mutex::new(())); |
867 | | let m2 = m.clone(); |
868 | | let c = Arc::new(Condvar::new()); |
869 | | let c2 = c.clone(); |
870 | | let t = thread::spawn(move || { |
871 | | let mut g = m2.lock(); |
872 | | c2.wait(&mut g); |
873 | | }); |
874 | | |
875 | | let mut g = m.lock(); |
876 | | while !c.notify_one() { |
877 | | // Wait for the thread to get into wait() |
878 | | MutexGuard::bump(&mut g); |
879 | | // Yield, so the other thread gets a chance to do something. |
880 | | // (At least Miri needs this, because it doesn't preempt threads.) |
881 | | thread::yield_now(); |
882 | | } |
883 | | // The thread should have been requeued to the mutex, which we wake up now. |
884 | | drop(g); |
885 | | t.join().unwrap(); |
886 | | } |
887 | | |
888 | | #[test] |
889 | | fn test_issue_129() { |
890 | | let locks = Arc::new((Mutex::new(()), Condvar::new())); |
891 | | |
892 | | let (tx, rx) = channel(); |
893 | | for _ in 0..4 { |
894 | | let locks = locks.clone(); |
895 | | let tx = tx.clone(); |
896 | | thread::spawn(move || { |
897 | | let mut guard = locks.0.lock(); |
898 | | locks.1.wait(&mut guard); |
899 | | locks.1.wait_for(&mut guard, Duration::from_millis(1)); |
900 | | locks.1.notify_one(); |
901 | | tx.send(()).unwrap(); |
902 | | }); |
903 | | } |
904 | | |
905 | | thread::sleep(Duration::from_millis(100)); |
906 | | locks.1.notify_one(); |
907 | | |
908 | | for _ in 0..4 { |
909 | | assert_eq!(rx.recv_timeout(Duration::from_millis(500)), Ok(())); |
910 | | } |
911 | | } |
912 | | } |
913 | | |
914 | | /// This module contains an integration test that is heavily inspired from WebKit's own integration |
915 | | /// tests for it's own Condvar. |
916 | | #[cfg(test)] |
917 | | mod webkit_queue_test { |
918 | | use crate::{Condvar, Mutex, MutexGuard}; |
919 | | use std::{collections::VecDeque, sync::Arc, thread, time::Duration}; |
920 | | |
921 | | #[derive(Clone, Copy)] |
922 | | enum Timeout { |
923 | | Bounded(Duration), |
924 | | Forever, |
925 | | } |
926 | | |
927 | | #[derive(Clone, Copy)] |
928 | | enum NotifyStyle { |
929 | | One, |
930 | | All, |
931 | | } |
932 | | |
933 | | struct Queue { |
934 | | items: VecDeque<usize>, |
935 | | should_continue: bool, |
936 | | } |
937 | | |
938 | | impl Queue { |
939 | | fn new() -> Self { |
940 | | Self { |
941 | | items: VecDeque::new(), |
942 | | should_continue: true, |
943 | | } |
944 | | } |
945 | | } |
946 | | |
947 | | fn wait<T: ?Sized>( |
948 | | condition: &Condvar, |
949 | | lock: &mut MutexGuard<'_, T>, |
950 | | predicate: impl Fn(&mut MutexGuard<'_, T>) -> bool, |
951 | | timeout: &Timeout, |
952 | | ) { |
953 | | while !predicate(lock) { |
954 | | match timeout { |
955 | | Timeout::Forever => condition.wait(lock), |
956 | | Timeout::Bounded(bound) => { |
957 | | condition.wait_for(lock, *bound); |
958 | | } |
959 | | } |
960 | | } |
961 | | } |
962 | | |
963 | | fn notify(style: NotifyStyle, condition: &Condvar, should_notify: bool) { |
964 | | match style { |
965 | | NotifyStyle::One => { |
966 | | condition.notify_one(); |
967 | | } |
968 | | NotifyStyle::All => { |
969 | | if should_notify { |
970 | | condition.notify_all(); |
971 | | } |
972 | | } |
973 | | } |
974 | | } |
975 | | |
976 | | fn run_queue_test( |
977 | | num_producers: usize, |
978 | | num_consumers: usize, |
979 | | max_queue_size: usize, |
980 | | messages_per_producer: usize, |
981 | | notify_style: NotifyStyle, |
982 | | timeout: Timeout, |
983 | | delay: Duration, |
984 | | ) { |
985 | | let input_queue = Arc::new(Mutex::new(Queue::new())); |
986 | | let empty_condition = Arc::new(Condvar::new()); |
987 | | let full_condition = Arc::new(Condvar::new()); |
988 | | |
989 | | let output_vec = Arc::new(Mutex::new(vec![])); |
990 | | |
991 | | let consumers = (0..num_consumers) |
992 | | .map(|_| { |
993 | | consumer_thread( |
994 | | input_queue.clone(), |
995 | | empty_condition.clone(), |
996 | | full_condition.clone(), |
997 | | timeout, |
998 | | notify_style, |
999 | | output_vec.clone(), |
1000 | | max_queue_size, |
1001 | | ) |
1002 | | }) |
1003 | | .collect::<Vec<_>>(); |
1004 | | let producers = (0..num_producers) |
1005 | | .map(|_| { |
1006 | | producer_thread( |
1007 | | messages_per_producer, |
1008 | | input_queue.clone(), |
1009 | | empty_condition.clone(), |
1010 | | full_condition.clone(), |
1011 | | timeout, |
1012 | | notify_style, |
1013 | | max_queue_size, |
1014 | | ) |
1015 | | }) |
1016 | | .collect::<Vec<_>>(); |
1017 | | |
1018 | | thread::sleep(delay); |
1019 | | |
1020 | | for producer in producers.into_iter() { |
1021 | | producer.join().expect("Producer thread panicked"); |
1022 | | } |
1023 | | |
1024 | | { |
1025 | | let mut input_queue = input_queue.lock(); |
1026 | | input_queue.should_continue = false; |
1027 | | } |
1028 | | empty_condition.notify_all(); |
1029 | | |
1030 | | for consumer in consumers.into_iter() { |
1031 | | consumer.join().expect("Consumer thread panicked"); |
1032 | | } |
1033 | | |
1034 | | let mut output_vec = output_vec.lock(); |
1035 | | assert_eq!(output_vec.len(), num_producers * messages_per_producer); |
1036 | | output_vec.sort(); |
1037 | | for msg_idx in 0..messages_per_producer { |
1038 | | for producer_idx in 0..num_producers { |
1039 | | assert_eq!(msg_idx, output_vec[msg_idx * num_producers + producer_idx]); |
1040 | | } |
1041 | | } |
1042 | | } |
1043 | | |
1044 | | fn consumer_thread( |
1045 | | input_queue: Arc<Mutex<Queue>>, |
1046 | | empty_condition: Arc<Condvar>, |
1047 | | full_condition: Arc<Condvar>, |
1048 | | timeout: Timeout, |
1049 | | notify_style: NotifyStyle, |
1050 | | output_queue: Arc<Mutex<Vec<usize>>>, |
1051 | | max_queue_size: usize, |
1052 | | ) -> thread::JoinHandle<()> { |
1053 | | thread::spawn(move || loop { |
1054 | | let (should_notify, result) = { |
1055 | | let mut queue = input_queue.lock(); |
1056 | | wait( |
1057 | | &empty_condition, |
1058 | | &mut queue, |
1059 | | |state| -> bool { !state.items.is_empty() || !state.should_continue }, |
1060 | | &timeout, |
1061 | | ); |
1062 | | if queue.items.is_empty() && !queue.should_continue { |
1063 | | return; |
1064 | | } |
1065 | | let should_notify = queue.items.len() == max_queue_size; |
1066 | | let result = queue.items.pop_front(); |
1067 | | std::mem::drop(queue); |
1068 | | (should_notify, result) |
1069 | | }; |
1070 | | notify(notify_style, &full_condition, should_notify); |
1071 | | |
1072 | | if let Some(result) = result { |
1073 | | output_queue.lock().push(result); |
1074 | | } |
1075 | | }) |
1076 | | } |
1077 | | |
1078 | | fn producer_thread( |
1079 | | num_messages: usize, |
1080 | | queue: Arc<Mutex<Queue>>, |
1081 | | empty_condition: Arc<Condvar>, |
1082 | | full_condition: Arc<Condvar>, |
1083 | | timeout: Timeout, |
1084 | | notify_style: NotifyStyle, |
1085 | | max_queue_size: usize, |
1086 | | ) -> thread::JoinHandle<()> { |
1087 | | thread::spawn(move || { |
1088 | | for message in 0..num_messages { |
1089 | | let should_notify = { |
1090 | | let mut queue = queue.lock(); |
1091 | | wait( |
1092 | | &full_condition, |
1093 | | &mut queue, |
1094 | | |state| state.items.len() < max_queue_size, |
1095 | | &timeout, |
1096 | | ); |
1097 | | let should_notify = queue.items.is_empty(); |
1098 | | queue.items.push_back(message); |
1099 | | std::mem::drop(queue); |
1100 | | should_notify |
1101 | | }; |
1102 | | notify(notify_style, &empty_condition, should_notify); |
1103 | | } |
1104 | | }) |
1105 | | } |
1106 | | |
1107 | | macro_rules! run_queue_tests { |
1108 | | ( $( $name:ident( |
1109 | | num_producers: $num_producers:expr, |
1110 | | num_consumers: $num_consumers:expr, |
1111 | | max_queue_size: $max_queue_size:expr, |
1112 | | messages_per_producer: $messages_per_producer:expr, |
1113 | | notification_style: $notification_style:expr, |
1114 | | timeout: $timeout:expr, |
1115 | | delay_seconds: $delay_seconds:expr); |
1116 | | )* ) => { |
1117 | | $(#[test] |
1118 | | fn $name() { |
1119 | | let delay = Duration::from_secs($delay_seconds); |
1120 | | run_queue_test( |
1121 | | $num_producers, |
1122 | | $num_consumers, |
1123 | | $max_queue_size, |
1124 | | $messages_per_producer, |
1125 | | $notification_style, |
1126 | | $timeout, |
1127 | | delay, |
1128 | | ); |
1129 | | })* |
1130 | | }; |
1131 | | } |
1132 | | |
1133 | | run_queue_tests! { |
1134 | | sanity_check_queue( |
1135 | | num_producers: 1, |
1136 | | num_consumers: 1, |
1137 | | max_queue_size: 1, |
1138 | | messages_per_producer: 100_000, |
1139 | | notification_style: NotifyStyle::All, |
1140 | | timeout: Timeout::Bounded(Duration::from_secs(1)), |
1141 | | delay_seconds: 0 |
1142 | | ); |
1143 | | sanity_check_queue_timeout( |
1144 | | num_producers: 1, |
1145 | | num_consumers: 1, |
1146 | | max_queue_size: 1, |
1147 | | messages_per_producer: 100_000, |
1148 | | notification_style: NotifyStyle::All, |
1149 | | timeout: Timeout::Forever, |
1150 | | delay_seconds: 0 |
1151 | | ); |
1152 | | new_test_without_timeout_5( |
1153 | | num_producers: 1, |
1154 | | num_consumers: 5, |
1155 | | max_queue_size: 1, |
1156 | | messages_per_producer: 100_000, |
1157 | | notification_style: NotifyStyle::All, |
1158 | | timeout: Timeout::Forever, |
1159 | | delay_seconds: 0 |
1160 | | ); |
1161 | | one_producer_one_consumer_one_slot( |
1162 | | num_producers: 1, |
1163 | | num_consumers: 1, |
1164 | | max_queue_size: 1, |
1165 | | messages_per_producer: 100_000, |
1166 | | notification_style: NotifyStyle::All, |
1167 | | timeout: Timeout::Forever, |
1168 | | delay_seconds: 0 |
1169 | | ); |
1170 | | one_producer_one_consumer_one_slot_timeout( |
1171 | | num_producers: 1, |
1172 | | num_consumers: 1, |
1173 | | max_queue_size: 1, |
1174 | | messages_per_producer: 100_000, |
1175 | | notification_style: NotifyStyle::All, |
1176 | | timeout: Timeout::Forever, |
1177 | | delay_seconds: 1 |
1178 | | ); |
1179 | | one_producer_one_consumer_hundred_slots( |
1180 | | num_producers: 1, |
1181 | | num_consumers: 1, |
1182 | | max_queue_size: 100, |
1183 | | messages_per_producer: 1_000_000, |
1184 | | notification_style: NotifyStyle::All, |
1185 | | timeout: Timeout::Forever, |
1186 | | delay_seconds: 0 |
1187 | | ); |
1188 | | ten_producers_one_consumer_one_slot( |
1189 | | num_producers: 10, |
1190 | | num_consumers: 1, |
1191 | | max_queue_size: 1, |
1192 | | messages_per_producer: 10000, |
1193 | | notification_style: NotifyStyle::All, |
1194 | | timeout: Timeout::Forever, |
1195 | | delay_seconds: 0 |
1196 | | ); |
1197 | | ten_producers_one_consumer_hundred_slots_notify_all( |
1198 | | num_producers: 10, |
1199 | | num_consumers: 1, |
1200 | | max_queue_size: 100, |
1201 | | messages_per_producer: 10000, |
1202 | | notification_style: NotifyStyle::All, |
1203 | | timeout: Timeout::Forever, |
1204 | | delay_seconds: 0 |
1205 | | ); |
1206 | | ten_producers_one_consumer_hundred_slots_notify_one( |
1207 | | num_producers: 10, |
1208 | | num_consumers: 1, |
1209 | | max_queue_size: 100, |
1210 | | messages_per_producer: 10000, |
1211 | | notification_style: NotifyStyle::One, |
1212 | | timeout: Timeout::Forever, |
1213 | | delay_seconds: 0 |
1214 | | ); |
1215 | | one_producer_ten_consumers_one_slot( |
1216 | | num_producers: 1, |
1217 | | num_consumers: 10, |
1218 | | max_queue_size: 1, |
1219 | | messages_per_producer: 10000, |
1220 | | notification_style: NotifyStyle::All, |
1221 | | timeout: Timeout::Forever, |
1222 | | delay_seconds: 0 |
1223 | | ); |
1224 | | one_producer_ten_consumers_hundred_slots_notify_all( |
1225 | | num_producers: 1, |
1226 | | num_consumers: 10, |
1227 | | max_queue_size: 100, |
1228 | | messages_per_producer: 100_000, |
1229 | | notification_style: NotifyStyle::All, |
1230 | | timeout: Timeout::Forever, |
1231 | | delay_seconds: 0 |
1232 | | ); |
1233 | | one_producer_ten_consumers_hundred_slots_notify_one( |
1234 | | num_producers: 1, |
1235 | | num_consumers: 10, |
1236 | | max_queue_size: 100, |
1237 | | messages_per_producer: 100_000, |
1238 | | notification_style: NotifyStyle::One, |
1239 | | timeout: Timeout::Forever, |
1240 | | delay_seconds: 0 |
1241 | | ); |
1242 | | ten_producers_ten_consumers_one_slot( |
1243 | | num_producers: 10, |
1244 | | num_consumers: 10, |
1245 | | max_queue_size: 1, |
1246 | | messages_per_producer: 50000, |
1247 | | notification_style: NotifyStyle::All, |
1248 | | timeout: Timeout::Forever, |
1249 | | delay_seconds: 0 |
1250 | | ); |
1251 | | ten_producers_ten_consumers_hundred_slots_notify_all( |
1252 | | num_producers: 10, |
1253 | | num_consumers: 10, |
1254 | | max_queue_size: 100, |
1255 | | messages_per_producer: 50000, |
1256 | | notification_style: NotifyStyle::All, |
1257 | | timeout: Timeout::Forever, |
1258 | | delay_seconds: 0 |
1259 | | ); |
1260 | | ten_producers_ten_consumers_hundred_slots_notify_one( |
1261 | | num_producers: 10, |
1262 | | num_consumers: 10, |
1263 | | max_queue_size: 100, |
1264 | | messages_per_producer: 50000, |
1265 | | notification_style: NotifyStyle::One, |
1266 | | timeout: Timeout::Forever, |
1267 | | delay_seconds: 0 |
1268 | | ); |
1269 | | } |
1270 | | } |