/rust/registry/src/index.crates.io-6f17d22bba15001f/regex-1.11.1/src/regex/bytes.rs
Line | Count | Source (jump to first uncovered line) |
1 | | use alloc::{borrow::Cow, string::String, sync::Arc, vec::Vec}; |
2 | | |
3 | | use regex_automata::{meta, util::captures, Input, PatternID}; |
4 | | |
5 | | use crate::{bytes::RegexBuilder, error::Error}; |
6 | | |
7 | | /// A compiled regular expression for searching Unicode haystacks. |
8 | | /// |
9 | | /// A `Regex` can be used to search haystacks, split haystacks into substrings |
10 | | /// or replace substrings in a haystack with a different substring. All |
11 | | /// searching is done with an implicit `(?s:.)*?` at the beginning and end of |
12 | | /// an pattern. To force an expression to match the whole string (or a prefix |
13 | | /// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`). |
14 | | /// |
15 | | /// Like the `Regex` type in the parent module, matches with this regex return |
16 | | /// byte offsets into the haystack. **Unlike** the parent `Regex` type, these |
17 | | /// byte offsets may not correspond to UTF-8 sequence boundaries since the |
18 | | /// regexes in this module can match arbitrary bytes. |
19 | | /// |
20 | | /// The only methods that allocate new byte strings are the string replacement |
21 | | /// methods. All other methods (searching and splitting) return borrowed |
22 | | /// references into the haystack given. |
23 | | /// |
24 | | /// # Example |
25 | | /// |
26 | | /// Find the offsets of a US phone number: |
27 | | /// |
28 | | /// ``` |
29 | | /// use regex::bytes::Regex; |
30 | | /// |
31 | | /// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}").unwrap(); |
32 | | /// let m = re.find(b"phone: 111-222-3333").unwrap(); |
33 | | /// assert_eq!(7..19, m.range()); |
34 | | /// ``` |
35 | | /// |
36 | | /// # Example: extracting capture groups |
37 | | /// |
38 | | /// A common way to use regexes is with capture groups. That is, instead of |
39 | | /// just looking for matches of an entire regex, parentheses are used to create |
40 | | /// groups that represent part of the match. |
41 | | /// |
42 | | /// For example, consider a haystack with multiple lines, and each line has |
43 | | /// three whitespace delimited fields where the second field is expected to be |
44 | | /// a number and the third field a boolean. To make this convenient, we use |
45 | | /// the [`Captures::extract`] API to put the strings that match each group |
46 | | /// into a fixed size array: |
47 | | /// |
48 | | /// ``` |
49 | | /// use regex::bytes::Regex; |
50 | | /// |
51 | | /// let hay = b" |
52 | | /// rabbit 54 true |
53 | | /// groundhog 2 true |
54 | | /// does not match |
55 | | /// fox 109 false |
56 | | /// "; |
57 | | /// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$").unwrap(); |
58 | | /// let mut fields: Vec<(&[u8], i64, bool)> = vec![]; |
59 | | /// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) { |
60 | | /// // These unwraps are OK because our pattern is written in a way where |
61 | | /// // all matches for f2 and f3 will be valid UTF-8. |
62 | | /// let f2 = std::str::from_utf8(f2).unwrap(); |
63 | | /// let f3 = std::str::from_utf8(f3).unwrap(); |
64 | | /// fields.push((f1, f2.parse()?, f3.parse()?)); |
65 | | /// } |
66 | | /// assert_eq!(fields, vec![ |
67 | | /// (&b"rabbit"[..], 54, true), |
68 | | /// (&b"groundhog"[..], 2, true), |
69 | | /// (&b"fox"[..], 109, false), |
70 | | /// ]); |
71 | | /// |
72 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
73 | | /// ``` |
74 | | /// |
75 | | /// # Example: matching invalid UTF-8 |
76 | | /// |
77 | | /// One of the reasons for searching `&[u8]` haystacks is that the `&[u8]` |
78 | | /// might not be valid UTF-8. Indeed, with a `bytes::Regex`, patterns that |
79 | | /// match invalid UTF-8 are explicitly allowed. Here's one example that looks |
80 | | /// for valid UTF-8 fields that might be separated by invalid UTF-8. In this |
81 | | /// case, we use `(?s-u:.)`, which matches any byte. Attempting to use it in a |
82 | | /// top-level `Regex` will result in the regex failing to compile. Notice also |
83 | | /// that we use `.` with Unicode mode enabled, in which case, only valid UTF-8 |
84 | | /// is matched. In this way, we can build one pattern where some parts only |
85 | | /// match valid UTF-8 while other parts are more permissive. |
86 | | /// |
87 | | /// ``` |
88 | | /// use regex::bytes::Regex; |
89 | | /// |
90 | | /// // F0 9F 92 A9 is the UTF-8 encoding for a Pile of Poo. |
91 | | /// let hay = b"\xFF\xFFfoo\xFF\xFF\xFF\xF0\x9F\x92\xA9\xFF"; |
92 | | /// // An equivalent to '(?s-u:.)' is '(?-u:[\x00-\xFF])'. |
93 | | /// let re = Regex::new(r"(?s)(?-u:.)*?(?<f1>.+)(?-u:.)*?(?<f2>.+)").unwrap(); |
94 | | /// let caps = re.captures(hay).unwrap(); |
95 | | /// assert_eq!(&caps["f1"], &b"foo"[..]); |
96 | | /// assert_eq!(&caps["f2"], "💩".as_bytes()); |
97 | | /// ``` |
98 | | #[derive(Clone)] |
99 | | pub struct Regex { |
100 | | pub(crate) meta: meta::Regex, |
101 | | pub(crate) pattern: Arc<str>, |
102 | | } |
103 | | |
104 | | impl core::fmt::Display for Regex { |
105 | | /// Shows the original regular expression. |
106 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
107 | 0 | write!(f, "{}", self.as_str()) |
108 | 0 | } |
109 | | } |
110 | | |
111 | | impl core::fmt::Debug for Regex { |
112 | | /// Shows the original regular expression. |
113 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
114 | 0 | f.debug_tuple("Regex").field(&self.as_str()).finish() |
115 | 0 | } |
116 | | } |
117 | | |
118 | | impl core::str::FromStr for Regex { |
119 | | type Err = Error; |
120 | | |
121 | | /// Attempts to parse a string into a regular expression |
122 | 0 | fn from_str(s: &str) -> Result<Regex, Error> { |
123 | 0 | Regex::new(s) |
124 | 0 | } |
125 | | } |
126 | | |
127 | | impl TryFrom<&str> for Regex { |
128 | | type Error = Error; |
129 | | |
130 | | /// Attempts to parse a string into a regular expression |
131 | 0 | fn try_from(s: &str) -> Result<Regex, Error> { |
132 | 0 | Regex::new(s) |
133 | 0 | } |
134 | | } |
135 | | |
136 | | impl TryFrom<String> for Regex { |
137 | | type Error = Error; |
138 | | |
139 | | /// Attempts to parse a string into a regular expression |
140 | 0 | fn try_from(s: String) -> Result<Regex, Error> { |
141 | 0 | Regex::new(&s) |
142 | 0 | } |
143 | | } |
144 | | |
145 | | /// Core regular expression methods. |
146 | | impl Regex { |
147 | | /// Compiles a regular expression. Once compiled, it can be used repeatedly |
148 | | /// to search, split or replace substrings in a haystack. |
149 | | /// |
150 | | /// Note that regex compilation tends to be a somewhat expensive process, |
151 | | /// and unlike higher level environments, compilation is not automatically |
152 | | /// cached for you. One should endeavor to compile a regex once and then |
153 | | /// reuse it. For example, it's a bad idea to compile the same regex |
154 | | /// repeatedly in a loop. |
155 | | /// |
156 | | /// # Errors |
157 | | /// |
158 | | /// If an invalid pattern is given, then an error is returned. |
159 | | /// An error is also returned if the pattern is valid, but would |
160 | | /// produce a regex that is bigger than the configured size limit via |
161 | | /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by |
162 | | /// default.) |
163 | | /// |
164 | | /// # Example |
165 | | /// |
166 | | /// ``` |
167 | | /// use regex::bytes::Regex; |
168 | | /// |
169 | | /// // An Invalid pattern because of an unclosed parenthesis |
170 | | /// assert!(Regex::new(r"foo(bar").is_err()); |
171 | | /// // An invalid pattern because the regex would be too big |
172 | | /// // because Unicode tends to inflate things. |
173 | | /// assert!(Regex::new(r"\w{1000}").is_err()); |
174 | | /// // Disabling Unicode can make the regex much smaller, |
175 | | /// // potentially by up to or more than an order of magnitude. |
176 | | /// assert!(Regex::new(r"(?-u:\w){1000}").is_ok()); |
177 | | /// ``` |
178 | 0 | pub fn new(re: &str) -> Result<Regex, Error> { |
179 | 0 | RegexBuilder::new(re).build() |
180 | 0 | } |
181 | | |
182 | | /// Returns true if and only if there is a match for the regex anywhere |
183 | | /// in the haystack given. |
184 | | /// |
185 | | /// It is recommended to use this method if all you need to do is test |
186 | | /// whether a match exists, since the underlying matching engine may be |
187 | | /// able to do less work. |
188 | | /// |
189 | | /// # Example |
190 | | /// |
191 | | /// Test if some haystack contains at least one word with exactly 13 |
192 | | /// Unicode word characters: |
193 | | /// |
194 | | /// ``` |
195 | | /// use regex::bytes::Regex; |
196 | | /// |
197 | | /// let re = Regex::new(r"\b\w{13}\b").unwrap(); |
198 | | /// let hay = b"I categorically deny having triskaidekaphobia."; |
199 | | /// assert!(re.is_match(hay)); |
200 | | /// ``` |
201 | | #[inline] |
202 | 0 | pub fn is_match(&self, haystack: &[u8]) -> bool { |
203 | 0 | self.is_match_at(haystack, 0) |
204 | 0 | } |
205 | | |
206 | | /// This routine searches for the first match of this regex in the |
207 | | /// haystack given, and if found, returns a [`Match`]. The `Match` |
208 | | /// provides access to both the byte offsets of the match and the actual |
209 | | /// substring that matched. |
210 | | /// |
211 | | /// Note that this should only be used if you want to find the entire |
212 | | /// match. If instead you just want to test the existence of a match, |
213 | | /// it's potentially faster to use `Regex::is_match(hay)` instead of |
214 | | /// `Regex::find(hay).is_some()`. |
215 | | /// |
216 | | /// # Example |
217 | | /// |
218 | | /// Find the first word with exactly 13 Unicode word characters: |
219 | | /// |
220 | | /// ``` |
221 | | /// use regex::bytes::Regex; |
222 | | /// |
223 | | /// let re = Regex::new(r"\b\w{13}\b").unwrap(); |
224 | | /// let hay = b"I categorically deny having triskaidekaphobia."; |
225 | | /// let mat = re.find(hay).unwrap(); |
226 | | /// assert_eq!(2..15, mat.range()); |
227 | | /// assert_eq!(b"categorically", mat.as_bytes()); |
228 | | /// ``` |
229 | | #[inline] |
230 | 0 | pub fn find<'h>(&self, haystack: &'h [u8]) -> Option<Match<'h>> { |
231 | 0 | self.find_at(haystack, 0) |
232 | 0 | } |
233 | | |
234 | | /// Returns an iterator that yields successive non-overlapping matches in |
235 | | /// the given haystack. The iterator yields values of type [`Match`]. |
236 | | /// |
237 | | /// # Time complexity |
238 | | /// |
239 | | /// Note that since `find_iter` runs potentially many searches on the |
240 | | /// haystack and since each search has worst case `O(m * n)` time |
241 | | /// complexity, the overall worst case time complexity for iteration is |
242 | | /// `O(m * n^2)`. |
243 | | /// |
244 | | /// # Example |
245 | | /// |
246 | | /// Find every word with exactly 13 Unicode word characters: |
247 | | /// |
248 | | /// ``` |
249 | | /// use regex::bytes::Regex; |
250 | | /// |
251 | | /// let re = Regex::new(r"\b\w{13}\b").unwrap(); |
252 | | /// let hay = b"Retroactively relinquishing remunerations is reprehensible."; |
253 | | /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_bytes()).collect(); |
254 | | /// assert_eq!(matches, vec![ |
255 | | /// &b"Retroactively"[..], |
256 | | /// &b"relinquishing"[..], |
257 | | /// &b"remunerations"[..], |
258 | | /// &b"reprehensible"[..], |
259 | | /// ]); |
260 | | /// ``` |
261 | | #[inline] |
262 | 0 | pub fn find_iter<'r, 'h>(&'r self, haystack: &'h [u8]) -> Matches<'r, 'h> { |
263 | 0 | Matches { haystack, it: self.meta.find_iter(haystack) } |
264 | 0 | } |
265 | | |
266 | | /// This routine searches for the first match of this regex in the haystack |
267 | | /// given, and if found, returns not only the overall match but also the |
268 | | /// matches of each capture group in the regex. If no match is found, then |
269 | | /// `None` is returned. |
270 | | /// |
271 | | /// Capture group `0` always corresponds to an implicit unnamed group that |
272 | | /// includes the entire match. If a match is found, this group is always |
273 | | /// present. Subsequent groups may be named and are numbered, starting |
274 | | /// at 1, by the order in which the opening parenthesis appears in the |
275 | | /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`, |
276 | | /// `b` and `c` correspond to capture group indices `1`, `2` and `3`, |
277 | | /// respectively. |
278 | | /// |
279 | | /// You should only use `captures` if you need access to the capture group |
280 | | /// matches. Otherwise, [`Regex::find`] is generally faster for discovering |
281 | | /// just the overall match. |
282 | | /// |
283 | | /// # Example |
284 | | /// |
285 | | /// Say you have some haystack with movie names and their release years, |
286 | | /// like "'Citizen Kane' (1941)". It'd be nice if we could search for |
287 | | /// strings looking like that, while also extracting the movie name and its |
288 | | /// release year separately. The example below shows how to do that. |
289 | | /// |
290 | | /// ``` |
291 | | /// use regex::bytes::Regex; |
292 | | /// |
293 | | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap(); |
294 | | /// let hay = b"Not my favorite movie: 'Citizen Kane' (1941)."; |
295 | | /// let caps = re.captures(hay).unwrap(); |
296 | | /// assert_eq!(caps.get(0).unwrap().as_bytes(), b"'Citizen Kane' (1941)"); |
297 | | /// assert_eq!(caps.get(1).unwrap().as_bytes(), b"Citizen Kane"); |
298 | | /// assert_eq!(caps.get(2).unwrap().as_bytes(), b"1941"); |
299 | | /// // You can also access the groups by index using the Index notation. |
300 | | /// // Note that this will panic on an invalid index. In this case, these |
301 | | /// // accesses are always correct because the overall regex will only |
302 | | /// // match when these capture groups match. |
303 | | /// assert_eq!(&caps[0], b"'Citizen Kane' (1941)"); |
304 | | /// assert_eq!(&caps[1], b"Citizen Kane"); |
305 | | /// assert_eq!(&caps[2], b"1941"); |
306 | | /// ``` |
307 | | /// |
308 | | /// Note that the full match is at capture group `0`. Each subsequent |
309 | | /// capture group is indexed by the order of its opening `(`. |
310 | | /// |
311 | | /// We can make this example a bit clearer by using *named* capture groups: |
312 | | /// |
313 | | /// ``` |
314 | | /// use regex::bytes::Regex; |
315 | | /// |
316 | | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)").unwrap(); |
317 | | /// let hay = b"Not my favorite movie: 'Citizen Kane' (1941)."; |
318 | | /// let caps = re.captures(hay).unwrap(); |
319 | | /// assert_eq!(caps.get(0).unwrap().as_bytes(), b"'Citizen Kane' (1941)"); |
320 | | /// assert_eq!(caps.name("title").unwrap().as_bytes(), b"Citizen Kane"); |
321 | | /// assert_eq!(caps.name("year").unwrap().as_bytes(), b"1941"); |
322 | | /// // You can also access the groups by name using the Index notation. |
323 | | /// // Note that this will panic on an invalid group name. In this case, |
324 | | /// // these accesses are always correct because the overall regex will |
325 | | /// // only match when these capture groups match. |
326 | | /// assert_eq!(&caps[0], b"'Citizen Kane' (1941)"); |
327 | | /// assert_eq!(&caps["title"], b"Citizen Kane"); |
328 | | /// assert_eq!(&caps["year"], b"1941"); |
329 | | /// ``` |
330 | | /// |
331 | | /// Here we name the capture groups, which we can access with the `name` |
332 | | /// method or the `Index` notation with a `&str`. Note that the named |
333 | | /// capture groups are still accessible with `get` or the `Index` notation |
334 | | /// with a `usize`. |
335 | | /// |
336 | | /// The `0`th capture group is always unnamed, so it must always be |
337 | | /// accessed with `get(0)` or `[0]`. |
338 | | /// |
339 | | /// Finally, one other way to to get the matched substrings is with the |
340 | | /// [`Captures::extract`] API: |
341 | | /// |
342 | | /// ``` |
343 | | /// use regex::bytes::Regex; |
344 | | /// |
345 | | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap(); |
346 | | /// let hay = b"Not my favorite movie: 'Citizen Kane' (1941)."; |
347 | | /// let (full, [title, year]) = re.captures(hay).unwrap().extract(); |
348 | | /// assert_eq!(full, b"'Citizen Kane' (1941)"); |
349 | | /// assert_eq!(title, b"Citizen Kane"); |
350 | | /// assert_eq!(year, b"1941"); |
351 | | /// ``` |
352 | | #[inline] |
353 | 0 | pub fn captures<'h>(&self, haystack: &'h [u8]) -> Option<Captures<'h>> { |
354 | 0 | self.captures_at(haystack, 0) |
355 | 0 | } |
356 | | |
357 | | /// Returns an iterator that yields successive non-overlapping matches in |
358 | | /// the given haystack. The iterator yields values of type [`Captures`]. |
359 | | /// |
360 | | /// This is the same as [`Regex::find_iter`], but instead of only providing |
361 | | /// access to the overall match, each value yield includes access to the |
362 | | /// matches of all capture groups in the regex. Reporting this extra match |
363 | | /// data is potentially costly, so callers should only use `captures_iter` |
364 | | /// over `find_iter` when they actually need access to the capture group |
365 | | /// matches. |
366 | | /// |
367 | | /// # Time complexity |
368 | | /// |
369 | | /// Note that since `captures_iter` runs potentially many searches on the |
370 | | /// haystack and since each search has worst case `O(m * n)` time |
371 | | /// complexity, the overall worst case time complexity for iteration is |
372 | | /// `O(m * n^2)`. |
373 | | /// |
374 | | /// # Example |
375 | | /// |
376 | | /// We can use this to find all movie titles and their release years in |
377 | | /// some haystack, where the movie is formatted like "'Title' (xxxx)": |
378 | | /// |
379 | | /// ``` |
380 | | /// use regex::bytes::Regex; |
381 | | /// |
382 | | /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)").unwrap(); |
383 | | /// let hay = b"'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)."; |
384 | | /// let mut movies = vec![]; |
385 | | /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) { |
386 | | /// // OK because [0-9]{4} can only match valid UTF-8. |
387 | | /// let year = std::str::from_utf8(year).unwrap(); |
388 | | /// movies.push((title, year.parse::<i64>()?)); |
389 | | /// } |
390 | | /// assert_eq!(movies, vec![ |
391 | | /// (&b"Citizen Kane"[..], 1941), |
392 | | /// (&b"The Wizard of Oz"[..], 1939), |
393 | | /// (&b"M"[..], 1931), |
394 | | /// ]); |
395 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
396 | | /// ``` |
397 | | /// |
398 | | /// Or with named groups: |
399 | | /// |
400 | | /// ``` |
401 | | /// use regex::bytes::Regex; |
402 | | /// |
403 | | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)").unwrap(); |
404 | | /// let hay = b"'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)."; |
405 | | /// let mut it = re.captures_iter(hay); |
406 | | /// |
407 | | /// let caps = it.next().unwrap(); |
408 | | /// assert_eq!(&caps["title"], b"Citizen Kane"); |
409 | | /// assert_eq!(&caps["year"], b"1941"); |
410 | | /// |
411 | | /// let caps = it.next().unwrap(); |
412 | | /// assert_eq!(&caps["title"], b"The Wizard of Oz"); |
413 | | /// assert_eq!(&caps["year"], b"1939"); |
414 | | /// |
415 | | /// let caps = it.next().unwrap(); |
416 | | /// assert_eq!(&caps["title"], b"M"); |
417 | | /// assert_eq!(&caps["year"], b"1931"); |
418 | | /// ``` |
419 | | #[inline] |
420 | 0 | pub fn captures_iter<'r, 'h>( |
421 | 0 | &'r self, |
422 | 0 | haystack: &'h [u8], |
423 | 0 | ) -> CaptureMatches<'r, 'h> { |
424 | 0 | CaptureMatches { haystack, it: self.meta.captures_iter(haystack) } |
425 | 0 | } |
426 | | |
427 | | /// Returns an iterator of substrings of the haystack given, delimited by a |
428 | | /// match of the regex. Namely, each element of the iterator corresponds to |
429 | | /// a part of the haystack that *isn't* matched by the regular expression. |
430 | | /// |
431 | | /// # Time complexity |
432 | | /// |
433 | | /// Since iterators over all matches requires running potentially many |
434 | | /// searches on the haystack, and since each search has worst case |
435 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
436 | | /// this routine is `O(m * n^2)`. |
437 | | /// |
438 | | /// # Example |
439 | | /// |
440 | | /// To split a string delimited by arbitrary amounts of spaces or tabs: |
441 | | /// |
442 | | /// ``` |
443 | | /// use regex::bytes::Regex; |
444 | | /// |
445 | | /// let re = Regex::new(r"[ \t]+").unwrap(); |
446 | | /// let hay = b"a b \t c\td e"; |
447 | | /// let fields: Vec<&[u8]> = re.split(hay).collect(); |
448 | | /// assert_eq!(fields, vec![ |
449 | | /// &b"a"[..], &b"b"[..], &b"c"[..], &b"d"[..], &b"e"[..], |
450 | | /// ]); |
451 | | /// ``` |
452 | | /// |
453 | | /// # Example: more cases |
454 | | /// |
455 | | /// Basic usage: |
456 | | /// |
457 | | /// ``` |
458 | | /// use regex::bytes::Regex; |
459 | | /// |
460 | | /// let re = Regex::new(r" ").unwrap(); |
461 | | /// let hay = b"Mary had a little lamb"; |
462 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
463 | | /// assert_eq!(got, vec![ |
464 | | /// &b"Mary"[..], &b"had"[..], &b"a"[..], &b"little"[..], &b"lamb"[..], |
465 | | /// ]); |
466 | | /// |
467 | | /// let re = Regex::new(r"X").unwrap(); |
468 | | /// let hay = b""; |
469 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
470 | | /// assert_eq!(got, vec![&b""[..]]); |
471 | | /// |
472 | | /// let re = Regex::new(r"X").unwrap(); |
473 | | /// let hay = b"lionXXtigerXleopard"; |
474 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
475 | | /// assert_eq!(got, vec![ |
476 | | /// &b"lion"[..], &b""[..], &b"tiger"[..], &b"leopard"[..], |
477 | | /// ]); |
478 | | /// |
479 | | /// let re = Regex::new(r"::").unwrap(); |
480 | | /// let hay = b"lion::tiger::leopard"; |
481 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
482 | | /// assert_eq!(got, vec![&b"lion"[..], &b"tiger"[..], &b"leopard"[..]]); |
483 | | /// ``` |
484 | | /// |
485 | | /// If a haystack contains multiple contiguous matches, you will end up |
486 | | /// with empty spans yielded by the iterator: |
487 | | /// |
488 | | /// ``` |
489 | | /// use regex::bytes::Regex; |
490 | | /// |
491 | | /// let re = Regex::new(r"X").unwrap(); |
492 | | /// let hay = b"XXXXaXXbXc"; |
493 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
494 | | /// assert_eq!(got, vec![ |
495 | | /// &b""[..], &b""[..], &b""[..], &b""[..], |
496 | | /// &b"a"[..], &b""[..], &b"b"[..], &b"c"[..], |
497 | | /// ]); |
498 | | /// |
499 | | /// let re = Regex::new(r"/").unwrap(); |
500 | | /// let hay = b"(///)"; |
501 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
502 | | /// assert_eq!(got, vec![&b"("[..], &b""[..], &b""[..], &b")"[..]]); |
503 | | /// ``` |
504 | | /// |
505 | | /// Separators at the start or end of a haystack are neighbored by empty |
506 | | /// substring. |
507 | | /// |
508 | | /// ``` |
509 | | /// use regex::bytes::Regex; |
510 | | /// |
511 | | /// let re = Regex::new(r"0").unwrap(); |
512 | | /// let hay = b"010"; |
513 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
514 | | /// assert_eq!(got, vec![&b""[..], &b"1"[..], &b""[..]]); |
515 | | /// ``` |
516 | | /// |
517 | | /// When the regex can match the empty string, it splits at every byte |
518 | | /// position in the haystack. This includes between all UTF-8 code units. |
519 | | /// (The top-level [`Regex::split`](crate::Regex::split) will only split |
520 | | /// at valid UTF-8 boundaries.) |
521 | | /// |
522 | | /// ``` |
523 | | /// use regex::bytes::Regex; |
524 | | /// |
525 | | /// let re = Regex::new(r"").unwrap(); |
526 | | /// let hay = "☃".as_bytes(); |
527 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
528 | | /// assert_eq!(got, vec![ |
529 | | /// &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..], |
530 | | /// ]); |
531 | | /// ``` |
532 | | /// |
533 | | /// Contiguous separators (commonly shows up with whitespace), can lead to |
534 | | /// possibly surprising behavior. For example, this code is correct: |
535 | | /// |
536 | | /// ``` |
537 | | /// use regex::bytes::Regex; |
538 | | /// |
539 | | /// let re = Regex::new(r" ").unwrap(); |
540 | | /// let hay = b" a b c"; |
541 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
542 | | /// assert_eq!(got, vec![ |
543 | | /// &b""[..], &b""[..], &b""[..], &b""[..], |
544 | | /// &b"a"[..], &b""[..], &b"b"[..], &b"c"[..], |
545 | | /// ]); |
546 | | /// ``` |
547 | | /// |
548 | | /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want |
549 | | /// to match contiguous space characters: |
550 | | /// |
551 | | /// ``` |
552 | | /// use regex::bytes::Regex; |
553 | | /// |
554 | | /// let re = Regex::new(r" +").unwrap(); |
555 | | /// let hay = b" a b c"; |
556 | | /// let got: Vec<&[u8]> = re.split(hay).collect(); |
557 | | /// // N.B. This does still include a leading empty span because ' +' |
558 | | /// // matches at the beginning of the haystack. |
559 | | /// assert_eq!(got, vec![&b""[..], &b"a"[..], &b"b"[..], &b"c"[..]]); |
560 | | /// ``` |
561 | | #[inline] |
562 | 0 | pub fn split<'r, 'h>(&'r self, haystack: &'h [u8]) -> Split<'r, 'h> { |
563 | 0 | Split { haystack, it: self.meta.split(haystack) } |
564 | 0 | } |
565 | | |
566 | | /// Returns an iterator of at most `limit` substrings of the haystack |
567 | | /// given, delimited by a match of the regex. (A `limit` of `0` will return |
568 | | /// no substrings.) Namely, each element of the iterator corresponds to a |
569 | | /// part of the haystack that *isn't* matched by the regular expression. |
570 | | /// The remainder of the haystack that is not split will be the last |
571 | | /// element in the iterator. |
572 | | /// |
573 | | /// # Time complexity |
574 | | /// |
575 | | /// Since iterators over all matches requires running potentially many |
576 | | /// searches on the haystack, and since each search has worst case |
577 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
578 | | /// this routine is `O(m * n^2)`. |
579 | | /// |
580 | | /// Although note that the worst case time here has an upper bound given |
581 | | /// by the `limit` parameter. |
582 | | /// |
583 | | /// # Example |
584 | | /// |
585 | | /// Get the first two words in some haystack: |
586 | | /// |
587 | | /// ``` |
588 | | /// use regex::bytes::Regex; |
589 | | /// |
590 | | /// let re = Regex::new(r"\W+").unwrap(); |
591 | | /// let hay = b"Hey! How are you?"; |
592 | | /// let fields: Vec<&[u8]> = re.splitn(hay, 3).collect(); |
593 | | /// assert_eq!(fields, vec![&b"Hey"[..], &b"How"[..], &b"are you?"[..]]); |
594 | | /// ``` |
595 | | /// |
596 | | /// # Examples: more cases |
597 | | /// |
598 | | /// ``` |
599 | | /// use regex::bytes::Regex; |
600 | | /// |
601 | | /// let re = Regex::new(r" ").unwrap(); |
602 | | /// let hay = b"Mary had a little lamb"; |
603 | | /// let got: Vec<&[u8]> = re.splitn(hay, 3).collect(); |
604 | | /// assert_eq!(got, vec![&b"Mary"[..], &b"had"[..], &b"a little lamb"[..]]); |
605 | | /// |
606 | | /// let re = Regex::new(r"X").unwrap(); |
607 | | /// let hay = b""; |
608 | | /// let got: Vec<&[u8]> = re.splitn(hay, 3).collect(); |
609 | | /// assert_eq!(got, vec![&b""[..]]); |
610 | | /// |
611 | | /// let re = Regex::new(r"X").unwrap(); |
612 | | /// let hay = b"lionXXtigerXleopard"; |
613 | | /// let got: Vec<&[u8]> = re.splitn(hay, 3).collect(); |
614 | | /// assert_eq!(got, vec![&b"lion"[..], &b""[..], &b"tigerXleopard"[..]]); |
615 | | /// |
616 | | /// let re = Regex::new(r"::").unwrap(); |
617 | | /// let hay = b"lion::tiger::leopard"; |
618 | | /// let got: Vec<&[u8]> = re.splitn(hay, 2).collect(); |
619 | | /// assert_eq!(got, vec![&b"lion"[..], &b"tiger::leopard"[..]]); |
620 | | /// |
621 | | /// let re = Regex::new(r"X").unwrap(); |
622 | | /// let hay = b"abcXdef"; |
623 | | /// let got: Vec<&[u8]> = re.splitn(hay, 1).collect(); |
624 | | /// assert_eq!(got, vec![&b"abcXdef"[..]]); |
625 | | /// |
626 | | /// let re = Regex::new(r"X").unwrap(); |
627 | | /// let hay = b"abcdef"; |
628 | | /// let got: Vec<&[u8]> = re.splitn(hay, 2).collect(); |
629 | | /// assert_eq!(got, vec![&b"abcdef"[..]]); |
630 | | /// |
631 | | /// let re = Regex::new(r"X").unwrap(); |
632 | | /// let hay = b"abcXdef"; |
633 | | /// let got: Vec<&[u8]> = re.splitn(hay, 0).collect(); |
634 | | /// assert!(got.is_empty()); |
635 | | /// ``` |
636 | | #[inline] |
637 | 0 | pub fn splitn<'r, 'h>( |
638 | 0 | &'r self, |
639 | 0 | haystack: &'h [u8], |
640 | 0 | limit: usize, |
641 | 0 | ) -> SplitN<'r, 'h> { |
642 | 0 | SplitN { haystack, it: self.meta.splitn(haystack, limit) } |
643 | 0 | } |
644 | | |
645 | | /// Replaces the leftmost-first match in the given haystack with the |
646 | | /// replacement provided. The replacement can be a regular string (where |
647 | | /// `$N` and `$name` are expanded to match capture groups) or a function |
648 | | /// that takes a [`Captures`] and returns the replaced string. |
649 | | /// |
650 | | /// If no match is found, then the haystack is returned unchanged. In that |
651 | | /// case, this implementation will likely return a `Cow::Borrowed` value |
652 | | /// such that no allocation is performed. |
653 | | /// |
654 | | /// When a `Cow::Borrowed` is returned, the value returned is guaranteed |
655 | | /// to be equivalent to the `haystack` given. |
656 | | /// |
657 | | /// # Replacement string syntax |
658 | | /// |
659 | | /// All instances of `$ref` in the replacement string are replaced with |
660 | | /// the substring corresponding to the capture group identified by `ref`. |
661 | | /// |
662 | | /// `ref` may be an integer corresponding to the index of the capture group |
663 | | /// (counted by order of opening parenthesis where `0` is the entire match) |
664 | | /// or it can be a name (consisting of letters, digits or underscores) |
665 | | /// corresponding to a named capture group. |
666 | | /// |
667 | | /// If `ref` isn't a valid capture group (whether the name doesn't exist or |
668 | | /// isn't a valid index), then it is replaced with the empty string. |
669 | | /// |
670 | | /// The longest possible name is used. For example, `$1a` looks up the |
671 | | /// capture group named `1a` and not the capture group at index `1`. To |
672 | | /// exert more precise control over the name, use braces, e.g., `${1}a`. |
673 | | /// |
674 | | /// To write a literal `$` use `$$`. |
675 | | /// |
676 | | /// # Example |
677 | | /// |
678 | | /// Note that this function is polymorphic with respect to the replacement. |
679 | | /// In typical usage, this can just be a normal string: |
680 | | /// |
681 | | /// ``` |
682 | | /// use regex::bytes::Regex; |
683 | | /// |
684 | | /// let re = Regex::new(r"[^01]+").unwrap(); |
685 | | /// assert_eq!(re.replace(b"1078910", b""), &b"1010"[..]); |
686 | | /// ``` |
687 | | /// |
688 | | /// But anything satisfying the [`Replacer`] trait will work. For example, |
689 | | /// a closure of type `|&Captures| -> String` provides direct access to the |
690 | | /// captures corresponding to a match. This allows one to access capturing |
691 | | /// group matches easily: |
692 | | /// |
693 | | /// ``` |
694 | | /// use regex::bytes::{Captures, Regex}; |
695 | | /// |
696 | | /// let re = Regex::new(r"([^,\s]+),\s+(\S+)").unwrap(); |
697 | | /// let result = re.replace(b"Springsteen, Bruce", |caps: &Captures| { |
698 | | /// let mut buf = vec![]; |
699 | | /// buf.extend_from_slice(&caps[2]); |
700 | | /// buf.push(b' '); |
701 | | /// buf.extend_from_slice(&caps[1]); |
702 | | /// buf |
703 | | /// }); |
704 | | /// assert_eq!(result, &b"Bruce Springsteen"[..]); |
705 | | /// ``` |
706 | | /// |
707 | | /// But this is a bit cumbersome to use all the time. Instead, a simple |
708 | | /// syntax is supported (as described above) that expands `$name` into the |
709 | | /// corresponding capture group. Here's the last example, but using this |
710 | | /// expansion technique with named capture groups: |
711 | | /// |
712 | | /// ``` |
713 | | /// use regex::bytes::Regex; |
714 | | /// |
715 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap(); |
716 | | /// let result = re.replace(b"Springsteen, Bruce", b"$first $last"); |
717 | | /// assert_eq!(result, &b"Bruce Springsteen"[..]); |
718 | | /// ``` |
719 | | /// |
720 | | /// Note that using `$2` instead of `$first` or `$1` instead of `$last` |
721 | | /// would produce the same result. To write a literal `$` use `$$`. |
722 | | /// |
723 | | /// Sometimes the replacement string requires use of curly braces to |
724 | | /// delineate a capture group replacement when it is adjacent to some other |
725 | | /// literal text. For example, if we wanted to join two words together with |
726 | | /// an underscore: |
727 | | /// |
728 | | /// ``` |
729 | | /// use regex::bytes::Regex; |
730 | | /// |
731 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)").unwrap(); |
732 | | /// let result = re.replace(b"deep fried", b"${first}_$second"); |
733 | | /// assert_eq!(result, &b"deep_fried"[..]); |
734 | | /// ``` |
735 | | /// |
736 | | /// Without the curly braces, the capture group name `first_` would be |
737 | | /// used, and since it doesn't exist, it would be replaced with the empty |
738 | | /// string. |
739 | | /// |
740 | | /// Finally, sometimes you just want to replace a literal string with no |
741 | | /// regard for capturing group expansion. This can be done by wrapping a |
742 | | /// string with [`NoExpand`]: |
743 | | /// |
744 | | /// ``` |
745 | | /// use regex::bytes::{NoExpand, Regex}; |
746 | | /// |
747 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap(); |
748 | | /// let result = re.replace(b"Springsteen, Bruce", NoExpand(b"$2 $last")); |
749 | | /// assert_eq!(result, &b"$2 $last"[..]); |
750 | | /// ``` |
751 | | /// |
752 | | /// Using `NoExpand` may also be faster, since the replacement string won't |
753 | | /// need to be parsed for the `$` syntax. |
754 | | #[inline] |
755 | 0 | pub fn replace<'h, R: Replacer>( |
756 | 0 | &self, |
757 | 0 | haystack: &'h [u8], |
758 | 0 | rep: R, |
759 | 0 | ) -> Cow<'h, [u8]> { |
760 | 0 | self.replacen(haystack, 1, rep) |
761 | 0 | } |
762 | | |
763 | | /// Replaces all non-overlapping matches in the haystack with the |
764 | | /// replacement provided. This is the same as calling `replacen` with |
765 | | /// `limit` set to `0`. |
766 | | /// |
767 | | /// If no match is found, then the haystack is returned unchanged. In that |
768 | | /// case, this implementation will likely return a `Cow::Borrowed` value |
769 | | /// such that no allocation is performed. |
770 | | /// |
771 | | /// When a `Cow::Borrowed` is returned, the value returned is guaranteed |
772 | | /// to be equivalent to the `haystack` given. |
773 | | /// |
774 | | /// The documentation for [`Regex::replace`] goes into more detail about |
775 | | /// what kinds of replacement strings are supported. |
776 | | /// |
777 | | /// # Time complexity |
778 | | /// |
779 | | /// Since iterators over all matches requires running potentially many |
780 | | /// searches on the haystack, and since each search has worst case |
781 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
782 | | /// this routine is `O(m * n^2)`. |
783 | | /// |
784 | | /// # Fallibility |
785 | | /// |
786 | | /// If you need to write a replacement routine where any individual |
787 | | /// replacement might "fail," doing so with this API isn't really feasible |
788 | | /// because there's no way to stop the search process if a replacement |
789 | | /// fails. Instead, if you need this functionality, you should consider |
790 | | /// implementing your own replacement routine: |
791 | | /// |
792 | | /// ``` |
793 | | /// use regex::bytes::{Captures, Regex}; |
794 | | /// |
795 | | /// fn replace_all<E>( |
796 | | /// re: &Regex, |
797 | | /// haystack: &[u8], |
798 | | /// replacement: impl Fn(&Captures) -> Result<Vec<u8>, E>, |
799 | | /// ) -> Result<Vec<u8>, E> { |
800 | | /// let mut new = Vec::with_capacity(haystack.len()); |
801 | | /// let mut last_match = 0; |
802 | | /// for caps in re.captures_iter(haystack) { |
803 | | /// let m = caps.get(0).unwrap(); |
804 | | /// new.extend_from_slice(&haystack[last_match..m.start()]); |
805 | | /// new.extend_from_slice(&replacement(&caps)?); |
806 | | /// last_match = m.end(); |
807 | | /// } |
808 | | /// new.extend_from_slice(&haystack[last_match..]); |
809 | | /// Ok(new) |
810 | | /// } |
811 | | /// |
812 | | /// // Let's replace each word with the number of bytes in that word. |
813 | | /// // But if we see a word that is "too long," we'll give up. |
814 | | /// let re = Regex::new(r"\w+").unwrap(); |
815 | | /// let replacement = |caps: &Captures| -> Result<Vec<u8>, &'static str> { |
816 | | /// if caps[0].len() >= 5 { |
817 | | /// return Err("word too long"); |
818 | | /// } |
819 | | /// Ok(caps[0].len().to_string().into_bytes()) |
820 | | /// }; |
821 | | /// assert_eq!( |
822 | | /// Ok(b"2 3 3 3?".to_vec()), |
823 | | /// replace_all(&re, b"hi how are you?", &replacement), |
824 | | /// ); |
825 | | /// assert!(replace_all(&re, b"hi there", &replacement).is_err()); |
826 | | /// ``` |
827 | | /// |
828 | | /// # Example |
829 | | /// |
830 | | /// This example shows how to flip the order of whitespace (excluding line |
831 | | /// terminators) delimited fields, and normalizes the whitespace that |
832 | | /// delimits the fields: |
833 | | /// |
834 | | /// ``` |
835 | | /// use regex::bytes::Regex; |
836 | | /// |
837 | | /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap(); |
838 | | /// let hay = b" |
839 | | /// Greetings 1973 |
840 | | /// Wild\t1973 |
841 | | /// BornToRun\t\t\t\t1975 |
842 | | /// Darkness 1978 |
843 | | /// TheRiver 1980 |
844 | | /// "; |
845 | | /// let new = re.replace_all(hay, b"$2 $1"); |
846 | | /// assert_eq!(new, &b" |
847 | | /// 1973 Greetings |
848 | | /// 1973 Wild |
849 | | /// 1975 BornToRun |
850 | | /// 1978 Darkness |
851 | | /// 1980 TheRiver |
852 | | /// "[..]); |
853 | | /// ``` |
854 | | #[inline] |
855 | 0 | pub fn replace_all<'h, R: Replacer>( |
856 | 0 | &self, |
857 | 0 | haystack: &'h [u8], |
858 | 0 | rep: R, |
859 | 0 | ) -> Cow<'h, [u8]> { |
860 | 0 | self.replacen(haystack, 0, rep) |
861 | 0 | } |
862 | | |
863 | | /// Replaces at most `limit` non-overlapping matches in the haystack with |
864 | | /// the replacement provided. If `limit` is `0`, then all non-overlapping |
865 | | /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is |
866 | | /// equivalent to `Regex::replacen(hay, 0, rep)`. |
867 | | /// |
868 | | /// If no match is found, then the haystack is returned unchanged. In that |
869 | | /// case, this implementation will likely return a `Cow::Borrowed` value |
870 | | /// such that no allocation is performed. |
871 | | /// |
872 | | /// When a `Cow::Borrowed` is returned, the value returned is guaranteed |
873 | | /// to be equivalent to the `haystack` given. |
874 | | /// |
875 | | /// The documentation for [`Regex::replace`] goes into more detail about |
876 | | /// what kinds of replacement strings are supported. |
877 | | /// |
878 | | /// # Time complexity |
879 | | /// |
880 | | /// Since iterators over all matches requires running potentially many |
881 | | /// searches on the haystack, and since each search has worst case |
882 | | /// `O(m * n)` time complexity, the overall worst case time complexity for |
883 | | /// this routine is `O(m * n^2)`. |
884 | | /// |
885 | | /// Although note that the worst case time here has an upper bound given |
886 | | /// by the `limit` parameter. |
887 | | /// |
888 | | /// # Fallibility |
889 | | /// |
890 | | /// See the corresponding section in the docs for [`Regex::replace_all`] |
891 | | /// for tips on how to deal with a replacement routine that can fail. |
892 | | /// |
893 | | /// # Example |
894 | | /// |
895 | | /// This example shows how to flip the order of whitespace (excluding line |
896 | | /// terminators) delimited fields, and normalizes the whitespace that |
897 | | /// delimits the fields. But we only do it for the first two matches. |
898 | | /// |
899 | | /// ``` |
900 | | /// use regex::bytes::Regex; |
901 | | /// |
902 | | /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap(); |
903 | | /// let hay = b" |
904 | | /// Greetings 1973 |
905 | | /// Wild\t1973 |
906 | | /// BornToRun\t\t\t\t1975 |
907 | | /// Darkness 1978 |
908 | | /// TheRiver 1980 |
909 | | /// "; |
910 | | /// let new = re.replacen(hay, 2, b"$2 $1"); |
911 | | /// assert_eq!(new, &b" |
912 | | /// 1973 Greetings |
913 | | /// 1973 Wild |
914 | | /// BornToRun\t\t\t\t1975 |
915 | | /// Darkness 1978 |
916 | | /// TheRiver 1980 |
917 | | /// "[..]); |
918 | | /// ``` |
919 | | #[inline] |
920 | 0 | pub fn replacen<'h, R: Replacer>( |
921 | 0 | &self, |
922 | 0 | haystack: &'h [u8], |
923 | 0 | limit: usize, |
924 | 0 | mut rep: R, |
925 | 0 | ) -> Cow<'h, [u8]> { |
926 | | // If we know that the replacement doesn't have any capture expansions, |
927 | | // then we can use the fast path. The fast path can make a tremendous |
928 | | // difference: |
929 | | // |
930 | | // 1) We use `find_iter` instead of `captures_iter`. Not asking for |
931 | | // captures generally makes the regex engines faster. |
932 | | // 2) We don't need to look up all of the capture groups and do |
933 | | // replacements inside the replacement string. We just push it |
934 | | // at each match and be done with it. |
935 | 0 | if let Some(rep) = rep.no_expansion() { |
936 | 0 | let mut it = self.find_iter(haystack).enumerate().peekable(); |
937 | 0 | if it.peek().is_none() { |
938 | 0 | return Cow::Borrowed(haystack); |
939 | 0 | } |
940 | 0 | let mut new = Vec::with_capacity(haystack.len()); |
941 | 0 | let mut last_match = 0; |
942 | 0 | for (i, m) in it { |
943 | 0 | new.extend_from_slice(&haystack[last_match..m.start()]); |
944 | 0 | new.extend_from_slice(&rep); |
945 | 0 | last_match = m.end(); |
946 | 0 | if limit > 0 && i >= limit - 1 { |
947 | 0 | break; |
948 | 0 | } |
949 | | } |
950 | 0 | new.extend_from_slice(&haystack[last_match..]); |
951 | 0 | return Cow::Owned(new); |
952 | 0 | } |
953 | 0 |
|
954 | 0 | // The slower path, which we use if the replacement needs access to |
955 | 0 | // capture groups. |
956 | 0 | let mut it = self.captures_iter(haystack).enumerate().peekable(); |
957 | 0 | if it.peek().is_none() { |
958 | 0 | return Cow::Borrowed(haystack); |
959 | 0 | } |
960 | 0 | let mut new = Vec::with_capacity(haystack.len()); |
961 | 0 | let mut last_match = 0; |
962 | 0 | for (i, cap) in it { |
963 | | // unwrap on 0 is OK because captures only reports matches |
964 | 0 | let m = cap.get(0).unwrap(); |
965 | 0 | new.extend_from_slice(&haystack[last_match..m.start()]); |
966 | 0 | rep.replace_append(&cap, &mut new); |
967 | 0 | last_match = m.end(); |
968 | 0 | if limit > 0 && i >= limit - 1 { |
969 | 0 | break; |
970 | 0 | } |
971 | | } |
972 | 0 | new.extend_from_slice(&haystack[last_match..]); |
973 | 0 | Cow::Owned(new) |
974 | 0 | } |
975 | | } |
976 | | |
977 | | /// A group of advanced or "lower level" search methods. Some methods permit |
978 | | /// starting the search at a position greater than `0` in the haystack. Other |
979 | | /// methods permit reusing allocations, for example, when extracting the |
980 | | /// matches for capture groups. |
981 | | impl Regex { |
982 | | /// Returns the end byte offset of the first match in the haystack given. |
983 | | /// |
984 | | /// This method may have the same performance characteristics as |
985 | | /// `is_match`. Behaviorlly, it doesn't just report whether it match |
986 | | /// occurs, but also the end offset for a match. In particular, the offset |
987 | | /// returned *may be shorter* than the proper end of the leftmost-first |
988 | | /// match that you would find via [`Regex::find`]. |
989 | | /// |
990 | | /// Note that it is not guaranteed that this routine finds the shortest or |
991 | | /// "earliest" possible match. Instead, the main idea of this API is that |
992 | | /// it returns the offset at the point at which the internal regex engine |
993 | | /// has determined that a match has occurred. This may vary depending on |
994 | | /// which internal regex engine is used, and thus, the offset itself may |
995 | | /// change based on internal heuristics. |
996 | | /// |
997 | | /// # Example |
998 | | /// |
999 | | /// Typically, `a+` would match the entire first sequence of `a` in some |
1000 | | /// haystack, but `shortest_match` *may* give up as soon as it sees the |
1001 | | /// first `a`. |
1002 | | /// |
1003 | | /// ``` |
1004 | | /// use regex::bytes::Regex; |
1005 | | /// |
1006 | | /// let re = Regex::new(r"a+").unwrap(); |
1007 | | /// let offset = re.shortest_match(b"aaaaa").unwrap(); |
1008 | | /// assert_eq!(offset, 1); |
1009 | | /// ``` |
1010 | | #[inline] |
1011 | 0 | pub fn shortest_match(&self, haystack: &[u8]) -> Option<usize> { |
1012 | 0 | self.shortest_match_at(haystack, 0) |
1013 | 0 | } |
1014 | | |
1015 | | /// Returns the same as `shortest_match`, but starts the search at the |
1016 | | /// given offset. |
1017 | | /// |
1018 | | /// The significance of the starting point is that it takes the surrounding |
1019 | | /// context into consideration. For example, the `\A` anchor can only match |
1020 | | /// when `start == 0`. |
1021 | | /// |
1022 | | /// If a match is found, the offset returned is relative to the beginning |
1023 | | /// of the haystack, not the beginning of the search. |
1024 | | /// |
1025 | | /// # Panics |
1026 | | /// |
1027 | | /// This panics when `start >= haystack.len() + 1`. |
1028 | | /// |
1029 | | /// # Example |
1030 | | /// |
1031 | | /// This example shows the significance of `start` by demonstrating how it |
1032 | | /// can be used to permit look-around assertions in a regex to take the |
1033 | | /// surrounding context into account. |
1034 | | /// |
1035 | | /// ``` |
1036 | | /// use regex::bytes::Regex; |
1037 | | /// |
1038 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1039 | | /// let hay = b"eschew"; |
1040 | | /// // We get a match here, but it's probably not intended. |
1041 | | /// assert_eq!(re.shortest_match(&hay[2..]), Some(4)); |
1042 | | /// // No match because the assertions take the context into account. |
1043 | | /// assert_eq!(re.shortest_match_at(hay, 2), None); |
1044 | | /// ``` |
1045 | | #[inline] |
1046 | 0 | pub fn shortest_match_at( |
1047 | 0 | &self, |
1048 | 0 | haystack: &[u8], |
1049 | 0 | start: usize, |
1050 | 0 | ) -> Option<usize> { |
1051 | 0 | let input = |
1052 | 0 | Input::new(haystack).earliest(true).span(start..haystack.len()); |
1053 | 0 | self.meta.search_half(&input).map(|hm| hm.offset()) |
1054 | 0 | } |
1055 | | |
1056 | | /// Returns the same as [`Regex::is_match`], but starts the search at the |
1057 | | /// given offset. |
1058 | | /// |
1059 | | /// The significance of the starting point is that it takes the surrounding |
1060 | | /// context into consideration. For example, the `\A` anchor can only |
1061 | | /// match when `start == 0`. |
1062 | | /// |
1063 | | /// # Panics |
1064 | | /// |
1065 | | /// This panics when `start >= haystack.len() + 1`. |
1066 | | /// |
1067 | | /// # Example |
1068 | | /// |
1069 | | /// This example shows the significance of `start` by demonstrating how it |
1070 | | /// can be used to permit look-around assertions in a regex to take the |
1071 | | /// surrounding context into account. |
1072 | | /// |
1073 | | /// ``` |
1074 | | /// use regex::bytes::Regex; |
1075 | | /// |
1076 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1077 | | /// let hay = b"eschew"; |
1078 | | /// // We get a match here, but it's probably not intended. |
1079 | | /// assert!(re.is_match(&hay[2..])); |
1080 | | /// // No match because the assertions take the context into account. |
1081 | | /// assert!(!re.is_match_at(hay, 2)); |
1082 | | /// ``` |
1083 | | #[inline] |
1084 | 0 | pub fn is_match_at(&self, haystack: &[u8], start: usize) -> bool { |
1085 | 0 | self.meta.is_match(Input::new(haystack).span(start..haystack.len())) |
1086 | 0 | } |
1087 | | |
1088 | | /// Returns the same as [`Regex::find`], but starts the search at the given |
1089 | | /// offset. |
1090 | | /// |
1091 | | /// The significance of the starting point is that it takes the surrounding |
1092 | | /// context into consideration. For example, the `\A` anchor can only |
1093 | | /// match when `start == 0`. |
1094 | | /// |
1095 | | /// # Panics |
1096 | | /// |
1097 | | /// This panics when `start >= haystack.len() + 1`. |
1098 | | /// |
1099 | | /// # Example |
1100 | | /// |
1101 | | /// This example shows the significance of `start` by demonstrating how it |
1102 | | /// can be used to permit look-around assertions in a regex to take the |
1103 | | /// surrounding context into account. |
1104 | | /// |
1105 | | /// ``` |
1106 | | /// use regex::bytes::Regex; |
1107 | | /// |
1108 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1109 | | /// let hay = b"eschew"; |
1110 | | /// // We get a match here, but it's probably not intended. |
1111 | | /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4)); |
1112 | | /// // No match because the assertions take the context into account. |
1113 | | /// assert_eq!(re.find_at(hay, 2), None); |
1114 | | /// ``` |
1115 | | #[inline] |
1116 | 0 | pub fn find_at<'h>( |
1117 | 0 | &self, |
1118 | 0 | haystack: &'h [u8], |
1119 | 0 | start: usize, |
1120 | 0 | ) -> Option<Match<'h>> { |
1121 | 0 | let input = Input::new(haystack).span(start..haystack.len()); |
1122 | 0 | self.meta.find(input).map(|m| Match::new(haystack, m.start(), m.end())) |
1123 | 0 | } |
1124 | | |
1125 | | /// Returns the same as [`Regex::captures`], but starts the search at the |
1126 | | /// given offset. |
1127 | | /// |
1128 | | /// The significance of the starting point is that it takes the surrounding |
1129 | | /// context into consideration. For example, the `\A` anchor can only |
1130 | | /// match when `start == 0`. |
1131 | | /// |
1132 | | /// # Panics |
1133 | | /// |
1134 | | /// This panics when `start >= haystack.len() + 1`. |
1135 | | /// |
1136 | | /// # Example |
1137 | | /// |
1138 | | /// This example shows the significance of `start` by demonstrating how it |
1139 | | /// can be used to permit look-around assertions in a regex to take the |
1140 | | /// surrounding context into account. |
1141 | | /// |
1142 | | /// ``` |
1143 | | /// use regex::bytes::Regex; |
1144 | | /// |
1145 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1146 | | /// let hay = b"eschew"; |
1147 | | /// // We get a match here, but it's probably not intended. |
1148 | | /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], b"chew"); |
1149 | | /// // No match because the assertions take the context into account. |
1150 | | /// assert!(re.captures_at(hay, 2).is_none()); |
1151 | | /// ``` |
1152 | | #[inline] |
1153 | 0 | pub fn captures_at<'h>( |
1154 | 0 | &self, |
1155 | 0 | haystack: &'h [u8], |
1156 | 0 | start: usize, |
1157 | 0 | ) -> Option<Captures<'h>> { |
1158 | 0 | let input = Input::new(haystack).span(start..haystack.len()); |
1159 | 0 | let mut caps = self.meta.create_captures(); |
1160 | 0 | self.meta.captures(input, &mut caps); |
1161 | 0 | if caps.is_match() { |
1162 | 0 | let static_captures_len = self.static_captures_len(); |
1163 | 0 | Some(Captures { haystack, caps, static_captures_len }) |
1164 | | } else { |
1165 | 0 | None |
1166 | | } |
1167 | 0 | } |
1168 | | |
1169 | | /// This is like [`Regex::captures`], but writes the byte offsets of each |
1170 | | /// capture group match into the locations given. |
1171 | | /// |
1172 | | /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`], |
1173 | | /// but does *not* store a reference to the haystack. This makes its API |
1174 | | /// a bit lower level and less convenient. But in exchange, callers |
1175 | | /// may allocate their own `CaptureLocations` and reuse it for multiple |
1176 | | /// searches. This may be helpful if allocating a `Captures` shows up in a |
1177 | | /// profile as too costly. |
1178 | | /// |
1179 | | /// To create a `CaptureLocations` value, use the |
1180 | | /// [`Regex::capture_locations`] method. |
1181 | | /// |
1182 | | /// This also returns the overall match if one was found. When a match is |
1183 | | /// found, its offsets are also always stored in `locs` at index `0`. |
1184 | | /// |
1185 | | /// # Example |
1186 | | /// |
1187 | | /// ``` |
1188 | | /// use regex::bytes::Regex; |
1189 | | /// |
1190 | | /// let re = Regex::new(r"^([a-z]+)=(\S*)$").unwrap(); |
1191 | | /// let mut locs = re.capture_locations(); |
1192 | | /// assert!(re.captures_read(&mut locs, b"id=foo123").is_some()); |
1193 | | /// assert_eq!(Some((0, 9)), locs.get(0)); |
1194 | | /// assert_eq!(Some((0, 2)), locs.get(1)); |
1195 | | /// assert_eq!(Some((3, 9)), locs.get(2)); |
1196 | | /// ``` |
1197 | | #[inline] |
1198 | 0 | pub fn captures_read<'h>( |
1199 | 0 | &self, |
1200 | 0 | locs: &mut CaptureLocations, |
1201 | 0 | haystack: &'h [u8], |
1202 | 0 | ) -> Option<Match<'h>> { |
1203 | 0 | self.captures_read_at(locs, haystack, 0) |
1204 | 0 | } |
1205 | | |
1206 | | /// Returns the same as [`Regex::captures_read`], but starts the search at |
1207 | | /// the given offset. |
1208 | | /// |
1209 | | /// The significance of the starting point is that it takes the surrounding |
1210 | | /// context into consideration. For example, the `\A` anchor can only |
1211 | | /// match when `start == 0`. |
1212 | | /// |
1213 | | /// # Panics |
1214 | | /// |
1215 | | /// This panics when `start >= haystack.len() + 1`. |
1216 | | /// |
1217 | | /// # Example |
1218 | | /// |
1219 | | /// This example shows the significance of `start` by demonstrating how it |
1220 | | /// can be used to permit look-around assertions in a regex to take the |
1221 | | /// surrounding context into account. |
1222 | | /// |
1223 | | /// ``` |
1224 | | /// use regex::bytes::Regex; |
1225 | | /// |
1226 | | /// let re = Regex::new(r"\bchew\b").unwrap(); |
1227 | | /// let hay = b"eschew"; |
1228 | | /// let mut locs = re.capture_locations(); |
1229 | | /// // We get a match here, but it's probably not intended. |
1230 | | /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some()); |
1231 | | /// // No match because the assertions take the context into account. |
1232 | | /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none()); |
1233 | | /// ``` |
1234 | | #[inline] |
1235 | 0 | pub fn captures_read_at<'h>( |
1236 | 0 | &self, |
1237 | 0 | locs: &mut CaptureLocations, |
1238 | 0 | haystack: &'h [u8], |
1239 | 0 | start: usize, |
1240 | 0 | ) -> Option<Match<'h>> { |
1241 | 0 | let input = Input::new(haystack).span(start..haystack.len()); |
1242 | 0 | self.meta.search_captures(&input, &mut locs.0); |
1243 | 0 | locs.0.get_match().map(|m| Match::new(haystack, m.start(), m.end())) |
1244 | 0 | } |
1245 | | |
1246 | | /// An undocumented alias for `captures_read_at`. |
1247 | | /// |
1248 | | /// The `regex-capi` crate previously used this routine, so to avoid |
1249 | | /// breaking that crate, we continue to provide the name as an undocumented |
1250 | | /// alias. |
1251 | | #[doc(hidden)] |
1252 | | #[inline] |
1253 | 0 | pub fn read_captures_at<'h>( |
1254 | 0 | &self, |
1255 | 0 | locs: &mut CaptureLocations, |
1256 | 0 | haystack: &'h [u8], |
1257 | 0 | start: usize, |
1258 | 0 | ) -> Option<Match<'h>> { |
1259 | 0 | self.captures_read_at(locs, haystack, start) |
1260 | 0 | } |
1261 | | } |
1262 | | |
1263 | | /// Auxiliary methods. |
1264 | | impl Regex { |
1265 | | /// Returns the original string of this regex. |
1266 | | /// |
1267 | | /// # Example |
1268 | | /// |
1269 | | /// ``` |
1270 | | /// use regex::bytes::Regex; |
1271 | | /// |
1272 | | /// let re = Regex::new(r"foo\w+bar").unwrap(); |
1273 | | /// assert_eq!(re.as_str(), r"foo\w+bar"); |
1274 | | /// ``` |
1275 | | #[inline] |
1276 | 0 | pub fn as_str(&self) -> &str { |
1277 | 0 | &self.pattern |
1278 | 0 | } |
1279 | | |
1280 | | /// Returns an iterator over the capture names in this regex. |
1281 | | /// |
1282 | | /// The iterator returned yields elements of type `Option<&str>`. That is, |
1283 | | /// the iterator yields values for all capture groups, even ones that are |
1284 | | /// unnamed. The order of the groups corresponds to the order of the group's |
1285 | | /// corresponding opening parenthesis. |
1286 | | /// |
1287 | | /// The first element of the iterator always yields the group corresponding |
1288 | | /// to the overall match, and this group is always unnamed. Therefore, the |
1289 | | /// iterator always yields at least one group. |
1290 | | /// |
1291 | | /// # Example |
1292 | | /// |
1293 | | /// This shows basic usage with a mix of named and unnamed capture groups: |
1294 | | /// |
1295 | | /// ``` |
1296 | | /// use regex::bytes::Regex; |
1297 | | /// |
1298 | | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap(); |
1299 | | /// let mut names = re.capture_names(); |
1300 | | /// assert_eq!(names.next(), Some(None)); |
1301 | | /// assert_eq!(names.next(), Some(Some("a"))); |
1302 | | /// assert_eq!(names.next(), Some(Some("b"))); |
1303 | | /// assert_eq!(names.next(), Some(None)); |
1304 | | /// // the '(?:.)' group is non-capturing and so doesn't appear here! |
1305 | | /// assert_eq!(names.next(), Some(Some("c"))); |
1306 | | /// assert_eq!(names.next(), None); |
1307 | | /// ``` |
1308 | | /// |
1309 | | /// The iterator always yields at least one element, even for regexes with |
1310 | | /// no capture groups and even for regexes that can never match: |
1311 | | /// |
1312 | | /// ``` |
1313 | | /// use regex::bytes::Regex; |
1314 | | /// |
1315 | | /// let re = Regex::new(r"").unwrap(); |
1316 | | /// let mut names = re.capture_names(); |
1317 | | /// assert_eq!(names.next(), Some(None)); |
1318 | | /// assert_eq!(names.next(), None); |
1319 | | /// |
1320 | | /// let re = Regex::new(r"[a&&b]").unwrap(); |
1321 | | /// let mut names = re.capture_names(); |
1322 | | /// assert_eq!(names.next(), Some(None)); |
1323 | | /// assert_eq!(names.next(), None); |
1324 | | /// ``` |
1325 | | #[inline] |
1326 | 0 | pub fn capture_names(&self) -> CaptureNames<'_> { |
1327 | 0 | CaptureNames(self.meta.group_info().pattern_names(PatternID::ZERO)) |
1328 | 0 | } |
1329 | | |
1330 | | /// Returns the number of captures groups in this regex. |
1331 | | /// |
1332 | | /// This includes all named and unnamed groups, including the implicit |
1333 | | /// unnamed group that is always present and corresponds to the entire |
1334 | | /// match. |
1335 | | /// |
1336 | | /// Since the implicit unnamed group is always included in this length, the |
1337 | | /// length returned is guaranteed to be greater than zero. |
1338 | | /// |
1339 | | /// # Example |
1340 | | /// |
1341 | | /// ``` |
1342 | | /// use regex::bytes::Regex; |
1343 | | /// |
1344 | | /// let re = Regex::new(r"foo").unwrap(); |
1345 | | /// assert_eq!(1, re.captures_len()); |
1346 | | /// |
1347 | | /// let re = Regex::new(r"(foo)").unwrap(); |
1348 | | /// assert_eq!(2, re.captures_len()); |
1349 | | /// |
1350 | | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap(); |
1351 | | /// assert_eq!(5, re.captures_len()); |
1352 | | /// |
1353 | | /// let re = Regex::new(r"[a&&b]").unwrap(); |
1354 | | /// assert_eq!(1, re.captures_len()); |
1355 | | /// ``` |
1356 | | #[inline] |
1357 | 0 | pub fn captures_len(&self) -> usize { |
1358 | 0 | self.meta.group_info().group_len(PatternID::ZERO) |
1359 | 0 | } |
1360 | | |
1361 | | /// Returns the total number of capturing groups that appear in every |
1362 | | /// possible match. |
1363 | | /// |
1364 | | /// If the number of capture groups can vary depending on the match, then |
1365 | | /// this returns `None`. That is, a value is only returned when the number |
1366 | | /// of matching groups is invariant or "static." |
1367 | | /// |
1368 | | /// Note that like [`Regex::captures_len`], this **does** include the |
1369 | | /// implicit capturing group corresponding to the entire match. Therefore, |
1370 | | /// when a non-None value is returned, it is guaranteed to be at least `1`. |
1371 | | /// Stated differently, a return value of `Some(0)` is impossible. |
1372 | | /// |
1373 | | /// # Example |
1374 | | /// |
1375 | | /// This shows a few cases where a static number of capture groups is |
1376 | | /// available and a few cases where it is not. |
1377 | | /// |
1378 | | /// ``` |
1379 | | /// use regex::bytes::Regex; |
1380 | | /// |
1381 | | /// let len = |pattern| { |
1382 | | /// Regex::new(pattern).map(|re| re.static_captures_len()) |
1383 | | /// }; |
1384 | | /// |
1385 | | /// assert_eq!(Some(1), len("a")?); |
1386 | | /// assert_eq!(Some(2), len("(a)")?); |
1387 | | /// assert_eq!(Some(2), len("(a)|(b)")?); |
1388 | | /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?); |
1389 | | /// assert_eq!(None, len("(a)|b")?); |
1390 | | /// assert_eq!(None, len("a|(b)")?); |
1391 | | /// assert_eq!(None, len("(b)*")?); |
1392 | | /// assert_eq!(Some(2), len("(b)+")?); |
1393 | | /// |
1394 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1395 | | /// ``` |
1396 | | #[inline] |
1397 | 0 | pub fn static_captures_len(&self) -> Option<usize> { |
1398 | 0 | self.meta.static_captures_len() |
1399 | 0 | } |
1400 | | |
1401 | | /// Returns a fresh allocated set of capture locations that can |
1402 | | /// be reused in multiple calls to [`Regex::captures_read`] or |
1403 | | /// [`Regex::captures_read_at`]. |
1404 | | /// |
1405 | | /// # Example |
1406 | | /// |
1407 | | /// ``` |
1408 | | /// use regex::bytes::Regex; |
1409 | | /// |
1410 | | /// let re = Regex::new(r"(.)(.)(\w+)").unwrap(); |
1411 | | /// let mut locs = re.capture_locations(); |
1412 | | /// assert!(re.captures_read(&mut locs, b"Padron").is_some()); |
1413 | | /// assert_eq!(locs.get(0), Some((0, 6))); |
1414 | | /// assert_eq!(locs.get(1), Some((0, 1))); |
1415 | | /// assert_eq!(locs.get(2), Some((1, 2))); |
1416 | | /// assert_eq!(locs.get(3), Some((2, 6))); |
1417 | | /// ``` |
1418 | | #[inline] |
1419 | 0 | pub fn capture_locations(&self) -> CaptureLocations { |
1420 | 0 | CaptureLocations(self.meta.create_captures()) |
1421 | 0 | } |
1422 | | |
1423 | | /// An alias for `capture_locations` to preserve backward compatibility. |
1424 | | /// |
1425 | | /// The `regex-capi` crate uses this method, so to avoid breaking that |
1426 | | /// crate, we continue to export it as an undocumented API. |
1427 | | #[doc(hidden)] |
1428 | | #[inline] |
1429 | 0 | pub fn locations(&self) -> CaptureLocations { |
1430 | 0 | self.capture_locations() |
1431 | 0 | } |
1432 | | } |
1433 | | |
1434 | | /// Represents a single match of a regex in a haystack. |
1435 | | /// |
1436 | | /// A `Match` contains both the start and end byte offsets of the match and the |
1437 | | /// actual substring corresponding to the range of those byte offsets. It is |
1438 | | /// guaranteed that `start <= end`. When `start == end`, the match is empty. |
1439 | | /// |
1440 | | /// Unlike the top-level `Match` type, this `Match` type is produced by APIs |
1441 | | /// that search `&[u8]` haystacks. This means that the offsets in a `Match` can |
1442 | | /// point to anywhere in the haystack, including in a place that splits the |
1443 | | /// UTF-8 encoding of a Unicode scalar value. |
1444 | | /// |
1445 | | /// The lifetime parameter `'h` refers to the lifetime of the matched of the |
1446 | | /// haystack that this match was produced from. |
1447 | | /// |
1448 | | /// # Numbering |
1449 | | /// |
1450 | | /// The byte offsets in a `Match` form a half-open interval. That is, the |
1451 | | /// start of the range is inclusive and the end of the range is exclusive. |
1452 | | /// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte |
1453 | | /// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and |
1454 | | /// `6` corresponds to `x`, which is one past the end of the match. This |
1455 | | /// corresponds to the same kind of slicing that Rust uses. |
1456 | | /// |
1457 | | /// For more on why this was chosen over other schemes (aside from being |
1458 | | /// consistent with how Rust the language works), see [this discussion] and |
1459 | | /// [Dijkstra's note on a related topic][note]. |
1460 | | /// |
1461 | | /// [this discussion]: https://github.com/rust-lang/regex/discussions/866 |
1462 | | /// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html |
1463 | | /// |
1464 | | /// # Example |
1465 | | /// |
1466 | | /// This example shows the value of each of the methods on `Match` for a |
1467 | | /// particular search. |
1468 | | /// |
1469 | | /// ``` |
1470 | | /// use regex::bytes::Regex; |
1471 | | /// |
1472 | | /// let re = Regex::new(r"\p{Greek}+").unwrap(); |
1473 | | /// let hay = "Greek: αβγδ".as_bytes(); |
1474 | | /// let m = re.find(hay).unwrap(); |
1475 | | /// assert_eq!(7, m.start()); |
1476 | | /// assert_eq!(15, m.end()); |
1477 | | /// assert!(!m.is_empty()); |
1478 | | /// assert_eq!(8, m.len()); |
1479 | | /// assert_eq!(7..15, m.range()); |
1480 | | /// assert_eq!("αβγδ".as_bytes(), m.as_bytes()); |
1481 | | /// ``` |
1482 | | #[derive(Copy, Clone, Eq, PartialEq)] |
1483 | | pub struct Match<'h> { |
1484 | | haystack: &'h [u8], |
1485 | | start: usize, |
1486 | | end: usize, |
1487 | | } |
1488 | | |
1489 | | impl<'h> Match<'h> { |
1490 | | /// Returns the byte offset of the start of the match in the haystack. The |
1491 | | /// start of the match corresponds to the position where the match begins |
1492 | | /// and includes the first byte in the match. |
1493 | | /// |
1494 | | /// It is guaranteed that `Match::start() <= Match::end()`. |
1495 | | /// |
1496 | | /// Unlike the top-level `Match` type, the start offset may appear anywhere |
1497 | | /// in the haystack. This includes between the code units of a UTF-8 |
1498 | | /// encoded Unicode scalar value. |
1499 | | #[inline] |
1500 | 0 | pub fn start(&self) -> usize { |
1501 | 0 | self.start |
1502 | 0 | } |
1503 | | |
1504 | | /// Returns the byte offset of the end of the match in the haystack. The |
1505 | | /// end of the match corresponds to the byte immediately following the last |
1506 | | /// byte in the match. This means that `&slice[start..end]` works as one |
1507 | | /// would expect. |
1508 | | /// |
1509 | | /// It is guaranteed that `Match::start() <= Match::end()`. |
1510 | | /// |
1511 | | /// Unlike the top-level `Match` type, the start offset may appear anywhere |
1512 | | /// in the haystack. This includes between the code units of a UTF-8 |
1513 | | /// encoded Unicode scalar value. |
1514 | | #[inline] |
1515 | 0 | pub fn end(&self) -> usize { |
1516 | 0 | self.end |
1517 | 0 | } |
1518 | | |
1519 | | /// Returns true if and only if this match has a length of zero. |
1520 | | /// |
1521 | | /// Note that an empty match can only occur when the regex itself can |
1522 | | /// match the empty string. Here are some examples of regexes that can |
1523 | | /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`, |
1524 | | /// `(foo|\d+|quux)?`. |
1525 | | #[inline] |
1526 | 0 | pub fn is_empty(&self) -> bool { |
1527 | 0 | self.start == self.end |
1528 | 0 | } |
1529 | | |
1530 | | /// Returns the length, in bytes, of this match. |
1531 | | #[inline] |
1532 | 0 | pub fn len(&self) -> usize { |
1533 | 0 | self.end - self.start |
1534 | 0 | } |
1535 | | |
1536 | | /// Returns the range over the starting and ending byte offsets of the |
1537 | | /// match in the haystack. |
1538 | | #[inline] |
1539 | 0 | pub fn range(&self) -> core::ops::Range<usize> { |
1540 | 0 | self.start..self.end |
1541 | 0 | } |
1542 | | |
1543 | | /// Returns the substring of the haystack that matched. |
1544 | | #[inline] |
1545 | 0 | pub fn as_bytes(&self) -> &'h [u8] { |
1546 | 0 | &self.haystack[self.range()] |
1547 | 0 | } |
1548 | | |
1549 | | /// Creates a new match from the given haystack and byte offsets. |
1550 | | #[inline] |
1551 | 0 | fn new(haystack: &'h [u8], start: usize, end: usize) -> Match<'h> { |
1552 | 0 | Match { haystack, start, end } |
1553 | 0 | } |
1554 | | } |
1555 | | |
1556 | | impl<'h> core::fmt::Debug for Match<'h> { |
1557 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1558 | | use regex_automata::util::escape::DebugHaystack; |
1559 | | |
1560 | 0 | let mut fmt = f.debug_struct("Match"); |
1561 | 0 | fmt.field("start", &self.start) |
1562 | 0 | .field("end", &self.end) |
1563 | 0 | .field("bytes", &DebugHaystack(&self.as_bytes())); |
1564 | 0 |
|
1565 | 0 | fmt.finish() |
1566 | 0 | } |
1567 | | } |
1568 | | |
1569 | | impl<'h> From<Match<'h>> for &'h [u8] { |
1570 | 0 | fn from(m: Match<'h>) -> &'h [u8] { |
1571 | 0 | m.as_bytes() |
1572 | 0 | } |
1573 | | } |
1574 | | |
1575 | | impl<'h> From<Match<'h>> for core::ops::Range<usize> { |
1576 | 0 | fn from(m: Match<'h>) -> core::ops::Range<usize> { |
1577 | 0 | m.range() |
1578 | 0 | } |
1579 | | } |
1580 | | |
1581 | | /// Represents the capture groups for a single match. |
1582 | | /// |
1583 | | /// Capture groups refer to parts of a regex enclosed in parentheses. They |
1584 | | /// can be optionally named. The purpose of capture groups is to be able to |
1585 | | /// reference different parts of a match based on the original pattern. In |
1586 | | /// essence, a `Captures` is a container of [`Match`] values for each group |
1587 | | /// that participated in a regex match. Each `Match` can be looked up by either |
1588 | | /// its capture group index or name (if it has one). |
1589 | | /// |
1590 | | /// For example, say you want to match the individual letters in a 5-letter |
1591 | | /// word: |
1592 | | /// |
1593 | | /// ```text |
1594 | | /// (?<first>\w)(\w)(?:\w)\w(?<last>\w) |
1595 | | /// ``` |
1596 | | /// |
1597 | | /// This regex has 4 capture groups: |
1598 | | /// |
1599 | | /// * The group at index `0` corresponds to the overall match. It is always |
1600 | | /// present in every match and never has a name. |
1601 | | /// * The group at index `1` with name `first` corresponding to the first |
1602 | | /// letter. |
1603 | | /// * The group at index `2` with no name corresponding to the second letter. |
1604 | | /// * The group at index `3` with name `last` corresponding to the fifth and |
1605 | | /// last letter. |
1606 | | /// |
1607 | | /// Notice that `(?:\w)` was not listed above as a capture group despite it |
1608 | | /// being enclosed in parentheses. That's because `(?:pattern)` is a special |
1609 | | /// syntax that permits grouping but *without* capturing. The reason for not |
1610 | | /// treating it as a capture is that tracking and reporting capture groups |
1611 | | /// requires additional state that may lead to slower searches. So using as few |
1612 | | /// capture groups as possible can help performance. (Although the difference |
1613 | | /// in performance of a couple of capture groups is likely immaterial.) |
1614 | | /// |
1615 | | /// Values with this type are created by [`Regex::captures`] or |
1616 | | /// [`Regex::captures_iter`]. |
1617 | | /// |
1618 | | /// `'h` is the lifetime of the haystack that these captures were matched from. |
1619 | | /// |
1620 | | /// # Example |
1621 | | /// |
1622 | | /// ``` |
1623 | | /// use regex::bytes::Regex; |
1624 | | /// |
1625 | | /// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)").unwrap(); |
1626 | | /// let caps = re.captures(b"toady").unwrap(); |
1627 | | /// assert_eq!(b"toady", &caps[0]); |
1628 | | /// assert_eq!(b"t", &caps["first"]); |
1629 | | /// assert_eq!(b"o", &caps[2]); |
1630 | | /// assert_eq!(b"y", &caps["last"]); |
1631 | | /// ``` |
1632 | | pub struct Captures<'h> { |
1633 | | haystack: &'h [u8], |
1634 | | caps: captures::Captures, |
1635 | | static_captures_len: Option<usize>, |
1636 | | } |
1637 | | |
1638 | | impl<'h> Captures<'h> { |
1639 | | /// Returns the `Match` associated with the capture group at index `i`. If |
1640 | | /// `i` does not correspond to a capture group, or if the capture group did |
1641 | | /// not participate in the match, then `None` is returned. |
1642 | | /// |
1643 | | /// When `i == 0`, this is guaranteed to return a non-`None` value. |
1644 | | /// |
1645 | | /// # Examples |
1646 | | /// |
1647 | | /// Get the substring that matched with a default of an empty string if the |
1648 | | /// group didn't participate in the match: |
1649 | | /// |
1650 | | /// ``` |
1651 | | /// use regex::bytes::Regex; |
1652 | | /// |
1653 | | /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))").unwrap(); |
1654 | | /// let caps = re.captures(b"abc123").unwrap(); |
1655 | | /// |
1656 | | /// let substr1 = caps.get(1).map_or(&b""[..], |m| m.as_bytes()); |
1657 | | /// let substr2 = caps.get(2).map_or(&b""[..], |m| m.as_bytes()); |
1658 | | /// assert_eq!(substr1, b"123"); |
1659 | | /// assert_eq!(substr2, b""); |
1660 | | /// ``` |
1661 | | #[inline] |
1662 | 0 | pub fn get(&self, i: usize) -> Option<Match<'h>> { |
1663 | 0 | self.caps |
1664 | 0 | .get_group(i) |
1665 | 0 | .map(|sp| Match::new(self.haystack, sp.start, sp.end)) |
1666 | 0 | } |
1667 | | |
1668 | | /// Returns the `Match` associated with the capture group named `name`. If |
1669 | | /// `name` isn't a valid capture group or it refers to a group that didn't |
1670 | | /// match, then `None` is returned. |
1671 | | /// |
1672 | | /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime |
1673 | | /// matches the lifetime of the haystack in this `Captures` value. |
1674 | | /// Conversely, the substring returned by `caps["name"]` has a lifetime |
1675 | | /// of the `Captures` value, which is likely shorter than the lifetime of |
1676 | | /// the haystack. In some cases, it may be necessary to use this method to |
1677 | | /// access the matching substring instead of the `caps["name"]` notation. |
1678 | | /// |
1679 | | /// # Examples |
1680 | | /// |
1681 | | /// Get the substring that matched with a default of an empty string if the |
1682 | | /// group didn't participate in the match: |
1683 | | /// |
1684 | | /// ``` |
1685 | | /// use regex::bytes::Regex; |
1686 | | /// |
1687 | | /// let re = Regex::new( |
1688 | | /// r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))", |
1689 | | /// ).unwrap(); |
1690 | | /// let caps = re.captures(b"abc123").unwrap(); |
1691 | | /// |
1692 | | /// let numbers = caps.name("numbers").map_or(&b""[..], |m| m.as_bytes()); |
1693 | | /// let letters = caps.name("letters").map_or(&b""[..], |m| m.as_bytes()); |
1694 | | /// assert_eq!(numbers, b"123"); |
1695 | | /// assert_eq!(letters, b""); |
1696 | | /// ``` |
1697 | | #[inline] |
1698 | 0 | pub fn name(&self, name: &str) -> Option<Match<'h>> { |
1699 | 0 | self.caps |
1700 | 0 | .get_group_by_name(name) |
1701 | 0 | .map(|sp| Match::new(self.haystack, sp.start, sp.end)) |
1702 | 0 | } |
1703 | | |
1704 | | /// This is a convenience routine for extracting the substrings |
1705 | | /// corresponding to matching capture groups. |
1706 | | /// |
1707 | | /// This returns a tuple where the first element corresponds to the full |
1708 | | /// substring of the haystack that matched the regex. The second element is |
1709 | | /// an array of substrings, with each corresponding to the substring that |
1710 | | /// matched for a particular capture group. |
1711 | | /// |
1712 | | /// # Panics |
1713 | | /// |
1714 | | /// This panics if the number of possible matching groups in this |
1715 | | /// `Captures` value is not fixed to `N` in all circumstances. |
1716 | | /// More precisely, this routine only works when `N` is equivalent to |
1717 | | /// [`Regex::static_captures_len`]. |
1718 | | /// |
1719 | | /// Stated more plainly, if the number of matching capture groups in a |
1720 | | /// regex can vary from match to match, then this function always panics. |
1721 | | /// |
1722 | | /// For example, `(a)(b)|(c)` could produce two matching capture groups |
1723 | | /// or one matching capture group for any given match. Therefore, one |
1724 | | /// cannot use `extract` with such a pattern. |
1725 | | /// |
1726 | | /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because |
1727 | | /// the number of capture groups in every match is always equivalent, |
1728 | | /// even if the capture _indices_ in each match are not. |
1729 | | /// |
1730 | | /// # Example |
1731 | | /// |
1732 | | /// ``` |
1733 | | /// use regex::bytes::Regex; |
1734 | | /// |
1735 | | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap(); |
1736 | | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb."; |
1737 | | /// let Some((full, [year, month, day])) = |
1738 | | /// re.captures(hay).map(|caps| caps.extract()) else { return }; |
1739 | | /// assert_eq!(b"2010-03-14", full); |
1740 | | /// assert_eq!(b"2010", year); |
1741 | | /// assert_eq!(b"03", month); |
1742 | | /// assert_eq!(b"14", day); |
1743 | | /// ``` |
1744 | | /// |
1745 | | /// # Example: iteration |
1746 | | /// |
1747 | | /// This example shows how to use this method when iterating over all |
1748 | | /// `Captures` matches in a haystack. |
1749 | | /// |
1750 | | /// ``` |
1751 | | /// use regex::bytes::Regex; |
1752 | | /// |
1753 | | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap(); |
1754 | | /// let hay = b"1973-01-05, 1975-08-25 and 1980-10-18"; |
1755 | | /// |
1756 | | /// let mut dates: Vec<(&[u8], &[u8], &[u8])> = vec![]; |
1757 | | /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) { |
1758 | | /// dates.push((y, m, d)); |
1759 | | /// } |
1760 | | /// assert_eq!(dates, vec![ |
1761 | | /// (&b"1973"[..], &b"01"[..], &b"05"[..]), |
1762 | | /// (&b"1975"[..], &b"08"[..], &b"25"[..]), |
1763 | | /// (&b"1980"[..], &b"10"[..], &b"18"[..]), |
1764 | | /// ]); |
1765 | | /// ``` |
1766 | | /// |
1767 | | /// # Example: parsing different formats |
1768 | | /// |
1769 | | /// This API is particularly useful when you need to extract a particular |
1770 | | /// value that might occur in a different format. Consider, for example, |
1771 | | /// an identifier that might be in double quotes or single quotes: |
1772 | | /// |
1773 | | /// ``` |
1774 | | /// use regex::bytes::Regex; |
1775 | | /// |
1776 | | /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"#).unwrap(); |
1777 | | /// let hay = br#"The first is id:"foo" and the second is id:'bar'."#; |
1778 | | /// let mut ids = vec![]; |
1779 | | /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) { |
1780 | | /// ids.push(id); |
1781 | | /// } |
1782 | | /// assert_eq!(ids, vec![b"foo", b"bar"]); |
1783 | | /// ``` |
1784 | 0 | pub fn extract<const N: usize>(&self) -> (&'h [u8], [&'h [u8]; N]) { |
1785 | 0 | let len = self |
1786 | 0 | .static_captures_len |
1787 | 0 | .expect("number of capture groups can vary in a match") |
1788 | 0 | .checked_sub(1) |
1789 | 0 | .expect("number of groups is always greater than zero"); |
1790 | 0 | assert_eq!(N, len, "asked for {} groups, but must ask for {}", N, len); |
1791 | | // The regex-automata variant of extract is a bit more permissive. |
1792 | | // It doesn't require the number of matching capturing groups to be |
1793 | | // static, and you can even request fewer groups than what's there. So |
1794 | | // this is guaranteed to never panic because we've asserted above that |
1795 | | // the user has requested precisely the number of groups that must be |
1796 | | // present in any match for this regex. |
1797 | 0 | self.caps.extract_bytes(self.haystack) |
1798 | 0 | } |
1799 | | |
1800 | | /// Expands all instances of `$ref` in `replacement` to the corresponding |
1801 | | /// capture group, and writes them to the `dst` buffer given. A `ref` can |
1802 | | /// be a capture group index or a name. If `ref` doesn't refer to a capture |
1803 | | /// group that participated in the match, then it is replaced with the |
1804 | | /// empty string. |
1805 | | /// |
1806 | | /// # Format |
1807 | | /// |
1808 | | /// The format of the replacement string supports two different kinds of |
1809 | | /// capture references: unbraced and braced. |
1810 | | /// |
1811 | | /// For the unbraced format, the format supported is `$ref` where `name` |
1812 | | /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always |
1813 | | /// the longest possible parse. So for example, `$1a` corresponds to the |
1814 | | /// capture group named `1a` and not the capture group at index `1`. If |
1815 | | /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index |
1816 | | /// itself and not a name. |
1817 | | /// |
1818 | | /// For the braced format, the format supported is `${ref}` where `ref` can |
1819 | | /// be any sequence of bytes except for `}`. If no closing brace occurs, |
1820 | | /// then it is not considered a capture reference. As with the unbraced |
1821 | | /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture |
1822 | | /// group index and not a name. |
1823 | | /// |
1824 | | /// The braced format is useful for exerting precise control over the name |
1825 | | /// of the capture reference. For example, `${1}a` corresponds to the |
1826 | | /// capture group reference `1` followed by the letter `a`, where as `$1a` |
1827 | | /// (as mentioned above) corresponds to the capture group reference `1a`. |
1828 | | /// The braced format is also useful for expressing capture group names |
1829 | | /// that use characters not supported by the unbraced format. For example, |
1830 | | /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`. |
1831 | | /// |
1832 | | /// If a capture group reference is found and it does not refer to a valid |
1833 | | /// capture group, then it will be replaced with the empty string. |
1834 | | /// |
1835 | | /// To write a literal `$`, use `$$`. |
1836 | | /// |
1837 | | /// # Example |
1838 | | /// |
1839 | | /// ``` |
1840 | | /// use regex::bytes::Regex; |
1841 | | /// |
1842 | | /// let re = Regex::new( |
1843 | | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
1844 | | /// ).unwrap(); |
1845 | | /// let hay = b"On 14-03-2010, I became a Tenneessee lamb."; |
1846 | | /// let caps = re.captures(hay).unwrap(); |
1847 | | /// |
1848 | | /// let mut dst = vec![]; |
1849 | | /// caps.expand(b"year=$year, month=$month, day=$day", &mut dst); |
1850 | | /// assert_eq!(dst, b"year=2010, month=03, day=14"); |
1851 | | /// ``` |
1852 | | #[inline] |
1853 | 0 | pub fn expand(&self, replacement: &[u8], dst: &mut Vec<u8>) { |
1854 | 0 | self.caps.interpolate_bytes_into(self.haystack, replacement, dst); |
1855 | 0 | } |
1856 | | |
1857 | | /// Returns an iterator over all capture groups. This includes both |
1858 | | /// matching and non-matching groups. |
1859 | | /// |
1860 | | /// The iterator always yields at least one matching group: the first group |
1861 | | /// (at index `0`) with no name. Subsequent groups are returned in the order |
1862 | | /// of their opening parenthesis in the regex. |
1863 | | /// |
1864 | | /// The elements yielded have type `Option<Match<'h>>`, where a non-`None` |
1865 | | /// value is present if the capture group matches. |
1866 | | /// |
1867 | | /// # Example |
1868 | | /// |
1869 | | /// ``` |
1870 | | /// use regex::bytes::Regex; |
1871 | | /// |
1872 | | /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap(); |
1873 | | /// let caps = re.captures(b"AZ").unwrap(); |
1874 | | /// |
1875 | | /// let mut it = caps.iter(); |
1876 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), Some(&b"AZ"[..])); |
1877 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), Some(&b"A"[..])); |
1878 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), None); |
1879 | | /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), Some(&b"Z"[..])); |
1880 | | /// assert_eq!(it.next(), None); |
1881 | | /// ``` |
1882 | | #[inline] |
1883 | 0 | pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> { |
1884 | 0 | SubCaptureMatches { haystack: self.haystack, it: self.caps.iter() } |
1885 | 0 | } |
1886 | | |
1887 | | /// Returns the total number of capture groups. This includes both |
1888 | | /// matching and non-matching groups. |
1889 | | /// |
1890 | | /// The length returned is always equivalent to the number of elements |
1891 | | /// yielded by [`Captures::iter`]. Consequently, the length is always |
1892 | | /// greater than zero since every `Captures` value always includes the |
1893 | | /// match for the entire regex. |
1894 | | /// |
1895 | | /// # Example |
1896 | | /// |
1897 | | /// ``` |
1898 | | /// use regex::bytes::Regex; |
1899 | | /// |
1900 | | /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap(); |
1901 | | /// let caps = re.captures(b"AZ").unwrap(); |
1902 | | /// assert_eq!(caps.len(), 4); |
1903 | | /// ``` |
1904 | | #[inline] |
1905 | 0 | pub fn len(&self) -> usize { |
1906 | 0 | self.caps.group_len() |
1907 | 0 | } |
1908 | | } |
1909 | | |
1910 | | impl<'h> core::fmt::Debug for Captures<'h> { |
1911 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
1912 | | /// A little helper type to provide a nice map-like debug |
1913 | | /// representation for our capturing group spans. |
1914 | | /// |
1915 | | /// regex-automata has something similar, but it includes the pattern |
1916 | | /// ID in its debug output, which is confusing. It also doesn't include |
1917 | | /// that strings that match because a regex-automata `Captures` doesn't |
1918 | | /// borrow the haystack. |
1919 | | struct CapturesDebugMap<'a> { |
1920 | | caps: &'a Captures<'a>, |
1921 | | } |
1922 | | |
1923 | | impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
1924 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1925 | 0 | let mut map = f.debug_map(); |
1926 | 0 | let names = |
1927 | 0 | self.caps.caps.group_info().pattern_names(PatternID::ZERO); |
1928 | 0 | for (group_index, maybe_name) in names.enumerate() { |
1929 | 0 | let key = Key(group_index, maybe_name); |
1930 | 0 | match self.caps.get(group_index) { |
1931 | 0 | None => map.entry(&key, &None::<()>), |
1932 | 0 | Some(mat) => map.entry(&key, &Value(mat)), |
1933 | | }; |
1934 | | } |
1935 | 0 | map.finish() |
1936 | 0 | } |
1937 | | } |
1938 | | |
1939 | | struct Key<'a>(usize, Option<&'a str>); |
1940 | | |
1941 | | impl<'a> core::fmt::Debug for Key<'a> { |
1942 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1943 | 0 | write!(f, "{}", self.0)?; |
1944 | 0 | if let Some(name) = self.1 { |
1945 | 0 | write!(f, "/{:?}", name)?; |
1946 | 0 | } |
1947 | 0 | Ok(()) |
1948 | 0 | } |
1949 | | } |
1950 | | |
1951 | | struct Value<'a>(Match<'a>); |
1952 | | |
1953 | | impl<'a> core::fmt::Debug for Value<'a> { |
1954 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1955 | | use regex_automata::util::escape::DebugHaystack; |
1956 | | |
1957 | 0 | write!( |
1958 | 0 | f, |
1959 | 0 | "{}..{}/{:?}", |
1960 | 0 | self.0.start(), |
1961 | 0 | self.0.end(), |
1962 | 0 | DebugHaystack(self.0.as_bytes()) |
1963 | 0 | ) |
1964 | 0 | } |
1965 | | } |
1966 | | |
1967 | 0 | f.debug_tuple("Captures") |
1968 | 0 | .field(&CapturesDebugMap { caps: self }) |
1969 | 0 | .finish() |
1970 | 0 | } |
1971 | | } |
1972 | | |
1973 | | /// Get a matching capture group's haystack substring by index. |
1974 | | /// |
1975 | | /// The haystack substring returned can't outlive the `Captures` object if this |
1976 | | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
1977 | | /// of `a` and can't outlive it). To work around this limitation, do that, use |
1978 | | /// [`Captures::get`] instead. |
1979 | | /// |
1980 | | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
1981 | | /// `&str` returned by this implementation is the lifetime of the `Captures` |
1982 | | /// value itself. |
1983 | | /// |
1984 | | /// # Panics |
1985 | | /// |
1986 | | /// If there is no matching group at the given index. |
1987 | | impl<'h> core::ops::Index<usize> for Captures<'h> { |
1988 | | type Output = [u8]; |
1989 | | |
1990 | | // The lifetime is written out to make it clear that the &str returned |
1991 | | // does NOT have a lifetime equivalent to 'h. |
1992 | 0 | fn index<'a>(&'a self, i: usize) -> &'a [u8] { |
1993 | 0 | self.get(i) |
1994 | 0 | .map(|m| m.as_bytes()) |
1995 | 0 | .unwrap_or_else(|| panic!("no group at index '{}'", i)) |
1996 | 0 | } |
1997 | | } |
1998 | | |
1999 | | /// Get a matching capture group's haystack substring by name. |
2000 | | /// |
2001 | | /// The haystack substring returned can't outlive the `Captures` object if this |
2002 | | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
2003 | | /// of `a` and can't outlive it). To work around this limitation, do that, use |
2004 | | /// [`Captures::name`] instead. |
2005 | | /// |
2006 | | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
2007 | | /// `&str` returned by this implementation is the lifetime of the `Captures` |
2008 | | /// value itself. |
2009 | | /// |
2010 | | /// `'n` is the lifetime of the group name used to index the `Captures` value. |
2011 | | /// |
2012 | | /// # Panics |
2013 | | /// |
2014 | | /// If there is no matching group at the given name. |
2015 | | impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> { |
2016 | | type Output = [u8]; |
2017 | | |
2018 | 0 | fn index<'a>(&'a self, name: &'n str) -> &'a [u8] { |
2019 | 0 | self.name(name) |
2020 | 0 | .map(|m| m.as_bytes()) |
2021 | 0 | .unwrap_or_else(|| panic!("no group named '{}'", name)) |
2022 | 0 | } |
2023 | | } |
2024 | | |
2025 | | /// A low level representation of the byte offsets of each capture group. |
2026 | | /// |
2027 | | /// You can think of this as a lower level [`Captures`], where this type does |
2028 | | /// not support named capturing groups directly and it does not borrow the |
2029 | | /// haystack that these offsets were matched on. |
2030 | | /// |
2031 | | /// Primarily, this type is useful when using the lower level `Regex` APIs such |
2032 | | /// as [`Regex::captures_read`], which permits amortizing the allocation in |
2033 | | /// which capture match offsets are stored. |
2034 | | /// |
2035 | | /// In order to build a value of this type, you'll need to call the |
2036 | | /// [`Regex::capture_locations`] method. The value returned can then be reused |
2037 | | /// in subsequent searches for that regex. Using it for other regexes may |
2038 | | /// result in a panic or otherwise incorrect results. |
2039 | | /// |
2040 | | /// # Example |
2041 | | /// |
2042 | | /// This example shows how to create and use `CaptureLocations` in a search. |
2043 | | /// |
2044 | | /// ``` |
2045 | | /// use regex::bytes::Regex; |
2046 | | /// |
2047 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap(); |
2048 | | /// let mut locs = re.capture_locations(); |
2049 | | /// let m = re.captures_read(&mut locs, b"Bruce Springsteen").unwrap(); |
2050 | | /// assert_eq!(0..17, m.range()); |
2051 | | /// assert_eq!(Some((0, 17)), locs.get(0)); |
2052 | | /// assert_eq!(Some((0, 5)), locs.get(1)); |
2053 | | /// assert_eq!(Some((6, 17)), locs.get(2)); |
2054 | | /// |
2055 | | /// // Asking for an invalid capture group always returns None. |
2056 | | /// assert_eq!(None, locs.get(3)); |
2057 | | /// # // literals are too big for 32-bit usize: #1041 |
2058 | | /// # #[cfg(target_pointer_width = "64")] |
2059 | | /// assert_eq!(None, locs.get(34973498648)); |
2060 | | /// # #[cfg(target_pointer_width = "64")] |
2061 | | /// assert_eq!(None, locs.get(9944060567225171988)); |
2062 | | /// ``` |
2063 | | #[derive(Clone, Debug)] |
2064 | | pub struct CaptureLocations(captures::Captures); |
2065 | | |
2066 | | /// A type alias for `CaptureLocations` for backwards compatibility. |
2067 | | /// |
2068 | | /// Previously, we exported `CaptureLocations` as `Locations` in an |
2069 | | /// undocumented API. To prevent breaking that code (e.g., in `regex-capi`), |
2070 | | /// we continue re-exporting the same undocumented API. |
2071 | | #[doc(hidden)] |
2072 | | pub type Locations = CaptureLocations; |
2073 | | |
2074 | | impl CaptureLocations { |
2075 | | /// Returns the start and end byte offsets of the capture group at index |
2076 | | /// `i`. This returns `None` if `i` is not a valid capture group or if the |
2077 | | /// capture group did not match. |
2078 | | /// |
2079 | | /// # Example |
2080 | | /// |
2081 | | /// ``` |
2082 | | /// use regex::bytes::Regex; |
2083 | | /// |
2084 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap(); |
2085 | | /// let mut locs = re.capture_locations(); |
2086 | | /// re.captures_read(&mut locs, b"Bruce Springsteen").unwrap(); |
2087 | | /// assert_eq!(Some((0, 17)), locs.get(0)); |
2088 | | /// assert_eq!(Some((0, 5)), locs.get(1)); |
2089 | | /// assert_eq!(Some((6, 17)), locs.get(2)); |
2090 | | /// ``` |
2091 | | #[inline] |
2092 | 0 | pub fn get(&self, i: usize) -> Option<(usize, usize)> { |
2093 | 0 | self.0.get_group(i).map(|sp| (sp.start, sp.end)) |
2094 | 0 | } |
2095 | | |
2096 | | /// Returns the total number of capture groups (even if they didn't match). |
2097 | | /// That is, the length returned is unaffected by the result of a search. |
2098 | | /// |
2099 | | /// This is always at least `1` since every regex has at least `1` |
2100 | | /// capturing group that corresponds to the entire match. |
2101 | | /// |
2102 | | /// # Example |
2103 | | /// |
2104 | | /// ``` |
2105 | | /// use regex::bytes::Regex; |
2106 | | /// |
2107 | | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap(); |
2108 | | /// let mut locs = re.capture_locations(); |
2109 | | /// assert_eq!(3, locs.len()); |
2110 | | /// re.captures_read(&mut locs, b"Bruce Springsteen").unwrap(); |
2111 | | /// assert_eq!(3, locs.len()); |
2112 | | /// ``` |
2113 | | /// |
2114 | | /// Notice that the length is always at least `1`, regardless of the regex: |
2115 | | /// |
2116 | | /// ``` |
2117 | | /// use regex::bytes::Regex; |
2118 | | /// |
2119 | | /// let re = Regex::new(r"").unwrap(); |
2120 | | /// let locs = re.capture_locations(); |
2121 | | /// assert_eq!(1, locs.len()); |
2122 | | /// |
2123 | | /// // [a&&b] is a regex that never matches anything. |
2124 | | /// let re = Regex::new(r"[a&&b]").unwrap(); |
2125 | | /// let locs = re.capture_locations(); |
2126 | | /// assert_eq!(1, locs.len()); |
2127 | | /// ``` |
2128 | | #[inline] |
2129 | 0 | pub fn len(&self) -> usize { |
2130 | 0 | // self.0.group_len() returns 0 if the underlying captures doesn't |
2131 | 0 | // represent a match, but the behavior guaranteed for this method is |
2132 | 0 | // that the length doesn't change based on a match or not. |
2133 | 0 | self.0.group_info().group_len(PatternID::ZERO) |
2134 | 0 | } |
2135 | | |
2136 | | /// An alias for the `get` method for backwards compatibility. |
2137 | | /// |
2138 | | /// Previously, we exported `get` as `pos` in an undocumented API. To |
2139 | | /// prevent breaking that code (e.g., in `regex-capi`), we continue |
2140 | | /// re-exporting the same undocumented API. |
2141 | | #[doc(hidden)] |
2142 | | #[inline] |
2143 | 0 | pub fn pos(&self, i: usize) -> Option<(usize, usize)> { |
2144 | 0 | self.get(i) |
2145 | 0 | } |
2146 | | } |
2147 | | |
2148 | | /// An iterator over all non-overlapping matches in a haystack. |
2149 | | /// |
2150 | | /// This iterator yields [`Match`] values. The iterator stops when no more |
2151 | | /// matches can be found. |
2152 | | /// |
2153 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2154 | | /// lifetime of the haystack. |
2155 | | /// |
2156 | | /// This iterator is created by [`Regex::find_iter`]. |
2157 | | /// |
2158 | | /// # Time complexity |
2159 | | /// |
2160 | | /// Note that since an iterator runs potentially many searches on the haystack |
2161 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2162 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2163 | | #[derive(Debug)] |
2164 | | pub struct Matches<'r, 'h> { |
2165 | | haystack: &'h [u8], |
2166 | | it: meta::FindMatches<'r, 'h>, |
2167 | | } |
2168 | | |
2169 | | impl<'r, 'h> Iterator for Matches<'r, 'h> { |
2170 | | type Item = Match<'h>; |
2171 | | |
2172 | | #[inline] |
2173 | 0 | fn next(&mut self) -> Option<Match<'h>> { |
2174 | 0 | self.it |
2175 | 0 | .next() |
2176 | 0 | .map(|sp| Match::new(self.haystack, sp.start(), sp.end())) |
2177 | 0 | } |
2178 | | |
2179 | | #[inline] |
2180 | 0 | fn count(self) -> usize { |
2181 | 0 | // This can actually be up to 2x faster than calling `next()` until |
2182 | 0 | // completion, because counting matches when using a DFA only requires |
2183 | 0 | // finding the end of each match. But returning a `Match` via `next()` |
2184 | 0 | // requires the start of each match which, with a DFA, requires a |
2185 | 0 | // reverse forward scan to find it. |
2186 | 0 | self.it.count() |
2187 | 0 | } |
2188 | | } |
2189 | | |
2190 | | impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {} |
2191 | | |
2192 | | /// An iterator over all non-overlapping capture matches in a haystack. |
2193 | | /// |
2194 | | /// This iterator yields [`Captures`] values. The iterator stops when no more |
2195 | | /// matches can be found. |
2196 | | /// |
2197 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2198 | | /// lifetime of the matched string. |
2199 | | /// |
2200 | | /// This iterator is created by [`Regex::captures_iter`]. |
2201 | | /// |
2202 | | /// # Time complexity |
2203 | | /// |
2204 | | /// Note that since an iterator runs potentially many searches on the haystack |
2205 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2206 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2207 | | #[derive(Debug)] |
2208 | | pub struct CaptureMatches<'r, 'h> { |
2209 | | haystack: &'h [u8], |
2210 | | it: meta::CapturesMatches<'r, 'h>, |
2211 | | } |
2212 | | |
2213 | | impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> { |
2214 | | type Item = Captures<'h>; |
2215 | | |
2216 | | #[inline] |
2217 | 0 | fn next(&mut self) -> Option<Captures<'h>> { |
2218 | 0 | let static_captures_len = self.it.regex().static_captures_len(); |
2219 | 0 | self.it.next().map(|caps| Captures { |
2220 | 0 | haystack: self.haystack, |
2221 | 0 | caps, |
2222 | 0 | static_captures_len, |
2223 | 0 | }) |
2224 | 0 | } |
2225 | | |
2226 | | #[inline] |
2227 | 0 | fn count(self) -> usize { |
2228 | 0 | // This can actually be up to 2x faster than calling `next()` until |
2229 | 0 | // completion, because counting matches when using a DFA only requires |
2230 | 0 | // finding the end of each match. But returning a `Match` via `next()` |
2231 | 0 | // requires the start of each match which, with a DFA, requires a |
2232 | 0 | // reverse forward scan to find it. |
2233 | 0 | self.it.count() |
2234 | 0 | } |
2235 | | } |
2236 | | |
2237 | | impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {} |
2238 | | |
2239 | | /// An iterator over all substrings delimited by a regex match. |
2240 | | /// |
2241 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2242 | | /// lifetime of the byte string being split. |
2243 | | /// |
2244 | | /// This iterator is created by [`Regex::split`]. |
2245 | | /// |
2246 | | /// # Time complexity |
2247 | | /// |
2248 | | /// Note that since an iterator runs potentially many searches on the haystack |
2249 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2250 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2251 | | #[derive(Debug)] |
2252 | | pub struct Split<'r, 'h> { |
2253 | | haystack: &'h [u8], |
2254 | | it: meta::Split<'r, 'h>, |
2255 | | } |
2256 | | |
2257 | | impl<'r, 'h> Iterator for Split<'r, 'h> { |
2258 | | type Item = &'h [u8]; |
2259 | | |
2260 | | #[inline] |
2261 | 0 | fn next(&mut self) -> Option<&'h [u8]> { |
2262 | 0 | self.it.next().map(|span| &self.haystack[span]) |
2263 | 0 | } |
2264 | | } |
2265 | | |
2266 | | impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {} |
2267 | | |
2268 | | /// An iterator over at most `N` substrings delimited by a regex match. |
2269 | | /// |
2270 | | /// The last substring yielded by this iterator will be whatever remains after |
2271 | | /// `N-1` splits. |
2272 | | /// |
2273 | | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2274 | | /// lifetime of the byte string being split. |
2275 | | /// |
2276 | | /// This iterator is created by [`Regex::splitn`]. |
2277 | | /// |
2278 | | /// # Time complexity |
2279 | | /// |
2280 | | /// Note that since an iterator runs potentially many searches on the haystack |
2281 | | /// and since each search has worst case `O(m * n)` time complexity, the |
2282 | | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2283 | | /// |
2284 | | /// Although note that the worst case time here has an upper bound given |
2285 | | /// by the `limit` parameter to [`Regex::splitn`]. |
2286 | | #[derive(Debug)] |
2287 | | pub struct SplitN<'r, 'h> { |
2288 | | haystack: &'h [u8], |
2289 | | it: meta::SplitN<'r, 'h>, |
2290 | | } |
2291 | | |
2292 | | impl<'r, 'h> Iterator for SplitN<'r, 'h> { |
2293 | | type Item = &'h [u8]; |
2294 | | |
2295 | | #[inline] |
2296 | 0 | fn next(&mut self) -> Option<&'h [u8]> { |
2297 | 0 | self.it.next().map(|span| &self.haystack[span]) |
2298 | 0 | } |
2299 | | |
2300 | | #[inline] |
2301 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
2302 | 0 | self.it.size_hint() |
2303 | 0 | } |
2304 | | } |
2305 | | |
2306 | | impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {} |
2307 | | |
2308 | | /// An iterator over the names of all capture groups in a regex. |
2309 | | /// |
2310 | | /// This iterator yields values of type `Option<&str>` in order of the opening |
2311 | | /// capture group parenthesis in the regex pattern. `None` is yielded for |
2312 | | /// groups with no name. The first element always corresponds to the implicit |
2313 | | /// and unnamed group for the overall match. |
2314 | | /// |
2315 | | /// `'r` is the lifetime of the compiled regular expression. |
2316 | | /// |
2317 | | /// This iterator is created by [`Regex::capture_names`]. |
2318 | | #[derive(Clone, Debug)] |
2319 | | pub struct CaptureNames<'r>(captures::GroupInfoPatternNames<'r>); |
2320 | | |
2321 | | impl<'r> Iterator for CaptureNames<'r> { |
2322 | | type Item = Option<&'r str>; |
2323 | | |
2324 | | #[inline] |
2325 | 0 | fn next(&mut self) -> Option<Option<&'r str>> { |
2326 | 0 | self.0.next() |
2327 | 0 | } |
2328 | | |
2329 | | #[inline] |
2330 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
2331 | 0 | self.0.size_hint() |
2332 | 0 | } |
2333 | | |
2334 | | #[inline] |
2335 | 0 | fn count(self) -> usize { |
2336 | 0 | self.0.count() |
2337 | 0 | } |
2338 | | } |
2339 | | |
2340 | | impl<'r> ExactSizeIterator for CaptureNames<'r> {} |
2341 | | |
2342 | | impl<'r> core::iter::FusedIterator for CaptureNames<'r> {} |
2343 | | |
2344 | | /// An iterator over all group matches in a [`Captures`] value. |
2345 | | /// |
2346 | | /// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the |
2347 | | /// lifetime of the haystack that the matches are for. The order of elements |
2348 | | /// yielded corresponds to the order of the opening parenthesis for the group |
2349 | | /// in the regex pattern. `None` is yielded for groups that did not participate |
2350 | | /// in the match. |
2351 | | /// |
2352 | | /// The first element always corresponds to the implicit group for the overall |
2353 | | /// match. Since this iterator is created by a [`Captures`] value, and a |
2354 | | /// `Captures` value is only created when a match occurs, it follows that the |
2355 | | /// first element yielded by this iterator is guaranteed to be non-`None`. |
2356 | | /// |
2357 | | /// The lifetime `'c` corresponds to the lifetime of the `Captures` value that |
2358 | | /// created this iterator, and the lifetime `'h` corresponds to the originally |
2359 | | /// matched haystack. |
2360 | | #[derive(Clone, Debug)] |
2361 | | pub struct SubCaptureMatches<'c, 'h> { |
2362 | | haystack: &'h [u8], |
2363 | | it: captures::CapturesPatternIter<'c>, |
2364 | | } |
2365 | | |
2366 | | impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> { |
2367 | | type Item = Option<Match<'h>>; |
2368 | | |
2369 | | #[inline] |
2370 | 0 | fn next(&mut self) -> Option<Option<Match<'h>>> { |
2371 | 0 | self.it.next().map(|group| { |
2372 | 0 | group.map(|sp| Match::new(self.haystack, sp.start, sp.end)) |
2373 | 0 | }) |
2374 | 0 | } |
2375 | | |
2376 | | #[inline] |
2377 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
2378 | 0 | self.it.size_hint() |
2379 | 0 | } |
2380 | | |
2381 | | #[inline] |
2382 | 0 | fn count(self) -> usize { |
2383 | 0 | self.it.count() |
2384 | 0 | } |
2385 | | } |
2386 | | |
2387 | | impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {} |
2388 | | |
2389 | | impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {} |
2390 | | |
2391 | | /// A trait for types that can be used to replace matches in a haystack. |
2392 | | /// |
2393 | | /// In general, users of this crate shouldn't need to implement this trait, |
2394 | | /// since implementations are already provided for `&[u8]` along with other |
2395 | | /// variants of byte string types, as well as `FnMut(&Captures) -> Vec<u8>` (or |
2396 | | /// any `FnMut(&Captures) -> T` where `T: AsRef<[u8]>`). Those cover most use |
2397 | | /// cases, but callers can implement this trait directly if necessary. |
2398 | | /// |
2399 | | /// # Example |
2400 | | /// |
2401 | | /// This example shows a basic implementation of the `Replacer` trait. This can |
2402 | | /// be done much more simply using the replacement byte string interpolation |
2403 | | /// support (e.g., `$first $last`), but this approach avoids needing to parse |
2404 | | /// the replacement byte string at all. |
2405 | | /// |
2406 | | /// ``` |
2407 | | /// use regex::bytes::{Captures, Regex, Replacer}; |
2408 | | /// |
2409 | | /// struct NameSwapper; |
2410 | | /// |
2411 | | /// impl Replacer for NameSwapper { |
2412 | | /// fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2413 | | /// dst.extend_from_slice(&caps["first"]); |
2414 | | /// dst.extend_from_slice(b" "); |
2415 | | /// dst.extend_from_slice(&caps["last"]); |
2416 | | /// } |
2417 | | /// } |
2418 | | /// |
2419 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap(); |
2420 | | /// let result = re.replace(b"Springsteen, Bruce", NameSwapper); |
2421 | | /// assert_eq!(result, &b"Bruce Springsteen"[..]); |
2422 | | /// ``` |
2423 | | pub trait Replacer { |
2424 | | /// Appends possibly empty data to `dst` to replace the current match. |
2425 | | /// |
2426 | | /// The current match is represented by `caps`, which is guaranteed to have |
2427 | | /// a match at capture group `0`. |
2428 | | /// |
2429 | | /// For example, a no-op replacement would be |
2430 | | /// `dst.extend_from_slice(&caps[0])`. |
2431 | | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>); |
2432 | | |
2433 | | /// Return a fixed unchanging replacement byte string. |
2434 | | /// |
2435 | | /// When doing replacements, if access to [`Captures`] is not needed (e.g., |
2436 | | /// the replacement byte string does not need `$` expansion), then it can |
2437 | | /// be beneficial to avoid finding sub-captures. |
2438 | | /// |
2439 | | /// In general, this is called once for every call to a replacement routine |
2440 | | /// such as [`Regex::replace_all`]. |
2441 | 0 | fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, [u8]>> { |
2442 | 0 | None |
2443 | 0 | } |
2444 | | |
2445 | | /// Returns a type that implements `Replacer`, but that borrows and wraps |
2446 | | /// this `Replacer`. |
2447 | | /// |
2448 | | /// This is useful when you want to take a generic `Replacer` (which might |
2449 | | /// not be cloneable) and use it without consuming it, so it can be used |
2450 | | /// more than once. |
2451 | | /// |
2452 | | /// # Example |
2453 | | /// |
2454 | | /// ``` |
2455 | | /// use regex::bytes::{Regex, Replacer}; |
2456 | | /// |
2457 | | /// fn replace_all_twice<R: Replacer>( |
2458 | | /// re: Regex, |
2459 | | /// src: &[u8], |
2460 | | /// mut rep: R, |
2461 | | /// ) -> Vec<u8> { |
2462 | | /// let dst = re.replace_all(src, rep.by_ref()); |
2463 | | /// let dst = re.replace_all(&dst, rep.by_ref()); |
2464 | | /// dst.into_owned() |
2465 | | /// } |
2466 | | /// ``` |
2467 | 0 | fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> { |
2468 | 0 | ReplacerRef(self) |
2469 | 0 | } |
2470 | | } |
2471 | | |
2472 | | impl<'a, const N: usize> Replacer for &'a [u8; N] { |
2473 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2474 | 0 | caps.expand(&**self, dst); |
2475 | 0 | } |
2476 | | |
2477 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2478 | 0 | no_expansion(self) |
2479 | 0 | } |
2480 | | } |
2481 | | |
2482 | | impl<const N: usize> Replacer for [u8; N] { |
2483 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2484 | 0 | caps.expand(&*self, dst); |
2485 | 0 | } |
2486 | | |
2487 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2488 | 0 | no_expansion(self) |
2489 | 0 | } |
2490 | | } |
2491 | | |
2492 | | impl<'a> Replacer for &'a [u8] { |
2493 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2494 | 0 | caps.expand(*self, dst); |
2495 | 0 | } |
2496 | | |
2497 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2498 | 0 | no_expansion(self) |
2499 | 0 | } |
2500 | | } |
2501 | | |
2502 | | impl<'a> Replacer for &'a Vec<u8> { |
2503 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2504 | 0 | caps.expand(*self, dst); |
2505 | 0 | } |
2506 | | |
2507 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2508 | 0 | no_expansion(self) |
2509 | 0 | } |
2510 | | } |
2511 | | |
2512 | | impl Replacer for Vec<u8> { |
2513 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2514 | 0 | caps.expand(self, dst); |
2515 | 0 | } |
2516 | | |
2517 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2518 | 0 | no_expansion(self) |
2519 | 0 | } |
2520 | | } |
2521 | | |
2522 | | impl<'a> Replacer for Cow<'a, [u8]> { |
2523 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2524 | 0 | caps.expand(self.as_ref(), dst); |
2525 | 0 | } |
2526 | | |
2527 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2528 | 0 | no_expansion(self) |
2529 | 0 | } |
2530 | | } |
2531 | | |
2532 | | impl<'a> Replacer for &'a Cow<'a, [u8]> { |
2533 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2534 | 0 | caps.expand(self.as_ref(), dst); |
2535 | 0 | } |
2536 | | |
2537 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2538 | 0 | no_expansion(self) |
2539 | 0 | } |
2540 | | } |
2541 | | |
2542 | | impl<F, T> Replacer for F |
2543 | | where |
2544 | | F: FnMut(&Captures<'_>) -> T, |
2545 | | T: AsRef<[u8]>, |
2546 | | { |
2547 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2548 | 0 | dst.extend_from_slice((*self)(caps).as_ref()); |
2549 | 0 | } |
2550 | | } |
2551 | | |
2552 | | /// A by-reference adaptor for a [`Replacer`]. |
2553 | | /// |
2554 | | /// This permits reusing the same `Replacer` value in multiple calls to a |
2555 | | /// replacement routine like [`Regex::replace_all`]. |
2556 | | /// |
2557 | | /// This type is created by [`Replacer::by_ref`]. |
2558 | | #[derive(Debug)] |
2559 | | pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R); |
2560 | | |
2561 | | impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> { |
2562 | 0 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) { |
2563 | 0 | self.0.replace_append(caps, dst) |
2564 | 0 | } |
2565 | | |
2566 | 0 | fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, [u8]>> { |
2567 | 0 | self.0.no_expansion() |
2568 | 0 | } |
2569 | | } |
2570 | | |
2571 | | /// A helper type for forcing literal string replacement. |
2572 | | /// |
2573 | | /// It can be used with routines like [`Regex::replace`] and |
2574 | | /// [`Regex::replace_all`] to do a literal string replacement without expanding |
2575 | | /// `$name` to their corresponding capture groups. This can be both convenient |
2576 | | /// (to avoid escaping `$`, for example) and faster (since capture groups |
2577 | | /// don't need to be found). |
2578 | | /// |
2579 | | /// `'s` is the lifetime of the literal string to use. |
2580 | | /// |
2581 | | /// # Example |
2582 | | /// |
2583 | | /// ``` |
2584 | | /// use regex::bytes::{NoExpand, Regex}; |
2585 | | /// |
2586 | | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap(); |
2587 | | /// let result = re.replace(b"Springsteen, Bruce", NoExpand(b"$2 $last")); |
2588 | | /// assert_eq!(result, &b"$2 $last"[..]); |
2589 | | /// ``` |
2590 | | #[derive(Clone, Debug)] |
2591 | | pub struct NoExpand<'s>(pub &'s [u8]); |
2592 | | |
2593 | | impl<'s> Replacer for NoExpand<'s> { |
2594 | 0 | fn replace_append(&mut self, _: &Captures<'_>, dst: &mut Vec<u8>) { |
2595 | 0 | dst.extend_from_slice(self.0); |
2596 | 0 | } |
2597 | | |
2598 | 0 | fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> { |
2599 | 0 | Some(Cow::Borrowed(self.0)) |
2600 | 0 | } |
2601 | | } |
2602 | | |
2603 | | /// Quickly checks the given replacement string for whether interpolation |
2604 | | /// should be done on it. It returns `None` if a `$` was found anywhere in the |
2605 | | /// given string, which suggests interpolation needs to be done. But if there's |
2606 | | /// no `$` anywhere, then interpolation definitely does not need to be done. In |
2607 | | /// that case, the given string is returned as a borrowed `Cow`. |
2608 | | /// |
2609 | | /// This is meant to be used to implement the `Replacer::no_expandsion` method |
2610 | | /// in its various trait impls. |
2611 | 0 | fn no_expansion<T: AsRef<[u8]>>(replacement: &T) -> Option<Cow<'_, [u8]>> { |
2612 | 0 | let replacement = replacement.as_ref(); |
2613 | 0 | match crate::find_byte::find_byte(b'$', replacement) { |
2614 | 0 | Some(_) => None, |
2615 | 0 | None => Some(Cow::Borrowed(replacement)), |
2616 | | } |
2617 | 0 | } Unexecuted instantiation: regex::regex::bytes::no_expansion::<alloc::vec::Vec<u8>> Unexecuted instantiation: regex::regex::bytes::no_expansion::<alloc::borrow::Cow<[u8]>> Unexecuted instantiation: regex::regex::bytes::no_expansion::<&alloc::vec::Vec<u8>> Unexecuted instantiation: regex::regex::bytes::no_expansion::<&alloc::borrow::Cow<[u8]>> Unexecuted instantiation: regex::regex::bytes::no_expansion::<&[u8]> |
2618 | | |
2619 | | #[cfg(test)] |
2620 | | mod tests { |
2621 | | use super::*; |
2622 | | use alloc::format; |
2623 | | |
2624 | | #[test] |
2625 | | fn test_match_properties() { |
2626 | | let haystack = b"Hello, world!"; |
2627 | | let m = Match::new(haystack, 7, 12); |
2628 | | |
2629 | | assert_eq!(m.start(), 7); |
2630 | | assert_eq!(m.end(), 12); |
2631 | | assert_eq!(m.is_empty(), false); |
2632 | | assert_eq!(m.len(), 5); |
2633 | | assert_eq!(m.as_bytes(), b"world"); |
2634 | | } |
2635 | | |
2636 | | #[test] |
2637 | | fn test_empty_match() { |
2638 | | let haystack = b""; |
2639 | | let m = Match::new(haystack, 0, 0); |
2640 | | |
2641 | | assert_eq!(m.is_empty(), true); |
2642 | | assert_eq!(m.len(), 0); |
2643 | | } |
2644 | | |
2645 | | #[test] |
2646 | | fn test_debug_output_valid_utf8() { |
2647 | | let haystack = b"Hello, world!"; |
2648 | | let m = Match::new(haystack, 7, 12); |
2649 | | let debug_str = format!("{:?}", m); |
2650 | | |
2651 | | assert_eq!( |
2652 | | debug_str, |
2653 | | r#"Match { start: 7, end: 12, bytes: "world" }"# |
2654 | | ); |
2655 | | } |
2656 | | |
2657 | | #[test] |
2658 | | fn test_debug_output_invalid_utf8() { |
2659 | | let haystack = b"Hello, \xFFworld!"; |
2660 | | let m = Match::new(haystack, 7, 13); |
2661 | | let debug_str = format!("{:?}", m); |
2662 | | |
2663 | | assert_eq!( |
2664 | | debug_str, |
2665 | | r#"Match { start: 7, end: 13, bytes: "\xffworld" }"# |
2666 | | ); |
2667 | | } |
2668 | | |
2669 | | #[test] |
2670 | | fn test_debug_output_various_unicode() { |
2671 | | let haystack = |
2672 | | "Hello, 😊 world! 안녕하세요? Ù…Ø±ØØ¨Ø§ بالعالم!".as_bytes(); |
2673 | | let m = Match::new(haystack, 0, haystack.len()); |
2674 | | let debug_str = format!("{:?}", m); |
2675 | | |
2676 | | assert_eq!( |
2677 | | debug_str, |
2678 | | r#"Match { start: 0, end: 62, bytes: "Hello, 😊 world! 안녕하세요? Ù…Ø±ØØ¨Ø§ بالعالم!" }"# |
2679 | | ); |
2680 | | } |
2681 | | |
2682 | | #[test] |
2683 | | fn test_debug_output_ascii_escape() { |
2684 | | let haystack = b"Hello,\tworld!\nThis is a \x1b[31mtest\x1b[0m."; |
2685 | | let m = Match::new(haystack, 0, haystack.len()); |
2686 | | let debug_str = format!("{:?}", m); |
2687 | | |
2688 | | assert_eq!( |
2689 | | debug_str, |
2690 | | r#"Match { start: 0, end: 38, bytes: "Hello,\tworld!\nThis is a \u{1b}[31mtest\u{1b}[0m." }"# |
2691 | | ); |
2692 | | } |
2693 | | |
2694 | | #[test] |
2695 | | fn test_debug_output_match_in_middle() { |
2696 | | let haystack = b"The quick brown fox jumps over the lazy dog."; |
2697 | | let m = Match::new(haystack, 16, 19); |
2698 | | let debug_str = format!("{:?}", m); |
2699 | | |
2700 | | assert_eq!(debug_str, r#"Match { start: 16, end: 19, bytes: "fox" }"#); |
2701 | | } |
2702 | | } |