Coverage Report

Created: 2025-02-25 06:39

/rust/registry/src/index.crates.io-6f17d22bba15001f/zerocopy-0.7.35/src/wrappers.rs
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2023 The Fuchsia Authors
2
//
3
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6
// This file may not be copied, modified, or distributed except according to
7
// those terms.
8
9
use core::{
10
    cmp::Ordering,
11
    fmt::{self, Debug, Display, Formatter},
12
    hash::Hash,
13
    mem::{self, ManuallyDrop},
14
    ops::{Deref, DerefMut},
15
    ptr,
16
};
17
18
use super::*;
19
20
/// A type with no alignment requirement.
21
///
22
/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
23
/// has the same size and bit validity as `T`, but not necessarily the same
24
/// alignment [or ABI]. This is useful if a type with an alignment requirement
25
/// needs to be read from a chunk of memory which provides no alignment
26
/// guarantees.
27
///
28
/// Since `Unalign` has no alignment requirement, the inner `T` may not be
29
/// properly aligned in memory. There are five ways to access the inner `T`:
30
/// - by value, using [`get`] or [`into_inner`]
31
/// - by reference inside of a callback, using [`update`]
32
/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
33
///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
34
///   runtime
35
/// - unsafely by reference, using [`deref_unchecked`] or
36
///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
37
///   the `Unalign` satisfies `T`'s alignment requirement
38
/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
39
///   [`DerefMut::deref_mut`]
40
///
41
/// [or ABI]: https://github.com/google/zerocopy/issues/164
42
/// [`get`]: Unalign::get
43
/// [`into_inner`]: Unalign::into_inner
44
/// [`update`]: Unalign::update
45
/// [`try_deref`]: Unalign::try_deref
46
/// [`try_deref_mut`]: Unalign::try_deref_mut
47
/// [`deref_unchecked`]: Unalign::deref_unchecked
48
/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
49
// NOTE: This type is sound to use with types that need to be dropped. The
50
// reason is that the compiler-generated drop code automatically moves all
51
// values to aligned memory slots before dropping them in-place. This is not
52
// well-documented, but it's hinted at in places like [1] and [2]. However, this
53
// also means that `T` must be `Sized`; unless something changes, we can never
54
// support unsized `T`. [3]
55
//
56
// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
57
// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
58
// [3] https://github.com/google/zerocopy/issues/209
59
#[allow(missing_debug_implementations)]
60
#[derive(Default, Copy)]
61
#[cfg_attr(
62
    any(feature = "derive", test),
63
0
    derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned)
64
)]
65
#[repr(C, packed)]
66
pub struct Unalign<T>(T);
67
68
#[cfg(not(any(feature = "derive", test)))]
69
impl_known_layout!(T => Unalign<T>);
70
71
safety_comment! {
72
    /// SAFETY:
73
    /// - `Unalign<T>` is `repr(packed)`, so it is unaligned regardless of the
74
    ///   alignment of `T`, and so we don't require that `T: Unaligned`
75
    /// - `Unalign<T>` has the same bit validity as `T`, and so it is
76
    ///   `FromZeroes`, `FromBytes`, or `AsBytes` exactly when `T` is as well.
77
    impl_or_verify!(T => Unaligned for Unalign<T>);
78
    impl_or_verify!(T: FromZeroes => FromZeroes for Unalign<T>);
79
    impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
80
    impl_or_verify!(T: AsBytes => AsBytes for Unalign<T>);
81
}
82
83
// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
84
// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
85
// is not sufficient to implement `Clone` for `Unalign`.
86
impl<T: Copy> Clone for Unalign<T> {
87
    #[inline(always)]
88
0
    fn clone(&self) -> Unalign<T> {
89
0
        *self
90
0
    }
91
}
92
93
impl<T> Unalign<T> {
94
    /// Constructs a new `Unalign`.
95
    #[inline(always)]
96
0
    pub const fn new(val: T) -> Unalign<T> {
97
0
        Unalign(val)
98
0
    }
99
100
    /// Consumes `self`, returning the inner `T`.
101
    #[inline(always)]
102
0
    pub const fn into_inner(self) -> T {
103
        // Use this instead of `mem::transmute` since the latter can't tell
104
        // that `Unalign<T>` and `T` have the same size.
105
        #[repr(C)]
106
        union Transmute<T> {
107
            u: ManuallyDrop<Unalign<T>>,
108
            t: ManuallyDrop<T>,
109
        }
110
111
        // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same
112
        // layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same
113
        // layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout
114
        // as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t`
115
        // and `u` fields both start at the same offset (namely, 0) within the
116
        // union.
117
        //
118
        // We do this instead of just destructuring in order to prevent
119
        // `Unalign`'s `Drop::drop` from being run, since dropping is not
120
        // supported in `const fn`s.
121
        //
122
        // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
123
        // instead of using unsafe.
124
0
        unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) }
125
0
    }
126
127
    /// Attempts to return a reference to the wrapped `T`, failing if `self` is
128
    /// not properly aligned.
129
    ///
130
    /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
131
    /// return a reference to the wrapped `T`, and `try_deref` returns `None`.
132
    ///
133
    /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
134
    /// may prefer [`Deref::deref`], which is infallible.
135
    #[inline(always)]
136
0
    pub fn try_deref(&self) -> Option<&T> {
137
0
        if !util::aligned_to::<_, T>(self) {
138
0
            return None;
139
0
        }
140
0
141
0
        // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
142
0
        // aligned to `align_of::<T>()`, which we just checked.
143
0
        unsafe { Some(self.deref_unchecked()) }
144
0
    }
145
146
    /// Attempts to return a mutable reference to the wrapped `T`, failing if
147
    /// `self` is not properly aligned.
148
    ///
149
    /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
150
    /// return a reference to the wrapped `T`, and `try_deref_mut` returns
151
    /// `None`.
152
    ///
153
    /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
154
    /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
155
    #[inline(always)]
156
0
    pub fn try_deref_mut(&mut self) -> Option<&mut T> {
157
0
        if !util::aligned_to::<_, T>(&*self) {
158
0
            return None;
159
0
        }
160
0
161
0
        // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
162
0
        // aligned to `align_of::<T>()`, which we just checked.
163
0
        unsafe { Some(self.deref_mut_unchecked()) }
164
0
    }
165
166
    /// Returns a reference to the wrapped `T` without checking alignment.
167
    ///
168
    /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
169
    /// may prefer [`Deref::deref`], which is safe.
170
    ///
171
    /// # Safety
172
    ///
173
    /// If `self` does not satisfy `mem::align_of::<T>()`, then
174
    /// `self.deref_unchecked()` may cause undefined behavior.
175
    #[inline(always)]
176
0
    pub const unsafe fn deref_unchecked(&self) -> &T {
177
0
        // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
178
0
        // at the same memory location as `self`. It has no alignment guarantee,
179
0
        // but the caller has promised that `self` is properly aligned, so we
180
0
        // know that it is sound to create a reference to `T` at this memory
181
0
        // location.
182
0
        //
183
0
        // We use `mem::transmute` instead of `&*self.get_ptr()` because
184
0
        // dereferencing pointers is not stable in `const` on our current MSRV
185
0
        // (1.56 as of this writing).
186
0
        unsafe { mem::transmute(self) }
187
0
    }
188
189
    /// Returns a mutable reference to the wrapped `T` without checking
190
    /// alignment.
191
    ///
192
    /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
193
    /// callers may prefer [`DerefMut::deref_mut`], which is safe.
194
    ///
195
    /// # Safety
196
    ///
197
    /// If `self` does not satisfy `mem::align_of::<T>()`, then
198
    /// `self.deref_mut_unchecked()` may cause undefined behavior.
199
    #[inline(always)]
200
0
    pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
201
0
        // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
202
0
        // the same memory location as `self`. It has no alignment guarantee,
203
0
        // but the caller has promised that `self` is properly aligned, so we
204
0
        // know that the pointer itself is aligned, and thus that it is sound to
205
0
        // create a reference to a `T` at this memory location.
206
0
        unsafe { &mut *self.get_mut_ptr() }
207
0
    }
208
209
    /// Gets an unaligned raw pointer to the inner `T`.
210
    ///
211
    /// # Safety
212
    ///
213
    /// The returned raw pointer is not necessarily aligned to
214
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
215
    /// those pointers to be aligned, so calling those functions with the result
216
    /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
217
    /// using some out-of-band mechanism. In general, the only functions which
218
    /// are safe to call with this pointer are those which are explicitly
219
    /// documented as being sound to use with an unaligned pointer, such as
220
    /// [`read_unaligned`].
221
    ///
222
    /// [`read_unaligned`]: core::ptr::read_unaligned
223
    #[inline(always)]
224
0
    pub const fn get_ptr(&self) -> *const T {
225
0
        ptr::addr_of!(self.0)
226
0
    }
227
228
    /// Gets an unaligned mutable raw pointer to the inner `T`.
229
    ///
230
    /// # Safety
231
    ///
232
    /// The returned raw pointer is not necessarily aligned to
233
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
234
    /// those pointers to be aligned, so calling those functions with the result
235
    /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
236
    /// using some out-of-band mechanism. In general, the only functions which
237
    /// are safe to call with this pointer are those which are explicitly
238
    /// documented as being sound to use with an unaligned pointer, such as
239
    /// [`read_unaligned`].
240
    ///
241
    /// [`read_unaligned`]: core::ptr::read_unaligned
242
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
243
    #[inline(always)]
244
0
    pub fn get_mut_ptr(&mut self) -> *mut T {
245
0
        ptr::addr_of_mut!(self.0)
246
0
    }
247
248
    /// Sets the inner `T`, dropping the previous value.
249
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
250
    #[inline(always)]
251
0
    pub fn set(&mut self, t: T) {
252
0
        *self = Unalign::new(t);
253
0
    }
254
255
    /// Updates the inner `T` by calling a function on it.
256
    ///
257
    /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
258
    /// impl should be preferred over this method when performing updates, as it
259
    /// will usually be faster and more ergonomic.
260
    ///
261
    /// For large types, this method may be expensive, as it requires copying
262
    /// `2 * size_of::<T>()` bytes. \[1\]
263
    ///
264
    /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
265
    /// invoke `f` on it directly. Instead, `update` moves it into a
266
    /// properly-aligned location in the local stack frame, calls `f` on it, and
267
    /// then moves it back to its original location in `self`.
268
    ///
269
    /// [`T: Unaligned`]: Unaligned
270
    #[inline]
271
0
    pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
272
        // On drop, this moves `copy` out of itself and uses `ptr::write` to
273
        // overwrite `slf`.
274
        struct WriteBackOnDrop<T> {
275
            copy: ManuallyDrop<T>,
276
            slf: *mut Unalign<T>,
277
        }
278
279
        impl<T> Drop for WriteBackOnDrop<T> {
280
0
            fn drop(&mut self) {
281
0
                // SAFETY: We never use `copy` again as required by
282
0
                // `ManuallyDrop::take`.
283
0
                let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
284
0
                // SAFETY: `slf` is the raw pointer value of `self`. We know it
285
0
                // is valid for writes and properly aligned because `self` is a
286
0
                // mutable reference, which guarantees both of these properties.
287
0
                unsafe { ptr::write(self.slf, Unalign::new(copy)) };
288
0
            }
289
        }
290
291
        // SAFETY: We know that `self` is valid for reads, properly aligned, and
292
        // points to an initialized `Unalign<T>` because it is a mutable
293
        // reference, which guarantees all of these properties.
294
        //
295
        // Since `T: !Copy`, it would be unsound in the general case to allow
296
        // both the original `Unalign<T>` and the copy to be used by safe code.
297
        // We guarantee that the copy is used to overwrite the original in the
298
        // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
299
        // called before any other safe code executes, soundness is upheld.
300
        // While this method can terminate in two ways (by returning normally or
301
        // by unwinding due to a panic in `f`), in both cases, `write_back` is
302
        // dropped - and its `drop` called - before any other safe code can
303
        // execute.
304
0
        let copy = unsafe { ptr::read(self) }.into_inner();
305
0
        let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
306
0
307
0
        let ret = f(&mut write_back.copy);
308
0
309
0
        drop(write_back);
310
0
        ret
311
0
    }
312
}
313
314
impl<T: Copy> Unalign<T> {
315
    /// Gets a copy of the inner `T`.
316
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
317
    #[inline(always)]
318
0
    pub fn get(&self) -> T {
319
0
        let Unalign(val) = *self;
320
0
        val
321
0
    }
322
}
323
324
impl<T: Unaligned> Deref for Unalign<T> {
325
    type Target = T;
326
327
    #[inline(always)]
328
0
    fn deref(&self) -> &T {
329
0
        // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
330
0
        // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
331
0
        // `align_of::<T>() == 1`, and all pointers are one-aligned because all
332
0
        // addresses are divisible by 1.
333
0
        unsafe { self.deref_unchecked() }
334
0
    }
335
}
336
337
impl<T: Unaligned> DerefMut for Unalign<T> {
338
    #[inline(always)]
339
0
    fn deref_mut(&mut self) -> &mut T {
340
0
        // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
341
0
        // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
342
0
        // `align_of::<T>() == 1`, and all pointers are one-aligned because all
343
0
        // addresses are divisible by 1.
344
0
        unsafe { self.deref_mut_unchecked() }
345
0
    }
346
}
347
348
impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
349
    #[inline(always)]
350
0
    fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
351
0
        PartialOrd::partial_cmp(self.deref(), other.deref())
352
0
    }
353
}
354
355
impl<T: Unaligned + Ord> Ord for Unalign<T> {
356
    #[inline(always)]
357
0
    fn cmp(&self, other: &Unalign<T>) -> Ordering {
358
0
        Ord::cmp(self.deref(), other.deref())
359
0
    }
360
}
361
362
impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
363
    #[inline(always)]
364
0
    fn eq(&self, other: &Unalign<T>) -> bool {
365
0
        PartialEq::eq(self.deref(), other.deref())
366
0
    }
367
}
368
369
impl<T: Unaligned + Eq> Eq for Unalign<T> {}
370
371
impl<T: Unaligned + Hash> Hash for Unalign<T> {
372
    #[inline(always)]
373
0
    fn hash<H>(&self, state: &mut H)
374
0
    where
375
0
        H: Hasher,
376
0
    {
377
0
        self.deref().hash(state);
378
0
    }
379
}
380
381
impl<T: Unaligned + Debug> Debug for Unalign<T> {
382
    #[inline(always)]
383
0
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
384
0
        Debug::fmt(self.deref(), f)
385
0
    }
386
}
387
388
impl<T: Unaligned + Display> Display for Unalign<T> {
389
    #[inline(always)]
390
0
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
391
0
        Display::fmt(self.deref(), f)
392
0
    }
393
}
394
395
#[cfg(test)]
396
mod tests {
397
    use core::panic::AssertUnwindSafe;
398
399
    use super::*;
400
    use crate::util::testutil::*;
401
402
    /// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
403
    ///
404
    /// It must be the case that `align_of::<T>() < align_of::<A>()` in order
405
    /// fot this type to work properly.
406
    #[repr(C)]
407
    struct ForceUnalign<T, A> {
408
        // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
409
        // placed at the minimum offset that guarantees its alignment. If
410
        // `align_of::<T>() < align_of::<A>()`, then that offset will be
411
        // guaranteed *not* to satisfy `align_of::<A>()`.
412
        _u: u8,
413
        t: T,
414
        _a: [A; 0],
415
    }
416
417
    impl<T, A> ForceUnalign<T, A> {
418
        const fn new(t: T) -> ForceUnalign<T, A> {
419
            ForceUnalign { _u: 0, t, _a: [] }
420
        }
421
    }
422
423
    #[test]
424
    fn test_unalign() {
425
        // Test methods that don't depend on alignment.
426
        let mut u = Unalign::new(AU64(123));
427
        assert_eq!(u.get(), AU64(123));
428
        assert_eq!(u.into_inner(), AU64(123));
429
        assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
430
        assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
431
        u.set(AU64(321));
432
        assert_eq!(u.get(), AU64(321));
433
434
        // Test methods that depend on alignment (when alignment is satisfied).
435
        let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
436
        assert_eq!(u.t.try_deref(), Some(&AU64(123)));
437
        assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123)));
438
        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
439
        assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
440
        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
441
        assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
442
        *u.t.try_deref_mut().unwrap() = AU64(321);
443
        assert_eq!(u.t.get(), AU64(321));
444
445
        // Test methods that depend on alignment (when alignment is not
446
        // satisfied).
447
        let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
448
        assert_eq!(u.t.try_deref(), None);
449
        assert_eq!(u.t.try_deref_mut(), None);
450
451
        // Test methods that depend on `T: Unaligned`.
452
        let mut u = Unalign::new(123u8);
453
        assert_eq!(u.try_deref(), Some(&123));
454
        assert_eq!(u.try_deref_mut(), Some(&mut 123));
455
        assert_eq!(u.deref(), &123);
456
        assert_eq!(u.deref_mut(), &mut 123);
457
        *u = 21;
458
        assert_eq!(u.get(), 21);
459
460
        // Test that some `Unalign` functions and methods are `const`.
461
        const _UNALIGN: Unalign<u64> = Unalign::new(0);
462
        const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
463
        const _U64: u64 = _UNALIGN.into_inner();
464
        // Make sure all code is considered "used".
465
        //
466
        // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
467
        // attribute.
468
        #[allow(dead_code)]
469
        const _: () = {
470
            let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
471
            // Make sure that `deref_unchecked` is `const`.
472
            //
473
            // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
474
            let au64 = unsafe { x.t.deref_unchecked() };
475
            match au64 {
476
                AU64(123) => {}
477
                _ => unreachable!(),
478
            }
479
        };
480
    }
481
482
    #[test]
483
    fn test_unalign_update() {
484
        let mut u = Unalign::new(AU64(123));
485
        u.update(|a| a.0 += 1);
486
        assert_eq!(u.get(), AU64(124));
487
488
        // Test that, even if the callback panics, the original is still
489
        // correctly overwritten. Use a `Box` so that Miri is more likely to
490
        // catch any unsoundness (which would likely result in two `Box`es for
491
        // the same heap object, which is the sort of thing that Miri would
492
        // probably catch).
493
        let mut u = Unalign::new(Box::new(AU64(123)));
494
        let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
495
            u.update(|a| {
496
                a.0 += 1;
497
                panic!();
498
            })
499
        }));
500
        assert!(res.is_err());
501
        assert_eq!(u.into_inner(), Box::new(AU64(124)));
502
    }
503
}