/rust/registry/src/index.crates.io-1949cf8c6b5b557f/tokio-1.44.2/src/net/udp.rs
Line | Count | Source |
1 | | use crate::io::{Interest, PollEvented, ReadBuf, Ready}; |
2 | | use crate::net::{to_socket_addrs, ToSocketAddrs}; |
3 | | use crate::util::check_socket_for_blocking; |
4 | | |
5 | | use std::fmt; |
6 | | use std::io; |
7 | | use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; |
8 | | use std::task::{ready, Context, Poll}; |
9 | | |
10 | | cfg_io_util! { |
11 | | use bytes::BufMut; |
12 | | } |
13 | | |
14 | | cfg_net! { |
15 | | /// A UDP socket. |
16 | | /// |
17 | | /// UDP is "connectionless", unlike TCP. Meaning, regardless of what address you've bound to, a `UdpSocket` |
18 | | /// is free to communicate with many different remotes. In tokio there are basically two main ways to use `UdpSocket`: |
19 | | /// |
20 | | /// * one to many: [`bind`](`UdpSocket::bind`) and use [`send_to`](`UdpSocket::send_to`) |
21 | | /// and [`recv_from`](`UdpSocket::recv_from`) to communicate with many different addresses |
22 | | /// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single address, using [`send`](`UdpSocket::send`) |
23 | | /// and [`recv`](`UdpSocket::recv`) to communicate only with that remote address |
24 | | /// |
25 | | /// This type does not provide a `split` method, because this functionality |
26 | | /// can be achieved by instead wrapping the socket in an [`Arc`]. Note that |
27 | | /// you do not need a `Mutex` to share the `UdpSocket` — an `Arc<UdpSocket>` |
28 | | /// is enough. This is because all of the methods take `&self` instead of |
29 | | /// `&mut self`. Once you have wrapped it in an `Arc`, you can call |
30 | | /// `.clone()` on the `Arc<UdpSocket>` to get multiple shared handles to the |
31 | | /// same socket. An example of such usage can be found further down. |
32 | | /// |
33 | | /// [`Arc`]: std::sync::Arc |
34 | | /// |
35 | | /// # Streams |
36 | | /// |
37 | | /// If you need to listen over UDP and produce a [`Stream`], you can look |
38 | | /// at [`UdpFramed`]. |
39 | | /// |
40 | | /// [`UdpFramed`]: https://docs.rs/tokio-util/latest/tokio_util/udp/struct.UdpFramed.html |
41 | | /// [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html |
42 | | /// |
43 | | /// # Example: one to many (bind) |
44 | | /// |
45 | | /// Using `bind` we can create a simple echo server that sends and recv's with many different clients: |
46 | | /// ```no_run |
47 | | /// use tokio::net::UdpSocket; |
48 | | /// use std::io; |
49 | | /// |
50 | | /// #[tokio::main] |
51 | | /// async fn main() -> io::Result<()> { |
52 | | /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; |
53 | | /// let mut buf = [0; 1024]; |
54 | | /// loop { |
55 | | /// let (len, addr) = sock.recv_from(&mut buf).await?; |
56 | | /// println!("{:?} bytes received from {:?}", len, addr); |
57 | | /// |
58 | | /// let len = sock.send_to(&buf[..len], addr).await?; |
59 | | /// println!("{:?} bytes sent", len); |
60 | | /// } |
61 | | /// } |
62 | | /// ``` |
63 | | /// |
64 | | /// # Example: one to one (connect) |
65 | | /// |
66 | | /// Or using `connect` we can echo with a single remote address using `send` and `recv`: |
67 | | /// ```no_run |
68 | | /// use tokio::net::UdpSocket; |
69 | | /// use std::io; |
70 | | /// |
71 | | /// #[tokio::main] |
72 | | /// async fn main() -> io::Result<()> { |
73 | | /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; |
74 | | /// |
75 | | /// let remote_addr = "127.0.0.1:59611"; |
76 | | /// sock.connect(remote_addr).await?; |
77 | | /// let mut buf = [0; 1024]; |
78 | | /// loop { |
79 | | /// let len = sock.recv(&mut buf).await?; |
80 | | /// println!("{:?} bytes received from {:?}", len, remote_addr); |
81 | | /// |
82 | | /// let len = sock.send(&buf[..len]).await?; |
83 | | /// println!("{:?} bytes sent", len); |
84 | | /// } |
85 | | /// } |
86 | | /// ``` |
87 | | /// |
88 | | /// # Example: Splitting with `Arc` |
89 | | /// |
90 | | /// Because `send_to` and `recv_from` take `&self`. It's perfectly alright |
91 | | /// to use an `Arc<UdpSocket>` and share the references to multiple tasks. |
92 | | /// Here is a similar "echo" example that supports concurrent |
93 | | /// sending/receiving: |
94 | | /// |
95 | | /// ```no_run |
96 | | /// use tokio::{net::UdpSocket, sync::mpsc}; |
97 | | /// use std::{io, net::SocketAddr, sync::Arc}; |
98 | | /// |
99 | | /// #[tokio::main] |
100 | | /// async fn main() -> io::Result<()> { |
101 | | /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?; |
102 | | /// let r = Arc::new(sock); |
103 | | /// let s = r.clone(); |
104 | | /// let (tx, mut rx) = mpsc::channel::<(Vec<u8>, SocketAddr)>(1_000); |
105 | | /// |
106 | | /// tokio::spawn(async move { |
107 | | /// while let Some((bytes, addr)) = rx.recv().await { |
108 | | /// let len = s.send_to(&bytes, &addr).await.unwrap(); |
109 | | /// println!("{:?} bytes sent", len); |
110 | | /// } |
111 | | /// }); |
112 | | /// |
113 | | /// let mut buf = [0; 1024]; |
114 | | /// loop { |
115 | | /// let (len, addr) = r.recv_from(&mut buf).await?; |
116 | | /// println!("{:?} bytes received from {:?}", len, addr); |
117 | | /// tx.send((buf[..len].to_vec(), addr)).await.unwrap(); |
118 | | /// } |
119 | | /// } |
120 | | /// ``` |
121 | | /// |
122 | | pub struct UdpSocket { |
123 | | io: PollEvented<mio::net::UdpSocket>, |
124 | | } |
125 | | } |
126 | | |
127 | | impl UdpSocket { |
128 | | /// This function will create a new UDP socket and attempt to bind it to |
129 | | /// the `addr` provided. |
130 | | /// |
131 | | /// Binding with a port number of 0 will request that the OS assigns a port |
132 | | /// to this listener. The port allocated can be queried via the `local_addr` |
133 | | /// method. |
134 | | /// |
135 | | /// # Example |
136 | | /// |
137 | | /// ```no_run |
138 | | /// # if cfg!(miri) { return } // No `socket` in miri. |
139 | | /// use tokio::net::UdpSocket; |
140 | | /// use std::io; |
141 | | /// |
142 | | /// #[tokio::main] |
143 | | /// async fn main() -> io::Result<()> { |
144 | | /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; |
145 | | /// // use `sock` |
146 | | /// # let _ = sock; |
147 | | /// Ok(()) |
148 | | /// } |
149 | | /// ``` |
150 | 0 | pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> {Unexecuted instantiation: <tokio::net::udp::UdpSocket>::bind::<core::net::socket_addr::SocketAddr> Unexecuted instantiation: <tokio::net::udp::UdpSocket>::bind::<_> |
151 | 0 | let addrs = to_socket_addrs(addr).await?; |
152 | 0 | let mut last_err = None; |
153 | | |
154 | 0 | for addr in addrs { |
155 | 0 | match UdpSocket::bind_addr(addr) { |
156 | 0 | Ok(socket) => return Ok(socket), |
157 | 0 | Err(e) => last_err = Some(e), |
158 | | } |
159 | | } |
160 | | |
161 | 0 | Err(last_err.unwrap_or_else(|| { |
162 | 0 | io::Error::new( |
163 | 0 | io::ErrorKind::InvalidInput, |
164 | | "could not resolve to any address", |
165 | | ) |
166 | 0 | })) Unexecuted instantiation: <tokio::net::udp::UdpSocket>::bind::<core::net::socket_addr::SocketAddr>::{closure#0}::{closure#0}Unexecuted instantiation: <tokio::net::udp::UdpSocket>::bind::<_>::{closure#0}::{closure#0} |
167 | 0 | } Unexecuted instantiation: <tokio::net::udp::UdpSocket>::bind::<core::net::socket_addr::SocketAddr>::{closure#0}Unexecuted instantiation: <tokio::net::udp::UdpSocket>::bind::<_>::{closure#0} |
168 | | |
169 | 0 | fn bind_addr(addr: SocketAddr) -> io::Result<UdpSocket> { |
170 | 0 | let sys = mio::net::UdpSocket::bind(addr)?; |
171 | 0 | UdpSocket::new(sys) |
172 | 0 | } |
173 | | |
174 | | #[track_caller] |
175 | 0 | fn new(socket: mio::net::UdpSocket) -> io::Result<UdpSocket> { |
176 | 0 | let io = PollEvented::new(socket)?; |
177 | 0 | Ok(UdpSocket { io }) |
178 | 0 | } |
179 | | |
180 | | /// Creates new `UdpSocket` from a previously bound `std::net::UdpSocket`. |
181 | | /// |
182 | | /// This function is intended to be used to wrap a UDP socket from the |
183 | | /// standard library in the Tokio equivalent. |
184 | | /// |
185 | | /// This can be used in conjunction with `socket2`'s `Socket` interface to |
186 | | /// configure a socket before it's handed off, such as setting options like |
187 | | /// `reuse_address` or binding to multiple addresses. |
188 | | /// |
189 | | /// # Notes |
190 | | /// |
191 | | /// The caller is responsible for ensuring that the socket is in |
192 | | /// non-blocking mode. Otherwise all I/O operations on the socket |
193 | | /// will block the thread, which will cause unexpected behavior. |
194 | | /// Non-blocking mode can be set using [`set_nonblocking`]. |
195 | | /// |
196 | | /// Passing a listener in blocking mode is always erroneous, |
197 | | /// and the behavior in that case may change in the future. |
198 | | /// For example, it could panic. |
199 | | /// |
200 | | /// [`set_nonblocking`]: std::net::UdpSocket::set_nonblocking |
201 | | /// |
202 | | /// # Panics |
203 | | /// |
204 | | /// This function panics if thread-local runtime is not set. |
205 | | /// |
206 | | /// The runtime is usually set implicitly when this function is called |
207 | | /// from a future driven by a tokio runtime, otherwise runtime can be set |
208 | | /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function. |
209 | | /// |
210 | | /// # Example |
211 | | /// |
212 | | /// ```no_run |
213 | | /// use tokio::net::UdpSocket; |
214 | | /// # use std::{io, net::SocketAddr}; |
215 | | /// |
216 | | /// # #[tokio::main] |
217 | | /// # async fn main() -> io::Result<()> { |
218 | | /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap(); |
219 | | /// let std_sock = std::net::UdpSocket::bind(addr)?; |
220 | | /// std_sock.set_nonblocking(true)?; |
221 | | /// let sock = UdpSocket::from_std(std_sock)?; |
222 | | /// // use `sock` |
223 | | /// # Ok(()) |
224 | | /// # } |
225 | | /// ``` |
226 | | #[track_caller] |
227 | 0 | pub fn from_std(socket: net::UdpSocket) -> io::Result<UdpSocket> { |
228 | 0 | check_socket_for_blocking(&socket)?; |
229 | | |
230 | 0 | let io = mio::net::UdpSocket::from_std(socket); |
231 | 0 | UdpSocket::new(io) |
232 | 0 | } |
233 | | |
234 | | /// Turns a [`tokio::net::UdpSocket`] into a [`std::net::UdpSocket`]. |
235 | | /// |
236 | | /// The returned [`std::net::UdpSocket`] will have nonblocking mode set as |
237 | | /// `true`. Use [`set_nonblocking`] to change the blocking mode if needed. |
238 | | /// |
239 | | /// # Examples |
240 | | /// |
241 | | /// ```rust,no_run |
242 | | /// use std::error::Error; |
243 | | /// |
244 | | /// #[tokio::main] |
245 | | /// async fn main() -> Result<(), Box<dyn Error>> { |
246 | | /// let tokio_socket = tokio::net::UdpSocket::bind("127.0.0.1:0").await?; |
247 | | /// let std_socket = tokio_socket.into_std()?; |
248 | | /// std_socket.set_nonblocking(false)?; |
249 | | /// Ok(()) |
250 | | /// } |
251 | | /// ``` |
252 | | /// |
253 | | /// [`tokio::net::UdpSocket`]: UdpSocket |
254 | | /// [`std::net::UdpSocket`]: std::net::UdpSocket |
255 | | /// [`set_nonblocking`]: fn@std::net::UdpSocket::set_nonblocking |
256 | 0 | pub fn into_std(self) -> io::Result<std::net::UdpSocket> { |
257 | | #[cfg(unix)] |
258 | | { |
259 | | use std::os::unix::io::{FromRawFd, IntoRawFd}; |
260 | 0 | self.io |
261 | 0 | .into_inner() |
262 | 0 | .map(IntoRawFd::into_raw_fd) |
263 | 0 | .map(|raw_fd| unsafe { std::net::UdpSocket::from_raw_fd(raw_fd) }) |
264 | | } |
265 | | |
266 | | #[cfg(windows)] |
267 | | { |
268 | | use std::os::windows::io::{FromRawSocket, IntoRawSocket}; |
269 | | self.io |
270 | | .into_inner() |
271 | | .map(|io| io.into_raw_socket()) |
272 | | .map(|raw_socket| unsafe { std::net::UdpSocket::from_raw_socket(raw_socket) }) |
273 | | } |
274 | 0 | } |
275 | | |
276 | 0 | fn as_socket(&self) -> socket2::SockRef<'_> { |
277 | 0 | socket2::SockRef::from(self) |
278 | 0 | } |
279 | | |
280 | | /// Returns the local address that this socket is bound to. |
281 | | /// |
282 | | /// # Example |
283 | | /// |
284 | | /// ```no_run |
285 | | /// use tokio::net::UdpSocket; |
286 | | /// # use std::{io, net::SocketAddr}; |
287 | | /// |
288 | | /// # #[tokio::main] |
289 | | /// # async fn main() -> io::Result<()> { |
290 | | /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap(); |
291 | | /// let sock = UdpSocket::bind(addr).await?; |
292 | | /// // the address the socket is bound to |
293 | | /// let local_addr = sock.local_addr()?; |
294 | | /// # Ok(()) |
295 | | /// # } |
296 | | /// ``` |
297 | 0 | pub fn local_addr(&self) -> io::Result<SocketAddr> { |
298 | 0 | self.io.local_addr() |
299 | 0 | } |
300 | | |
301 | | /// Returns the socket address of the remote peer this socket was connected to. |
302 | | /// |
303 | | /// # Example |
304 | | /// |
305 | | /// ``` |
306 | | /// # if cfg!(miri) { return } // No `socket` in miri. |
307 | | /// use tokio::net::UdpSocket; |
308 | | /// |
309 | | /// # use std::{io, net::SocketAddr}; |
310 | | /// # #[tokio::main] |
311 | | /// # async fn main() -> io::Result<()> { |
312 | | /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap(); |
313 | | /// let peer = "127.0.0.1:11100".parse::<SocketAddr>().unwrap(); |
314 | | /// let sock = UdpSocket::bind(addr).await?; |
315 | | /// sock.connect(peer).await?; |
316 | | /// assert_eq!(peer, sock.peer_addr()?); |
317 | | /// # Ok(()) |
318 | | /// # } |
319 | | /// ``` |
320 | 0 | pub fn peer_addr(&self) -> io::Result<SocketAddr> { |
321 | 0 | self.io.peer_addr() |
322 | 0 | } |
323 | | |
324 | | /// Connects the UDP socket setting the default destination for send() and |
325 | | /// limiting packets that are read via `recv` from the address specified in |
326 | | /// `addr`. |
327 | | /// |
328 | | /// # Example |
329 | | /// |
330 | | /// ```no_run |
331 | | /// use tokio::net::UdpSocket; |
332 | | /// # use std::{io, net::SocketAddr}; |
333 | | /// |
334 | | /// # #[tokio::main] |
335 | | /// # async fn main() -> io::Result<()> { |
336 | | /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?; |
337 | | /// |
338 | | /// let remote_addr = "127.0.0.1:59600".parse::<SocketAddr>().unwrap(); |
339 | | /// sock.connect(remote_addr).await?; |
340 | | /// let mut buf = [0u8; 32]; |
341 | | /// // recv from remote_addr |
342 | | /// let len = sock.recv(&mut buf).await?; |
343 | | /// // send to remote_addr |
344 | | /// let _len = sock.send(&buf[..len]).await?; |
345 | | /// # Ok(()) |
346 | | /// # } |
347 | | /// ``` |
348 | 0 | pub async fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> { |
349 | 0 | let addrs = to_socket_addrs(addr).await?; |
350 | 0 | let mut last_err = None; |
351 | | |
352 | 0 | for addr in addrs { |
353 | 0 | match self.io.connect(addr) { |
354 | 0 | Ok(()) => return Ok(()), |
355 | 0 | Err(e) => last_err = Some(e), |
356 | | } |
357 | | } |
358 | | |
359 | 0 | Err(last_err.unwrap_or_else(|| { |
360 | 0 | io::Error::new( |
361 | 0 | io::ErrorKind::InvalidInput, |
362 | | "could not resolve to any address", |
363 | | ) |
364 | 0 | })) |
365 | 0 | } |
366 | | |
367 | | /// Waits for any of the requested ready states. |
368 | | /// |
369 | | /// This function is usually paired with `try_recv()` or `try_send()`. It |
370 | | /// can be used to concurrently `recv` / `send` to the same socket on a single |
371 | | /// task without splitting the socket. |
372 | | /// |
373 | | /// The function may complete without the socket being ready. This is a |
374 | | /// false-positive and attempting an operation will return with |
375 | | /// `io::ErrorKind::WouldBlock`. The function can also return with an empty |
376 | | /// [`Ready`] set, so you should always check the returned value and possibly |
377 | | /// wait again if the requested states are not set. |
378 | | /// |
379 | | /// # Cancel safety |
380 | | /// |
381 | | /// This method is cancel safe. Once a readiness event occurs, the method |
382 | | /// will continue to return immediately until the readiness event is |
383 | | /// consumed by an attempt to read or write that fails with `WouldBlock` or |
384 | | /// `Poll::Pending`. |
385 | | /// |
386 | | /// # Examples |
387 | | /// |
388 | | /// Concurrently receive from and send to the socket on the same task |
389 | | /// without splitting. |
390 | | /// |
391 | | /// ```no_run |
392 | | /// use tokio::io::{self, Interest}; |
393 | | /// use tokio::net::UdpSocket; |
394 | | /// |
395 | | /// #[tokio::main] |
396 | | /// async fn main() -> io::Result<()> { |
397 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
398 | | /// socket.connect("127.0.0.1:8081").await?; |
399 | | /// |
400 | | /// loop { |
401 | | /// let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?; |
402 | | /// |
403 | | /// if ready.is_readable() { |
404 | | /// // The buffer is **not** included in the async task and will only exist |
405 | | /// // on the stack. |
406 | | /// let mut data = [0; 1024]; |
407 | | /// match socket.try_recv(&mut data[..]) { |
408 | | /// Ok(n) => { |
409 | | /// println!("received {:?}", &data[..n]); |
410 | | /// } |
411 | | /// // False-positive, continue |
412 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} |
413 | | /// Err(e) => { |
414 | | /// return Err(e); |
415 | | /// } |
416 | | /// } |
417 | | /// } |
418 | | /// |
419 | | /// if ready.is_writable() { |
420 | | /// // Write some data |
421 | | /// match socket.try_send(b"hello world") { |
422 | | /// Ok(n) => { |
423 | | /// println!("sent {} bytes", n); |
424 | | /// } |
425 | | /// // False-positive, continue |
426 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} |
427 | | /// Err(e) => { |
428 | | /// return Err(e); |
429 | | /// } |
430 | | /// } |
431 | | /// } |
432 | | /// } |
433 | | /// } |
434 | | /// ``` |
435 | 0 | pub async fn ready(&self, interest: Interest) -> io::Result<Ready> { |
436 | 0 | let event = self.io.registration().readiness(interest).await?; |
437 | 0 | Ok(event.ready) |
438 | 0 | } |
439 | | |
440 | | /// Waits for the socket to become writable. |
441 | | /// |
442 | | /// This function is equivalent to `ready(Interest::WRITABLE)` and is |
443 | | /// usually paired with `try_send()` or `try_send_to()`. |
444 | | /// |
445 | | /// The function may complete without the socket being writable. This is a |
446 | | /// false-positive and attempting a `try_send()` will return with |
447 | | /// `io::ErrorKind::WouldBlock`. |
448 | | /// |
449 | | /// # Cancel safety |
450 | | /// |
451 | | /// This method is cancel safe. Once a readiness event occurs, the method |
452 | | /// will continue to return immediately until the readiness event is |
453 | | /// consumed by an attempt to write that fails with `WouldBlock` or |
454 | | /// `Poll::Pending`. |
455 | | /// |
456 | | /// # Examples |
457 | | /// |
458 | | /// ```no_run |
459 | | /// use tokio::net::UdpSocket; |
460 | | /// use std::io; |
461 | | /// |
462 | | /// #[tokio::main] |
463 | | /// async fn main() -> io::Result<()> { |
464 | | /// // Bind socket |
465 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
466 | | /// socket.connect("127.0.0.1:8081").await?; |
467 | | /// |
468 | | /// loop { |
469 | | /// // Wait for the socket to be writable |
470 | | /// socket.writable().await?; |
471 | | /// |
472 | | /// // Try to send data, this may still fail with `WouldBlock` |
473 | | /// // if the readiness event is a false positive. |
474 | | /// match socket.try_send(b"hello world") { |
475 | | /// Ok(n) => { |
476 | | /// break; |
477 | | /// } |
478 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
479 | | /// continue; |
480 | | /// } |
481 | | /// Err(e) => { |
482 | | /// return Err(e); |
483 | | /// } |
484 | | /// } |
485 | | /// } |
486 | | /// |
487 | | /// Ok(()) |
488 | | /// } |
489 | | /// ``` |
490 | 0 | pub async fn writable(&self) -> io::Result<()> { |
491 | 0 | self.ready(Interest::WRITABLE).await?; |
492 | 0 | Ok(()) |
493 | 0 | } |
494 | | |
495 | | /// Polls for write/send readiness. |
496 | | /// |
497 | | /// If the udp stream is not currently ready for sending, this method will |
498 | | /// store a clone of the `Waker` from the provided `Context`. When the udp |
499 | | /// stream becomes ready for sending, `Waker::wake` will be called on the |
500 | | /// waker. |
501 | | /// |
502 | | /// Note that on multiple calls to `poll_send_ready` or `poll_send`, only |
503 | | /// the `Waker` from the `Context` passed to the most recent call is |
504 | | /// scheduled to receive a wakeup. (However, `poll_recv_ready` retains a |
505 | | /// second, independent waker.) |
506 | | /// |
507 | | /// This function is intended for cases where creating and pinning a future |
508 | | /// via [`writable`] is not feasible. Where possible, using [`writable`] is |
509 | | /// preferred, as this supports polling from multiple tasks at once. |
510 | | /// |
511 | | /// # Return value |
512 | | /// |
513 | | /// The function returns: |
514 | | /// |
515 | | /// * `Poll::Pending` if the udp stream is not ready for writing. |
516 | | /// * `Poll::Ready(Ok(()))` if the udp stream is ready for writing. |
517 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
518 | | /// |
519 | | /// # Errors |
520 | | /// |
521 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
522 | | /// |
523 | | /// [`writable`]: method@Self::writable |
524 | 0 | pub fn poll_send_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
525 | 0 | self.io.registration().poll_write_ready(cx).map_ok(|_| ()) |
526 | 0 | } |
527 | | |
528 | | /// Sends data on the socket to the remote address that the socket is |
529 | | /// connected to. |
530 | | /// |
531 | | /// The [`connect`] method will connect this socket to a remote address. |
532 | | /// This method will fail if the socket is not connected. |
533 | | /// |
534 | | /// [`connect`]: method@Self::connect |
535 | | /// |
536 | | /// # Return |
537 | | /// |
538 | | /// On success, the number of bytes sent is returned, otherwise, the |
539 | | /// encountered error is returned. |
540 | | /// |
541 | | /// # Cancel safety |
542 | | /// |
543 | | /// This method is cancel safe. If `send` is used as the event in a |
544 | | /// [`tokio::select!`](crate::select) statement and some other branch |
545 | | /// completes first, then it is guaranteed that the message was not sent. |
546 | | /// |
547 | | /// # Examples |
548 | | /// |
549 | | /// ```no_run |
550 | | /// use tokio::io; |
551 | | /// use tokio::net::UdpSocket; |
552 | | /// |
553 | | /// #[tokio::main] |
554 | | /// async fn main() -> io::Result<()> { |
555 | | /// // Bind socket |
556 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
557 | | /// socket.connect("127.0.0.1:8081").await?; |
558 | | /// |
559 | | /// // Send a message |
560 | | /// socket.send(b"hello world").await?; |
561 | | /// |
562 | | /// Ok(()) |
563 | | /// } |
564 | | /// ``` |
565 | 0 | pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { |
566 | 0 | self.io |
567 | 0 | .registration() |
568 | 0 | .async_io(Interest::WRITABLE, || self.io.send(buf)) |
569 | 0 | .await |
570 | 0 | } |
571 | | |
572 | | /// Attempts to send data on the socket to the remote address to which it |
573 | | /// was previously `connect`ed. |
574 | | /// |
575 | | /// The [`connect`] method will connect this socket to a remote address. |
576 | | /// This method will fail if the socket is not connected. |
577 | | /// |
578 | | /// Note that on multiple calls to a `poll_*` method in the send direction, |
579 | | /// only the `Waker` from the `Context` passed to the most recent call will |
580 | | /// be scheduled to receive a wakeup. |
581 | | /// |
582 | | /// # Return value |
583 | | /// |
584 | | /// The function returns: |
585 | | /// |
586 | | /// * `Poll::Pending` if the socket is not available to write |
587 | | /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent |
588 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
589 | | /// |
590 | | /// # Errors |
591 | | /// |
592 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
593 | | /// |
594 | | /// [`connect`]: method@Self::connect |
595 | 0 | pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> { |
596 | 0 | self.io |
597 | 0 | .registration() |
598 | 0 | .poll_write_io(cx, || self.io.send(buf)) |
599 | 0 | } |
600 | | |
601 | | /// Tries to send data on the socket to the remote address to which it is |
602 | | /// connected. |
603 | | /// |
604 | | /// When the socket buffer is full, `Err(io::ErrorKind::WouldBlock)` is |
605 | | /// returned. This function is usually paired with `writable()`. |
606 | | /// |
607 | | /// # Returns |
608 | | /// |
609 | | /// If successful, `Ok(n)` is returned, where `n` is the number of bytes |
610 | | /// sent. If the socket is not ready to send data, |
611 | | /// `Err(ErrorKind::WouldBlock)` is returned. |
612 | | /// |
613 | | /// # Examples |
614 | | /// |
615 | | /// ```no_run |
616 | | /// use tokio::net::UdpSocket; |
617 | | /// use std::io; |
618 | | /// |
619 | | /// #[tokio::main] |
620 | | /// async fn main() -> io::Result<()> { |
621 | | /// // Bind a UDP socket |
622 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
623 | | /// |
624 | | /// // Connect to a peer |
625 | | /// socket.connect("127.0.0.1:8081").await?; |
626 | | /// |
627 | | /// loop { |
628 | | /// // Wait for the socket to be writable |
629 | | /// socket.writable().await?; |
630 | | /// |
631 | | /// // Try to send data, this may still fail with `WouldBlock` |
632 | | /// // if the readiness event is a false positive. |
633 | | /// match socket.try_send(b"hello world") { |
634 | | /// Ok(n) => { |
635 | | /// break; |
636 | | /// } |
637 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
638 | | /// continue; |
639 | | /// } |
640 | | /// Err(e) => { |
641 | | /// return Err(e); |
642 | | /// } |
643 | | /// } |
644 | | /// } |
645 | | /// |
646 | | /// Ok(()) |
647 | | /// } |
648 | | /// ``` |
649 | 0 | pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> { |
650 | 0 | self.io |
651 | 0 | .registration() |
652 | 0 | .try_io(Interest::WRITABLE, || self.io.send(buf)) |
653 | 0 | } |
654 | | |
655 | | /// Waits for the socket to become readable. |
656 | | /// |
657 | | /// This function is equivalent to `ready(Interest::READABLE)` and is usually |
658 | | /// paired with `try_recv()`. |
659 | | /// |
660 | | /// The function may complete without the socket being readable. This is a |
661 | | /// false-positive and attempting a `try_recv()` will return with |
662 | | /// `io::ErrorKind::WouldBlock`. |
663 | | /// |
664 | | /// # Cancel safety |
665 | | /// |
666 | | /// This method is cancel safe. Once a readiness event occurs, the method |
667 | | /// will continue to return immediately until the readiness event is |
668 | | /// consumed by an attempt to read that fails with `WouldBlock` or |
669 | | /// `Poll::Pending`. |
670 | | /// |
671 | | /// # Examples |
672 | | /// |
673 | | /// ```no_run |
674 | | /// use tokio::net::UdpSocket; |
675 | | /// use std::io; |
676 | | /// |
677 | | /// #[tokio::main] |
678 | | /// async fn main() -> io::Result<()> { |
679 | | /// // Connect to a peer |
680 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
681 | | /// socket.connect("127.0.0.1:8081").await?; |
682 | | /// |
683 | | /// loop { |
684 | | /// // Wait for the socket to be readable |
685 | | /// socket.readable().await?; |
686 | | /// |
687 | | /// // The buffer is **not** included in the async task and will |
688 | | /// // only exist on the stack. |
689 | | /// let mut buf = [0; 1024]; |
690 | | /// |
691 | | /// // Try to recv data, this may still fail with `WouldBlock` |
692 | | /// // if the readiness event is a false positive. |
693 | | /// match socket.try_recv(&mut buf) { |
694 | | /// Ok(n) => { |
695 | | /// println!("GOT {:?}", &buf[..n]); |
696 | | /// break; |
697 | | /// } |
698 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
699 | | /// continue; |
700 | | /// } |
701 | | /// Err(e) => { |
702 | | /// return Err(e); |
703 | | /// } |
704 | | /// } |
705 | | /// } |
706 | | /// |
707 | | /// Ok(()) |
708 | | /// } |
709 | | /// ``` |
710 | 0 | pub async fn readable(&self) -> io::Result<()> { |
711 | 0 | self.ready(Interest::READABLE).await?; |
712 | 0 | Ok(()) |
713 | 0 | } |
714 | | |
715 | | /// Polls for read/receive readiness. |
716 | | /// |
717 | | /// If the udp stream is not currently ready for receiving, this method will |
718 | | /// store a clone of the `Waker` from the provided `Context`. When the udp |
719 | | /// socket becomes ready for reading, `Waker::wake` will be called on the |
720 | | /// waker. |
721 | | /// |
722 | | /// Note that on multiple calls to `poll_recv_ready`, `poll_recv` or |
723 | | /// `poll_peek`, only the `Waker` from the `Context` passed to the most |
724 | | /// recent call is scheduled to receive a wakeup. (However, |
725 | | /// `poll_send_ready` retains a second, independent waker.) |
726 | | /// |
727 | | /// This function is intended for cases where creating and pinning a future |
728 | | /// via [`readable`] is not feasible. Where possible, using [`readable`] is |
729 | | /// preferred, as this supports polling from multiple tasks at once. |
730 | | /// |
731 | | /// # Return value |
732 | | /// |
733 | | /// The function returns: |
734 | | /// |
735 | | /// * `Poll::Pending` if the udp stream is not ready for reading. |
736 | | /// * `Poll::Ready(Ok(()))` if the udp stream is ready for reading. |
737 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
738 | | /// |
739 | | /// # Errors |
740 | | /// |
741 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
742 | | /// |
743 | | /// [`readable`]: method@Self::readable |
744 | 0 | pub fn poll_recv_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
745 | 0 | self.io.registration().poll_read_ready(cx).map_ok(|_| ()) |
746 | 0 | } |
747 | | |
748 | | /// Receives a single datagram message on the socket from the remote address |
749 | | /// to which it is connected. On success, returns the number of bytes read. |
750 | | /// |
751 | | /// The function must be called with valid byte array `buf` of sufficient |
752 | | /// size to hold the message bytes. If a message is too long to fit in the |
753 | | /// supplied buffer, excess bytes may be discarded. |
754 | | /// |
755 | | /// The [`connect`] method will connect this socket to a remote address. |
756 | | /// This method will fail if the socket is not connected. |
757 | | /// |
758 | | /// # Cancel safety |
759 | | /// |
760 | | /// This method is cancel safe. If `recv` is used as the event in a |
761 | | /// [`tokio::select!`](crate::select) statement and some other branch |
762 | | /// completes first, it is guaranteed that no messages were received on this |
763 | | /// socket. |
764 | | /// |
765 | | /// [`connect`]: method@Self::connect |
766 | | /// |
767 | | /// ```no_run |
768 | | /// use tokio::net::UdpSocket; |
769 | | /// use std::io; |
770 | | /// |
771 | | /// #[tokio::main] |
772 | | /// async fn main() -> io::Result<()> { |
773 | | /// // Bind socket |
774 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
775 | | /// socket.connect("127.0.0.1:8081").await?; |
776 | | /// |
777 | | /// let mut buf = vec![0; 10]; |
778 | | /// let n = socket.recv(&mut buf).await?; |
779 | | /// |
780 | | /// println!("received {} bytes {:?}", n, &buf[..n]); |
781 | | /// |
782 | | /// Ok(()) |
783 | | /// } |
784 | | /// ``` |
785 | 0 | pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
786 | 0 | self.io |
787 | 0 | .registration() |
788 | 0 | .async_io(Interest::READABLE, || self.io.recv(buf)) |
789 | 0 | .await |
790 | 0 | } |
791 | | |
792 | | /// Attempts to receive a single datagram message on the socket from the remote |
793 | | /// address to which it is `connect`ed. |
794 | | /// |
795 | | /// The [`connect`] method will connect this socket to a remote address. This method |
796 | | /// resolves to an error if the socket is not connected. |
797 | | /// |
798 | | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
799 | | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
800 | | /// receive a wakeup. |
801 | | /// |
802 | | /// # Return value |
803 | | /// |
804 | | /// The function returns: |
805 | | /// |
806 | | /// * `Poll::Pending` if the socket is not ready to read |
807 | | /// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready |
808 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
809 | | /// |
810 | | /// # Errors |
811 | | /// |
812 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
813 | | /// |
814 | | /// [`connect`]: method@Self::connect |
815 | 0 | pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> { |
816 | | #[allow(clippy::blocks_in_conditions)] |
817 | 0 | let n = ready!(self.io.registration().poll_read_io(cx, || { |
818 | | // Safety: will not read the maybe uninitialized bytes. |
819 | 0 | let b = unsafe { |
820 | 0 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
821 | | }; |
822 | | |
823 | 0 | self.io.recv(b) |
824 | 0 | }))?; |
825 | | |
826 | | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
827 | 0 | unsafe { |
828 | 0 | buf.assume_init(n); |
829 | 0 | } |
830 | 0 | buf.advance(n); |
831 | 0 | Poll::Ready(Ok(())) |
832 | 0 | } |
833 | | |
834 | | /// Tries to receive a single datagram message on the socket from the remote |
835 | | /// address to which it is connected. On success, returns the number of |
836 | | /// bytes read. |
837 | | /// |
838 | | /// This method must be called with valid byte array `buf` of sufficient size |
839 | | /// to hold the message bytes. If a message is too long to fit in the |
840 | | /// supplied buffer, excess bytes may be discarded. |
841 | | /// |
842 | | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
843 | | /// returned. This function is usually paired with `readable()`. |
844 | | /// |
845 | | /// # Examples |
846 | | /// |
847 | | /// ```no_run |
848 | | /// use tokio::net::UdpSocket; |
849 | | /// use std::io; |
850 | | /// |
851 | | /// #[tokio::main] |
852 | | /// async fn main() -> io::Result<()> { |
853 | | /// // Connect to a peer |
854 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
855 | | /// socket.connect("127.0.0.1:8081").await?; |
856 | | /// |
857 | | /// loop { |
858 | | /// // Wait for the socket to be readable |
859 | | /// socket.readable().await?; |
860 | | /// |
861 | | /// // The buffer is **not** included in the async task and will |
862 | | /// // only exist on the stack. |
863 | | /// let mut buf = [0; 1024]; |
864 | | /// |
865 | | /// // Try to recv data, this may still fail with `WouldBlock` |
866 | | /// // if the readiness event is a false positive. |
867 | | /// match socket.try_recv(&mut buf) { |
868 | | /// Ok(n) => { |
869 | | /// println!("GOT {:?}", &buf[..n]); |
870 | | /// break; |
871 | | /// } |
872 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
873 | | /// continue; |
874 | | /// } |
875 | | /// Err(e) => { |
876 | | /// return Err(e); |
877 | | /// } |
878 | | /// } |
879 | | /// } |
880 | | /// |
881 | | /// Ok(()) |
882 | | /// } |
883 | | /// ``` |
884 | 0 | pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
885 | 0 | self.io |
886 | 0 | .registration() |
887 | 0 | .try_io(Interest::READABLE, || self.io.recv(buf)) |
888 | 0 | } |
889 | | |
890 | | cfg_io_util! { |
891 | | /// Tries to receive data from the stream into the provided buffer, advancing the |
892 | | /// buffer's internal cursor, returning how many bytes were read. |
893 | | /// |
894 | | /// This method must be called with valid byte array `buf` of sufficient size |
895 | | /// to hold the message bytes. If a message is too long to fit in the |
896 | | /// supplied buffer, excess bytes may be discarded. |
897 | | /// |
898 | | /// This method can be used even if `buf` is uninitialized. |
899 | | /// |
900 | | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
901 | | /// returned. This function is usually paired with `readable()`. |
902 | | /// |
903 | | /// # Examples |
904 | | /// |
905 | | /// ```no_run |
906 | | /// use tokio::net::UdpSocket; |
907 | | /// use std::io; |
908 | | /// |
909 | | /// #[tokio::main] |
910 | | /// async fn main() -> io::Result<()> { |
911 | | /// // Connect to a peer |
912 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
913 | | /// socket.connect("127.0.0.1:8081").await?; |
914 | | /// |
915 | | /// loop { |
916 | | /// // Wait for the socket to be readable |
917 | | /// socket.readable().await?; |
918 | | /// |
919 | | /// let mut buf = Vec::with_capacity(1024); |
920 | | /// |
921 | | /// // Try to recv data, this may still fail with `WouldBlock` |
922 | | /// // if the readiness event is a false positive. |
923 | | /// match socket.try_recv_buf(&mut buf) { |
924 | | /// Ok(n) => { |
925 | | /// println!("GOT {:?}", &buf[..n]); |
926 | | /// break; |
927 | | /// } |
928 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
929 | | /// continue; |
930 | | /// } |
931 | | /// Err(e) => { |
932 | | /// return Err(e); |
933 | | /// } |
934 | | /// } |
935 | | /// } |
936 | | /// |
937 | | /// Ok(()) |
938 | | /// } |
939 | | /// ``` |
940 | 0 | pub fn try_recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> { |
941 | 0 | self.io.registration().try_io(Interest::READABLE, || { |
942 | 0 | let dst = buf.chunk_mut(); |
943 | 0 | let dst = |
944 | 0 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
945 | | |
946 | 0 | let n = (*self.io).recv(dst)?; |
947 | | |
948 | | // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the |
949 | | // buffer. |
950 | 0 | unsafe { |
951 | 0 | buf.advance_mut(n); |
952 | 0 | } |
953 | | |
954 | 0 | Ok(n) |
955 | 0 | }) |
956 | 0 | } |
957 | | |
958 | | /// Receives a single datagram message on the socket from the remote address |
959 | | /// to which it is connected, advancing the buffer's internal cursor, |
960 | | /// returning how many bytes were read. |
961 | | /// |
962 | | /// This method must be called with valid byte array `buf` of sufficient size |
963 | | /// to hold the message bytes. If a message is too long to fit in the |
964 | | /// supplied buffer, excess bytes may be discarded. |
965 | | /// |
966 | | /// This method can be used even if `buf` is uninitialized. |
967 | | /// |
968 | | /// # Examples |
969 | | /// |
970 | | /// ```no_run |
971 | | /// use tokio::net::UdpSocket; |
972 | | /// use std::io; |
973 | | /// |
974 | | /// #[tokio::main] |
975 | | /// async fn main() -> io::Result<()> { |
976 | | /// // Connect to a peer |
977 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
978 | | /// socket.connect("127.0.0.1:8081").await?; |
979 | | /// |
980 | | /// let mut buf = Vec::with_capacity(512); |
981 | | /// let len = socket.recv_buf(&mut buf).await?; |
982 | | /// |
983 | | /// println!("received {} bytes {:?}", len, &buf[..len]); |
984 | | /// |
985 | | /// Ok(()) |
986 | | /// } |
987 | | /// ``` |
988 | 0 | pub async fn recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> { |
989 | 0 | self.io.registration().async_io(Interest::READABLE, || { |
990 | 0 | let dst = buf.chunk_mut(); |
991 | 0 | let dst = |
992 | 0 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
993 | | |
994 | 0 | let n = (*self.io).recv(dst)?; |
995 | | |
996 | | // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the |
997 | | // buffer. |
998 | 0 | unsafe { |
999 | 0 | buf.advance_mut(n); |
1000 | 0 | } |
1001 | | |
1002 | 0 | Ok(n) |
1003 | 0 | }).await |
1004 | 0 | } |
1005 | | |
1006 | | /// Tries to receive a single datagram message on the socket. On success, |
1007 | | /// returns the number of bytes read and the origin. |
1008 | | /// |
1009 | | /// This method must be called with valid byte array `buf` of sufficient size |
1010 | | /// to hold the message bytes. If a message is too long to fit in the |
1011 | | /// supplied buffer, excess bytes may be discarded. |
1012 | | /// |
1013 | | /// This method can be used even if `buf` is uninitialized. |
1014 | | /// |
1015 | | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1016 | | /// returned. This function is usually paired with `readable()`. |
1017 | | /// |
1018 | | /// # Notes |
1019 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1020 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1021 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1022 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1023 | | /// It is important to be aware of this when designing your application-level protocol. |
1024 | | /// |
1025 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1026 | | /// |
1027 | | /// # Examples |
1028 | | /// |
1029 | | /// ```no_run |
1030 | | /// use tokio::net::UdpSocket; |
1031 | | /// use std::io; |
1032 | | /// |
1033 | | /// #[tokio::main] |
1034 | | /// async fn main() -> io::Result<()> { |
1035 | | /// // Connect to a peer |
1036 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1037 | | /// |
1038 | | /// loop { |
1039 | | /// // Wait for the socket to be readable |
1040 | | /// socket.readable().await?; |
1041 | | /// |
1042 | | /// let mut buf = Vec::with_capacity(1024); |
1043 | | /// |
1044 | | /// // Try to recv data, this may still fail with `WouldBlock` |
1045 | | /// // if the readiness event is a false positive. |
1046 | | /// match socket.try_recv_buf_from(&mut buf) { |
1047 | | /// Ok((n, _addr)) => { |
1048 | | /// println!("GOT {:?}", &buf[..n]); |
1049 | | /// break; |
1050 | | /// } |
1051 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
1052 | | /// continue; |
1053 | | /// } |
1054 | | /// Err(e) => { |
1055 | | /// return Err(e); |
1056 | | /// } |
1057 | | /// } |
1058 | | /// } |
1059 | | /// |
1060 | | /// Ok(()) |
1061 | | /// } |
1062 | | /// ``` |
1063 | 0 | pub fn try_recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> { |
1064 | 0 | self.io.registration().try_io(Interest::READABLE, || { |
1065 | 0 | let dst = buf.chunk_mut(); |
1066 | 0 | let dst = |
1067 | 0 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
1068 | | |
1069 | 0 | let (n, addr) = (*self.io).recv_from(dst)?; |
1070 | | |
1071 | | // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the |
1072 | | // buffer. |
1073 | 0 | unsafe { |
1074 | 0 | buf.advance_mut(n); |
1075 | 0 | } |
1076 | | |
1077 | 0 | Ok((n, addr)) |
1078 | 0 | }) |
1079 | 0 | } |
1080 | | |
1081 | | /// Receives a single datagram message on the socket, advancing the |
1082 | | /// buffer's internal cursor, returning how many bytes were read and the origin. |
1083 | | /// |
1084 | | /// This method must be called with valid byte array `buf` of sufficient size |
1085 | | /// to hold the message bytes. If a message is too long to fit in the |
1086 | | /// supplied buffer, excess bytes may be discarded. |
1087 | | /// |
1088 | | /// This method can be used even if `buf` is uninitialized. |
1089 | | /// |
1090 | | /// # Notes |
1091 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1092 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1093 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1094 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1095 | | /// It is important to be aware of this when designing your application-level protocol. |
1096 | | /// |
1097 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1098 | | /// |
1099 | | /// # Examples |
1100 | | /// |
1101 | | /// ```no_run |
1102 | | /// use tokio::net::UdpSocket; |
1103 | | /// use std::io; |
1104 | | /// |
1105 | | /// #[tokio::main] |
1106 | | /// async fn main() -> io::Result<()> { |
1107 | | /// // Connect to a peer |
1108 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1109 | | /// socket.connect("127.0.0.1:8081").await?; |
1110 | | /// |
1111 | | /// let mut buf = Vec::with_capacity(512); |
1112 | | /// let (len, addr) = socket.recv_buf_from(&mut buf).await?; |
1113 | | /// |
1114 | | /// println!("received {:?} bytes from {:?}", len, addr); |
1115 | | /// |
1116 | | /// Ok(()) |
1117 | | /// } |
1118 | | /// ``` |
1119 | 0 | pub async fn recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> { |
1120 | 0 | self.io.registration().async_io(Interest::READABLE, || { |
1121 | 0 | let dst = buf.chunk_mut(); |
1122 | 0 | let dst = |
1123 | 0 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
1124 | | |
1125 | 0 | let (n, addr) = (*self.io).recv_from(dst)?; |
1126 | | |
1127 | | // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the |
1128 | | // buffer. |
1129 | 0 | unsafe { |
1130 | 0 | buf.advance_mut(n); |
1131 | 0 | } |
1132 | | |
1133 | 0 | Ok((n,addr)) |
1134 | 0 | }).await |
1135 | 0 | } |
1136 | | } |
1137 | | |
1138 | | /// Sends data on the socket to the given address. On success, returns the |
1139 | | /// number of bytes written. |
1140 | | /// |
1141 | | /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its |
1142 | | /// documentation for concrete examples. |
1143 | | /// |
1144 | | /// It is possible for `addr` to yield multiple addresses, but `send_to` |
1145 | | /// will only send data to the first address yielded by `addr`. |
1146 | | /// |
1147 | | /// This will return an error when the IP version of the local socket does |
1148 | | /// not match that returned from [`ToSocketAddrs`]. |
1149 | | /// |
1150 | | /// [`ToSocketAddrs`]: crate::net::ToSocketAddrs |
1151 | | /// |
1152 | | /// # Cancel safety |
1153 | | /// |
1154 | | /// This method is cancel safe. If `send_to` is used as the event in a |
1155 | | /// [`tokio::select!`](crate::select) statement and some other branch |
1156 | | /// completes first, then it is guaranteed that the message was not sent. |
1157 | | /// |
1158 | | /// # Example |
1159 | | /// |
1160 | | /// ```no_run |
1161 | | /// use tokio::net::UdpSocket; |
1162 | | /// use std::io; |
1163 | | /// |
1164 | | /// #[tokio::main] |
1165 | | /// async fn main() -> io::Result<()> { |
1166 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1167 | | /// let len = socket.send_to(b"hello world", "127.0.0.1:8081").await?; |
1168 | | /// |
1169 | | /// println!("Sent {} bytes", len); |
1170 | | /// |
1171 | | /// Ok(()) |
1172 | | /// } |
1173 | | /// ``` |
1174 | 0 | pub async fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], addr: A) -> io::Result<usize> { |
1175 | 0 | let mut addrs = to_socket_addrs(addr).await?; |
1176 | | |
1177 | 0 | match addrs.next() { |
1178 | 0 | Some(target) => self.send_to_addr(buf, target).await, |
1179 | 0 | None => Err(io::Error::new( |
1180 | 0 | io::ErrorKind::InvalidInput, |
1181 | 0 | "no addresses to send data to", |
1182 | 0 | )), |
1183 | | } |
1184 | 0 | } |
1185 | | |
1186 | | /// Attempts to send data on the socket to a given address. |
1187 | | /// |
1188 | | /// Note that on multiple calls to a `poll_*` method in the send direction, only the |
1189 | | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1190 | | /// receive a wakeup. |
1191 | | /// |
1192 | | /// # Return value |
1193 | | /// |
1194 | | /// The function returns: |
1195 | | /// |
1196 | | /// * `Poll::Pending` if the socket is not ready to write |
1197 | | /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent. |
1198 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1199 | | /// |
1200 | | /// # Errors |
1201 | | /// |
1202 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
1203 | 0 | pub fn poll_send_to( |
1204 | 0 | &self, |
1205 | 0 | cx: &mut Context<'_>, |
1206 | 0 | buf: &[u8], |
1207 | 0 | target: SocketAddr, |
1208 | 0 | ) -> Poll<io::Result<usize>> { |
1209 | 0 | self.io |
1210 | 0 | .registration() |
1211 | 0 | .poll_write_io(cx, || self.io.send_to(buf, target)) |
1212 | 0 | } |
1213 | | |
1214 | | /// Tries to send data on the socket to the given address, but if the send is |
1215 | | /// blocked this will return right away. |
1216 | | /// |
1217 | | /// This function is usually paired with `writable()`. |
1218 | | /// |
1219 | | /// # Returns |
1220 | | /// |
1221 | | /// If successful, returns the number of bytes sent |
1222 | | /// |
1223 | | /// Users should ensure that when the remote cannot receive, the |
1224 | | /// [`ErrorKind::WouldBlock`] is properly handled. An error can also occur |
1225 | | /// if the IP version of the socket does not match that of `target`. |
1226 | | /// |
1227 | | /// [`ErrorKind::WouldBlock`]: std::io::ErrorKind::WouldBlock |
1228 | | /// |
1229 | | /// # Example |
1230 | | /// |
1231 | | /// ```no_run |
1232 | | /// use tokio::net::UdpSocket; |
1233 | | /// use std::error::Error; |
1234 | | /// use std::io; |
1235 | | /// |
1236 | | /// #[tokio::main] |
1237 | | /// async fn main() -> Result<(), Box<dyn Error>> { |
1238 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1239 | | /// |
1240 | | /// let dst = "127.0.0.1:8081".parse()?; |
1241 | | /// |
1242 | | /// loop { |
1243 | | /// socket.writable().await?; |
1244 | | /// |
1245 | | /// match socket.try_send_to(&b"hello world"[..], dst) { |
1246 | | /// Ok(sent) => { |
1247 | | /// println!("sent {} bytes", sent); |
1248 | | /// break; |
1249 | | /// } |
1250 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
1251 | | /// // Writable false positive. |
1252 | | /// continue; |
1253 | | /// } |
1254 | | /// Err(e) => return Err(e.into()), |
1255 | | /// } |
1256 | | /// } |
1257 | | /// |
1258 | | /// Ok(()) |
1259 | | /// } |
1260 | | /// ``` |
1261 | 0 | pub fn try_send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { |
1262 | 0 | self.io |
1263 | 0 | .registration() |
1264 | 0 | .try_io(Interest::WRITABLE, || self.io.send_to(buf, target)) |
1265 | 0 | } |
1266 | | |
1267 | 0 | async fn send_to_addr(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { |
1268 | 0 | self.io |
1269 | 0 | .registration() |
1270 | 0 | .async_io(Interest::WRITABLE, || self.io.send_to(buf, target)) |
1271 | 0 | .await |
1272 | 0 | } |
1273 | | |
1274 | | /// Receives a single datagram message on the socket. On success, returns |
1275 | | /// the number of bytes read and the origin. |
1276 | | /// |
1277 | | /// The function must be called with valid byte array `buf` of sufficient |
1278 | | /// size to hold the message bytes. If a message is too long to fit in the |
1279 | | /// supplied buffer, excess bytes may be discarded. |
1280 | | /// |
1281 | | /// # Cancel safety |
1282 | | /// |
1283 | | /// This method is cancel safe. If `recv_from` is used as the event in a |
1284 | | /// [`tokio::select!`](crate::select) statement and some other branch |
1285 | | /// completes first, it is guaranteed that no messages were received on this |
1286 | | /// socket. |
1287 | | /// |
1288 | | /// # Example |
1289 | | /// |
1290 | | /// ```no_run |
1291 | | /// use tokio::net::UdpSocket; |
1292 | | /// use std::io; |
1293 | | /// |
1294 | | /// #[tokio::main] |
1295 | | /// async fn main() -> io::Result<()> { |
1296 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1297 | | /// |
1298 | | /// let mut buf = vec![0u8; 32]; |
1299 | | /// let (len, addr) = socket.recv_from(&mut buf).await?; |
1300 | | /// |
1301 | | /// println!("received {:?} bytes from {:?}", len, addr); |
1302 | | /// |
1303 | | /// Ok(()) |
1304 | | /// } |
1305 | | /// ``` |
1306 | | /// |
1307 | | /// # Notes |
1308 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1309 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1310 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1311 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1312 | | /// It is important to be aware of this when designing your application-level protocol. |
1313 | | /// |
1314 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1315 | 0 | pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1316 | 0 | self.io |
1317 | 0 | .registration() |
1318 | 0 | .async_io(Interest::READABLE, || self.io.recv_from(buf)) |
1319 | 0 | .await |
1320 | 0 | } |
1321 | | |
1322 | | /// Attempts to receive a single datagram on the socket. |
1323 | | /// |
1324 | | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1325 | | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1326 | | /// receive a wakeup. |
1327 | | /// |
1328 | | /// # Return value |
1329 | | /// |
1330 | | /// The function returns: |
1331 | | /// |
1332 | | /// * `Poll::Pending` if the socket is not ready to read |
1333 | | /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready |
1334 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1335 | | /// |
1336 | | /// # Errors |
1337 | | /// |
1338 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
1339 | | /// |
1340 | | /// # Notes |
1341 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1342 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1343 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1344 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1345 | | /// It is important to be aware of this when designing your application-level protocol. |
1346 | | /// |
1347 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1348 | 0 | pub fn poll_recv_from( |
1349 | 0 | &self, |
1350 | 0 | cx: &mut Context<'_>, |
1351 | 0 | buf: &mut ReadBuf<'_>, |
1352 | 0 | ) -> Poll<io::Result<SocketAddr>> { |
1353 | | #[allow(clippy::blocks_in_conditions)] |
1354 | 0 | let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { |
1355 | | // Safety: will not read the maybe uninitialized bytes. |
1356 | 0 | let b = unsafe { |
1357 | 0 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
1358 | | }; |
1359 | | |
1360 | 0 | self.io.recv_from(b) |
1361 | 0 | }))?; |
1362 | | |
1363 | | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
1364 | 0 | unsafe { |
1365 | 0 | buf.assume_init(n); |
1366 | 0 | } |
1367 | 0 | buf.advance(n); |
1368 | 0 | Poll::Ready(Ok(addr)) |
1369 | 0 | } |
1370 | | |
1371 | | /// Tries to receive a single datagram message on the socket. On success, |
1372 | | /// returns the number of bytes read and the origin. |
1373 | | /// |
1374 | | /// This method must be called with valid byte array `buf` of sufficient size |
1375 | | /// to hold the message bytes. If a message is too long to fit in the |
1376 | | /// supplied buffer, excess bytes may be discarded. |
1377 | | /// |
1378 | | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1379 | | /// returned. This function is usually paired with `readable()`. |
1380 | | /// |
1381 | | /// # Notes |
1382 | | /// |
1383 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1384 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1385 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1386 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1387 | | /// It is important to be aware of this when designing your application-level protocol. |
1388 | | /// |
1389 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1390 | | /// |
1391 | | /// # Examples |
1392 | | /// |
1393 | | /// ```no_run |
1394 | | /// use tokio::net::UdpSocket; |
1395 | | /// use std::io; |
1396 | | /// |
1397 | | /// #[tokio::main] |
1398 | | /// async fn main() -> io::Result<()> { |
1399 | | /// // Connect to a peer |
1400 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1401 | | /// |
1402 | | /// loop { |
1403 | | /// // Wait for the socket to be readable |
1404 | | /// socket.readable().await?; |
1405 | | /// |
1406 | | /// // The buffer is **not** included in the async task and will |
1407 | | /// // only exist on the stack. |
1408 | | /// let mut buf = [0; 1024]; |
1409 | | /// |
1410 | | /// // Try to recv data, this may still fail with `WouldBlock` |
1411 | | /// // if the readiness event is a false positive. |
1412 | | /// match socket.try_recv_from(&mut buf) { |
1413 | | /// Ok((n, _addr)) => { |
1414 | | /// println!("GOT {:?}", &buf[..n]); |
1415 | | /// break; |
1416 | | /// } |
1417 | | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
1418 | | /// continue; |
1419 | | /// } |
1420 | | /// Err(e) => { |
1421 | | /// return Err(e); |
1422 | | /// } |
1423 | | /// } |
1424 | | /// } |
1425 | | /// |
1426 | | /// Ok(()) |
1427 | | /// } |
1428 | | /// ``` |
1429 | 0 | pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1430 | 0 | self.io |
1431 | 0 | .registration() |
1432 | 0 | .try_io(Interest::READABLE, || self.io.recv_from(buf)) |
1433 | 0 | } |
1434 | | |
1435 | | /// Tries to read or write from the socket using a user-provided IO operation. |
1436 | | /// |
1437 | | /// If the socket is ready, the provided closure is called. The closure |
1438 | | /// should attempt to perform IO operation on the socket by manually |
1439 | | /// calling the appropriate syscall. If the operation fails because the |
1440 | | /// socket is not actually ready, then the closure should return a |
1441 | | /// `WouldBlock` error and the readiness flag is cleared. The return value |
1442 | | /// of the closure is then returned by `try_io`. |
1443 | | /// |
1444 | | /// If the socket is not ready, then the closure is not called |
1445 | | /// and a `WouldBlock` error is returned. |
1446 | | /// |
1447 | | /// The closure should only return a `WouldBlock` error if it has performed |
1448 | | /// an IO operation on the socket that failed due to the socket not being |
1449 | | /// ready. Returning a `WouldBlock` error in any other situation will |
1450 | | /// incorrectly clear the readiness flag, which can cause the socket to |
1451 | | /// behave incorrectly. |
1452 | | /// |
1453 | | /// The closure should not perform the IO operation using any of the methods |
1454 | | /// defined on the Tokio `UdpSocket` type, as this will mess with the |
1455 | | /// readiness flag and can cause the socket to behave incorrectly. |
1456 | | /// |
1457 | | /// This method is not intended to be used with combined interests. |
1458 | | /// The closure should perform only one type of IO operation, so it should not |
1459 | | /// require more than one ready state. This method may panic or sleep forever |
1460 | | /// if it is called with a combined interest. |
1461 | | /// |
1462 | | /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function. |
1463 | | /// |
1464 | | /// [`readable()`]: UdpSocket::readable() |
1465 | | /// [`writable()`]: UdpSocket::writable() |
1466 | | /// [`ready()`]: UdpSocket::ready() |
1467 | 0 | pub fn try_io<R>( |
1468 | 0 | &self, |
1469 | 0 | interest: Interest, |
1470 | 0 | f: impl FnOnce() -> io::Result<R>, |
1471 | 0 | ) -> io::Result<R> { |
1472 | 0 | self.io |
1473 | 0 | .registration() |
1474 | 0 | .try_io(interest, || self.io.try_io(f)) |
1475 | 0 | } |
1476 | | |
1477 | | /// Reads or writes from the socket using a user-provided IO operation. |
1478 | | /// |
1479 | | /// The readiness of the socket is awaited and when the socket is ready, |
1480 | | /// the provided closure is called. The closure should attempt to perform |
1481 | | /// IO operation on the socket by manually calling the appropriate syscall. |
1482 | | /// If the operation fails because the socket is not actually ready, |
1483 | | /// then the closure should return a `WouldBlock` error. In such case the |
1484 | | /// readiness flag is cleared and the socket readiness is awaited again. |
1485 | | /// This loop is repeated until the closure returns an `Ok` or an error |
1486 | | /// other than `WouldBlock`. |
1487 | | /// |
1488 | | /// The closure should only return a `WouldBlock` error if it has performed |
1489 | | /// an IO operation on the socket that failed due to the socket not being |
1490 | | /// ready. Returning a `WouldBlock` error in any other situation will |
1491 | | /// incorrectly clear the readiness flag, which can cause the socket to |
1492 | | /// behave incorrectly. |
1493 | | /// |
1494 | | /// The closure should not perform the IO operation using any of the methods |
1495 | | /// defined on the Tokio `UdpSocket` type, as this will mess with the |
1496 | | /// readiness flag and can cause the socket to behave incorrectly. |
1497 | | /// |
1498 | | /// This method is not intended to be used with combined interests. |
1499 | | /// The closure should perform only one type of IO operation, so it should not |
1500 | | /// require more than one ready state. This method may panic or sleep forever |
1501 | | /// if it is called with a combined interest. |
1502 | 0 | pub async fn async_io<R>( |
1503 | 0 | &self, |
1504 | 0 | interest: Interest, |
1505 | 0 | mut f: impl FnMut() -> io::Result<R>, |
1506 | 0 | ) -> io::Result<R> { |
1507 | 0 | self.io |
1508 | 0 | .registration() |
1509 | 0 | .async_io(interest, || self.io.try_io(&mut f)) |
1510 | 0 | .await |
1511 | 0 | } |
1512 | | |
1513 | | /// Receives a single datagram from the connected address without removing it from the queue. |
1514 | | /// On success, returns the number of bytes read from whence the data came. |
1515 | | /// |
1516 | | /// # Notes |
1517 | | /// |
1518 | | /// On Windows, if the data is larger than the buffer specified, the buffer |
1519 | | /// is filled with the first part of the data, and `peek_from` returns the error |
1520 | | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1521 | | /// Make sure to always use a sufficiently large buffer to hold the |
1522 | | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1523 | | /// |
1524 | | /// MacOS will return an error if you pass a zero-sized buffer. |
1525 | | /// |
1526 | | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1527 | | /// try [`peek_sender`]. |
1528 | | /// |
1529 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1530 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1531 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1532 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1533 | | /// It is important to be aware of this when designing your application-level protocol. |
1534 | | /// |
1535 | | /// # Examples |
1536 | | /// |
1537 | | /// ```no_run |
1538 | | /// use tokio::net::UdpSocket; |
1539 | | /// use std::io; |
1540 | | /// |
1541 | | /// #[tokio::main] |
1542 | | /// async fn main() -> io::Result<()> { |
1543 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1544 | | /// |
1545 | | /// let mut buf = vec![0u8; 32]; |
1546 | | /// let len = socket.peek(&mut buf).await?; |
1547 | | /// |
1548 | | /// println!("peeked {:?} bytes", len); |
1549 | | /// |
1550 | | /// Ok(()) |
1551 | | /// } |
1552 | | /// ``` |
1553 | | /// |
1554 | | /// [`peek_sender`]: method@Self::peek_sender |
1555 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1556 | 0 | pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1557 | 0 | self.io |
1558 | 0 | .registration() |
1559 | 0 | .async_io(Interest::READABLE, || self.io.peek(buf)) |
1560 | 0 | .await |
1561 | 0 | } |
1562 | | |
1563 | | /// Receives data from the connected address, without removing it from the input queue. |
1564 | | /// On success, returns the sending address of the datagram. |
1565 | | /// |
1566 | | /// # Notes |
1567 | | /// |
1568 | | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1569 | | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1570 | | /// receive a wakeup |
1571 | | /// |
1572 | | /// On Windows, if the data is larger than the buffer specified, the buffer |
1573 | | /// is filled with the first part of the data, and peek returns the error |
1574 | | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1575 | | /// Make sure to always use a sufficiently large buffer to hold the |
1576 | | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1577 | | /// |
1578 | | /// MacOS will return an error if you pass a zero-sized buffer. |
1579 | | /// |
1580 | | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1581 | | /// try [`poll_peek_sender`]. |
1582 | | /// |
1583 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1584 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1585 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1586 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1587 | | /// It is important to be aware of this when designing your application-level protocol. |
1588 | | /// |
1589 | | /// # Return value |
1590 | | /// |
1591 | | /// The function returns: |
1592 | | /// |
1593 | | /// * `Poll::Pending` if the socket is not ready to read |
1594 | | /// * `Poll::Ready(Ok(()))` reads data into `ReadBuf` if the socket is ready |
1595 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1596 | | /// |
1597 | | /// # Errors |
1598 | | /// |
1599 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
1600 | | /// |
1601 | | /// [`poll_peek_sender`]: method@Self::poll_peek_sender |
1602 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1603 | 0 | pub fn poll_peek(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> { |
1604 | | #[allow(clippy::blocks_in_conditions)] |
1605 | 0 | let n = ready!(self.io.registration().poll_read_io(cx, || { |
1606 | | // Safety: will not read the maybe uninitialized bytes. |
1607 | 0 | let b = unsafe { |
1608 | 0 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
1609 | | }; |
1610 | | |
1611 | 0 | self.io.peek(b) |
1612 | 0 | }))?; |
1613 | | |
1614 | | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
1615 | 0 | unsafe { |
1616 | 0 | buf.assume_init(n); |
1617 | 0 | } |
1618 | 0 | buf.advance(n); |
1619 | 0 | Poll::Ready(Ok(())) |
1620 | 0 | } |
1621 | | |
1622 | | /// Tries to receive data on the connected address without removing it from the input queue. |
1623 | | /// On success, returns the number of bytes read. |
1624 | | /// |
1625 | | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1626 | | /// returned. This function is usually paired with `readable()`. |
1627 | | /// |
1628 | | /// # Notes |
1629 | | /// |
1630 | | /// On Windows, if the data is larger than the buffer specified, the buffer |
1631 | | /// is filled with the first part of the data, and peek returns the error |
1632 | | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1633 | | /// Make sure to always use a sufficiently large buffer to hold the |
1634 | | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1635 | | /// |
1636 | | /// MacOS will return an error if you pass a zero-sized buffer. |
1637 | | /// |
1638 | | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1639 | | /// try [`try_peek_sender`]. |
1640 | | /// |
1641 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1642 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1643 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1644 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1645 | | /// It is important to be aware of this when designing your application-level protocol. |
1646 | | /// |
1647 | | /// [`try_peek_sender`]: method@Self::try_peek_sender |
1648 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1649 | 0 | pub fn try_peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1650 | 0 | self.io |
1651 | 0 | .registration() |
1652 | 0 | .try_io(Interest::READABLE, || self.io.peek(buf)) |
1653 | 0 | } |
1654 | | |
1655 | | /// Receives data from the socket, without removing it from the input queue. |
1656 | | /// On success, returns the number of bytes read and the address from whence |
1657 | | /// the data came. |
1658 | | /// |
1659 | | /// # Notes |
1660 | | /// |
1661 | | /// On Windows, if the data is larger than the buffer specified, the buffer |
1662 | | /// is filled with the first part of the data, and `peek_from` returns the error |
1663 | | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1664 | | /// Make sure to always use a sufficiently large buffer to hold the |
1665 | | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1666 | | /// |
1667 | | /// MacOS will return an error if you pass a zero-sized buffer. |
1668 | | /// |
1669 | | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1670 | | /// try [`peek_sender`]. |
1671 | | /// |
1672 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1673 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1674 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1675 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1676 | | /// It is important to be aware of this when designing your application-level protocol. |
1677 | | /// |
1678 | | /// # Examples |
1679 | | /// |
1680 | | /// ```no_run |
1681 | | /// use tokio::net::UdpSocket; |
1682 | | /// use std::io; |
1683 | | /// |
1684 | | /// #[tokio::main] |
1685 | | /// async fn main() -> io::Result<()> { |
1686 | | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1687 | | /// |
1688 | | /// let mut buf = vec![0u8; 32]; |
1689 | | /// let (len, addr) = socket.peek_from(&mut buf).await?; |
1690 | | /// |
1691 | | /// println!("peeked {:?} bytes from {:?}", len, addr); |
1692 | | /// |
1693 | | /// Ok(()) |
1694 | | /// } |
1695 | | /// ``` |
1696 | | /// |
1697 | | /// [`peek_sender`]: method@Self::peek_sender |
1698 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1699 | 0 | pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1700 | 0 | self.io |
1701 | 0 | .registration() |
1702 | 0 | .async_io(Interest::READABLE, || self.io.peek_from(buf)) |
1703 | 0 | .await |
1704 | 0 | } |
1705 | | |
1706 | | /// Receives data from the socket, without removing it from the input queue. |
1707 | | /// On success, returns the sending address of the datagram. |
1708 | | /// |
1709 | | /// # Notes |
1710 | | /// |
1711 | | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1712 | | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1713 | | /// receive a wakeup |
1714 | | /// |
1715 | | /// On Windows, if the data is larger than the buffer specified, the buffer |
1716 | | /// is filled with the first part of the data, and peek returns the error |
1717 | | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1718 | | /// Make sure to always use a sufficiently large buffer to hold the |
1719 | | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1720 | | /// |
1721 | | /// MacOS will return an error if you pass a zero-sized buffer. |
1722 | | /// |
1723 | | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1724 | | /// try [`poll_peek_sender`]. |
1725 | | /// |
1726 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1727 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1728 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1729 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1730 | | /// It is important to be aware of this when designing your application-level protocol. |
1731 | | /// |
1732 | | /// # Return value |
1733 | | /// |
1734 | | /// The function returns: |
1735 | | /// |
1736 | | /// * `Poll::Pending` if the socket is not ready to read |
1737 | | /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready |
1738 | | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1739 | | /// |
1740 | | /// # Errors |
1741 | | /// |
1742 | | /// This function may encounter any standard I/O error except `WouldBlock`. |
1743 | | /// |
1744 | | /// [`poll_peek_sender`]: method@Self::poll_peek_sender |
1745 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1746 | 0 | pub fn poll_peek_from( |
1747 | 0 | &self, |
1748 | 0 | cx: &mut Context<'_>, |
1749 | 0 | buf: &mut ReadBuf<'_>, |
1750 | 0 | ) -> Poll<io::Result<SocketAddr>> { |
1751 | | #[allow(clippy::blocks_in_conditions)] |
1752 | 0 | let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { |
1753 | | // Safety: will not read the maybe uninitialized bytes. |
1754 | 0 | let b = unsafe { |
1755 | 0 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
1756 | | }; |
1757 | | |
1758 | 0 | self.io.peek_from(b) |
1759 | 0 | }))?; |
1760 | | |
1761 | | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
1762 | 0 | unsafe { |
1763 | 0 | buf.assume_init(n); |
1764 | 0 | } |
1765 | 0 | buf.advance(n); |
1766 | 0 | Poll::Ready(Ok(addr)) |
1767 | 0 | } |
1768 | | |
1769 | | /// Tries to receive data on the socket without removing it from the input queue. |
1770 | | /// On success, returns the number of bytes read and the sending address of the |
1771 | | /// datagram. |
1772 | | /// |
1773 | | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1774 | | /// returned. This function is usually paired with `readable()`. |
1775 | | /// |
1776 | | /// # Notes |
1777 | | /// |
1778 | | /// On Windows, if the data is larger than the buffer specified, the buffer |
1779 | | /// is filled with the first part of the data, and peek returns the error |
1780 | | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1781 | | /// Make sure to always use a sufficiently large buffer to hold the |
1782 | | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1783 | | /// |
1784 | | /// MacOS will return an error if you pass a zero-sized buffer. |
1785 | | /// |
1786 | | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1787 | | /// try [`try_peek_sender`]. |
1788 | | /// |
1789 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1790 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1791 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1792 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1793 | | /// It is important to be aware of this when designing your application-level protocol. |
1794 | | /// |
1795 | | /// [`try_peek_sender`]: method@Self::try_peek_sender |
1796 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1797 | 0 | pub fn try_peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1798 | 0 | self.io |
1799 | 0 | .registration() |
1800 | 0 | .try_io(Interest::READABLE, || self.io.peek_from(buf)) |
1801 | 0 | } |
1802 | | |
1803 | | /// Retrieve the sender of the data at the head of the input queue, waiting if empty. |
1804 | | /// |
1805 | | /// This is equivalent to calling [`peek_from`] with a zero-sized buffer, |
1806 | | /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS. |
1807 | | /// |
1808 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1809 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1810 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1811 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1812 | | /// It is important to be aware of this when designing your application-level protocol. |
1813 | | /// |
1814 | | /// [`peek_from`]: method@Self::peek_from |
1815 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1816 | 0 | pub async fn peek_sender(&self) -> io::Result<SocketAddr> { |
1817 | 0 | self.io |
1818 | 0 | .registration() |
1819 | 0 | .async_io(Interest::READABLE, || self.peek_sender_inner()) |
1820 | 0 | .await |
1821 | 0 | } |
1822 | | |
1823 | | /// Retrieve the sender of the data at the head of the input queue, |
1824 | | /// scheduling a wakeup if empty. |
1825 | | /// |
1826 | | /// This is equivalent to calling [`poll_peek_from`] with a zero-sized buffer, |
1827 | | /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS. |
1828 | | /// |
1829 | | /// # Notes |
1830 | | /// |
1831 | | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1832 | | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1833 | | /// receive a wakeup. |
1834 | | /// |
1835 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1836 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1837 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1838 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1839 | | /// It is important to be aware of this when designing your application-level protocol. |
1840 | | /// |
1841 | | /// [`poll_peek_from`]: method@Self::poll_peek_from |
1842 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1843 | 0 | pub fn poll_peek_sender(&self, cx: &mut Context<'_>) -> Poll<io::Result<SocketAddr>> { |
1844 | 0 | self.io |
1845 | 0 | .registration() |
1846 | 0 | .poll_read_io(cx, || self.peek_sender_inner()) |
1847 | 0 | } |
1848 | | |
1849 | | /// Try to retrieve the sender of the data at the head of the input queue. |
1850 | | /// |
1851 | | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1852 | | /// returned. This function is usually paired with `readable()`. |
1853 | | /// |
1854 | | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1855 | | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1856 | | /// Because UDP is stateless and does not validate the origin of a packet, |
1857 | | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1858 | | /// It is important to be aware of this when designing your application-level protocol. |
1859 | | /// |
1860 | | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1861 | 0 | pub fn try_peek_sender(&self) -> io::Result<SocketAddr> { |
1862 | 0 | self.io |
1863 | 0 | .registration() |
1864 | 0 | .try_io(Interest::READABLE, || self.peek_sender_inner()) |
1865 | 0 | } |
1866 | | |
1867 | | #[inline] |
1868 | 0 | fn peek_sender_inner(&self) -> io::Result<SocketAddr> { |
1869 | 0 | self.io.try_io(|| { |
1870 | 0 | self.as_socket() |
1871 | 0 | .peek_sender()? |
1872 | | // May be `None` if the platform doesn't populate the sender for some reason. |
1873 | | // In testing, that only occurred on macOS if you pass a zero-sized buffer, |
1874 | | // but the implementation of `Socket::peek_sender()` covers that. |
1875 | 0 | .as_socket() |
1876 | 0 | .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "sender not available")) |
1877 | 0 | }) |
1878 | 0 | } |
1879 | | |
1880 | | /// Gets the value of the `SO_BROADCAST` option for this socket. |
1881 | | /// |
1882 | | /// For more information about this option, see [`set_broadcast`]. |
1883 | | /// |
1884 | | /// [`set_broadcast`]: method@Self::set_broadcast |
1885 | 0 | pub fn broadcast(&self) -> io::Result<bool> { |
1886 | 0 | self.io.broadcast() |
1887 | 0 | } |
1888 | | |
1889 | | /// Sets the value of the `SO_BROADCAST` option for this socket. |
1890 | | /// |
1891 | | /// When enabled, this socket is allowed to send packets to a broadcast |
1892 | | /// address. |
1893 | 0 | pub fn set_broadcast(&self, on: bool) -> io::Result<()> { |
1894 | 0 | self.io.set_broadcast(on) |
1895 | 0 | } |
1896 | | |
1897 | | /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. |
1898 | | /// |
1899 | | /// For more information about this option, see [`set_multicast_loop_v4`]. |
1900 | | /// |
1901 | | /// [`set_multicast_loop_v4`]: method@Self::set_multicast_loop_v4 |
1902 | 0 | pub fn multicast_loop_v4(&self) -> io::Result<bool> { |
1903 | 0 | self.io.multicast_loop_v4() |
1904 | 0 | } |
1905 | | |
1906 | | /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. |
1907 | | /// |
1908 | | /// If enabled, multicast packets will be looped back to the local socket. |
1909 | | /// |
1910 | | /// # Note |
1911 | | /// |
1912 | | /// This may not have any affect on IPv6 sockets. |
1913 | 0 | pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { |
1914 | 0 | self.io.set_multicast_loop_v4(on) |
1915 | 0 | } |
1916 | | |
1917 | | /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. |
1918 | | /// |
1919 | | /// For more information about this option, see [`set_multicast_ttl_v4`]. |
1920 | | /// |
1921 | | /// [`set_multicast_ttl_v4`]: method@Self::set_multicast_ttl_v4 |
1922 | 0 | pub fn multicast_ttl_v4(&self) -> io::Result<u32> { |
1923 | 0 | self.io.multicast_ttl_v4() |
1924 | 0 | } |
1925 | | |
1926 | | /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. |
1927 | | /// |
1928 | | /// Indicates the time-to-live value of outgoing multicast packets for |
1929 | | /// this socket. The default value is 1 which means that multicast packets |
1930 | | /// don't leave the local network unless explicitly requested. |
1931 | | /// |
1932 | | /// # Note |
1933 | | /// |
1934 | | /// This may not have any affect on IPv6 sockets. |
1935 | 0 | pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { |
1936 | 0 | self.io.set_multicast_ttl_v4(ttl) |
1937 | 0 | } |
1938 | | |
1939 | | /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. |
1940 | | /// |
1941 | | /// For more information about this option, see [`set_multicast_loop_v6`]. |
1942 | | /// |
1943 | | /// [`set_multicast_loop_v6`]: method@Self::set_multicast_loop_v6 |
1944 | 0 | pub fn multicast_loop_v6(&self) -> io::Result<bool> { |
1945 | 0 | self.io.multicast_loop_v6() |
1946 | 0 | } |
1947 | | |
1948 | | /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. |
1949 | | /// |
1950 | | /// Controls whether this socket sees the multicast packets it sends itself. |
1951 | | /// |
1952 | | /// # Note |
1953 | | /// |
1954 | | /// This may not have any affect on IPv4 sockets. |
1955 | 0 | pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { |
1956 | 0 | self.io.set_multicast_loop_v6(on) |
1957 | 0 | } |
1958 | | |
1959 | | /// Gets the value of the `IP_TTL` option for this socket. |
1960 | | /// |
1961 | | /// For more information about this option, see [`set_ttl`]. |
1962 | | /// |
1963 | | /// [`set_ttl`]: method@Self::set_ttl |
1964 | | /// |
1965 | | /// # Examples |
1966 | | /// |
1967 | | /// ```no_run |
1968 | | /// use tokio::net::UdpSocket; |
1969 | | /// # use std::io; |
1970 | | /// |
1971 | | /// # async fn dox() -> io::Result<()> { |
1972 | | /// let sock = UdpSocket::bind("127.0.0.1:8080").await?; |
1973 | | /// |
1974 | | /// println!("{:?}", sock.ttl()?); |
1975 | | /// # Ok(()) |
1976 | | /// # } |
1977 | | /// ``` |
1978 | 0 | pub fn ttl(&self) -> io::Result<u32> { |
1979 | 0 | self.io.ttl() |
1980 | 0 | } |
1981 | | |
1982 | | /// Sets the value for the `IP_TTL` option on this socket. |
1983 | | /// |
1984 | | /// This value sets the time-to-live field that is used in every packet sent |
1985 | | /// from this socket. |
1986 | | /// |
1987 | | /// # Examples |
1988 | | /// |
1989 | | /// ```no_run |
1990 | | /// use tokio::net::UdpSocket; |
1991 | | /// # use std::io; |
1992 | | /// |
1993 | | /// # async fn dox() -> io::Result<()> { |
1994 | | /// let sock = UdpSocket::bind("127.0.0.1:8080").await?; |
1995 | | /// sock.set_ttl(60)?; |
1996 | | /// |
1997 | | /// # Ok(()) |
1998 | | /// # } |
1999 | | /// ``` |
2000 | 0 | pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { |
2001 | 0 | self.io.set_ttl(ttl) |
2002 | 0 | } |
2003 | | |
2004 | | /// Gets the value of the `IP_TOS` option for this socket. |
2005 | | /// |
2006 | | /// For more information about this option, see [`set_tos`]. |
2007 | | /// |
2008 | | /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or |
2009 | | /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options) |
2010 | | /// |
2011 | | /// [`set_tos`]: Self::set_tos |
2012 | | // https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1464 |
2013 | | #[cfg(not(any( |
2014 | | target_os = "fuchsia", |
2015 | | target_os = "redox", |
2016 | | target_os = "solaris", |
2017 | | target_os = "illumos", |
2018 | | target_os = "haiku" |
2019 | | )))] |
2020 | | #[cfg_attr( |
2021 | | docsrs, |
2022 | | doc(cfg(not(any( |
2023 | | target_os = "fuchsia", |
2024 | | target_os = "redox", |
2025 | | target_os = "solaris", |
2026 | | target_os = "illumos", |
2027 | | target_os = "haiku" |
2028 | | )))) |
2029 | | )] |
2030 | 0 | pub fn tos(&self) -> io::Result<u32> { |
2031 | 0 | self.as_socket().tos() |
2032 | 0 | } |
2033 | | |
2034 | | /// Sets the value for the `IP_TOS` option on this socket. |
2035 | | /// |
2036 | | /// This value sets the type-of-service field that is used in every packet |
2037 | | /// sent from this socket. |
2038 | | /// |
2039 | | /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or |
2040 | | /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options) |
2041 | | // https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1446 |
2042 | | #[cfg(not(any( |
2043 | | target_os = "fuchsia", |
2044 | | target_os = "redox", |
2045 | | target_os = "solaris", |
2046 | | target_os = "illumos", |
2047 | | target_os = "haiku" |
2048 | | )))] |
2049 | | #[cfg_attr( |
2050 | | docsrs, |
2051 | | doc(cfg(not(any( |
2052 | | target_os = "fuchsia", |
2053 | | target_os = "redox", |
2054 | | target_os = "solaris", |
2055 | | target_os = "illumos", |
2056 | | target_os = "haiku" |
2057 | | )))) |
2058 | | )] |
2059 | 0 | pub fn set_tos(&self, tos: u32) -> io::Result<()> { |
2060 | 0 | self.as_socket().set_tos(tos) |
2061 | 0 | } |
2062 | | |
2063 | | /// Gets the value for the `SO_BINDTODEVICE` option on this socket |
2064 | | /// |
2065 | | /// This value gets the socket-bound device's interface name. |
2066 | | #[cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux",))] |
2067 | | #[cfg_attr( |
2068 | | docsrs, |
2069 | | doc(cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux",))) |
2070 | | )] |
2071 | 0 | pub fn device(&self) -> io::Result<Option<Vec<u8>>> { |
2072 | 0 | self.as_socket().device() |
2073 | 0 | } |
2074 | | |
2075 | | /// Sets the value for the `SO_BINDTODEVICE` option on this socket |
2076 | | /// |
2077 | | /// If a socket is bound to an interface, only packets received from that |
2078 | | /// particular interface are processed by the socket. Note that this only |
2079 | | /// works for some socket types, particularly `AF_INET` sockets. |
2080 | | /// |
2081 | | /// If `interface` is `None` or an empty string it removes the binding. |
2082 | | #[cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux"))] |
2083 | | #[cfg_attr( |
2084 | | docsrs, |
2085 | | doc(cfg(all(any(target_os = "android", target_os = "fuchsia", target_os = "linux")))) |
2086 | | )] |
2087 | 0 | pub fn bind_device(&self, interface: Option<&[u8]>) -> io::Result<()> { |
2088 | 0 | self.as_socket().bind_device(interface) |
2089 | 0 | } |
2090 | | |
2091 | | /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. |
2092 | | /// |
2093 | | /// This function specifies a new multicast group for this socket to join. |
2094 | | /// The address must be a valid multicast address, and `interface` is the |
2095 | | /// address of the local interface with which the system should join the |
2096 | | /// multicast group. If it's equal to `INADDR_ANY` then an appropriate |
2097 | | /// interface is chosen by the system. |
2098 | 0 | pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { |
2099 | 0 | self.io.join_multicast_v4(&multiaddr, &interface) |
2100 | 0 | } |
2101 | | |
2102 | | /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. |
2103 | | /// |
2104 | | /// This function specifies a new multicast group for this socket to join. |
2105 | | /// The address must be a valid multicast address, and `interface` is the |
2106 | | /// index of the interface to join/leave (or 0 to indicate any interface). |
2107 | 0 | pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { |
2108 | 0 | self.io.join_multicast_v6(multiaddr, interface) |
2109 | 0 | } |
2110 | | |
2111 | | /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. |
2112 | | /// |
2113 | | /// For more information about this option, see [`join_multicast_v4`]. |
2114 | | /// |
2115 | | /// [`join_multicast_v4`]: method@Self::join_multicast_v4 |
2116 | 0 | pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { |
2117 | 0 | self.io.leave_multicast_v4(&multiaddr, &interface) |
2118 | 0 | } |
2119 | | |
2120 | | /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. |
2121 | | /// |
2122 | | /// For more information about this option, see [`join_multicast_v6`]. |
2123 | | /// |
2124 | | /// [`join_multicast_v6`]: method@Self::join_multicast_v6 |
2125 | 0 | pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { |
2126 | 0 | self.io.leave_multicast_v6(multiaddr, interface) |
2127 | 0 | } |
2128 | | |
2129 | | /// Returns the value of the `SO_ERROR` option. |
2130 | | /// |
2131 | | /// # Examples |
2132 | | /// ``` |
2133 | | /// # if cfg!(miri) { return } // No `socket` in miri. |
2134 | | /// use tokio::net::UdpSocket; |
2135 | | /// use std::io; |
2136 | | /// |
2137 | | /// #[tokio::main] |
2138 | | /// async fn main() -> io::Result<()> { |
2139 | | /// // Create a socket |
2140 | | /// let socket = UdpSocket::bind("0.0.0.0:8080").await?; |
2141 | | /// |
2142 | | /// if let Ok(Some(err)) = socket.take_error() { |
2143 | | /// println!("Got error: {:?}", err); |
2144 | | /// } |
2145 | | /// |
2146 | | /// Ok(()) |
2147 | | /// } |
2148 | | /// ``` |
2149 | 0 | pub fn take_error(&self) -> io::Result<Option<io::Error>> { |
2150 | 0 | self.io.take_error() |
2151 | 0 | } |
2152 | | } |
2153 | | |
2154 | | impl TryFrom<std::net::UdpSocket> for UdpSocket { |
2155 | | type Error = io::Error; |
2156 | | |
2157 | | /// Consumes stream, returning the tokio I/O object. |
2158 | | /// |
2159 | | /// This is equivalent to |
2160 | | /// [`UdpSocket::from_std(stream)`](UdpSocket::from_std). |
2161 | 0 | fn try_from(stream: std::net::UdpSocket) -> Result<Self, Self::Error> { |
2162 | 0 | Self::from_std(stream) |
2163 | 0 | } |
2164 | | } |
2165 | | |
2166 | | impl fmt::Debug for UdpSocket { |
2167 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2168 | 0 | self.io.fmt(f) |
2169 | 0 | } |
2170 | | } |
2171 | | |
2172 | | #[cfg(unix)] |
2173 | | mod sys { |
2174 | | use super::UdpSocket; |
2175 | | use std::os::unix::prelude::*; |
2176 | | |
2177 | | impl AsRawFd for UdpSocket { |
2178 | 0 | fn as_raw_fd(&self) -> RawFd { |
2179 | 0 | self.io.as_raw_fd() |
2180 | 0 | } |
2181 | | } |
2182 | | |
2183 | | impl AsFd for UdpSocket { |
2184 | 0 | fn as_fd(&self) -> BorrowedFd<'_> { |
2185 | 0 | unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) } |
2186 | 0 | } |
2187 | | } |
2188 | | } |
2189 | | |
2190 | | cfg_windows! { |
2191 | | use crate::os::windows::io::{AsRawSocket, RawSocket}; |
2192 | | use crate::os::windows::io::{AsSocket, BorrowedSocket}; |
2193 | | |
2194 | | impl AsRawSocket for UdpSocket { |
2195 | | fn as_raw_socket(&self) -> RawSocket { |
2196 | | self.io.as_raw_socket() |
2197 | | } |
2198 | | } |
2199 | | |
2200 | | impl AsSocket for UdpSocket { |
2201 | | fn as_socket(&self) -> BorrowedSocket<'_> { |
2202 | | unsafe { BorrowedSocket::borrow_raw(self.as_raw_socket()) } |
2203 | | } |
2204 | | } |
2205 | | } |