Coverage Report

Created: 2026-02-14 06:16

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/regex-syntax-0.6.29/src/lib.rs
Line
Count
Source
1
/*!
2
This crate provides a robust regular expression parser.
3
4
This crate defines two primary types:
5
6
* [`Ast`](ast/enum.Ast.html) is the abstract syntax of a regular expression.
7
  An abstract syntax corresponds to a *structured representation* of the
8
  concrete syntax of a regular expression, where the concrete syntax is the
9
  pattern string itself (e.g., `foo(bar)+`). Given some abstract syntax, it
10
  can be converted back to the original concrete syntax (modulo some details,
11
  like whitespace). To a first approximation, the abstract syntax is complex
12
  and difficult to analyze.
13
* [`Hir`](hir/struct.Hir.html) is the high-level intermediate representation
14
  ("HIR" or "high-level IR" for short) of regular expression. It corresponds to
15
  an intermediate state of a regular expression that sits between the abstract
16
  syntax and the low level compiled opcodes that are eventually responsible for
17
  executing a regular expression search. Given some high-level IR, it is not
18
  possible to produce the original concrete syntax (although it is possible to
19
  produce an equivalent concrete syntax, but it will likely scarcely resemble
20
  the original pattern). To a first approximation, the high-level IR is simple
21
  and easy to analyze.
22
23
These two types come with conversion routines:
24
25
* An [`ast::parse::Parser`](ast/parse/struct.Parser.html) converts concrete
26
  syntax (a `&str`) to an [`Ast`](ast/enum.Ast.html).
27
* A [`hir::translate::Translator`](hir/translate/struct.Translator.html)
28
  converts an [`Ast`](ast/enum.Ast.html) to a [`Hir`](hir/struct.Hir.html).
29
30
As a convenience, the above two conversion routines are combined into one via
31
the top-level [`Parser`](struct.Parser.html) type. This `Parser` will first
32
convert your pattern to an `Ast` and then convert the `Ast` to an `Hir`.
33
34
35
# Example
36
37
This example shows how to parse a pattern string into its HIR:
38
39
```
40
use regex_syntax::Parser;
41
use regex_syntax::hir::{self, Hir};
42
43
let hir = Parser::new().parse("a|b").unwrap();
44
assert_eq!(hir, Hir::alternation(vec![
45
    Hir::literal(hir::Literal::Unicode('a')),
46
    Hir::literal(hir::Literal::Unicode('b')),
47
]));
48
```
49
50
51
# Concrete syntax supported
52
53
The concrete syntax is documented as part of the public API of the
54
[`regex` crate](https://docs.rs/regex/%2A/regex/#syntax).
55
56
57
# Input safety
58
59
A key feature of this library is that it is safe to use with end user facing
60
input. This plays a significant role in the internal implementation. In
61
particular:
62
63
1. Parsers provide a `nest_limit` option that permits callers to control how
64
   deeply nested a regular expression is allowed to be. This makes it possible
65
   to do case analysis over an `Ast` or an `Hir` using recursion without
66
   worrying about stack overflow.
67
2. Since relying on a particular stack size is brittle, this crate goes to
68
   great lengths to ensure that all interactions with both the `Ast` and the
69
   `Hir` do not use recursion. Namely, they use constant stack space and heap
70
   space proportional to the size of the original pattern string (in bytes).
71
   This includes the type's corresponding destructors. (One exception to this
72
   is literal extraction, but this will eventually get fixed.)
73
74
75
# Error reporting
76
77
The `Display` implementations on all `Error` types exposed in this library
78
provide nice human readable errors that are suitable for showing to end users
79
in a monospace font.
80
81
82
# Literal extraction
83
84
This crate provides limited support for
85
[literal extraction from `Hir` values](hir/literal/struct.Literals.html).
86
Be warned that literal extraction currently uses recursion, and therefore,
87
stack size proportional to the size of the `Hir`.
88
89
The purpose of literal extraction is to speed up searches. That is, if you
90
know a regular expression must match a prefix or suffix literal, then it is
91
often quicker to search for instances of that literal, and then confirm or deny
92
the match using the full regular expression engine. These optimizations are
93
done automatically in the `regex` crate.
94
95
96
# Crate features
97
98
An important feature provided by this crate is its Unicode support. This
99
includes things like case folding, boolean properties, general categories,
100
scripts and Unicode-aware support for the Perl classes `\w`, `\s` and `\d`.
101
However, a downside of this support is that it requires bundling several
102
Unicode data tables that are substantial in size.
103
104
A fair number of use cases do not require full Unicode support. For this
105
reason, this crate exposes a number of features to control which Unicode
106
data is available.
107
108
If a regular expression attempts to use a Unicode feature that is not available
109
because the corresponding crate feature was disabled, then translating that
110
regular expression to an `Hir` will return an error. (It is still possible
111
construct an `Ast` for such a regular expression, since Unicode data is not
112
used until translation to an `Hir`.) Stated differently, enabling or disabling
113
any of the features below can only add or subtract from the total set of valid
114
regular expressions. Enabling or disabling a feature will never modify the
115
match semantics of a regular expression.
116
117
The following features are available:
118
119
* **unicode** -
120
  Enables all Unicode features. This feature is enabled by default, and will
121
  always cover all Unicode features, even if more are added in the future.
122
* **unicode-age** -
123
  Provide the data for the
124
  [Unicode `Age` property](https://www.unicode.org/reports/tr44/tr44-24.html#Character_Age).
125
  This makes it possible to use classes like `\p{Age:6.0}` to refer to all
126
  codepoints first introduced in Unicode 6.0
127
* **unicode-bool** -
128
  Provide the data for numerous Unicode boolean properties. The full list
129
  is not included here, but contains properties like `Alphabetic`, `Emoji`,
130
  `Lowercase`, `Math`, `Uppercase` and `White_Space`.
131
* **unicode-case** -
132
  Provide the data for case insensitive matching using
133
  [Unicode's "simple loose matches" specification](https://www.unicode.org/reports/tr18/#Simple_Loose_Matches).
134
* **unicode-gencat** -
135
  Provide the data for
136
  [Uncode general categories](https://www.unicode.org/reports/tr44/tr44-24.html#General_Category_Values).
137
  This includes, but is not limited to, `Decimal_Number`, `Letter`,
138
  `Math_Symbol`, `Number` and `Punctuation`.
139
* **unicode-perl** -
140
  Provide the data for supporting the Unicode-aware Perl character classes,
141
  corresponding to `\w`, `\s` and `\d`. This is also necessary for using
142
  Unicode-aware word boundary assertions. Note that if this feature is
143
  disabled, the `\s` and `\d` character classes are still available if the
144
  `unicode-bool` and `unicode-gencat` features are enabled, respectively.
145
* **unicode-script** -
146
  Provide the data for
147
  [Unicode scripts and script extensions](https://www.unicode.org/reports/tr24/).
148
  This includes, but is not limited to, `Arabic`, `Cyrillic`, `Hebrew`,
149
  `Latin` and `Thai`.
150
* **unicode-segment** -
151
  Provide the data necessary to provide the properties used to implement the
152
  [Unicode text segmentation algorithms](https://www.unicode.org/reports/tr29/).
153
  This enables using classes like `\p{gcb=Extend}`, `\p{wb=Katakana}` and
154
  `\p{sb=ATerm}`.
155
*/
156
157
#![deny(missing_docs)]
158
#![warn(missing_debug_implementations)]
159
#![forbid(unsafe_code)]
160
161
pub use crate::error::{Error, Result};
162
pub use crate::parser::{Parser, ParserBuilder};
163
pub use crate::unicode::UnicodeWordError;
164
165
pub mod ast;
166
mod either;
167
mod error;
168
pub mod hir;
169
mod parser;
170
mod unicode;
171
mod unicode_tables;
172
pub mod utf8;
173
174
/// Escapes all regular expression meta characters in `text`.
175
///
176
/// The string returned may be safely used as a literal in a regular
177
/// expression.
178
0
pub fn escape(text: &str) -> String {
179
0
    let mut quoted = String::new();
180
0
    escape_into(text, &mut quoted);
181
0
    quoted
182
0
}
183
184
/// Escapes all meta characters in `text` and writes the result into `buf`.
185
///
186
/// This will append escape characters into the given buffer. The characters
187
/// that are appended are safe to use as a literal in a regular expression.
188
0
pub fn escape_into(text: &str, buf: &mut String) {
189
0
    buf.reserve(text.len());
190
0
    for c in text.chars() {
191
0
        if is_meta_character(c) {
192
0
            buf.push('\\');
193
0
        }
194
0
        buf.push(c);
195
    }
196
0
}
197
198
/// Returns true if the given character has significance in a regex.
199
///
200
/// These are the only characters that are allowed to be escaped, with one
201
/// exception: an ASCII space character may be escaped when extended mode (with
202
/// the `x` flag) is enabled. In particular, `is_meta_character(' ')` returns
203
/// `false`.
204
///
205
/// Note that the set of characters for which this function returns `true` or
206
/// `false` is fixed and won't change in a semver compatible release.
207
0
pub fn is_meta_character(c: char) -> bool {
208
0
    match c {
209
        '\\' | '.' | '+' | '*' | '?' | '(' | ')' | '|' | '[' | ']' | '{'
210
0
        | '}' | '^' | '$' | '#' | '&' | '-' | '~' => true,
211
0
        _ => false,
212
    }
213
0
}
214
215
/// Returns true if and only if the given character is a Unicode word
216
/// character.
217
///
218
/// A Unicode word character is defined by
219
/// [UTS#18 Annex C](https://unicode.org/reports/tr18/#Compatibility_Properties).
220
/// In particular, a character
221
/// is considered a word character if it is in either of the `Alphabetic` or
222
/// `Join_Control` properties, or is in one of the `Decimal_Number`, `Mark`
223
/// or `Connector_Punctuation` general categories.
224
///
225
/// # Panics
226
///
227
/// If the `unicode-perl` feature is not enabled, then this function panics.
228
/// For this reason, it is recommended that callers use
229
/// [`try_is_word_character`](fn.try_is_word_character.html)
230
/// instead.
231
0
pub fn is_word_character(c: char) -> bool {
232
0
    try_is_word_character(c).expect("unicode-perl feature must be enabled")
233
0
}
234
235
/// Returns true if and only if the given character is a Unicode word
236
/// character.
237
///
238
/// A Unicode word character is defined by
239
/// [UTS#18 Annex C](https://unicode.org/reports/tr18/#Compatibility_Properties).
240
/// In particular, a character
241
/// is considered a word character if it is in either of the `Alphabetic` or
242
/// `Join_Control` properties, or is in one of the `Decimal_Number`, `Mark`
243
/// or `Connector_Punctuation` general categories.
244
///
245
/// # Errors
246
///
247
/// If the `unicode-perl` feature is not enabled, then this function always
248
/// returns an error.
249
0
pub fn try_is_word_character(
250
0
    c: char,
251
0
) -> std::result::Result<bool, UnicodeWordError> {
252
0
    unicode::is_word_character(c)
253
0
}
254
255
/// Returns true if and only if the given character is an ASCII word character.
256
///
257
/// An ASCII word character is defined by the following character class:
258
/// `[_0-9a-zA-Z]'.
259
0
pub fn is_word_byte(c: u8) -> bool {
260
0
    match c {
261
0
        b'_' | b'0'..=b'9' | b'a'..=b'z' | b'A'..=b'Z' => true,
262
0
        _ => false,
263
    }
264
0
}
265
266
#[cfg(test)]
267
mod tests {
268
    use super::*;
269
270
    #[test]
271
    fn escape_meta() {
272
        assert_eq!(
273
            escape(r"\.+*?()|[]{}^$#&-~"),
274
            r"\\\.\+\*\?\(\)\|\[\]\{\}\^\$\#\&\-\~".to_string()
275
        );
276
    }
277
278
    #[test]
279
    fn word_byte() {
280
        assert!(is_word_byte(b'a'));
281
        assert!(!is_word_byte(b'-'));
282
    }
283
284
    #[test]
285
    #[cfg(feature = "unicode-perl")]
286
    fn word_char() {
287
        assert!(is_word_character('a'), "ASCII");
288
        assert!(is_word_character('à'), "Latin-1");
289
        assert!(is_word_character('β'), "Greek");
290
        assert!(is_word_character('\u{11011}'), "Brahmi (Unicode 6.0)");
291
        assert!(is_word_character('\u{11611}'), "Modi (Unicode 7.0)");
292
        assert!(is_word_character('\u{11711}'), "Ahom (Unicode 8.0)");
293
        assert!(is_word_character('\u{17828}'), "Tangut (Unicode 9.0)");
294
        assert!(is_word_character('\u{1B1B1}'), "Nushu (Unicode 10.0)");
295
        assert!(is_word_character('\u{16E40}'), "Medefaidrin (Unicode 11.0)");
296
        assert!(!is_word_character('-'));
297
        assert!(!is_word_character('☃'));
298
    }
299
300
    #[test]
301
    #[should_panic]
302
    #[cfg(not(feature = "unicode-perl"))]
303
    fn word_char_disabled_panic() {
304
        assert!(is_word_character('a'));
305
    }
306
307
    #[test]
308
    #[cfg(not(feature = "unicode-perl"))]
309
    fn word_char_disabled_error() {
310
        assert!(try_is_word_character('a').is_err());
311
    }
312
}