ToDecimalChecker.java
/*
* Copyright 2018-2020 Raffaello Giulietti
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.fasterxml.jackson.core.io.schubfach;
import java.io.IOException;
import java.io.StringReader;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.math.BigInteger.*;
import static org.junit.jupiter.api.Assertions.assertTrue;
/*
A checker for the Javadoc specification.
It just relies on straightforward use of (expensive) BigDecimal arithmetic,
not optimized at all.
*/
abstract class ToDecimalChecker {
// The string to check
private final String s;
// The decimal parsed from s is c 10^q
private long c;
private int q;
// The number of digits parsed from s: 10^(len10-1) <= c < 10^len10
private int len10;
ToDecimalChecker(String s) {
this.s = s;
}
/*
Returns e be such that 10^(e-1) <= v < 10^e.
*/
static int e(double v) {
// log10(v) + 1 is a first good approximation of e
int e = (int) Math.floor(Math.log10(v)) + 1;
// Full precision search for e such that 10^(e-1) <= c 2^q < 10^e.
BigDecimal vp = new BigDecimal(v);
BigDecimal low = new BigDecimal(BigInteger.ONE, -(e - 1));
while (low.compareTo(vp) > 0) {
e -= 1;
low = new BigDecimal(BigInteger.ONE, -(e - 1));
}
BigDecimal high = new BigDecimal(BigInteger.ONE, -e);
while (vp.compareTo(high) >= 0) {
e += 1;
high = new BigDecimal(BigInteger.ONE, -e);
}
return e;
}
static long cTiny(int qMin, int kMin) {
BigInteger[] qr = ONE.shiftLeft(-qMin)
.divideAndRemainder(TEN.pow(-(kMin + 1)));
BigInteger cTiny = qr[1].signum() > 0 ? qr[0].add(ONE) : qr[0];
assertTrue(cTiny.bitLength() < Long.SIZE, "C_TINY");
return cTiny.longValue();
}
void validate() {
String msg = "toString applied to the bits " +
hexBits() +
" returns " +
"\"" + s + "\"" +
", which is not correct according to the specification.";
assertTrue(isOK(), msg);
}
/*
Returns whether s syntactically meets the expected output of
toString. It is restricted to finite positive outputs.
It is an unusually long method but rather straightforward, too.
Many conditionals could be merged, but KISS here.
*/
private boolean parse(String t) {
try {
// first determine interesting boundaries in the string
StringReader r = new StringReader(t);
int ch = r.read();
int i = 0;
while (ch == '0') {
++i;
ch = r.read();
}
// i is just after zeroes starting the integer
int p = i;
while ('0' <= ch && ch <= '9') {
c = 10 * c + (ch - '0');
if (c < 0) {
return false;
}
++len10;
++p;
ch = r.read();
}
// p is just after digits ending the integer
int fz = p;
if (ch == '.') {
++fz;
ch = r.read();
}
// fz is just after a decimal '.'
int f = fz;
while (ch == '0') {
c = 10 * c + (ch - '0');
if (c < 0) {
return false;
}
++len10;
++f;
ch = r.read();
}
// f is just after zeroes starting the fraction
if (c == 0) {
len10 = 0;
}
int x = f;
while ('0' <= ch && ch <= '9') {
c = 10 * c + (ch - '0');
if (c < 0) {
return false;
}
++len10;
++x;
ch = r.read();
}
// x is just after digits ending the fraction
int g = x;
if (ch == 'E') {
++g;
ch = r.read();
}
// g is just after an exponent indicator 'E'
int ez = g;
if (ch == '-') {
++ez;
ch = r.read();
}
// ez is just after a '-' sign in the exponent
int e = ez;
while (ch == '0') {
++e;
ch = r.read();
}
// e is just after zeroes starting the exponent
int z = e;
while ('0' <= ch && ch <= '9') {
q = 10 * q + (ch - '0');
if (q < 0) {
return false;
}
++z;
ch = r.read();
}
// z is just after digits ending the exponent
// No other char after the number
if (z != t.length()) {
return false;
}
// The integer must be present
if (p == 0) {
return false;
}
// The decimal '.' must be present
if (fz == p) {
return false;
}
// The fraction must be present
if (x == fz) {
return false;
}
// The fraction is not 0 or it consists of exactly one 0
if (f == x && f - fz > 1) {
return false;
}
// Plain notation, no exponent
if (x == z) {
// At most one 0 starting the integer
if (i > 1) {
return false;
}
// If the integer is 0, at most 2 zeroes start the fraction
if (i == 1 && f - fz > 2) {
return false;
}
// The integer cannot have more than 7 digits
if (p > 7) {
return false;
}
q = fz - x;
// OK for plain notation
return true;
}
// Computerized scientific notation
// The integer has exactly one nonzero digit
if (i != 0 || p != 1) {
return false;
}
//
// There must be an exponent indicator
if (x == g) {
return false;
}
// There must be an exponent
if (ez == z) {
return false;
}
// The exponent must not start with zeroes
if (ez != e) {
return false;
}
if (g != ez) {
q = -q;
}
// The exponent must not lie in [-3, 7)
if (-3 <= q && q < 7) {
return false;
}
q += fz - x;
// OK for computerized scientific notation
return true;
} catch (IOException ex) {
// An IOException on a StringReader??? Please...
return false;
}
}
private boolean isOK() {
if (isNaN()) {
return s.equals("NaN");
}
String t = s;
if (isNegative()) {
if (s.isEmpty() || s.charAt(0) != '-') {
return false;
}
negate();
t = s.substring(1);
}
if (isInfinity()) {
return t.equals("Infinity");
}
if (isZero()) {
return t.equals("0.0");
}
if (!parse(t)) {
return false;
}
if (len10 < 2) {
c *= 10;
q -= 1;
len10 += 1;
}
if (2 > len10 || len10 > maxLen10()) {
return false;
}
// The exponent is bounded
if (minExp() > q + len10 || q + len10 > maxExp()) {
return false;
}
// s must recover v
try {
if (!recovers(t)) {
return false;
}
} catch (NumberFormatException e) {
return false;
}
// Get rid of trailing zeroes, still ensuring at least 2 digits
while (len10 > 2 && c % 10 == 0) {
c /= 10;
q += 1;
len10 -= 1;
}
if (len10 > 2) {
// Try with a shorter number less than v...
if (recovers(BigDecimal.valueOf(c / 10, -q - 1))) {
return false;
}
// ... and with a shorter number greater than v
if (recovers(BigDecimal.valueOf(c / 10 + 1, -q - 1))) {
return false;
}
}
// Try with the decimal predecessor...
BigDecimal dp = c == 10 ?
BigDecimal.valueOf(99, -q + 1) :
BigDecimal.valueOf(c - 1, -q);
if (recovers(dp)) {
BigDecimal bv = toBigDecimal();
BigDecimal deltav = bv.subtract(BigDecimal.valueOf(c, -q));
if (deltav.signum() >= 0) {
return true;
}
BigDecimal delta = dp.subtract(bv);
if (delta.signum() >= 0) {
return false;
}
int cmp = deltav.compareTo(delta);
return cmp > 0 || cmp == 0 && (c & 0x1) == 0;
}
// ... and with the decimal successor
BigDecimal ds = BigDecimal.valueOf(c + 1, -q);
if (recovers(ds)) {
BigDecimal bv = toBigDecimal();
BigDecimal deltav = bv.subtract(BigDecimal.valueOf(c, -q));
if (deltav.signum() <= 0) {
return true;
}
BigDecimal delta = ds.subtract(bv);
if (delta.signum() <= 0) {
return false;
}
int cmp = deltav.compareTo(delta);
return cmp < 0 || cmp == 0 && (c & 0x1) == 0;
}
return true;
}
abstract BigDecimal toBigDecimal();
abstract boolean recovers(BigDecimal b);
abstract boolean recovers(String s);
abstract String hexBits();
abstract int minExp();
abstract int maxExp();
abstract int maxLen10();
abstract boolean isZero();
abstract boolean isInfinity();
abstract void negate();
abstract boolean isNegative();
abstract boolean isNaN();
}