TypeInference.java

/*
 * Copyright (C) 2015-2016 Federico Tomassetti
 * Copyright (C) 2017-2024 The JavaParser Team.
 *
 * This file is part of JavaParser.
 *
 * JavaParser can be used either under the terms of
 * a) the GNU Lesser General Public License as published by
 *     the Free Software Foundation, either version 3 of the License, or
 *     (at your option) any later version.
 * b) the terms of the Apache License
 *
 * You should have received a copy of both licenses in LICENCE.LGPL and
 * LICENCE.APACHE. Please refer to those files for details.
 *
 * JavaParser is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 */

package com.github.javaparser.symbolsolver.resolution.typeinference;

import com.github.javaparser.ast.expr.*;
import com.github.javaparser.resolution.MethodUsage;
import com.github.javaparser.resolution.TypeSolver;
import com.github.javaparser.resolution.declarations.ResolvedInterfaceDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedMethodDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedTypeParameterDeclaration;
import com.github.javaparser.resolution.model.typesystem.ReferenceTypeImpl;
import com.github.javaparser.resolution.types.ResolvedType;
import com.github.javaparser.symbolsolver.javaparsermodel.JavaParserFacade;
import com.github.javaparser.symbolsolver.resolution.typeinference.bounds.SubtypeOfBound;
import com.github.javaparser.symbolsolver.resolution.typeinference.bounds.ThrowsBound;
import com.github.javaparser.symbolsolver.resolution.typeinference.constraintformulas.ExpressionCompatibleWithType;
import java.util.LinkedList;
import java.util.List;
import java.util.Optional;

/**
 * The API exposed by the TypeInference subsystem.
 *
 * @author Federico Tomassetti
 */
public class TypeInference {

    private final ResolvedType object;
    private TypeSolver typeSolver;

    public TypeInference(TypeSolver typeSolver) {
        if (typeSolver == null) {
            throw new NullPointerException();
        }
        this.typeSolver = typeSolver;
        this.object = new ReferenceTypeImpl(typeSolver.getSolvedJavaLangObject());
    }

    ///
    /// Public static methods
    ///

    public static MethodUsage toMethodUsage(
            MethodCallExpr call, ResolvedMethodDeclaration methodDeclaration, TypeSolver typeSolver) {
        TypeInference typeInference = new TypeInference(typeSolver);
        Optional<InstantiationSet> instantiationSetOpt = typeInference.instantiationInference(call, methodDeclaration);
        if (instantiationSetOpt.isPresent()) {
            return instantiationSetToMethodUsage(methodDeclaration, instantiationSetOpt.get());
        }
        throw new IllegalArgumentException();
    }

    ///
    /// Public instance methods
    ///

    public Optional<InstantiationSet> instantiationInference(
            MethodCallExpr methodCallExpr, ResolvedMethodDeclaration methodDeclaration) {
        return instantiationInference(methodCallExpr.getArguments(), methodDeclaration);
    }

    public Optional<InstantiationSet> instantiationInference(
            List<Expression> argumentExpressions, ResolvedMethodDeclaration methodDeclaration) {
        //        if (methodCallExpr.getTypeArguments().isPresent()) {
        //            throw new IllegalArgumentException("Type inference unnecessary as type arguments have been
        // specified");
        //        }

        // Given a method invocation that provides no explicit type arguments, the process to determine whether a
        // potentially applicable generic method m is applicable is as follows:

        // - Where P1, ..., Pp (p ��� 1) are the type parameters of m, let ��1, ..., ��p be inference variables, and
        //   let �� be the substitution [P1:=��1, ..., Pp:=��p].

        List<ResolvedTypeParameterDeclaration> Ps = methodDeclaration.getTypeParameters();
        List<InferenceVariable> alphas = InferenceVariable.instantiate(Ps);
        Substitution theta = Substitution.empty();
        for (int i = 0; i < Ps.size(); i++) {
            theta = theta.withPair(Ps.get(0), alphas.get(0));
        }

        // - An initial bound set, B0, is constructed from the declared bounds of P1, ..., Pp, as described in ��18.1.3.

        BoundSet B0 = boundSetup(Ps, alphas);

        // - For all i (1 ��� i ��� p), if Pi appears in the throws clause of m, then the bound throws ��i is implied.
        //   These bounds, if any, are incorporated with B0 to produce a new bound set, B1.

        BoundSet B1 = B0;
        for (int i = 0; i < Ps.size(); i++) {
            ResolvedTypeParameterDeclaration Pi = Ps.get(i);
            if (appearInThrowsClause(Pi, methodDeclaration)) {
                B1 = B1.withBound(new ThrowsBound(alphas.get(i)));
            }
        }

        // - A set of constraint formulas, C, is constructed as follows.
        //
        //   Let F1, ..., Fn be the formal parameter types of m, and let e1, ..., ek be the actual argument expressions
        //   of the invocation. Then:

        List<ResolvedType> Fs = formalParameterTypes(methodDeclaration);
        List<Expression> es = argumentExpressions;

        Optional<ConstraintFormulaSet> C = Optional.empty();

        //   - To test for applicability by strict invocation:

        if (!C.isPresent()) {
            C = testForApplicabilityByStrictInvocation(Fs, es, theta);
        }

        //   - To test for applicability by loose invocation:

        if (!C.isPresent()) {
            C = testForApplicabilityByLooseInvocation(Fs, es, theta);
        }

        //   - To test for applicability by variable arity invocation:

        if (!C.isPresent()) {
            C = testForApplicabilityByVariableArityInvocation(Fs, es, theta);
        }

        if (!C.isPresent()) {
            return Optional.empty();
        }

        // - C is reduced (��18.2) and the resulting bounds are incorporated with B1 to produce a new bound set, B2.

        BoundSet resultingBounds = C.get().reduce(typeSolver);
        BoundSet B2 = B1.incorporate(resultingBounds, typeSolver);

        // - Finally, the method m is applicable if B2 does not contain the bound false and resolution of all the
        //   inference variables in B2 succeeds (��18.4).

        if (B2.containsFalse()) {
            return Optional.empty();
        }

        Optional<InstantiationSet> instantiation = B2.performResolution(alphas, typeSolver);
        return instantiation;
    }

    /**
     * Determine whether a potentially applicable generic method m is applicable for a method invocation that
     * provides no explicit type arguments.
     */
    public boolean invocationApplicabilityInference(
            MethodCallExpr methodCallExpr, ResolvedMethodDeclaration methodDeclaration) {
        if (!methodCallExpr.getNameAsString().equals(methodDeclaration.getName())) {
            throw new IllegalArgumentException();
        }
        Optional<InstantiationSet> partial = instantiationInference(methodCallExpr, methodDeclaration);
        if (!partial.isPresent()) {
            return false;
        }
        int nActualParams = methodCallExpr.getArguments().size();
        int nFormalParams = methodDeclaration.getNumberOfParams();
        if (nActualParams != nFormalParams) {
            if (methodDeclaration.hasVariadicParameter()) {
                if (nActualParams < (nFormalParams - 1)) {
                    return false;
                }
            } else {
                return false;
            }
        }
        // MethodUsage methodUsage = instantiationSetToMethodUsage(methodDeclaration, partial.get());
        //        for (int i=0;i<nActualParams;i++) {
        //            int formalIndex = i >= nFormalParams ? nFormalParams - 1 : i;
        //            Type formalType = methodDeclaration.getParam(formalIndex).getType();
        //            Type actualType = JavaParserFacade.get(typeSolver).getType(methodCallExpr.getArgument(i));
        //            //if (!formalType.isAssignableBy(actualType)) {
        //            //    return false;
        //            //}
        //        }
        return true;
    }

    public BoundSet invocationTypeInferenceBoundsSetB3() {
        // Given a method invocation that provides no explicit type arguments, and a corresponding most specific
        // applicable generic method m, the process to infer the invocation type (��15.12.2.6) of the chosen method is
        // as follows:
        //
        // - Let �� be the substitution [P1:=��1, ..., Pp:=��p] defined in ��18.5.1 to replace the type parameters of m with
        // inference variables.
        //
        // - Let B2 be the bound set produced by reduction in order to demonstrate that m is applicable in ��18.5.1.
        // (While it was necessary in ��18.5.1 to demonstrate that the inference variables in B2 could be resolved, in
        // order to establish applicability, the instantiations produced by this resolution step are not considered part
        // of B2.)
        //
        // - If the invocation is not a poly expression, let the bound set B3 be the same as B2.
        //
        //   If the invocation is a poly expression, let the bound set B3 be derived from B2 as follows. Let R be the
        //   return type of m, let T be the invocation's target type, and then:
        //
        //   - If unchecked conversion was necessary for the method to be applicable during constraint set reduction
        //     in ��18.5.1, the constraint formula ���|R| ��� T��� is reduced and incorporated with B2.
        //
        //   - Otherwise, if R �� is a parameterized type, G<A1, ..., An>, and one of A1, ..., An is a wildcard, then,
        //     for fresh inference variables ��1, ..., ��n, the constraint formula ���G<��1, ..., ��n> ��� T��� is reduced and
        //     incorporated, along with the bound G<��1, ..., ��n> = capture(G<A1, ..., An>), with B2.
        //
        //   - Otherwise, if R �� is an inference variable ��, and one of the following is true:
        //
        //     - T is a reference type, but is not a wildcard-parameterized type, and either i) B2 contains a bound of
        //       one of the forms �� = S or S <: ��, where S is a wildcard-parameterized type, or ii) B2 contains two
        //       bounds of the forms S1 <: �� and S2 <: ��, where S1 and S2 have supertypes that are two different
        //       parameterizations of the same generic class or interface.
        //
        //     - T is a parameterization of a generic class or interface, G, and B2 contains a bound of one of the
        //       forms �� = S or S <: ��, where there exists no type of the form G<...> that is a supertype of S, but the
        //       raw type |G<...>| is a supertype of S.
        //
        //     - T is a primitive type, and one of the primitive wrapper classes mentioned in ��5.1.7 is an
        //       instantiation, upper bound, or lower bound for �� in B2.
        //
        //     then �� is resolved in B2, and where the capture of the resulting instantiation of �� is U, the constraint
        //     formula ���U ��� T��� is reduced and incorporated with B2.
        //
        //   - Otherwise, the constraint formula ���R �� ��� T��� is reduced and incorporated with B2.
        throw new UnsupportedOperationException();
    }

    public void invocationTypeInference() {
        BoundSet B3 = invocationTypeInferenceBoundsSetB3();
        //
        // A set of constraint formulas, C, is constructed as follows.
        //
        //        Let e1, ..., ek be the actual argument expressions of the invocation. If m is applicable by strict or
        // loose invocation, let F1, ..., Fk be the formal parameter types of m; if m is applicable by variable arity
        // invocation, let F1, ..., Fk the first k variable arity parameter types of m (��15.12.2.4). Then:
        //
        // For all i (1 ��� i ��� k), if ei is not pertinent to applicability, C contains ���ei ��� Fi �����.
        //
        // For all i (1 ��� i ��� k), additional constraints may be included, depending on the form of ei:
        //
        // If ei is a LambdaExpression, C contains ���LambdaExpression ���throws Fi �����.
        //
        // In addition, the lambda body is searched for additional constraints:
        //
        // For a block lambda body, the search is applied recursively to each result expression.
        //
        // For a poly class instance creation expression (��15.9) or a poly method invocation expression (��15.12), C
        // contains all the constraint formulas that would appear in the set C generated by ��18.5.2 when inferring the
        // poly expression's invocation type.
        //
        // For a parenthesized expression, the search is applied recursively to the contained expression.
        //
        // For a conditional expression, the search is applied recursively to the second and third operands.
        //
        // For a lambda expression, the search is applied recursively to the lambda body.
        //
        // If ei is a MethodReference, C contains ���MethodReference ���throws Fi �����.
        //
        // If ei is a poly class instance creation expression (��15.9) or a poly method invocation expression (��15.12), C
        // contains all the constraint formulas that would appear in the set C generated by ��18.5.2 when inferring the
        // poly expression's invocation type.
        //
        // If ei is a parenthesized expression, these rules are applied recursively to the contained expression.
        //
        // If ei is a conditional expression, these rules are applied recursively to the second and third operands.
        //
        // While C is not empty, the following process is repeated, starting with the bound set B3 and accumulating new
        // bounds into a "current" bound set, ultimately producing a new bound set, B4:
        //
        // A subset of constraints is selected in C, satisfying the property that, for each constraint, no input
        // variable can influence an output variable of another constraint in C. The terms input variable and output
        // variable are defined below. An inference variable �� can influence an inference variable �� if �� depends on the
        // resolution of �� (��18.4), or vice versa; or if there exists a third inference variable �� such that �� can
        // influence �� and �� can influence ��.
        //
        // If this subset is empty, then there is a cycle (or cycles) in the graph of dependencies between constraints.
        // In this case, all constraints are considered that participate in a dependency cycle (or cycles) and do not
        // depend on any constraints outside of the cycle (or cycles). A single constraint is selected from the
        // considered constraints, as follows:
        //
        // If any of the considered constraints have the form ���Expression ��� T���, then the selected constraint is the
        // considered constraint of this form that contains the expression to the left (��3.5) of the expression of every
        // other considered constraint of this form.
        //
        //        If no considered constraint has the form ���Expression ��� T���, then the selected constraint is the
        // considered constraint that contains the expression to the left of the expression of every other considered
        // constraint.
        //
        //        The selected constraint(s) are removed from C.
        //
        //        The input variables ��1, ..., ��m of all the selected constraint(s) are resolved.
        //
        //        Where T1, ..., Tm are the instantiations of ��1, ..., ��m, the substitution [��1:=T1, ..., ��m:=Tm] is
        // applied to every constraint.
        //
        //        The constraint(s) resulting from substitution are reduced and incorporated with the current bound set.
        //
        // Finally, if B4 does not contain the bound false, the inference variables in B4 are resolved.
        //
        // If resolution succeeds with instantiations T1, ..., Tp for inference variables ��1, ..., ��p, let ��' be the
        // substitution [P1:=T1, ..., Pp:=Tp]. Then:
        //
        // If unchecked conversion was necessary for the method to be applicable during constraint set reduction in
        // ��18.5.1, then the parameter types of the invocation type of m are obtained by applying ��' to the parameter
        // types of m's type, and the return type and thrown types of the invocation type of m are given by the erasure
        // of the return type and thrown types of m's type.
        //
        // If unchecked conversion was not necessary for the method to be applicable, then the invocation type of m is
        // obtained by applying ��' to the type of m.
        //
        // If B4 contains the bound false, or if resolution fails, then a compile-time error occurs.
        //
        // Invocation type inference may require carefully sequencing the reduction of constraint formulas of the forms
        // ���Expression ��� T���, ���LambdaExpression ���throws T���, and ���MethodReference ���throws T���. To facilitate this
        // sequencing, the input variables of these constraints are defined as follows:
        //
        // For ���LambdaExpression ��� T���:
        //
        // If T is an inference variable, it is the (only) input variable.
        //
        //        If T is a functional interface type, and a function type can be derived from T (��15.27.3), then the
        // input variables include i) if the lambda expression is implicitly typed, the inference variables mentioned by
        // the function type's parameter types; and ii) if the function type's return type, R, is not void, then for
        // each result expression e in the lambda body (or for the body itself if it is an expression), the input
        // variables of ���e ��� R���.
        //
        // Otherwise, there are no input variables.
        //
        // For ���LambdaExpression ���throws T���:
        //
        // If T is an inference variable, it is the (only) input variable.
        //
        //        If T is a functional interface type, and a function type can be derived, as described in ��15.27.3, the
        // input variables include i) if the lambda expression is implicitly typed, the inference variables mentioned by
        // the function type's parameter types; and ii) the inference variables mentioned by the function type's return
        // type.
        //
        //        Otherwise, there are no input variables.
        //
        //        For ���MethodReference ��� T���:
        //
        // If T is an inference variable, it is the (only) input variable.
        //
        //        If T is a functional interface type with a function type, and if the method reference is inexact
        // (��15.13.1), the input variables are the inference variables mentioned by the function type's parameter types.
        //
        // Otherwise, there are no input variables.
        //
        // For ���MethodReference ���throws T���:
        //
        // If T is an inference variable, it is the (only) input variable.
        //
        //        If T is a functional interface type with a function type, and if the method reference is inexact
        // (��15.13.1), the input variables are the inference variables mentioned by the function type's parameter types
        // and the function type's return type.
        //
        //        Otherwise, there are no input variables.
        //
        //        For ���Expression ��� T���, if Expression is a parenthesized expression:
        //
        // Where the contained expression of Expression is Expression', the input variables are the input variables of
        // ���Expression' ��� T���.
        //
        // For ���ConditionalExpression ��� T���:
        //
        // Where the conditional expression has the form e1 ? e2 : e3, the input variables are the input variables of
        // ���e2 ��� T��� and ���e3 ��� T���.
        //
        // For all other constraint formulas, there are no input variables.
        //
        // The output variables of these constraints are all inference variables mentioned by the type on the right-hand
        // side of the constraint, T, that are not input variables.

        throw new UnsupportedOperationException();
    }

    public void functionalInterfaceParameterizationInference(
            LambdaExpr lambdaExpr, ResolvedInterfaceDeclaration interfaceDeclaration) {
        // Where a lambda expression with explicit parameter types P1, ..., Pn targets a functional interface
        // type F<A1, ..., Am> with at least one wildcard type argument, then a parameterization of F may be derived
        // as the ground target type of the lambda expression as follows.

        int n = lambdaExpr.getParameters().size();

        if (interfaceDeclaration.getTypeParameters().isEmpty()) {
            throw new IllegalArgumentException("Functional Interface without type arguments");
        }

        // Let Q1, ..., Qk be the parameter types of the function type of the type F<��1, ..., ��m>,
        // where ��1, ..., ��m are fresh inference variables.

        int k = interfaceDeclaration.getTypeParameters().size();
        List<InferenceVariable> alphas = InferenceVariable.instantiate(interfaceDeclaration.getTypeParameters());

        TypeInferenceCache.recordInferenceVariables(typeSolver, lambdaExpr, alphas);

        // If n ��� k, no valid parameterization exists.

        if (n != k) {
            throw new IllegalArgumentException("No valida parameterization can exist has n=" + " and k=" + k);
        }

        // Otherwise, a set of constraint formulas is formed with, for
        // all i (1 ��� i ��� n), ���Pi = Qi���. This constraint formula set is reduced to form the bound set B.

        ConstraintFormulaSet constraintFormulaSet = ConstraintFormulaSet.empty();
        for (int i = 0; i < n; i++) {
            throw new UnsupportedOperationException();
            // Type pi = JavaParserFacade.get(typeSolver).convertToUsage(lambdaExpr.getParameters().get(i).getType(),
            // lambdaExpr);
            // Type qi = JavaParserFacade.get(typeSolver).convertToUsage(interfaceDeclaration.getm.get(i).getType(),
            // lambdaExpr);
            // constraintFormulaSet = constraintFormulaSet.withConstraint(new TypeSameAsType(pi, qi));
        }
        BoundSet B = constraintFormulaSet.reduce(typeSolver);

        // If B contains the bound false, no valid parameterization exists. Otherwise, a new parameterization of the
        // functional interface type, F<A'1, ..., A'm>, is constructed as follows, for 1 ��� i ��� m:
        //
        // - If B contains an instantiation (��18.1.3) for ��i, T, then A'i = T.
        //
        // - Otherwise, A'i = Ai.
        //
        // If F<A'1, ..., A'm> is not a well-formed type (that is, the type arguments are not within their bounds), or
        // if F<A'1, ..., A'm> is not a subtype of F<A1, ..., Am>, no valid parameterization exists. Otherwise, the
        // inferred parameterization is either F<A'1, ..., A'm>, if all the type arguments are types, or the
        // non-wildcard parameterization (��9.9) of F<A'1, ..., A'm>, if one or more type arguments are still wildcards.

        throw new UnsupportedOperationException();
    }

    /**
     * Return if m2 is more specific than m1
     * @param methodCall
     * @param m1
     * @param m2
     */
    public boolean moreSpecificMethodInference(
            MethodCallExpr methodCall, ResolvedMethodDeclaration m1, ResolvedMethodDeclaration m2) {
        // When testing that one applicable method is more specific than another (��15.12.2.5), where the second method
        // is generic, it is necessary to test whether some instantiation of the second method's type parameters can be
        // inferred to make the first method more specific than the second.

        if (!m2.isGeneric()) {
            throw new IllegalArgumentException("M2 is not generic (m2: " + m2 + ")");
        }

        // Let m1 be the first method and m2 be the second method. Where m2 has type parameters P1, ..., Pp,
        // let ��1, ..., ��p be inference variables, and let �� be the substitution [P1:=��1, ..., Pp:=��p].
        //
        // Let e1, ..., ek be the argument expressions of the corresponding invocation. Then:
        //
        // - If m1 and m2 are applicable by strict or loose invocation (��15.12.2.2, ��15.12.2.3), then let S1, ..., Sk be
        // the formal parameter types of m1, and let T1, ..., Tk be the result of �� applied to the formal parameter
        // types of m2.
        //
        // - If m1 and m2 are applicable by variable arity invocation (��15.12.2.4), then let S1, ..., Sk be the first k
        // variable arity parameter types of m1, and let T1, ..., Tk be the result of �� applied to the first k variable
        // arity parameter types of m2.
        //
        // Note that no substitution is applied to S1, ..., Sk; even if m1 is generic, the type parameters of m1 are
        // treated as type variables, not inference variables.
        //
        // The process to determine if m1 is more specific than m2 is as follows:
        //
        // - First, an initial bound set, B, is constructed from the declared bounds of P1, ..., Pp, as specified in
        // ��18.1.3.
        //
        // - Second, for all i (1 ��� i ��� k), a set of constraint formulas or bounds is generated.
        //
        //   If Ti is a proper type, the result is true if Si is more specific than Ti for ei (��15.12.2.5), and false
        // otherwise. (Note that Si is always a proper type.)
        //
        //   Otherwise, if Ti is not a functional interface type, the constraint formula ���Si <: Ti��� is generated.
        //
        //   Otherwise, Ti is a parameterization of a functional interface, I. It must be determined whether Si
        // satisfies the following five conditions:
        //
        //   1. Si is a functional interface type.
        //
        //   2. Si is not a superinterface of I, nor a parameterization of a superinterface of I.
        //
        //   3. Si is not a subinterface of I, nor a parameterization of a subinterface of I.
        //
        //   4. If Si is an intersection type, at least one element of the intersection is not a superinterface of I,
        // nor a parameterization of a superinterface of I.
        //
        //   5. If Si is an intersection type, no element of the intersection is a subinterface of I, nor a
        // parameterization of a subinterface of I.
        //
        //   If all five conditions are true, then the following constraint formulas or bounds are generated (where U1
        // ... Uk and R1 are the parameter types and return type of the function type of the capture of Si, and V1 ...
        // Vk and R2 are the parameter types and return type of the function type of Ti):
        //
        //   - If ei is an explicitly typed lambda expression:
        //
        //     - For all j (1 ��� j ��� k), ���Uj = Vj���.
        //
        //     - If R2 is void, true.
        //
        //     - Otherwise, if R1 and R2 are functional interface types, and neither interface is a subinterface of the
        // other, and ei has at least one result expression, then these rules are applied recursively to R1 and R2, for
        // each result expression in ei.
        //
        //     - Otherwise, if R1 is a primitive type and R2 is not, and ei has at least one result expression, and each
        // result expression of ei is a standalone expression (��15.2) of a primitive type, true.
        //
        //     - Otherwise, if R2 is a primitive type and R1 is not, and ei has at least one result expression, and each
        // result expression of ei is either a standalone expression of a reference type or a poly expression, true.
        //
        //     - Otherwise, ���R1 <: R2���.
        //
        //   - If ei is an exact method reference:
        //
        //     - For all j (1 ��� j ��� k), ���Uj = Vj���.
        //
        //     - If R2 is void, true.
        //
        //     - Otherwise, if R1 is a primitive type and R2 is not, and the compile-time declaration for ei has a
        // primitive return type, true.
        //
        //     - Otherwise if R2 is a primitive type and R1 is not, and the compile-time declaration for ei has a
        // reference return type, true.
        //
        //     - Otherwise, ���R1 <: R2���.
        //
        //   - If ei is a parenthesized expression, these rules are applied recursively to the contained expression.
        //
        //   - If ei is a conditional expression, these rules are applied recursively to each of the second and third
        // operands.
        //
        //   - Otherwise, false.
        //
        //   If the five constraints on Si are not satisfied, the constraint formula ���Si <: Ti��� is generated instead.
        //
        // - Third, if m2 is applicable by variable arity invocation and has k+1 parameters, then where Sk+1 is the
        // k+1'th variable arity parameter type of m1 and Tk+1 is the result of �� applied to the k+1'th variable arity
        // parameter type of m2, the constraint ���Sk+1 <: Tk+1��� is generated.
        //
        // - Fourth, the generated bounds and constraint formulas are reduced and incorporated with B to produce a bound
        // set B'.
        //
        //   If B' does not contain the bound false, and resolution of all the inference variables in B' succeeds, then
        // m1 is more specific than m2.
        //
        //   Otherwise, m1 is not more specific than m2.

        throw new UnsupportedOperationException();
    }

    ///
    /// Private static methods
    ///

    private static MethodUsage instantiationSetToMethodUsage(
            ResolvedMethodDeclaration methodDeclaration, InstantiationSet instantiationSet) {
        if (instantiationSet.isEmpty()) {
            return new MethodUsage(methodDeclaration);
        }
        List<ResolvedType> paramTypes = new LinkedList<>();
        for (int i = 0; i < methodDeclaration.getNumberOfParams(); i++) {
            paramTypes.add(instantiationSet.apply(methodDeclaration.getParam(i).getType()));
        }
        ResolvedType returnType = instantiationSet.apply(methodDeclaration.getReturnType());
        return new MethodUsage(methodDeclaration, paramTypes, returnType);
    }

    ///
    /// Private instance methods
    ///

    /**
     * When inference begins, a bound set is typically generated from a list of type parameter declarations P1, ..., Pp
     * and associated inference variables ��1, ..., ��p
     *
     * @param typeParameterDeclarations
     * @param inferenceVariables
     * @return
     */
    private BoundSet boundSetup(
            List<ResolvedTypeParameterDeclaration> typeParameterDeclarations,
            List<InferenceVariable> inferenceVariables) {
        if (typeParameterDeclarations.size() != inferenceVariables.size()) {
            throw new IllegalArgumentException();
        }

        // When inference begins, a bound set is typically generated from a list of
        // type parameter declarations P1, ..., Pp and associated inference variables ��1, ..., ��p.
        // Such a bound set is constructed as follows. For each l (1 ��� l ��� p):

        BoundSet boundSet = BoundSet.empty();

        for (int l = 0; l < typeParameterDeclarations.size(); l++) {
            ResolvedTypeParameterDeclaration Pl = typeParameterDeclarations.get(l);
            InferenceVariable alphaL = inferenceVariables.get(l);

            // - If Pl has no TypeBound, the bound ��l <: Object appears in the set.

            if (Pl.getBounds().isEmpty()) {
                boundSet = boundSet.withBound(new SubtypeOfBound(alphaL, object));
            } else {

                // - Otherwise, for each type T delimited by & in the TypeBound, the bound ��l <: T[P1:=��1, ..., Pp:=��p]
                // appears
                // in the set; if this results in no proper upper bounds for ��l (only dependencies), then the
                // bound ��l <: Object also appears in the set.

                for (ResolvedTypeParameterDeclaration.Bound bound : Pl.getBounds()) {
                    ResolvedType T = bound.getType();
                    Substitution substitution = Substitution.empty();
                    for (int j = 0; j < typeParameterDeclarations.size(); j++) {
                        substitution =
                                substitution.withPair(typeParameterDeclarations.get(j), inferenceVariables.get(j));
                    }
                    ResolvedType TWithSubstitutions = substitution.apply(T);

                    boundSet = boundSet.withBound(new SubtypeOfBound(alphaL, TWithSubstitutions));

                    if (boundSet.getProperUpperBoundsFor(alphaL).isEmpty()) {
                        boundSet = boundSet.withBound(new SubtypeOfBound(alphaL, object));
                    }
                }
            }
        }

        return boundSet;
    }

    private boolean appearInThrowsClause(
            ResolvedTypeParameterDeclaration p, ResolvedMethodDeclaration methodDeclaration) {
        for (ResolvedType thrownType : methodDeclaration.getSpecifiedExceptions()) {
            if (thrownType.isTypeVariable()
                    && thrownType.asTypeVariable().asTypeParameter().equals(p)) {
                return true;
            }
        }
        return false;
    }

    private List<ResolvedType> formalParameterTypes(ResolvedMethodDeclaration methodDeclaration) {
        List<ResolvedType> types = new LinkedList<>();
        for (int i = 0; i < methodDeclaration.getNumberOfParams(); i++) {
            types.add(methodDeclaration.getParam(i).getType());
        }
        return types;
    }

    private boolean isImplicitlyTyped(LambdaExpr lambdaExpr) {
        return lambdaExpr.getParameters().stream().anyMatch(p -> p.getType().isUnknownType());
    }

    private boolean isInexact(MethodReferenceExpr methodReferenceExpr) {
        throw new UnsupportedOperationException();
    }

    private boolean isPertinentToApplicability(Expression argument) {
        // An argument expression is considered pertinent to applicability for a potentially applicable method m
        // unless it has one of the following forms:
        //
        // - An implicitly typed lambda expression (��15.27.1).

        if (argument.isLambdaExpr()) {
            LambdaExpr lambdaExpr = (LambdaExpr) argument;
            if (isImplicitlyTyped(lambdaExpr)) {
                return false;
            }
        }

        // - An inexact method reference expression (��15.13.1).

        if (argument.isMethodReferenceExpr()) {
            MethodReferenceExpr methodReferenceExpr = (MethodReferenceExpr) argument;
            if (isInexact(methodReferenceExpr)) {
                return false;
            }
        }

        // - If m is a generic method and the method invocation does not provide explicit type arguments, an
        //   explicitly typed lambda expression or an exact method reference expression for which the
        //   corresponding target type (as derived from the signature of m) is a type parameter of m.

        if (argument.isLambdaExpr()) {
            throw new UnsupportedOperationException();
        }

        if (argument.isMethodReferenceExpr()) {
            throw new UnsupportedOperationException();
        }

        // - An explicitly typed lambda expression whose body is an expression that is not pertinent to applicability.

        if (argument.isLambdaExpr()) {
            throw new UnsupportedOperationException();
        }

        // - An explicitly typed lambda expression whose body is a block, where at least one result expression is not
        //   pertinent to applicability.

        if (argument.isLambdaExpr()) {
            throw new UnsupportedOperationException();
        }

        // - A parenthesized expression (��15.8.5) whose contained expression is not pertinent to applicability.

        if (argument.isEnclosedExpr()) {
            EnclosedExpr enclosedExpr = (EnclosedExpr) argument;
            return isPertinentToApplicability(enclosedExpr.getInner());
        }

        // - A conditional expression (��15.25) whose second or third operand is not pertinent to applicability.

        if (argument.isConditionalExpr()) {
            ConditionalExpr conditionalExpr = (ConditionalExpr) argument;
            return isPertinentToApplicability(conditionalExpr.getThenExpr())
                    && isPertinentToApplicability(conditionalExpr.getElseExpr());
        }

        return true;
    }

    private Optional<ConstraintFormulaSet> testForApplicabilityByStrictInvocation(
            List<ResolvedType> Fs, List<Expression> es, Substitution theta) {
        int n = Fs.size();
        int k = es.size();

        // If k ��� n, or if there exists an i (1 ��� i ��� n) such that ei is pertinent to applicability (��15.12.2.2)
        // and either:
        // i) ei is a standalone expression of a primitive type but Fi is a reference type, or
        // ii) Fi is a primitive type but ei is not a standalone expression of a primitive type;
        if (k != n) {
            return Optional.empty();
        }
        for (int i = 0; i < n; i++) {
            Expression ei = es.get(i);
            ResolvedType fi = Fs.get(i);
            if (isPertinentToApplicability(ei)) {
                if (ei.isStandaloneExpression()
                        && JavaParserFacade.get(typeSolver).getType(ei).isPrimitive()
                        && fi.isReferenceType()) {
                    return Optional.empty();
                }
                if (fi.isPrimitive()
                        && (!ei.isStandaloneExpression()
                                || !JavaParserFacade.get(typeSolver).getType(ei).isPrimitive())) {
                    return Optional.empty();
                }
            }
        }
        // then the method is not applicable and there is no need to proceed with inference.
        //
        // Otherwise, C includes, for all i (1 ��� i ��� k) where ei is pertinent to applicability, ���ei ��� Fi �����.

        return Optional.of(constraintSetFromArgumentsSubstitution(Fs, es, theta, k));
    }

    private ResolvedType typeWithSubstitution(ResolvedType originalType, Substitution substitution) {
        return substitution.apply(originalType);
    }

    private Optional<ConstraintFormulaSet> testForApplicabilityByLooseInvocation(
            List<ResolvedType> Fs, List<Expression> es, Substitution theta) {
        int n = Fs.size();
        int k = es.size();

        // If k ��� n, the method is not applicable and there is no need to proceed with inference.

        if (k != n) {
            return Optional.empty();
        }

        // Otherwise, C includes, for all i (1 ��� i ��� k) where ei is pertinent to applicability, ���ei ��� Fi �����.
        return Optional.of(constraintSetFromArgumentsSubstitution(Fs, es, theta, k));
    }

    private ConstraintFormulaSet constraintSetFromArgumentsSubstitution(
            List<ResolvedType> Fs, List<Expression> es, Substitution theta, int k) {
        ConstraintFormulaSet constraintFormulaSet = ConstraintFormulaSet.empty();
        for (int i = 0; i < k; i++) {
            Expression ei = es.get(i);
            ResolvedType fi = Fs.get(i);
            ResolvedType fiTheta = typeWithSubstitution(fi, theta);
            constraintFormulaSet =
                    constraintFormulaSet.withConstraint(new ExpressionCompatibleWithType(typeSolver, ei, fiTheta));
        }
        return constraintFormulaSet;
    }

    private Optional<ConstraintFormulaSet> testForApplicabilityByVariableArityInvocation(
            List<ResolvedType> Fs, List<Expression> es, Substitution theta) {
        int k = es.size();

        // Let F'1, ..., F'k be the first k variable arity parameter types of m (��15.12.2.4). C includes,
        // for all i (1 ��� i ��� k) where ei is pertinent to applicability, ���ei ��� F'i �����.

        List<ResolvedType> FsFirst = new LinkedList<>();
        for (int i = 0; i < k; i++) {
            ResolvedType FFirstI = i < Fs.size() ? Fs.get(i) : Fs.get(Fs.size() - 1);
            FsFirst.add(FFirstI);
        }

        return Optional.of(constraintSetFromArgumentsSubstitution(FsFirst, es, theta, k));
    }
}