ReflectionInterfaceDeclaration.java
/*
* Copyright (C) 2015-2016 Federico Tomassetti
* Copyright (C) 2017-2024 The JavaParser Team.
*
* This file is part of JavaParser.
*
* JavaParser can be used either under the terms of
* a) the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* b) the terms of the Apache License
*
* You should have received a copy of both licenses in LICENCE.LGPL and
* LICENCE.APACHE. Please refer to those files for details.
*
* JavaParser is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*/
package com.github.javaparser.symbolsolver.reflectionmodel;
import com.github.javaparser.ast.AccessSpecifier;
import com.github.javaparser.ast.Node;
import com.github.javaparser.resolution.Context;
import com.github.javaparser.resolution.MethodUsage;
import com.github.javaparser.resolution.TypeSolver;
import com.github.javaparser.resolution.declarations.*;
import com.github.javaparser.resolution.logic.ConflictingGenericTypesException;
import com.github.javaparser.resolution.logic.InferenceContext;
import com.github.javaparser.resolution.logic.MethodResolutionCapability;
import com.github.javaparser.resolution.model.LambdaArgumentTypePlaceholder;
import com.github.javaparser.resolution.model.SymbolReference;
import com.github.javaparser.resolution.model.typesystem.NullType;
import com.github.javaparser.resolution.model.typesystem.ReferenceTypeImpl;
import com.github.javaparser.resolution.types.ResolvedReferenceType;
import com.github.javaparser.resolution.types.ResolvedType;
import com.github.javaparser.symbolsolver.core.resolution.MethodUsageResolutionCapability;
import com.github.javaparser.symbolsolver.core.resolution.SymbolResolutionCapability;
import com.github.javaparser.symbolsolver.logic.AbstractTypeDeclaration;
import java.lang.reflect.Field;
import java.util.*;
import java.util.stream.Collectors;
/**
* @author Federico Tomassetti
*/
public class ReflectionInterfaceDeclaration extends AbstractTypeDeclaration
implements ResolvedInterfaceDeclaration,
MethodResolutionCapability,
MethodUsageResolutionCapability,
SymbolResolutionCapability {
///
/// Fields
///
private Class<?> clazz;
private TypeSolver typeSolver;
private ReflectionClassAdapter reflectionClassAdapter;
///
/// Constructor
///
public ReflectionInterfaceDeclaration(Class<?> clazz, TypeSolver typeSolver) {
if (!clazz.isInterface()) {
throw new IllegalArgumentException();
}
this.clazz = clazz;
this.typeSolver = typeSolver;
this.reflectionClassAdapter = new ReflectionClassAdapter(clazz, typeSolver, this);
}
///
/// Public methods
///
@Override
public boolean isAssignableBy(ResolvedReferenceTypeDeclaration other) {
return isAssignableBy(new ReferenceTypeImpl(other));
}
@Override
public String getPackageName() {
if (clazz.getPackage() != null) {
return clazz.getPackage().getName();
}
return null;
}
@Override
public String getClassName() {
String canonicalName = clazz.getCanonicalName();
if (canonicalName != null && getPackageName() != null) {
return canonicalName.substring(getPackageName().length() + 1);
}
return null;
}
@Override
public String getQualifiedName() {
return clazz.getCanonicalName();
}
@Override
@Deprecated
public SymbolReference<ResolvedMethodDeclaration> solveMethod(
String name, List<ResolvedType> parameterTypes, boolean staticOnly) {
return ReflectionMethodResolutionLogic.solveMethod(name, parameterTypes, staticOnly, typeSolver, this, clazz);
}
@Override
public String toString() {
return "ReflectionInterfaceDeclaration{" + "clazz=" + clazz.getCanonicalName() + '}';
}
public ResolvedType getUsage(Node node) {
return new ReferenceTypeImpl(this);
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof ReflectionInterfaceDeclaration)) return false;
ReflectionInterfaceDeclaration that = (ReflectionInterfaceDeclaration) o;
if (!clazz.getCanonicalName().equals(that.clazz.getCanonicalName())) return false;
return getTypeParameters().equals(that.getTypeParameters());
}
@Override
public int hashCode() {
return clazz.hashCode();
}
/**
* Solves method usage with proper generic type inference, including support for varargs methods.
* This method first resolves the basic method signature, then performs generic type inference
* based on the actual parameter types provided at the call site.
*
* @param name the method name to resolve
* @param parameterTypes the actual parameter types at the call site
* @param invokationContext the context where the method is invoked
* @param typeParameterValues explicit type parameter values (if any)
* @return an Optional containing the resolved MethodUsage with inferred types, or empty if resolution fails
*/
public Optional<MethodUsage> solveMethodAsUsage(
String name,
List<ResolvedType> parameterTypes,
Context invokationContext,
List<ResolvedType> typeParameterValues) {
Optional<MethodUsage> res = ReflectionMethodResolutionLogic.solveMethodAsUsage(
name, parameterTypes, typeSolver, invokationContext, typeParameterValues, this, clazz);
if (!res.isPresent()) {
return res;
}
return performTypeInference(res.get(), parameterTypes);
}
/**
* Performs generic type inference on a resolved method usage by analyzing the relationship
* between formal parameter types and actual parameter types provided at the call site.
* Handles both regular methods and varargs methods with appropriate constraint collection.
*
* @param methodUsage the initially resolved method usage
* @param parameterTypes the actual parameter types from the call site
* @return an Optional containing the method usage with inferred generic types, or empty if inference fails
*/
private Optional<MethodUsage> performTypeInference(MethodUsage methodUsage, List<ResolvedType> parameterTypes) {
try {
InferenceContext inferenceContext = new InferenceContext(typeSolver);
List<ResolvedType> constraintPairs = collectTypeConstraints(methodUsage, parameterTypes, inferenceContext);
return resolveInferredTypes(methodUsage, constraintPairs, inferenceContext);
} catch (ConflictingGenericTypesException e) {
return Optional.empty();
}
}
/**
* Collects type constraints by comparing formal parameter types with actual parameter types.
* Automatically detects whether the method is varargs and delegates to the appropriate
* constraint collection strategy. Also validates that parameter counts are compatible.
*
* @param methodUsage the method usage to analyze
* @param parameterTypes the actual parameter types from the call site
* @param inferenceContext the inference context for collecting type constraints
* @return a list of type constraints that will be used for generic type resolution
* @throws IllegalArgumentException if parameter counts are incompatible
*/
private List<ResolvedType> collectTypeConstraints(
MethodUsage methodUsage, List<ResolvedType> parameterTypes, InferenceContext inferenceContext) {
boolean isVarArgs = methodUsage.getDeclaration().hasVariadicParameter();
int formalParamCount = methodUsage.getNoParams();
int actualParamCount = parameterTypes.size();
validateParameterCount(isVarArgs, formalParamCount, actualParamCount);
if (isVarArgs) {
return collectVarArgsConstraints(methodUsage, parameterTypes, inferenceContext, formalParamCount);
} else {
return collectRegularConstraints(methodUsage, parameterTypes, inferenceContext);
}
}
/**
* Validates that the number of actual parameters is compatible with the method signature.
* For regular methods, counts must match exactly. For varargs methods, actual parameter
* count must be at least the number of required parameters (formal count - 1).
*
* @param isVarArgs whether the method is a varargs method
* @param formalParamCount the number of formal parameters in the method signature
* @param actualParamCount the number of actual parameters provided at the call site
* @throws IllegalArgumentException if parameter counts are incompatible
*/
private void validateParameterCount(boolean isVarArgs, int formalParamCount, int actualParamCount) {
if (isVarArgs && actualParamCount < formalParamCount - 1) {
throw new IllegalArgumentException("Too few parameters for varargs method");
}
if (!isVarArgs && actualParamCount != formalParamCount) {
throw new IllegalArgumentException("Parameter count mismatch for non-varargs method");
}
}
/**
* Collects type constraints for regular (non-varargs) methods by creating pairs
* between each formal parameter type and its corresponding actual parameter type.
* This is a straightforward one-to-one mapping since parameter counts must match exactly.
*
* @param methodUsage the method usage to analyze
* @param parameterTypes the actual parameter types from the call site
* @param inferenceContext the inference context for collecting constraints
* @return a list of type constraints, one for each parameter position
*/
private List<ResolvedType> collectRegularConstraints(
MethodUsage methodUsage, List<ResolvedType> parameterTypes, InferenceContext inferenceContext) {
List<ResolvedType> constraints = new LinkedList<>();
for (int i = 0; i < parameterTypes.size(); i++) {
ResolvedType formalType = methodUsage.getParamType(i);
ResolvedType actualType = parameterTypes.get(i);
constraints.add(inferenceContext.addPair(formalType, actualType));
}
return constraints;
}
/**
* Collects type constraints for varargs methods. This involves two phases:
* 1. Regular parameters: handled like non-varargs methods (one-to-one mapping)
* 2. Varargs parameter: handled specially based on how arguments are passed
*
* The varargs parameter can receive arguments in two ways:
* - Direct array passing: method(array) - constraint between array types
* - Individual elements: method(elem1, elem2, ...) - constraints between component type and each element
*
* @param methodUsage the varargs method usage to analyze
* @param parameterTypes the actual parameter types from the call site
* @param inferenceContext the inference context for collecting constraints
* @param formalParamCount the total number of formal parameters (including varargs)
* @return a list of type constraints covering both regular and varargs parameters
*/
private List<ResolvedType> collectVarArgsConstraints(
MethodUsage methodUsage,
List<ResolvedType> parameterTypes,
InferenceContext inferenceContext,
int formalParamCount) {
List<ResolvedType> constraints = new LinkedList<>();
int regularParamCount = formalParamCount - 1;
// Process regular parameters
for (int i = 0; i < regularParamCount; i++) {
ResolvedType formalType = methodUsage.getParamType(i);
ResolvedType actualType = parameterTypes.get(i);
constraints.add(inferenceContext.addPair(formalType, actualType));
}
// Process varargs parameter
if (formalParamCount > 0) {
ResolvedType varargsParamType = methodUsage.getParamType(regularParamCount);
processVarArgsParameter(varargsParamType, parameterTypes, regularParamCount, inferenceContext, constraints);
}
return constraints;
}
/**
* Processes the varargs parameter by determining how arguments are passed and creating
* appropriate type constraints. Handles two scenarios:
*
* 1. Direct array passing: When exactly one argument is passed to varargs and it's an array,
* creates a constraint between the formal array type and the actual array type.
* Example: method(String[] args) called as method(stringArray)
*
* 2. Individual element passing: When multiple arguments are passed to varargs,
* creates constraints between the array's component type and each individual argument.
* Example: method(String... args) called as method("a", "b", "c")
*
* @param varargsParamType the formal type of the varargs parameter (must be an array type)
* @param parameterTypes all actual parameter types from the call site
* @param regularParamCount the number of regular (non-varargs) parameters
* @param inferenceContext the inference context for collecting constraints
* @param constraints the constraint list to add new constraints to
* @throws IllegalStateException if the varargs parameter is not an array type
*/
private void processVarArgsParameter(
ResolvedType varargsParamType,
List<ResolvedType> parameterTypes,
int regularParamCount,
InferenceContext inferenceContext,
List<ResolvedType> constraints) {
if (!varargsParamType.isArray()) {
throw new IllegalStateException("Varargs parameter is not an array type");
}
ResolvedType componentType = varargsParamType.asArrayType().getComponentType();
int actualParamCount = parameterTypes.size();
if (isDirectArrayPassing(parameterTypes, regularParamCount, actualParamCount)) {
// Direct array passing: method(array)
ResolvedType actualArrayType = parameterTypes.get(regularParamCount);
constraints.add(inferenceContext.addPair(varargsParamType, actualArrayType));
} else {
// Individual elements passing: method(elem1, elem2, ...)
for (int i = regularParamCount; i < actualParamCount; i++) {
ResolvedType actualType = parameterTypes.get(i);
constraints.add(inferenceContext.addPair(componentType, actualType));
}
}
}
/**
* Determines whether arguments are being passed directly as an array to the varargs parameter.
* This happens when there is exactly one argument for the varargs parameter and that argument
* is an array type. This is a special case that requires different constraint handling.
*
* @param parameterTypes all actual parameter types from the call site
* @param regularParamCount the number of regular (non-varargs) parameters
* @param actualParamCount the total number of actual parameters
* @return true if a single array is being passed directly to varargs, false otherwise
*/
private boolean isDirectArrayPassing(
List<ResolvedType> parameterTypes, int regularParamCount, int actualParamCount) {
return actualParamCount == regularParamCount + 1
&& parameterTypes.get(regularParamCount).isArray();
}
/**
* Applies the inferred generic types to the method usage by resolving all collected constraints
* and updating both parameter types and return type with their concrete resolved types.
* This is the final step that produces a fully resolved MethodUsage with no remaining generic placeholders.
*
* @param methodUsage the method usage to update with resolved types
* @param constraints the collected type constraints from parameter analysis
* @param inferenceContext the inference context containing all type relationships
* @return an Optional containing the fully resolved MethodUsage
* @throws ConflictingGenericTypesException if type constraints are contradictory
*/
private Optional<MethodUsage> resolveInferredTypes(
MethodUsage methodUsage, List<ResolvedType> constraints, InferenceContext inferenceContext) {
// Resolve return type
ResolvedType returnType = inferenceContext.addSingle(methodUsage.returnType());
// Apply resolved parameter types
for (int i = 0; i < constraints.size() && i < methodUsage.getNoParams(); i++) {
ResolvedType resolvedParamType = inferenceContext.resolve(constraints.get(i));
methodUsage = methodUsage.replaceParamType(i, resolvedParamType);
}
// Apply resolved return type
methodUsage = methodUsage.replaceReturnType(inferenceContext.resolve(returnType));
return Optional.of(methodUsage);
}
@Override
public boolean canBeAssignedTo(ResolvedReferenceTypeDeclaration other) {
if (other instanceof LambdaArgumentTypePlaceholder) {
return isFunctionalInterface();
}
if (other.getQualifiedName().equals(getQualifiedName())) {
return true;
}
if (this.clazz.getSuperclass() != null
&& new ReflectionInterfaceDeclaration(clazz.getSuperclass(), typeSolver).canBeAssignedTo(other)) {
return true;
}
for (Class interfaze : clazz.getInterfaces()) {
if (new ReflectionInterfaceDeclaration(interfaze, typeSolver).canBeAssignedTo(other)) {
return true;
}
}
// Everything can be assigned to {@code java.lang.Object}
return other.isJavaLangObject();
}
@Override
public boolean isAssignableBy(ResolvedType type) {
if (type instanceof NullType) {
return true;
}
if (type instanceof LambdaArgumentTypePlaceholder) {
return isFunctionalInterface();
}
if (type.isArray()) {
return false;
}
if (type.isPrimitive()) {
return false;
}
if (type.describe().equals(getQualifiedName())) {
return true;
}
if (type instanceof ReferenceTypeImpl) {
ReferenceTypeImpl otherTypeDeclaration = (ReferenceTypeImpl) type;
if (otherTypeDeclaration.getTypeDeclaration().isPresent()) {
return otherTypeDeclaration.getTypeDeclaration().get().canBeAssignedTo(this);
}
}
return false;
}
@Override
public boolean isTypeParameter() {
return false;
}
@Override
public ResolvedFieldDeclaration getField(String name) {
return reflectionClassAdapter.getField(name);
}
@Override
public List<ResolvedFieldDeclaration> getAllFields() {
return reflectionClassAdapter.getAllFields();
}
@Override
public SymbolReference<? extends ResolvedValueDeclaration> solveSymbol(String name, TypeSolver typeSolver) {
for (Field field : clazz.getFields()) {
if (field.getName().equals(name)) {
return SymbolReference.solved(new ReflectionFieldDeclaration(field, typeSolver));
}
}
return SymbolReference.unsolved();
}
@Override
public List<ResolvedReferenceType> getAncestors(boolean acceptIncompleteList) {
// we do not attempt to perform any symbol solving when analyzing ancestors in the reflection model, so we can
// simply ignore the boolean parameter here; an UnsolvedSymbolException cannot occur
return reflectionClassAdapter.getAncestors();
}
@Override
public Set<ResolvedMethodDeclaration> getDeclaredMethods() {
return reflectionClassAdapter.getDeclaredMethods();
}
@Override
public boolean hasField(String name) {
return reflectionClassAdapter.hasField(name);
}
@Override
public String getName() {
return clazz.getSimpleName();
}
@Override
public boolean isInterface() {
return true;
}
@Override
public List<ResolvedReferenceType> getInterfacesExtended() {
List<ResolvedReferenceType> res = new ArrayList<>();
for (Class i : clazz.getInterfaces()) {
res.add(new ReferenceTypeImpl(new ReflectionInterfaceDeclaration(i, typeSolver)));
}
return res;
}
@Override
public Optional<ResolvedReferenceTypeDeclaration> containerType() {
return reflectionClassAdapter.containerType();
}
@Override
public Set<ResolvedReferenceTypeDeclaration> internalTypes() {
return Arrays.stream(this.clazz.getDeclaredClasses())
.map(ic -> ReflectionFactory.typeDeclarationFor(ic, typeSolver))
.collect(Collectors.toSet());
}
@Override
public ResolvedInterfaceDeclaration asInterface() {
return this;
}
@Override
public boolean hasDirectlyAnnotation(String canonicalName) {
return reflectionClassAdapter.hasDirectlyAnnotation(canonicalName);
}
@Override
public List<ResolvedTypeParameterDeclaration> getTypeParameters() {
return reflectionClassAdapter.getTypeParameters();
}
@Override
public AccessSpecifier accessSpecifier() {
return ReflectionFactory.modifiersToAccessLevel(this.clazz.getModifiers());
}
@Override
public List<ResolvedConstructorDeclaration> getConstructors() {
return Collections.emptyList();
}
}