Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/joblib/__init__.py: 100%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1"""Joblib is a set of tools to provide **lightweight pipelining in
2Python**. In particular:
41. transparent disk-caching of functions and lazy re-evaluation
5 (memoize pattern)
72. easy simple parallel computing
9Joblib is optimized to be **fast** and **robust** on large
10data in particular and has specific optimizations for `numpy` arrays. It is
11**BSD-licensed**.
14 ==================== ===============================================
15 **Documentation:** https://joblib.readthedocs.io
17 **Download:** https://pypi.python.org/pypi/joblib#downloads
19 **Source code:** https://github.com/joblib/joblib
21 **Report issues:** https://github.com/joblib/joblib/issues
22 ==================== ===============================================
25Vision
26--------
28The vision is to provide tools to easily achieve better performance and
29reproducibility when working with long running jobs.
31 * **Avoid computing the same thing twice**: code is often rerun again and
32 again, for instance when prototyping computational-heavy jobs (as in
33 scientific development), but hand-crafted solutions to alleviate this
34 issue are error-prone and often lead to unreproducible results.
36 * **Persist to disk transparently**: efficiently persisting
37 arbitrary objects containing large data is hard. Using
38 joblib's caching mechanism avoids hand-written persistence and
39 implicitly links the file on disk to the execution context of
40 the original Python object. As a result, joblib's persistence is
41 good for resuming an application status or computational job, eg
42 after a crash.
44Joblib addresses these problems while **leaving your code and your flow
45control as unmodified as possible** (no framework, no new paradigms).
47Main features
48------------------
501) **Transparent and fast disk-caching of output value:** a memoize or
51 make-like functionality for Python functions that works well for
52 arbitrary Python objects, including very large numpy arrays. Separate
53 persistence and flow-execution logic from domain logic or algorithmic
54 code by writing the operations as a set of steps with well-defined
55 inputs and outputs: Python functions. Joblib can save their
56 computation to disk and rerun it only if necessary::
58 >>> from joblib import Memory
59 >>> cachedir = 'your_cache_dir_goes_here'
60 >>> mem = Memory(cachedir)
61 >>> import numpy as np
62 >>> a = np.vander(np.arange(3)).astype(float)
63 >>> square = mem.cache(np.square)
64 >>> b = square(a) # doctest: +ELLIPSIS
65 ______________________________________________________________________...
66 [Memory] Calling square...
67 square(array([[0., 0., 1.],
68 [1., 1., 1.],
69 [4., 2., 1.]]))
70 _________________________________________________...square - ...s, 0.0min
72 >>> c = square(a)
73 >>> # The above call did not trigger an evaluation
752) **Embarrassingly parallel helper:** to make it easy to write readable
76 parallel code and debug it quickly::
78 >>> from joblib import Parallel, delayed
79 >>> from math import sqrt
80 >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10))
81 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
843) **Fast compressed Persistence**: a replacement for pickle to work
85 efficiently on Python objects containing large data (
86 *joblib.dump* & *joblib.load* ).
88..
89 >>> import shutil ; shutil.rmtree(cachedir)
91"""
93# PEP0440 compatible formatted version, see:
94# https://www.python.org/dev/peps/pep-0440/
95#
96# Generic release markers:
97# X.Y
98# X.Y.Z # For bugfix releases
99#
100# Admissible pre-release markers:
101# X.YaN # Alpha release
102# X.YbN # Beta release
103# X.YrcN # Release Candidate
104# X.Y # Final release
105#
106# Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer.
107# 'X.Y.dev0' is the canonical version of 'X.Y.dev'
108#
109__version__ = '1.5.dev0'
112import os
114from .memory import Memory
115from .memory import MemorizedResult
116from .memory import register_store_backend
117from .memory import expires_after
119from .logger import PrintTime
120from .logger import Logger
122from .hashing import hash
124from .numpy_pickle import dump
125from .numpy_pickle import load
127from .compressor import register_compressor
129from .parallel import Parallel
130from .parallel import delayed
131from .parallel import cpu_count
132from .parallel import register_parallel_backend
133from .parallel import parallel_backend
134from .parallel import parallel_config
135from .parallel import effective_n_jobs
136from ._cloudpickle_wrapper import wrap_non_picklable_objects
139__all__ = ['Memory', 'MemorizedResult', 'PrintTime', 'Logger', 'hash', 'dump',
140 'load', 'Parallel', 'delayed', 'cpu_count', 'effective_n_jobs',
141 'register_parallel_backend', 'parallel_backend', 'expires_after',
142 'register_store_backend', 'register_compressor',
143 'wrap_non_picklable_objects', 'parallel_config']
146# Workaround issue discovered in intel-openmp 2019.5:
147# https://github.com/ContinuumIO/anaconda-issues/issues/11294
148os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE")