/src/jq/vendor/decNumber/decNumber.c
Line | Count | Source |
1 | | /* ------------------------------------------------------------------ */ |
2 | | /* Decimal Number arithmetic module */ |
3 | | /* ------------------------------------------------------------------ */ |
4 | | /* Copyright (c) IBM Corporation, 2000, 2009. All rights reserved. */ |
5 | | /* */ |
6 | | /* This software is made available under the terms of the */ |
7 | | /* ICU License -- ICU 1.8.1 and later. */ |
8 | | /* */ |
9 | | /* The description and User's Guide ("The decNumber C Library") for */ |
10 | | /* this software is called decNumber.pdf. This document is */ |
11 | | /* available, together with arithmetic and format specifications, */ |
12 | | /* testcases, and Web links, on the General Decimal Arithmetic page. */ |
13 | | /* */ |
14 | | /* Please send comments, suggestions, and corrections to the author: */ |
15 | | /* mfc@uk.ibm.com */ |
16 | | /* Mike Cowlishaw, IBM Fellow */ |
17 | | /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ |
18 | | /* ------------------------------------------------------------------ */ |
19 | | /* This module comprises the routines for arbitrary-precision General */ |
20 | | /* Decimal Arithmetic as defined in the specification which may be */ |
21 | | /* found on the General Decimal Arithmetic pages. It implements both */ |
22 | | /* the full ('extended') arithmetic and the simpler ('subset') */ |
23 | | /* arithmetic. */ |
24 | | /* */ |
25 | | /* Usage notes: */ |
26 | | /* */ |
27 | | /* 1. This code is ANSI C89 except: */ |
28 | | /* */ |
29 | | /* a) C99 line comments (double forward slash) are used. (Most C */ |
30 | | /* compilers accept these. If yours does not, a simple script */ |
31 | | /* can be used to convert them to ANSI C comments.) */ |
32 | | /* */ |
33 | | /* b) Types from C99 stdint.h are used. If you do not have this */ |
34 | | /* header file, see the User's Guide section of the decNumber */ |
35 | | /* documentation; this lists the necessary definitions. */ |
36 | | /* */ |
37 | | /* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */ |
38 | | /* uint64_t types may be used. To avoid these, set DECUSE64=0 */ |
39 | | /* and DECDPUN<=4 (see documentation). */ |
40 | | /* */ |
41 | | /* The code also conforms to C99 restrictions; in particular, */ |
42 | | /* strict aliasing rules are observed. */ |
43 | | /* */ |
44 | | /* 2. The decNumber format which this library uses is optimized for */ |
45 | | /* efficient processing of relatively short numbers; in particular */ |
46 | | /* it allows the use of fixed sized structures and minimizes copy */ |
47 | | /* and move operations. It does, however, support arbitrary */ |
48 | | /* precision (up to 999,999,999 digits) and arbitrary exponent */ |
49 | | /* range (Emax in the range 0 through 999,999,999 and Emin in the */ |
50 | | /* range -999,999,999 through 0). Mathematical functions (for */ |
51 | | /* example decNumberExp) as identified below are restricted more */ |
52 | | /* tightly: digits, emax, and -emin in the context must be <= */ |
53 | | /* DEC_MAX_MATH (999999), and their operand(s) must be within */ |
54 | | /* these bounds. */ |
55 | | /* */ |
56 | | /* 3. Logical functions are further restricted; their operands must */ |
57 | | /* be finite, positive, have an exponent of zero, and all digits */ |
58 | | /* must be either 0 or 1. The result will only contain digits */ |
59 | | /* which are 0 or 1 (and will have exponent=0 and a sign of 0). */ |
60 | | /* */ |
61 | | /* 4. Operands to operator functions are never modified unless they */ |
62 | | /* are also specified to be the result number (which is always */ |
63 | | /* permitted). Other than that case, operands must not overlap. */ |
64 | | /* */ |
65 | | /* 5. Error handling: the type of the error is ORed into the status */ |
66 | | /* flags in the current context (decContext structure). The */ |
67 | | /* SIGFPE signal is then raised if the corresponding trap-enabler */ |
68 | | /* flag in the decContext is set (is 1). */ |
69 | | /* */ |
70 | | /* It is the responsibility of the caller to clear the status */ |
71 | | /* flags as required. */ |
72 | | /* */ |
73 | | /* The result of any routine which returns a number will always */ |
74 | | /* be a valid number (which may be a special value, such as an */ |
75 | | /* Infinity or NaN). */ |
76 | | /* */ |
77 | | /* 6. The decNumber format is not an exchangeable concrete */ |
78 | | /* representation as it comprises fields which may be machine- */ |
79 | | /* dependent (packed or unpacked, or special length, for example). */ |
80 | | /* Canonical conversions to and from strings are provided; other */ |
81 | | /* conversions are available in separate modules. */ |
82 | | /* */ |
83 | | /* 7. Normally, input operands are assumed to be valid. Set DECCHECK */ |
84 | | /* to 1 for extended operand checking (including NULL operands). */ |
85 | | /* Results are undefined if a badly-formed structure (or a NULL */ |
86 | | /* pointer to a structure) is provided, though with DECCHECK */ |
87 | | /* enabled the operator routines are protected against exceptions. */ |
88 | | /* (Except if the result pointer is NULL, which is unrecoverable.) */ |
89 | | /* */ |
90 | | /* However, the routines will never cause exceptions if they are */ |
91 | | /* given well-formed operands, even if the value of the operands */ |
92 | | /* is inappropriate for the operation and DECCHECK is not set. */ |
93 | | /* (Except for SIGFPE, as and where documented.) */ |
94 | | /* */ |
95 | | /* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */ |
96 | | /* ------------------------------------------------------------------ */ |
97 | | /* Implementation notes for maintenance of this module: */ |
98 | | /* */ |
99 | | /* 1. Storage leak protection: Routines which use malloc are not */ |
100 | | /* permitted to use return for fastpath or error exits (i.e., */ |
101 | | /* they follow strict structured programming conventions). */ |
102 | | /* Instead they have a do{}while(0); construct surrounding the */ |
103 | | /* code which is protected -- break may be used to exit this. */ |
104 | | /* Other routines can safely use the return statement inline. */ |
105 | | /* */ |
106 | | /* Storage leak accounting can be enabled using DECALLOC. */ |
107 | | /* */ |
108 | | /* 2. All loops use the for(;;) construct. Any do construct does */ |
109 | | /* not loop; it is for allocation protection as just described. */ |
110 | | /* */ |
111 | | /* 3. Setting status in the context must always be the very last */ |
112 | | /* action in a routine, as non-0 status may raise a trap and hence */ |
113 | | /* the call to set status may not return (if the handler uses long */ |
114 | | /* jump). Therefore all cleanup must be done first. In general, */ |
115 | | /* to achieve this status is accumulated and is only applied just */ |
116 | | /* before return by calling decContextSetStatus (via decStatus). */ |
117 | | /* */ |
118 | | /* Routines which allocate storage cannot, in general, use the */ |
119 | | /* 'top level' routines which could cause a non-returning */ |
120 | | /* transfer of control. The decXxxxOp routines are safe (do not */ |
121 | | /* call decStatus even if traps are set in the context) and should */ |
122 | | /* be used instead (they are also a little faster). */ |
123 | | /* */ |
124 | | /* 4. Exponent checking is minimized by allowing the exponent to */ |
125 | | /* grow outside its limits during calculations, provided that */ |
126 | | /* the decFinalize function is called later. Multiplication and */ |
127 | | /* division, and intermediate calculations in exponentiation, */ |
128 | | /* require more careful checks because of the risk of 31-bit */ |
129 | | /* overflow (the most negative valid exponent is -1999999997, for */ |
130 | | /* a 999999999-digit number with adjusted exponent of -999999999). */ |
131 | | /* */ |
132 | | /* 5. Rounding is deferred until finalization of results, with any */ |
133 | | /* 'off to the right' data being represented as a single digit */ |
134 | | /* residue (in the range -1 through 9). This avoids any double- */ |
135 | | /* rounding when more than one shortening takes place (for */ |
136 | | /* example, when a result is subnormal). */ |
137 | | /* */ |
138 | | /* 6. The digits count is allowed to rise to a multiple of DECDPUN */ |
139 | | /* during many operations, so whole Units are handled and exact */ |
140 | | /* accounting of digits is not needed. The correct digits value */ |
141 | | /* is found by decGetDigits, which accounts for leading zeros. */ |
142 | | /* This must be called before any rounding if the number of digits */ |
143 | | /* is not known exactly. */ |
144 | | /* */ |
145 | | /* 7. The multiply-by-reciprocal 'trick' is used for partitioning */ |
146 | | /* numbers up to four digits, using appropriate constants. This */ |
147 | | /* is not useful for longer numbers because overflow of 32 bits */ |
148 | | /* would lead to 4 multiplies, which is almost as expensive as */ |
149 | | /* a divide (unless a floating-point or 64-bit multiply is */ |
150 | | /* assumed to be available). */ |
151 | | /* */ |
152 | | /* 8. Unusual abbreviations that may be used in the commentary: */ |
153 | | /* lhs -- left hand side (operand, of an operation) */ |
154 | | /* lsd -- least significant digit (of coefficient) */ |
155 | | /* lsu -- least significant Unit (of coefficient) */ |
156 | | /* msd -- most significant digit (of coefficient) */ |
157 | | /* msi -- most significant item (in an array) */ |
158 | | /* msu -- most significant Unit (of coefficient) */ |
159 | | /* rhs -- right hand side (operand, of an operation) */ |
160 | | /* +ve -- positive */ |
161 | | /* -ve -- negative */ |
162 | | /* ** -- raise to the power */ |
163 | | /* ------------------------------------------------------------------ */ |
164 | | |
165 | | #include <stdlib.h> // for malloc, free, etc. |
166 | | #include <stdio.h> // for printf [if needed] |
167 | | #include <string.h> // for strcpy |
168 | | #include <ctype.h> // for lower |
169 | | #include "decNumber.h" // base number library |
170 | | #include "decNumberLocal.h" // decNumber local types, etc. |
171 | | |
172 | | /* Constants */ |
173 | | // Public lookup table used by the D2U macro |
174 | | const uByte d2utable[DECMAXD2U+1]=D2UTABLE; |
175 | | |
176 | | #define DECVERB 1 // set to 1 for verbose DECCHECK |
177 | 109M | #define powers DECPOWERS // old internal name |
178 | | |
179 | | // Local constants |
180 | 0 | #define DIVIDE 0x80 // Divide operators |
181 | 0 | #define REMAINDER 0x40 // .. |
182 | 0 | #define DIVIDEINT 0x20 // .. |
183 | 0 | #define REMNEAR 0x10 // .. |
184 | 10.7M | #define COMPARE 0x01 // Compare operators |
185 | 0 | #define COMPMAX 0x02 // .. |
186 | 0 | #define COMPMIN 0x03 // .. |
187 | 10.7M | #define COMPTOTAL 0x04 // .. |
188 | 0 | #define COMPNAN 0x05 // .. [NaN processing] |
189 | 3.58M | #define COMPSIG 0x06 // .. [signaling COMPARE] |
190 | 7.16M | #define COMPMAXMAG 0x07 // .. |
191 | 3.58M | #define COMPMINMAG 0x08 // .. |
192 | | |
193 | 15.2k | #define DEC_sNaN 0x40000000 // local status: sNaN signal |
194 | 7.11M | #define BADINT (Int)0x80000000 // most-negative Int; error indicator |
195 | | // Next two indicate an integer >= 10**6, and its parity (bottom bit) |
196 | 0 | #define BIGEVEN (Int)0x80000002 |
197 | 0 | #define BIGODD (Int)0x80000003 |
198 | | |
199 | | static Unit uarrone[1]={1}; // Unit array of 1, used for incrementing |
200 | | |
201 | | /* Granularity-dependent code */ |
202 | | #if DECDPUN<=4 |
203 | 266k | #define eInt Int // extended integer |
204 | | #define ueInt uInt // unsigned extended integer |
205 | | // Constant multipliers for divide-by-power-of five using reciprocal |
206 | | // multiply, after removing powers of 2 by shifting, and final shift |
207 | | // of 17 [we only need up to **4] |
208 | | static const uInt multies[]={131073, 26215, 5243, 1049, 210}; |
209 | | // QUOT10 -- macro to return the quotient of unit u divided by 10**n |
210 | 55.6M | #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) |
211 | | #else |
212 | | // For DECDPUN>4 non-ANSI-89 64-bit types are needed. |
213 | | #if !DECUSE64 |
214 | | #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4 |
215 | | #endif |
216 | | #define eInt Long // extended integer |
217 | | #define ueInt uLong // unsigned extended integer |
218 | | #endif |
219 | | |
220 | | /* Local routines */ |
221 | | static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, |
222 | | decContext *, uByte, uInt *); |
223 | | static Flag decBiStr(const char *, const char *, const char *); |
224 | | static uInt decCheckMath(const decNumber *, decContext *, uInt *); |
225 | | static void decApplyRound(decNumber *, decContext *, Int, uInt *); |
226 | | static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag); |
227 | | static decNumber * decCompareOp(decNumber *, const decNumber *, |
228 | | const decNumber *, decContext *, |
229 | | Flag, uInt *); |
230 | | static void decCopyFit(decNumber *, const decNumber *, decContext *, |
231 | | Int *, uInt *); |
232 | | static decNumber * decDecap(decNumber *, Int); |
233 | | static decNumber * decDivideOp(decNumber *, const decNumber *, |
234 | | const decNumber *, decContext *, Flag, uInt *); |
235 | | static decNumber * decExpOp(decNumber *, const decNumber *, |
236 | | decContext *, uInt *); |
237 | | static void decFinalize(decNumber *, decContext *, Int *, uInt *); |
238 | | static Int decGetDigits(Unit *, Int); |
239 | | static Int decGetInt(const decNumber *); |
240 | | static decNumber * decLnOp(decNumber *, const decNumber *, |
241 | | decContext *, uInt *); |
242 | | static decNumber * decMultiplyOp(decNumber *, const decNumber *, |
243 | | const decNumber *, decContext *, |
244 | | uInt *); |
245 | | static decNumber * decNaNs(decNumber *, const decNumber *, |
246 | | const decNumber *, decContext *, uInt *); |
247 | | static decNumber * decQuantizeOp(decNumber *, const decNumber *, |
248 | | const decNumber *, decContext *, Flag, |
249 | | uInt *); |
250 | | static void decReverse(Unit *, Unit *); |
251 | | static void decSetCoeff(decNumber *, decContext *, const Unit *, |
252 | | Int, Int *, uInt *); |
253 | | static void decSetMaxValue(decNumber *, decContext *); |
254 | | static void decSetOverflow(decNumber *, decContext *, uInt *); |
255 | | static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *); |
256 | | static Int decShiftToLeast(Unit *, Int, Int); |
257 | | static Int decShiftToMost(Unit *, Int, Int); |
258 | | static void decStatus(decNumber *, uInt, decContext *); |
259 | | static void decToString(const decNumber *, char[], Flag); |
260 | | static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *); |
261 | | static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int, |
262 | | Unit *, Int); |
263 | | static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int); |
264 | | |
265 | | #if !DECSUBSET |
266 | | /* decFinish == decFinalize when no subset arithmetic needed */ |
267 | 5.12M | #define decFinish(a,b,c,d) decFinalize(a,b,c,d) |
268 | | #else |
269 | | static void decFinish(decNumber *, decContext *, Int *, uInt *); |
270 | | static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *); |
271 | | #endif |
272 | | |
273 | | /* Local macros */ |
274 | | // masked special-values bits |
275 | 0 | #define SPECIALARG (rhs->bits & DECSPECIAL) |
276 | 4.10M | #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL) |
277 | | |
278 | | /* Diagnostic macros, etc. */ |
279 | | #if DECALLOC |
280 | | // Handle malloc/free accounting. If enabled, our accountable routines |
281 | | // are used; otherwise the code just goes straight to the system malloc |
282 | | // and free routines. |
283 | | #define malloc(a) decMalloc(a) |
284 | | #define free(a) decFree(a) |
285 | | #define DECFENCE 0x5a // corruption detector |
286 | | // 'Our' malloc and free: |
287 | | static void *decMalloc(size_t); |
288 | | static void decFree(void *); |
289 | | uInt decAllocBytes=0; // count of bytes allocated |
290 | | // Note that DECALLOC code only checks for storage buffer overflow. |
291 | | // To check for memory leaks, the decAllocBytes variable must be |
292 | | // checked to be 0 at appropriate times (e.g., after the test |
293 | | // harness completes a set of tests). This checking may be unreliable |
294 | | // if the testing is done in a multi-thread environment. |
295 | | #endif |
296 | | |
297 | | #if DECCHECK |
298 | | // Optional checking routines. Enabling these means that decNumber |
299 | | // and decContext operands to operator routines are checked for |
300 | | // correctness. This roughly doubles the execution time of the |
301 | | // fastest routines (and adds 600+ bytes), so should not normally be |
302 | | // used in 'production'. |
303 | | // decCheckInexact is used to check that inexact results have a full |
304 | | // complement of digits (where appropriate -- this is not the case |
305 | | // for Quantize, for example) |
306 | | #define DECUNRESU ((decNumber *)(void *)0xffffffff) |
307 | | #define DECUNUSED ((const decNumber *)(void *)0xffffffff) |
308 | | #define DECUNCONT ((decContext *)(void *)(0xffffffff)) |
309 | | static Flag decCheckOperands(decNumber *, const decNumber *, |
310 | | const decNumber *, decContext *); |
311 | | static Flag decCheckNumber(const decNumber *); |
312 | | static void decCheckInexact(const decNumber *, decContext *); |
313 | | #endif |
314 | | |
315 | | #if DECTRACE || DECCHECK |
316 | | // Optional trace/debugging routines (may or may not be used) |
317 | | void decNumberShow(const decNumber *); // displays the components of a number |
318 | | static void decDumpAr(char, const Unit *, Int); |
319 | | #endif |
320 | | |
321 | | /* ================================================================== */ |
322 | | /* Conversions */ |
323 | | /* ================================================================== */ |
324 | | |
325 | | /* ------------------------------------------------------------------ */ |
326 | | /* from-int32 -- conversion from Int or uInt */ |
327 | | /* */ |
328 | | /* dn is the decNumber to receive the integer */ |
329 | | /* in or uin is the integer to be converted */ |
330 | | /* returns dn */ |
331 | | /* */ |
332 | | /* No error is possible. */ |
333 | | /* ------------------------------------------------------------------ */ |
334 | 0 | decNumber * decNumberFromInt32(decNumber *dn, Int in) { |
335 | 0 | uInt unsig; |
336 | 0 | if (in>=0) unsig=in; |
337 | 0 | else { // negative (possibly BADINT) |
338 | 0 | if (in==BADINT) unsig=(uInt)1073741824*2; // special case |
339 | 0 | else unsig=-in; // invert |
340 | 0 | } |
341 | | // in is now positive |
342 | 0 | decNumberFromUInt32(dn, unsig); |
343 | 0 | if (in<0) dn->bits=DECNEG; // sign needed |
344 | 0 | return dn; |
345 | 0 | } // decNumberFromInt32 |
346 | | |
347 | 0 | decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) { |
348 | 0 | Unit *up; // work pointer |
349 | 0 | decNumberZero(dn); // clean |
350 | 0 | if (uin==0) return dn; // [or decGetDigits bad call] |
351 | 0 | for (up=dn->lsu; uin>0; up++) { |
352 | 0 | *up=(Unit)(uin%(DECDPUNMAX+1)); |
353 | 0 | uin=uin/(DECDPUNMAX+1); |
354 | 0 | } |
355 | 0 | dn->digits=decGetDigits(dn->lsu, up-dn->lsu); |
356 | 0 | return dn; |
357 | 0 | } // decNumberFromUInt32 |
358 | | |
359 | | /* ------------------------------------------------------------------ */ |
360 | | /* to-int32 -- conversion to Int or uInt */ |
361 | | /* */ |
362 | | /* dn is the decNumber to convert */ |
363 | | /* set is the context for reporting errors */ |
364 | | /* returns the converted decNumber, or 0 if Invalid is set */ |
365 | | /* */ |
366 | | /* Invalid is set if the decNumber does not have exponent==0 or if */ |
367 | | /* it is a NaN, Infinite, or out-of-range. */ |
368 | | /* ------------------------------------------------------------------ */ |
369 | 0 | Int decNumberToInt32(const decNumber *dn, decContext *set) { |
370 | | #if DECCHECK |
371 | | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
372 | | #endif |
373 | | |
374 | | // special or too many digits, or bad exponent |
375 | 0 | if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; // bad |
376 | 0 | else { // is a finite integer with 10 or fewer digits |
377 | 0 | Int d; // work |
378 | 0 | const Unit *up; // .. |
379 | 0 | uInt hi=0, lo; // .. |
380 | 0 | up=dn->lsu; // -> lsu |
381 | 0 | lo=*up; // get 1 to 9 digits |
382 | 0 | #if DECDPUN>1 // split to higher |
383 | 0 | hi=lo/10; |
384 | 0 | lo=lo%10; |
385 | 0 | #endif |
386 | 0 | up++; |
387 | | // collect remaining Units, if any, into hi |
388 | 0 | for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; |
389 | | // now low has the lsd, hi the remainder |
390 | 0 | if (hi>214748364 || (hi==214748364 && lo>7)) { // out of range? |
391 | | // most-negative is a reprieve |
392 | 0 | if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000; |
393 | | // bad -- drop through |
394 | 0 | } |
395 | 0 | else { // in-range always |
396 | 0 | Int i=X10(hi)+lo; |
397 | 0 | if (dn->bits&DECNEG) return -i; |
398 | 0 | return i; |
399 | 0 | } |
400 | 0 | } // integer |
401 | 0 | decContextSetStatus(set, DEC_Invalid_operation); // [may not return] |
402 | 0 | return 0; |
403 | 0 | } // decNumberToInt32 |
404 | | |
405 | 0 | uInt decNumberToUInt32(const decNumber *dn, decContext *set) { |
406 | | #if DECCHECK |
407 | | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
408 | | #endif |
409 | | // special or too many digits, or bad exponent, or negative (<0) |
410 | 0 | if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0 |
411 | 0 | || (dn->bits&DECNEG && !ISZERO(dn))); // bad |
412 | 0 | else { // is a finite integer with 10 or fewer digits |
413 | 0 | Int d; // work |
414 | 0 | const Unit *up; // .. |
415 | 0 | uInt hi=0, lo; // .. |
416 | 0 | up=dn->lsu; // -> lsu |
417 | 0 | lo=*up; // get 1 to 9 digits |
418 | 0 | #if DECDPUN>1 // split to higher |
419 | 0 | hi=lo/10; |
420 | 0 | lo=lo%10; |
421 | 0 | #endif |
422 | 0 | up++; |
423 | | // collect remaining Units, if any, into hi |
424 | 0 | for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; |
425 | | |
426 | | // now low has the lsd, hi the remainder |
427 | 0 | if (hi>429496729 || (hi==429496729 && lo>5)) ; // no reprieve possible |
428 | 0 | else return X10(hi)+lo; |
429 | 0 | } // integer |
430 | 0 | decContextSetStatus(set, DEC_Invalid_operation); // [may not return] |
431 | 0 | return 0; |
432 | 0 | } // decNumberToUInt32 |
433 | | |
434 | | /* ------------------------------------------------------------------ */ |
435 | | /* to-scientific-string -- conversion to numeric string */ |
436 | | /* to-engineering-string -- conversion to numeric string */ |
437 | | /* */ |
438 | | /* decNumberToString(dn, string); */ |
439 | | /* decNumberToEngString(dn, string); */ |
440 | | /* */ |
441 | | /* dn is the decNumber to convert */ |
442 | | /* string is the string where the result will be laid out */ |
443 | | /* */ |
444 | | /* string must be at least dn->digits+14 characters long */ |
445 | | /* */ |
446 | | /* No error is possible, and no status can be set. */ |
447 | | /* ------------------------------------------------------------------ */ |
448 | 3.00M | char * decNumberToString(const decNumber *dn, char *string){ |
449 | 3.00M | decToString(dn, string, 0); |
450 | 3.00M | return string; |
451 | 3.00M | } // DecNumberToString |
452 | | |
453 | 0 | char * decNumberToEngString(const decNumber *dn, char *string){ |
454 | 0 | decToString(dn, string, 1); |
455 | 0 | return string; |
456 | 0 | } // DecNumberToEngString |
457 | | |
458 | | /* ------------------------------------------------------------------ */ |
459 | | /* to-number -- conversion from numeric string */ |
460 | | /* */ |
461 | | /* decNumberFromString -- convert string to decNumber */ |
462 | | /* dn -- the number structure to fill */ |
463 | | /* chars[] -- the string to convert ('\0' terminated) */ |
464 | | /* set -- the context used for processing any error, */ |
465 | | /* determining the maximum precision available */ |
466 | | /* (set.digits), determining the maximum and minimum */ |
467 | | /* exponent (set.emax and set.emin), determining if */ |
468 | | /* extended values are allowed, and checking the */ |
469 | | /* rounding mode if overflow occurs or rounding is */ |
470 | | /* needed. */ |
471 | | /* */ |
472 | | /* The length of the coefficient and the size of the exponent are */ |
473 | | /* checked by this routine, so the correct error (Underflow or */ |
474 | | /* Overflow) can be reported or rounding applied, as necessary. */ |
475 | | /* */ |
476 | | /* If bad syntax is detected, the result will be a quiet NaN. */ |
477 | | /* ------------------------------------------------------------------ */ |
478 | | decNumber * decNumberFromString(decNumber *dn, const char chars[], |
479 | 19.5M | decContext *set) { |
480 | 19.5M | Int exponent=0; // working exponent [assume 0] |
481 | 19.5M | uByte bits=0; // working flags [assume +ve] |
482 | 19.5M | Unit *res; // where result will be built |
483 | 19.5M | Unit resbuff[SD2U(DECBUFFER+9)];// local buffer in case need temporary |
484 | | // [+9 allows for ln() constants] |
485 | 19.5M | Unit *allocres=NULL; // -> allocated result, iff allocated |
486 | 19.5M | Int d=0; // count of digits found in decimal part |
487 | 19.5M | const char *dotchar=NULL; // where dot was found |
488 | 19.5M | const char *cfirst=chars; // -> first character of decimal part |
489 | 19.5M | const char *last=NULL; // -> last digit of decimal part |
490 | 19.5M | const char *c; // work |
491 | 19.5M | Unit *up; // .. |
492 | 19.5M | #if DECDPUN>1 |
493 | 19.5M | Int cut, out; // .. |
494 | 19.5M | #endif |
495 | 19.5M | Int residue; // rounding residue |
496 | 19.5M | uInt status=0; // error code |
497 | | |
498 | | #if DECCHECK |
499 | | if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) |
500 | | return decNumberZero(dn); |
501 | | #endif |
502 | | |
503 | 19.5M | do { // status & malloc protection |
504 | 218M | for (c=chars;; c++) { // -> input character |
505 | 218M | if (*c>='0' && *c<='9') { // test for Arabic digit |
506 | 198M | last=c; |
507 | 198M | d++; // count of real digits |
508 | 198M | continue; // still in decimal part |
509 | 198M | } |
510 | 19.9M | if (*c=='.' && dotchar==NULL) { // first '.' |
511 | 430k | dotchar=c; // record offset into decimal part |
512 | 430k | if (c==cfirst) cfirst++; // first digit must follow |
513 | 430k | continue;} |
514 | 19.5M | if (c==chars) { // first in string... |
515 | 52.1k | if (*c=='-') { // valid - sign |
516 | 19.0k | cfirst++; |
517 | 19.0k | bits=DECNEG; |
518 | 19.0k | continue;} |
519 | 33.0k | if (*c=='+') { // valid + sign |
520 | 4.58k | cfirst++; |
521 | 4.58k | continue;} |
522 | 33.0k | } |
523 | | // *c is not a digit, or a valid +, -, or '.' |
524 | 19.5M | break; |
525 | 19.5M | } // c |
526 | | |
527 | 19.5M | if (last==NULL) { // no digits yet |
528 | 30.3k | status=DEC_Conversion_syntax;// assume the worst |
529 | 30.3k | if (*c=='\0') break; // and no more to come... |
530 | | #if DECSUBSET |
531 | | // if subset then infinities and NaNs are not allowed |
532 | | if (!set->extended) break; // hopeless |
533 | | #endif |
534 | | // Infinities and NaNs are possible, here |
535 | 29.1k | if (dotchar!=NULL) break; // .. unless had a dot |
536 | 28.6k | decNumberZero(dn); // be optimistic |
537 | 28.6k | if (decBiStr(c, "infinity", "INFINITY") |
538 | 27.8k | || decBiStr(c, "inf", "INF")) { |
539 | 7.71k | dn->bits=bits | DECINF; |
540 | 7.71k | status=0; // is OK |
541 | 7.71k | break; // all done |
542 | 7.71k | } |
543 | | // a NaN expected |
544 | | // 2003.09.10 NaNs are now permitted to have a sign |
545 | 20.9k | dn->bits=bits | DECNAN; // assume simple NaN |
546 | 20.9k | if (*c=='s' || *c=='S') { // looks like an sNaN |
547 | 2.48k | c++; |
548 | 2.48k | dn->bits=bits | DECSNAN; |
549 | 2.48k | } |
550 | 20.9k | if (*c!='n' && *c!='N') break; // check caseless "NaN" |
551 | 15.0k | c++; |
552 | 15.0k | if (*c!='a' && *c!='A') break; // .. |
553 | 13.8k | c++; |
554 | 13.8k | if (*c!='n' && *c!='N') break; // .. |
555 | 12.6k | c++; |
556 | | // now either nothing, or nnnn payload, expected |
557 | | // -> start of integer and skip leading 0s [including plain 0] |
558 | 16.3k | for (cfirst=c; *cfirst=='0';) cfirst++; |
559 | 12.6k | if (*cfirst=='\0') { // "NaN" or "sNaN", maybe with all 0s |
560 | 7.54k | status=0; // it's good |
561 | 7.54k | break; // .. |
562 | 7.54k | } |
563 | | // something other than 0s; setup last and d as usual [no dots] |
564 | 8.16M | for (c=cfirst;; c++, d++) { |
565 | 8.16M | if (*c<'0' || *c>'9') break; // test for Arabic digit |
566 | 8.15M | last=c; |
567 | 8.15M | } |
568 | 5.10k | if (*c!='\0') break; // not all digits |
569 | 3.97k | if (d>set->digits-1) { |
570 | | // [NB: payload in a decNumber can be full length unless |
571 | | // clamped, in which case can only be digits-1] |
572 | 0 | if (set->clamp) break; |
573 | 0 | if (d>set->digits) break; |
574 | 0 | } // too many digits? |
575 | | // good; drop through to convert the integer to coefficient |
576 | 3.97k | status=0; // syntax is OK |
577 | 3.97k | bits=dn->bits; // for copy-back |
578 | 3.97k | } // last==NULL |
579 | | |
580 | 19.4M | else if (*c!='\0') { // more to process... |
581 | | // had some digits; exponent is only valid sequence now |
582 | 653k | Flag nege; // 1=negative exponent |
583 | 653k | const char *firstexp; // -> first significant exponent digit |
584 | 653k | status=DEC_Conversion_syntax;// assume the worst |
585 | 653k | uInt expa=0; // accumulator for exponent |
586 | 653k | if (*c!='e' && *c!='E') break; |
587 | | /* Found 'e' or 'E' -- now process explicit exponent */ |
588 | | // 1998.07.11: sign no longer required |
589 | 651k | nege=0; |
590 | 651k | c++; // to (possible) sign |
591 | 651k | if (*c=='-') {nege=1; c++;} |
592 | 514k | else if (*c=='+') c++; |
593 | 651k | if (*c=='\0') break; |
594 | | |
595 | 950k | for (; *c=='0' && *(c+1)!='\0';) c++; // strip insignificant zeros |
596 | 649k | firstexp=c; // save exponent digit place |
597 | 16.3M | for (; ;c++) { |
598 | 16.3M | if (*c<'0' || *c>'9') break; // not a digit |
599 | 15.6M | expa=X10(expa)+(Int)*c-(Int)'0'; |
600 | 15.6M | } // c |
601 | | // if not now on a '\0', *c must not be a digit |
602 | 649k | if (*c!='\0') break; |
603 | | |
604 | | // (this next test must be after the syntax checks) |
605 | | // if it was too long the exponent may have wrapped, so check |
606 | | // carefully and set it to a certain overflow if wrap possible |
607 | 648k | if (c>=firstexp+9+1) { |
608 | 138k | if (c>firstexp+9+1 || *firstexp>'1') expa=DECNUMMAXE*2; |
609 | | // [up to 1999999999 is OK, for example 1E-1000000998] |
610 | 138k | } |
611 | 648k | exponent=(Int)expa; // save exponent |
612 | 648k | if (nege) exponent=-exponent; // was negative |
613 | 648k | status=0; // is OK |
614 | 648k | } // stuff after digits |
615 | | |
616 | | // Here when whole string has been inspected; syntax is good |
617 | | // cfirst->first digit (never dot), last->last digit (ditto) |
618 | | |
619 | | // strip leading zeros/dot [leave final 0 if all 0's] |
620 | 19.4M | if (*cfirst=='0') { // [cfirst has stepped over .] |
621 | 12.8M | for (c=cfirst; c<last; c++, cfirst++) { |
622 | 7.44M | if (*c=='.') continue; // ignore dots |
623 | 7.11M | if (*c!='0') break; // non-zero found |
624 | 6.90M | d--; // 0 stripped |
625 | 6.90M | } // c |
626 | | #if DECSUBSET |
627 | | // make a rapid exit for easy zeros if !extended |
628 | | if (*cfirst=='0' && !set->extended) { |
629 | | decNumberZero(dn); // clean result |
630 | | break; // [could be return] |
631 | | } |
632 | | #endif |
633 | 5.61M | } // at least one leading 0 |
634 | | |
635 | | // Handle decimal point... |
636 | 19.4M | if (dotchar!=NULL && dotchar<last) // non-trailing '.' found? |
637 | 420k | exponent-=(last-dotchar); // adjust exponent |
638 | | // [we can now ignore the .] |
639 | | |
640 | | // OK, the digits string is good. Assemble in the decNumber, or in |
641 | | // a temporary units array if rounding is needed |
642 | 19.4M | if (d<=set->digits) res=dn->lsu; // fits into supplied decNumber |
643 | 0 | else { // rounding needed |
644 | 0 | Int needbytes=D2U(d)*sizeof(Unit);// bytes needed |
645 | 0 | res=resbuff; // assume use local buffer |
646 | 0 | if (needbytes>(Int)sizeof(resbuff)) { // too big for local |
647 | 0 | allocres=(Unit *)malloc(needbytes); |
648 | 0 | if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} |
649 | 0 | res=allocres; |
650 | 0 | } |
651 | 0 | } |
652 | | // res now -> number lsu, buffer, or allocated storage for Unit array |
653 | | |
654 | | // Place the coefficient into the selected Unit array |
655 | | // [this is often 70% of the cost of this function when DECDPUN>1] |
656 | 19.4M | #if DECDPUN>1 |
657 | 19.4M | out=0; // accumulator |
658 | 19.4M | up=res+D2U(d)-1; // -> msu |
659 | 19.4M | cut=d-(up-res)*DECDPUN; // digits in top unit |
660 | 197M | for (c=cfirst;; c++) { // along the digits |
661 | 197M | if (*c=='.') continue; // ignore '.' [don't decrement cut] |
662 | 197M | out=X10(out)+(Int)*c-(Int)'0'; |
663 | 197M | if (c==last) break; // done [never get to trailing '.'] |
664 | 178M | cut--; |
665 | 178M | if (cut>0) continue; // more for this unit |
666 | 58.7M | *up=(Unit)out; // write unit |
667 | 58.7M | up--; // prepare for unit below.. |
668 | 58.7M | cut=DECDPUN; // .. |
669 | 58.7M | out=0; // .. |
670 | 58.7M | } // c |
671 | 19.4M | *up=(Unit)out; // write lsu |
672 | | |
673 | | #else |
674 | | // DECDPUN==1 |
675 | | up=res; // -> lsu |
676 | | for (c=last; c>=cfirst; c--) { // over each character, from least |
677 | | if (*c=='.') continue; // ignore . [don't step up] |
678 | | *up=(Unit)((Int)*c-(Int)'0'); |
679 | | up++; |
680 | | } // c |
681 | | #endif |
682 | | |
683 | 19.4M | dn->bits=bits; |
684 | 19.4M | dn->exponent=exponent; |
685 | 19.4M | dn->digits=d; |
686 | | |
687 | | // if not in number (too long) shorten into the number |
688 | 19.4M | if (d>set->digits) { |
689 | 0 | residue=0; |
690 | 0 | decSetCoeff(dn, set, res, d, &residue, &status); |
691 | | // always check for overflow or subnormal and round as needed |
692 | 0 | decFinalize(dn, set, &residue, &status); |
693 | 0 | } |
694 | 19.4M | else { // no rounding, but may still have overflow or subnormal |
695 | | // [these tests are just for performance; finalize repeats them] |
696 | 19.4M | if ((dn->exponent-1<set->emin-dn->digits) |
697 | 19.3M | || (dn->exponent-1>set->emax-set->digits)) { |
698 | 140k | residue=0; |
699 | 140k | decFinalize(dn, set, &residue, &status); |
700 | 140k | } |
701 | 19.4M | } |
702 | | // decNumberShow(dn); |
703 | 19.4M | } while(0); // [for break] |
704 | | |
705 | 19.5M | if (allocres!=NULL) free(allocres); // drop any storage used |
706 | 19.5M | if (status!=0) decStatus(dn, status, set); |
707 | 19.5M | return dn; |
708 | 19.5M | } /* decNumberFromString */ |
709 | | |
710 | | /* ================================================================== */ |
711 | | /* Operators */ |
712 | | /* ================================================================== */ |
713 | | |
714 | | /* ------------------------------------------------------------------ */ |
715 | | /* decNumberAbs -- absolute value operator */ |
716 | | /* */ |
717 | | /* This computes C = abs(A) */ |
718 | | /* */ |
719 | | /* res is C, the result. C may be A */ |
720 | | /* rhs is A */ |
721 | | /* set is the context */ |
722 | | /* */ |
723 | | /* See also decNumberCopyAbs for a quiet bitwise version of this. */ |
724 | | /* C must have space for set->digits digits. */ |
725 | | /* ------------------------------------------------------------------ */ |
726 | | /* This has the same effect as decNumberPlus unless A is negative, */ |
727 | | /* in which case it has the same effect as decNumberMinus. */ |
728 | | /* ------------------------------------------------------------------ */ |
729 | | decNumber * decNumberAbs(decNumber *res, const decNumber *rhs, |
730 | 310k | decContext *set) { |
731 | 310k | decNumber dzero; // for 0 |
732 | 310k | uInt status=0; // accumulator |
733 | | |
734 | | #if DECCHECK |
735 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
736 | | #endif |
737 | | |
738 | 310k | decNumberZero(&dzero); // set 0 |
739 | 310k | dzero.exponent=rhs->exponent; // [no coefficient expansion] |
740 | 310k | decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status); |
741 | 310k | if (status!=0) decStatus(res, status, set); |
742 | | #if DECCHECK |
743 | | decCheckInexact(res, set); |
744 | | #endif |
745 | 310k | return res; |
746 | 310k | } // decNumberAbs |
747 | | |
748 | | /* ------------------------------------------------------------------ */ |
749 | | /* decNumberAdd -- add two Numbers */ |
750 | | /* */ |
751 | | /* This computes C = A + B */ |
752 | | /* */ |
753 | | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
754 | | /* lhs is A */ |
755 | | /* rhs is B */ |
756 | | /* set is the context */ |
757 | | /* */ |
758 | | /* C must have space for set->digits digits. */ |
759 | | /* ------------------------------------------------------------------ */ |
760 | | /* This just calls the routine shared with Subtract */ |
761 | | decNumber * decNumberAdd(decNumber *res, const decNumber *lhs, |
762 | 0 | const decNumber *rhs, decContext *set) { |
763 | 0 | uInt status=0; // accumulator |
764 | 0 | decAddOp(res, lhs, rhs, set, 0, &status); |
765 | 0 | if (status!=0) decStatus(res, status, set); |
766 | | #if DECCHECK |
767 | | decCheckInexact(res, set); |
768 | | #endif |
769 | 0 | return res; |
770 | 0 | } // decNumberAdd |
771 | | |
772 | | /* ------------------------------------------------------------------ */ |
773 | | /* decNumberAnd -- AND two Numbers, digitwise */ |
774 | | /* */ |
775 | | /* This computes C = A & B */ |
776 | | /* */ |
777 | | /* res is C, the result. C may be A and/or B (e.g., X=X&X) */ |
778 | | /* lhs is A */ |
779 | | /* rhs is B */ |
780 | | /* set is the context (used for result length and error report) */ |
781 | | /* */ |
782 | | /* C must have space for set->digits digits. */ |
783 | | /* */ |
784 | | /* Logical function restrictions apply (see above); a NaN is */ |
785 | | /* returned with Invalid_operation if a restriction is violated. */ |
786 | | /* ------------------------------------------------------------------ */ |
787 | | decNumber * decNumberAnd(decNumber *res, const decNumber *lhs, |
788 | 0 | const decNumber *rhs, decContext *set) { |
789 | 0 | const Unit *ua, *ub; // -> operands |
790 | 0 | const Unit *msua, *msub; // -> operand msus |
791 | 0 | Unit *uc, *msuc; // -> result and its msu |
792 | 0 | Int msudigs; // digits in res msu |
793 | | #if DECCHECK |
794 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
795 | | #endif |
796 | |
|
797 | 0 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
798 | 0 | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
799 | 0 | decStatus(res, DEC_Invalid_operation, set); |
800 | 0 | return res; |
801 | 0 | } |
802 | | |
803 | | // operands are valid |
804 | 0 | ua=lhs->lsu; // bottom-up |
805 | 0 | ub=rhs->lsu; // .. |
806 | 0 | uc=res->lsu; // .. |
807 | 0 | msua=ua+D2U(lhs->digits)-1; // -> msu of lhs |
808 | 0 | msub=ub+D2U(rhs->digits)-1; // -> msu of rhs |
809 | 0 | msuc=uc+D2U(set->digits)-1; // -> msu of result |
810 | 0 | msudigs=MSUDIGITS(set->digits); // [faster than remainder] |
811 | 0 | for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop |
812 | 0 | Unit a, b; // extract units |
813 | 0 | if (ua>msua) a=0; |
814 | 0 | else a=*ua; |
815 | 0 | if (ub>msub) b=0; |
816 | 0 | else b=*ub; |
817 | 0 | *uc=0; // can now write back |
818 | 0 | if (a|b) { // maybe 1 bits to examine |
819 | 0 | Int i, j; |
820 | 0 | *uc=0; // can now write back |
821 | | // This loop could be unrolled and/or use BIN2BCD tables |
822 | 0 | for (i=0; i<DECDPUN; i++) { |
823 | 0 | if (a&b&1) *uc=*uc+(Unit)powers[i]; // effect AND |
824 | 0 | j=a%10; |
825 | 0 | a=a/10; |
826 | 0 | j|=b%10; |
827 | 0 | b=b/10; |
828 | 0 | if (j>1) { |
829 | 0 | decStatus(res, DEC_Invalid_operation, set); |
830 | 0 | return res; |
831 | 0 | } |
832 | 0 | if (uc==msuc && i==msudigs-1) break; // just did final digit |
833 | 0 | } // each digit |
834 | 0 | } // both OK |
835 | 0 | } // each unit |
836 | | // [here uc-1 is the msu of the result] |
837 | 0 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
838 | 0 | res->exponent=0; // integer |
839 | 0 | res->bits=0; // sign=0 |
840 | 0 | return res; // [no status to set] |
841 | 0 | } // decNumberAnd |
842 | | |
843 | | /* ------------------------------------------------------------------ */ |
844 | | /* decNumberCompare -- compare two Numbers */ |
845 | | /* */ |
846 | | /* This computes C = A ? B */ |
847 | | /* */ |
848 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
849 | | /* lhs is A */ |
850 | | /* rhs is B */ |
851 | | /* set is the context */ |
852 | | /* */ |
853 | | /* C must have space for one digit (or NaN). */ |
854 | | /* ------------------------------------------------------------------ */ |
855 | | decNumber * decNumberCompare(decNumber *res, const decNumber *lhs, |
856 | 3.58M | const decNumber *rhs, decContext *set) { |
857 | 3.58M | uInt status=0; // accumulator |
858 | 3.58M | decCompareOp(res, lhs, rhs, set, COMPARE, &status); |
859 | 3.58M | if (status!=0) decStatus(res, status, set); |
860 | 3.58M | return res; |
861 | 3.58M | } // decNumberCompare |
862 | | |
863 | | /* ------------------------------------------------------------------ */ |
864 | | /* decNumberCompareSignal -- compare, signalling on all NaNs */ |
865 | | /* */ |
866 | | /* This computes C = A ? B */ |
867 | | /* */ |
868 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
869 | | /* lhs is A */ |
870 | | /* rhs is B */ |
871 | | /* set is the context */ |
872 | | /* */ |
873 | | /* C must have space for one digit (or NaN). */ |
874 | | /* ------------------------------------------------------------------ */ |
875 | | decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs, |
876 | 0 | const decNumber *rhs, decContext *set) { |
877 | 0 | uInt status=0; // accumulator |
878 | 0 | decCompareOp(res, lhs, rhs, set, COMPSIG, &status); |
879 | 0 | if (status!=0) decStatus(res, status, set); |
880 | 0 | return res; |
881 | 0 | } // decNumberCompareSignal |
882 | | |
883 | | /* ------------------------------------------------------------------ */ |
884 | | /* decNumberCompareTotal -- compare two Numbers, using total ordering */ |
885 | | /* */ |
886 | | /* This computes C = A ? B, under total ordering */ |
887 | | /* */ |
888 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
889 | | /* lhs is A */ |
890 | | /* rhs is B */ |
891 | | /* set is the context */ |
892 | | /* */ |
893 | | /* C must have space for one digit; the result will always be one of */ |
894 | | /* -1, 0, or 1. */ |
895 | | /* ------------------------------------------------------------------ */ |
896 | | decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs, |
897 | 0 | const decNumber *rhs, decContext *set) { |
898 | 0 | uInt status=0; // accumulator |
899 | 0 | decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); |
900 | 0 | if (status!=0) decStatus(res, status, set); |
901 | 0 | return res; |
902 | 0 | } // decNumberCompareTotal |
903 | | |
904 | | /* ------------------------------------------------------------------ */ |
905 | | /* decNumberCompareTotalMag -- compare, total ordering of magnitudes */ |
906 | | /* */ |
907 | | /* This computes C = |A| ? |B|, under total ordering */ |
908 | | /* */ |
909 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
910 | | /* lhs is A */ |
911 | | /* rhs is B */ |
912 | | /* set is the context */ |
913 | | /* */ |
914 | | /* C must have space for one digit; the result will always be one of */ |
915 | | /* -1, 0, or 1. */ |
916 | | /* ------------------------------------------------------------------ */ |
917 | | decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, |
918 | 0 | const decNumber *rhs, decContext *set) { |
919 | 0 | uInt status=0; // accumulator |
920 | 0 | uInt needbytes; // for space calculations |
921 | 0 | decNumber bufa[D2N(DECBUFFER+1)];// +1 in case DECBUFFER=0 |
922 | 0 | decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated |
923 | 0 | decNumber bufb[D2N(DECBUFFER+1)]; |
924 | 0 | decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated |
925 | 0 | decNumber *a, *b; // temporary pointers |
926 | |
|
927 | | #if DECCHECK |
928 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
929 | | #endif |
930 | |
|
931 | 0 | do { // protect allocated storage |
932 | | // if either is negative, take a copy and absolute |
933 | 0 | if (decNumberIsNegative(lhs)) { // lhs<0 |
934 | 0 | a=bufa; |
935 | 0 | needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit); |
936 | 0 | if (needbytes>sizeof(bufa)) { // need malloc space |
937 | 0 | allocbufa=(decNumber *)malloc(needbytes); |
938 | 0 | if (allocbufa==NULL) { // hopeless -- abandon |
939 | 0 | status|=DEC_Insufficient_storage; |
940 | 0 | break;} |
941 | 0 | a=allocbufa; // use the allocated space |
942 | 0 | } |
943 | 0 | decNumberCopy(a, lhs); // copy content |
944 | 0 | a->bits&=~DECNEG; // .. and clear the sign |
945 | 0 | lhs=a; // use copy from here on |
946 | 0 | } |
947 | 0 | if (decNumberIsNegative(rhs)) { // rhs<0 |
948 | 0 | b=bufb; |
949 | 0 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
950 | 0 | if (needbytes>sizeof(bufb)) { // need malloc space |
951 | 0 | allocbufb=(decNumber *)malloc(needbytes); |
952 | 0 | if (allocbufb==NULL) { // hopeless -- abandon |
953 | 0 | status|=DEC_Insufficient_storage; |
954 | 0 | break;} |
955 | 0 | b=allocbufb; // use the allocated space |
956 | 0 | } |
957 | 0 | decNumberCopy(b, rhs); // copy content |
958 | 0 | b->bits&=~DECNEG; // .. and clear the sign |
959 | 0 | rhs=b; // use copy from here on |
960 | 0 | } |
961 | 0 | decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); |
962 | 0 | } while(0); // end protected |
963 | |
|
964 | 0 | if (allocbufa!=NULL) free(allocbufa); // drop any storage used |
965 | 0 | if (allocbufb!=NULL) free(allocbufb); // .. |
966 | 0 | if (status!=0) decStatus(res, status, set); |
967 | 0 | return res; |
968 | 0 | } // decNumberCompareTotalMag |
969 | | |
970 | | /* ------------------------------------------------------------------ */ |
971 | | /* decNumberDivide -- divide one number by another */ |
972 | | /* */ |
973 | | /* This computes C = A / B */ |
974 | | /* */ |
975 | | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
976 | | /* lhs is A */ |
977 | | /* rhs is B */ |
978 | | /* set is the context */ |
979 | | /* */ |
980 | | /* C must have space for set->digits digits. */ |
981 | | /* ------------------------------------------------------------------ */ |
982 | | decNumber * decNumberDivide(decNumber *res, const decNumber *lhs, |
983 | 0 | const decNumber *rhs, decContext *set) { |
984 | 0 | uInt status=0; // accumulator |
985 | 0 | decDivideOp(res, lhs, rhs, set, DIVIDE, &status); |
986 | 0 | if (status!=0) decStatus(res, status, set); |
987 | | #if DECCHECK |
988 | | decCheckInexact(res, set); |
989 | | #endif |
990 | 0 | return res; |
991 | 0 | } // decNumberDivide |
992 | | |
993 | | /* ------------------------------------------------------------------ */ |
994 | | /* decNumberDivideInteger -- divide and return integer quotient */ |
995 | | /* */ |
996 | | /* This computes C = A # B, where # is the integer divide operator */ |
997 | | /* */ |
998 | | /* res is C, the result. C may be A and/or B (e.g., X=X#X) */ |
999 | | /* lhs is A */ |
1000 | | /* rhs is B */ |
1001 | | /* set is the context */ |
1002 | | /* */ |
1003 | | /* C must have space for set->digits digits. */ |
1004 | | /* ------------------------------------------------------------------ */ |
1005 | | decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs, |
1006 | 0 | const decNumber *rhs, decContext *set) { |
1007 | 0 | uInt status=0; // accumulator |
1008 | 0 | decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status); |
1009 | 0 | if (status!=0) decStatus(res, status, set); |
1010 | 0 | return res; |
1011 | 0 | } // decNumberDivideInteger |
1012 | | |
1013 | | /* ------------------------------------------------------------------ */ |
1014 | | /* decNumberExp -- exponentiation */ |
1015 | | /* */ |
1016 | | /* This computes C = exp(A) */ |
1017 | | /* */ |
1018 | | /* res is C, the result. C may be A */ |
1019 | | /* rhs is A */ |
1020 | | /* set is the context; note that rounding mode has no effect */ |
1021 | | /* */ |
1022 | | /* C must have space for set->digits digits. */ |
1023 | | /* */ |
1024 | | /* Mathematical function restrictions apply (see above); a NaN is */ |
1025 | | /* returned with Invalid_operation if a restriction is violated. */ |
1026 | | /* */ |
1027 | | /* Finite results will always be full precision and Inexact, except */ |
1028 | | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
1029 | | /* */ |
1030 | | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
1031 | | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1032 | | /* error in rare cases. */ |
1033 | | /* ------------------------------------------------------------------ */ |
1034 | | /* This is a wrapper for decExpOp which can handle the slightly wider */ |
1035 | | /* (double) range needed by Ln (which has to be able to calculate */ |
1036 | | /* exp(-a) where a can be the tiniest number (Ntiny). */ |
1037 | | /* ------------------------------------------------------------------ */ |
1038 | | decNumber * decNumberExp(decNumber *res, const decNumber *rhs, |
1039 | 0 | decContext *set) { |
1040 | 0 | uInt status=0; // accumulator |
1041 | | #if DECSUBSET |
1042 | | decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated |
1043 | | #endif |
1044 | |
|
1045 | | #if DECCHECK |
1046 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1047 | | #endif |
1048 | | |
1049 | | // Check restrictions; these restrictions ensure that if h=8 (see |
1050 | | // decExpOp) then the result will either overflow or underflow to 0. |
1051 | | // Other math functions restrict the input range, too, for inverses. |
1052 | | // If not violated then carry out the operation. |
1053 | 0 | if (!decCheckMath(rhs, set, &status)) do { // protect allocation |
1054 | | #if DECSUBSET |
1055 | | if (!set->extended) { |
1056 | | // reduce operand and set lostDigits status, as needed |
1057 | | if (rhs->digits>set->digits) { |
1058 | | allocrhs=decRoundOperand(rhs, set, &status); |
1059 | | if (allocrhs==NULL) break; |
1060 | | rhs=allocrhs; |
1061 | | } |
1062 | | } |
1063 | | #endif |
1064 | 0 | decExpOp(res, rhs, set, &status); |
1065 | 0 | } while(0); // end protected |
1066 | |
|
1067 | | #if DECSUBSET |
1068 | | if (allocrhs !=NULL) free(allocrhs); // drop any storage used |
1069 | | #endif |
1070 | | // apply significant status |
1071 | 0 | if (status!=0) decStatus(res, status, set); |
1072 | | #if DECCHECK |
1073 | | decCheckInexact(res, set); |
1074 | | #endif |
1075 | 0 | return res; |
1076 | 0 | } // decNumberExp |
1077 | | |
1078 | | /* ------------------------------------------------------------------ */ |
1079 | | /* decNumberFMA -- fused multiply add */ |
1080 | | /* */ |
1081 | | /* This computes D = (A * B) + C with only one rounding */ |
1082 | | /* */ |
1083 | | /* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */ |
1084 | | /* lhs is A */ |
1085 | | /* rhs is B */ |
1086 | | /* fhs is C [far hand side] */ |
1087 | | /* set is the context */ |
1088 | | /* */ |
1089 | | /* Mathematical function restrictions apply (see above); a NaN is */ |
1090 | | /* returned with Invalid_operation if a restriction is violated. */ |
1091 | | /* */ |
1092 | | /* C must have space for set->digits digits. */ |
1093 | | /* ------------------------------------------------------------------ */ |
1094 | | decNumber * decNumberFMA(decNumber *res, const decNumber *lhs, |
1095 | | const decNumber *rhs, const decNumber *fhs, |
1096 | 0 | decContext *set) { |
1097 | 0 | uInt status=0; // accumulator |
1098 | 0 | decContext dcmul; // context for the multiplication |
1099 | 0 | uInt needbytes; // for space calculations |
1100 | 0 | decNumber bufa[D2N(DECBUFFER*2+1)]; |
1101 | 0 | decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated |
1102 | 0 | decNumber *acc; // accumulator pointer |
1103 | 0 | decNumber dzero; // work |
1104 | |
|
1105 | | #if DECCHECK |
1106 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1107 | | if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; |
1108 | | #endif |
1109 | |
|
1110 | 0 | do { // protect allocated storage |
1111 | | #if DECSUBSET |
1112 | | if (!set->extended) { // [undefined if subset] |
1113 | | status|=DEC_Invalid_operation; |
1114 | | break;} |
1115 | | #endif |
1116 | | // Check math restrictions [these ensure no overflow or underflow] |
1117 | 0 | if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status)) |
1118 | 0 | || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status)) |
1119 | 0 | || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break; |
1120 | | // set up context for multiply |
1121 | 0 | dcmul=*set; |
1122 | 0 | dcmul.digits=lhs->digits+rhs->digits; // just enough |
1123 | | // [The above may be an over-estimate for subset arithmetic, but that's OK] |
1124 | 0 | dcmul.emax=DEC_MAX_EMAX; // effectively unbounded .. |
1125 | 0 | dcmul.emin=DEC_MIN_EMIN; // [thanks to Math restrictions] |
1126 | | // set up decNumber space to receive the result of the multiply |
1127 | 0 | acc=bufa; // may fit |
1128 | 0 | needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit); |
1129 | 0 | if (needbytes>sizeof(bufa)) { // need malloc space |
1130 | 0 | allocbufa=(decNumber *)malloc(needbytes); |
1131 | 0 | if (allocbufa==NULL) { // hopeless -- abandon |
1132 | 0 | status|=DEC_Insufficient_storage; |
1133 | 0 | break;} |
1134 | 0 | acc=allocbufa; // use the allocated space |
1135 | 0 | } |
1136 | | // multiply with extended range and necessary precision |
1137 | | //printf("emin=%ld\n", dcmul.emin); |
1138 | 0 | decMultiplyOp(acc, lhs, rhs, &dcmul, &status); |
1139 | | // Only Invalid operation (from sNaN or Inf * 0) is possible in |
1140 | | // status; if either is seen than ignore fhs (in case it is |
1141 | | // another sNaN) and set acc to NaN unless we had an sNaN |
1142 | | // [decMultiplyOp leaves that to caller] |
1143 | | // Note sNaN has to go through addOp to shorten payload if |
1144 | | // necessary |
1145 | 0 | if ((status&DEC_Invalid_operation)!=0) { |
1146 | 0 | if (!(status&DEC_sNaN)) { // but be true invalid |
1147 | 0 | decNumberZero(res); // acc not yet set |
1148 | 0 | res->bits=DECNAN; |
1149 | 0 | break; |
1150 | 0 | } |
1151 | 0 | decNumberZero(&dzero); // make 0 (any non-NaN would do) |
1152 | 0 | fhs=&dzero; // use that |
1153 | 0 | } |
1154 | | #if DECCHECK |
1155 | | else { // multiply was OK |
1156 | | if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status); |
1157 | | } |
1158 | | #endif |
1159 | | // add the third operand and result -> res, and all is done |
1160 | 0 | decAddOp(res, acc, fhs, set, 0, &status); |
1161 | 0 | } while(0); // end protected |
1162 | |
|
1163 | 0 | if (allocbufa!=NULL) free(allocbufa); // drop any storage used |
1164 | 0 | if (status!=0) decStatus(res, status, set); |
1165 | | #if DECCHECK |
1166 | | decCheckInexact(res, set); |
1167 | | #endif |
1168 | 0 | return res; |
1169 | 0 | } // decNumberFMA |
1170 | | |
1171 | | /* ------------------------------------------------------------------ */ |
1172 | | /* decNumberInvert -- invert a Number, digitwise */ |
1173 | | /* */ |
1174 | | /* This computes C = ~A */ |
1175 | | /* */ |
1176 | | /* res is C, the result. C may be A (e.g., X=~X) */ |
1177 | | /* rhs is A */ |
1178 | | /* set is the context (used for result length and error report) */ |
1179 | | /* */ |
1180 | | /* C must have space for set->digits digits. */ |
1181 | | /* */ |
1182 | | /* Logical function restrictions apply (see above); a NaN is */ |
1183 | | /* returned with Invalid_operation if a restriction is violated. */ |
1184 | | /* ------------------------------------------------------------------ */ |
1185 | | decNumber * decNumberInvert(decNumber *res, const decNumber *rhs, |
1186 | 0 | decContext *set) { |
1187 | 0 | const Unit *ua, *msua; // -> operand and its msu |
1188 | 0 | Unit *uc, *msuc; // -> result and its msu |
1189 | 0 | Int msudigs; // digits in res msu |
1190 | | #if DECCHECK |
1191 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1192 | | #endif |
1193 | |
|
1194 | 0 | if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
1195 | 0 | decStatus(res, DEC_Invalid_operation, set); |
1196 | 0 | return res; |
1197 | 0 | } |
1198 | | // operand is valid |
1199 | 0 | ua=rhs->lsu; // bottom-up |
1200 | 0 | uc=res->lsu; // .. |
1201 | 0 | msua=ua+D2U(rhs->digits)-1; // -> msu of rhs |
1202 | 0 | msuc=uc+D2U(set->digits)-1; // -> msu of result |
1203 | 0 | msudigs=MSUDIGITS(set->digits); // [faster than remainder] |
1204 | 0 | for (; uc<=msuc; ua++, uc++) { // Unit loop |
1205 | 0 | Unit a; // extract unit |
1206 | 0 | Int i, j; // work |
1207 | 0 | if (ua>msua) a=0; |
1208 | 0 | else a=*ua; |
1209 | 0 | *uc=0; // can now write back |
1210 | | // always need to examine all bits in rhs |
1211 | | // This loop could be unrolled and/or use BIN2BCD tables |
1212 | 0 | for (i=0; i<DECDPUN; i++) { |
1213 | 0 | if ((~a)&1) *uc=*uc+(Unit)powers[i]; // effect INVERT |
1214 | 0 | j=a%10; |
1215 | 0 | a=a/10; |
1216 | 0 | if (j>1) { |
1217 | 0 | decStatus(res, DEC_Invalid_operation, set); |
1218 | 0 | return res; |
1219 | 0 | } |
1220 | 0 | if (uc==msuc && i==msudigs-1) break; // just did final digit |
1221 | 0 | } // each digit |
1222 | 0 | } // each unit |
1223 | | // [here uc-1 is the msu of the result] |
1224 | 0 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
1225 | 0 | res->exponent=0; // integer |
1226 | 0 | res->bits=0; // sign=0 |
1227 | 0 | return res; // [no status to set] |
1228 | 0 | } // decNumberInvert |
1229 | | |
1230 | | /* ------------------------------------------------------------------ */ |
1231 | | /* decNumberLn -- natural logarithm */ |
1232 | | /* */ |
1233 | | /* This computes C = ln(A) */ |
1234 | | /* */ |
1235 | | /* res is C, the result. C may be A */ |
1236 | | /* rhs is A */ |
1237 | | /* set is the context; note that rounding mode has no effect */ |
1238 | | /* */ |
1239 | | /* C must have space for set->digits digits. */ |
1240 | | /* */ |
1241 | | /* Notable cases: */ |
1242 | | /* A<0 -> Invalid */ |
1243 | | /* A=0 -> -Infinity (Exact) */ |
1244 | | /* A=+Infinity -> +Infinity (Exact) */ |
1245 | | /* A=1 exactly -> 0 (Exact) */ |
1246 | | /* */ |
1247 | | /* Mathematical function restrictions apply (see above); a NaN is */ |
1248 | | /* returned with Invalid_operation if a restriction is violated. */ |
1249 | | /* */ |
1250 | | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
1251 | | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1252 | | /* error in rare cases. */ |
1253 | | /* ------------------------------------------------------------------ */ |
1254 | | /* This is a wrapper for decLnOp which can handle the slightly wider */ |
1255 | | /* (+11) range needed by Ln, Log10, etc. (which may have to be able */ |
1256 | | /* to calculate at p+e+2). */ |
1257 | | /* ------------------------------------------------------------------ */ |
1258 | | decNumber * decNumberLn(decNumber *res, const decNumber *rhs, |
1259 | 0 | decContext *set) { |
1260 | 0 | uInt status=0; // accumulator |
1261 | | #if DECSUBSET |
1262 | | decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated |
1263 | | #endif |
1264 | |
|
1265 | | #if DECCHECK |
1266 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1267 | | #endif |
1268 | | |
1269 | | // Check restrictions; this is a math function; if not violated |
1270 | | // then carry out the operation. |
1271 | 0 | if (!decCheckMath(rhs, set, &status)) do { // protect allocation |
1272 | | #if DECSUBSET |
1273 | | if (!set->extended) { |
1274 | | // reduce operand and set lostDigits status, as needed |
1275 | | if (rhs->digits>set->digits) { |
1276 | | allocrhs=decRoundOperand(rhs, set, &status); |
1277 | | if (allocrhs==NULL) break; |
1278 | | rhs=allocrhs; |
1279 | | } |
1280 | | // special check in subset for rhs=0 |
1281 | | if (ISZERO(rhs)) { // +/- zeros -> error |
1282 | | status|=DEC_Invalid_operation; |
1283 | | break;} |
1284 | | } // extended=0 |
1285 | | #endif |
1286 | 0 | decLnOp(res, rhs, set, &status); |
1287 | 0 | } while(0); // end protected |
1288 | |
|
1289 | | #if DECSUBSET |
1290 | | if (allocrhs !=NULL) free(allocrhs); // drop any storage used |
1291 | | #endif |
1292 | | // apply significant status |
1293 | 0 | if (status!=0) decStatus(res, status, set); |
1294 | | #if DECCHECK |
1295 | | decCheckInexact(res, set); |
1296 | | #endif |
1297 | 0 | return res; |
1298 | 0 | } // decNumberLn |
1299 | | |
1300 | | /* ------------------------------------------------------------------ */ |
1301 | | /* decNumberLogB - get adjusted exponent, by 754 rules */ |
1302 | | /* */ |
1303 | | /* This computes C = adjustedexponent(A) */ |
1304 | | /* */ |
1305 | | /* res is C, the result. C may be A */ |
1306 | | /* rhs is A */ |
1307 | | /* set is the context, used only for digits and status */ |
1308 | | /* */ |
1309 | | /* For an unrounded result, digits may need to be 10 (A might have */ |
1310 | | /* 10**9 digits and an exponent of +999999999, or one digit and an */ |
1311 | | /* exponent of -1999999999). */ |
1312 | | /* */ |
1313 | | /* This returns the adjusted exponent of A after (in theory) padding */ |
1314 | | /* with zeros on the right to set->digits digits while keeping the */ |
1315 | | /* same value. The exponent is not limited by emin/emax. */ |
1316 | | /* */ |
1317 | | /* Notable cases: */ |
1318 | | /* A<0 -> Use |A| */ |
1319 | | /* A=0 -> -Infinity (Division by zero) */ |
1320 | | /* A=Infinite -> +Infinity (Exact) */ |
1321 | | /* A=1 exactly -> 0 (Exact) */ |
1322 | | /* NaNs are propagated as usual */ |
1323 | | /* ------------------------------------------------------------------ */ |
1324 | | decNumber * decNumberLogB(decNumber *res, const decNumber *rhs, |
1325 | 0 | decContext *set) { |
1326 | 0 | uInt status=0; // accumulator |
1327 | |
|
1328 | | #if DECCHECK |
1329 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1330 | | #endif |
1331 | | |
1332 | | // NaNs as usual; Infinities return +Infinity; 0->oops |
1333 | 0 | if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status); |
1334 | 0 | else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs); |
1335 | 0 | else if (decNumberIsZero(rhs)) { |
1336 | 0 | decNumberZero(res); // prepare for Infinity |
1337 | 0 | res->bits=DECNEG|DECINF; // -Infinity |
1338 | 0 | status|=DEC_Division_by_zero; // as per 754 |
1339 | 0 | } |
1340 | 0 | else { // finite non-zero |
1341 | 0 | Int ae=rhs->exponent+rhs->digits-1; // adjusted exponent |
1342 | 0 | if (set->digits>=10) decNumberFromInt32(res, ae); // lay it out |
1343 | 0 | else { |
1344 | 0 | decNumber buft[D2N(10)]; // temporary number |
1345 | 0 | decNumber *t=buft; // .. |
1346 | 0 | decNumberFromInt32(t, ae); // lay it out |
1347 | 0 | decNumberPlus(res, t, set); // round as necessary |
1348 | 0 | } |
1349 | 0 | } |
1350 | |
|
1351 | 0 | if (status!=0) decStatus(res, status, set); |
1352 | 0 | return res; |
1353 | 0 | } // decNumberLogB |
1354 | | |
1355 | | /* ------------------------------------------------------------------ */ |
1356 | | /* decNumberLog10 -- logarithm in base 10 */ |
1357 | | /* */ |
1358 | | /* This computes C = log10(A) */ |
1359 | | /* */ |
1360 | | /* res is C, the result. C may be A */ |
1361 | | /* rhs is A */ |
1362 | | /* set is the context; note that rounding mode has no effect */ |
1363 | | /* */ |
1364 | | /* C must have space for set->digits digits. */ |
1365 | | /* */ |
1366 | | /* Notable cases: */ |
1367 | | /* A<0 -> Invalid */ |
1368 | | /* A=0 -> -Infinity (Exact) */ |
1369 | | /* A=+Infinity -> +Infinity (Exact) */ |
1370 | | /* A=10**n (if n is an integer) -> n (Exact) */ |
1371 | | /* */ |
1372 | | /* Mathematical function restrictions apply (see above); a NaN is */ |
1373 | | /* returned with Invalid_operation if a restriction is violated. */ |
1374 | | /* */ |
1375 | | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
1376 | | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1377 | | /* error in rare cases. */ |
1378 | | /* ------------------------------------------------------------------ */ |
1379 | | /* This calculates ln(A)/ln(10) using appropriate precision. For */ |
1380 | | /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */ |
1381 | | /* requested digits and t is the number of digits in the exponent */ |
1382 | | /* (maximum 6). For ln(10) it is p + 3; this is often handled by the */ |
1383 | | /* fastpath in decLnOp. The final division is done to the requested */ |
1384 | | /* precision. */ |
1385 | | /* ------------------------------------------------------------------ */ |
1386 | | decNumber * decNumberLog10(decNumber *res, const decNumber *rhs, |
1387 | 0 | decContext *set) { |
1388 | 0 | uInt status=0, ignore=0; // status accumulators |
1389 | 0 | uInt needbytes; // for space calculations |
1390 | 0 | Int p; // working precision |
1391 | 0 | Int t; // digits in exponent of A |
1392 | | |
1393 | | // buffers for a and b working decimals |
1394 | | // (adjustment calculator, same size) |
1395 | 0 | decNumber bufa[D2N(DECBUFFER+2)]; |
1396 | 0 | decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated |
1397 | 0 | decNumber *a=bufa; // temporary a |
1398 | 0 | decNumber bufb[D2N(DECBUFFER+2)]; |
1399 | 0 | decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated |
1400 | 0 | decNumber *b=bufb; // temporary b |
1401 | 0 | decNumber bufw[D2N(10)]; // working 2-10 digit number |
1402 | 0 | decNumber *w=bufw; // .. |
1403 | | #if DECSUBSET |
1404 | | decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated |
1405 | | #endif |
1406 | |
|
1407 | 0 | decContext aset; // working context |
1408 | |
|
1409 | | #if DECCHECK |
1410 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1411 | | #endif |
1412 | | |
1413 | | // Check restrictions; this is a math function; if not violated |
1414 | | // then carry out the operation. |
1415 | 0 | if (!decCheckMath(rhs, set, &status)) do { // protect malloc |
1416 | | #if DECSUBSET |
1417 | | if (!set->extended) { |
1418 | | // reduce operand and set lostDigits status, as needed |
1419 | | if (rhs->digits>set->digits) { |
1420 | | allocrhs=decRoundOperand(rhs, set, &status); |
1421 | | if (allocrhs==NULL) break; |
1422 | | rhs=allocrhs; |
1423 | | } |
1424 | | // special check in subset for rhs=0 |
1425 | | if (ISZERO(rhs)) { // +/- zeros -> error |
1426 | | status|=DEC_Invalid_operation; |
1427 | | break;} |
1428 | | } // extended=0 |
1429 | | #endif |
1430 | |
|
1431 | 0 | decContextDefault(&aset, DEC_INIT_DECIMAL64); // clean context |
1432 | | |
1433 | | // handle exact powers of 10; only check if +ve finite |
1434 | 0 | if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { |
1435 | 0 | Int residue=0; // (no residue) |
1436 | 0 | uInt copystat=0; // clean status |
1437 | | |
1438 | | // round to a single digit... |
1439 | 0 | aset.digits=1; |
1440 | 0 | decCopyFit(w, rhs, &aset, &residue, ©stat); // copy & shorten |
1441 | | // if exact and the digit is 1, rhs is a power of 10 |
1442 | 0 | if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { |
1443 | | // the exponent, conveniently, is the power of 10; making |
1444 | | // this the result needs a little care as it might not fit, |
1445 | | // so first convert it into the working number, and then move |
1446 | | // to res |
1447 | 0 | decNumberFromInt32(w, w->exponent); |
1448 | 0 | residue=0; |
1449 | 0 | decCopyFit(res, w, set, &residue, &status); // copy & round |
1450 | 0 | decFinish(res, set, &residue, &status); // cleanup/set flags |
1451 | 0 | break; |
1452 | 0 | } // not a power of 10 |
1453 | 0 | } // not a candidate for exact |
1454 | | |
1455 | | // simplify the information-content calculation to use 'total |
1456 | | // number of digits in a, including exponent' as compared to the |
1457 | | // requested digits, as increasing this will only rarely cost an |
1458 | | // iteration in ln(a) anyway |
1459 | 0 | t=6; // it can never be >6 |
1460 | | |
1461 | | // allocate space when needed... |
1462 | 0 | p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; |
1463 | 0 | needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); |
1464 | 0 | if (needbytes>sizeof(bufa)) { // need malloc space |
1465 | 0 | allocbufa=(decNumber *)malloc(needbytes); |
1466 | 0 | if (allocbufa==NULL) { // hopeless -- abandon |
1467 | 0 | status|=DEC_Insufficient_storage; |
1468 | 0 | break;} |
1469 | 0 | a=allocbufa; // use the allocated space |
1470 | 0 | } |
1471 | 0 | aset.digits=p; // as calculated |
1472 | 0 | aset.emax=DEC_MAX_MATH; // usual bounds |
1473 | 0 | aset.emin=-DEC_MAX_MATH; // .. |
1474 | 0 | aset.clamp=0; // and no concrete format |
1475 | 0 | decLnOp(a, rhs, &aset, &status); // a=ln(rhs) |
1476 | | |
1477 | | // skip the division if the result so far is infinite, NaN, or |
1478 | | // zero, or there was an error; note NaN from sNaN needs copy |
1479 | 0 | if (status&DEC_NaNs && !(status&DEC_sNaN)) break; |
1480 | 0 | if (a->bits&DECSPECIAL || ISZERO(a)) { |
1481 | 0 | decNumberCopy(res, a); // [will fit] |
1482 | 0 | break;} |
1483 | | |
1484 | | // for ln(10) an extra 3 digits of precision are needed |
1485 | 0 | p=set->digits+3; |
1486 | 0 | needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); |
1487 | 0 | if (needbytes>sizeof(bufb)) { // need malloc space |
1488 | 0 | allocbufb=(decNumber *)malloc(needbytes); |
1489 | 0 | if (allocbufb==NULL) { // hopeless -- abandon |
1490 | 0 | status|=DEC_Insufficient_storage; |
1491 | 0 | break;} |
1492 | 0 | b=allocbufb; // use the allocated space |
1493 | 0 | } |
1494 | 0 | decNumberZero(w); // set up 10... |
1495 | | #if DECDPUN==1 |
1496 | | w->lsu[1]=1; w->lsu[0]=0; // .. |
1497 | | #else |
1498 | 0 | w->lsu[0]=10; // .. |
1499 | 0 | #endif |
1500 | 0 | w->digits=2; // .. |
1501 | |
|
1502 | 0 | aset.digits=p; |
1503 | 0 | decLnOp(b, w, &aset, &ignore); // b=ln(10) |
1504 | |
|
1505 | 0 | aset.digits=set->digits; // for final divide |
1506 | 0 | decDivideOp(res, a, b, &aset, DIVIDE, &status); // into result |
1507 | 0 | } while(0); // [for break] |
1508 | |
|
1509 | 0 | if (allocbufa!=NULL) free(allocbufa); // drop any storage used |
1510 | 0 | if (allocbufb!=NULL) free(allocbufb); // .. |
1511 | | #if DECSUBSET |
1512 | | if (allocrhs !=NULL) free(allocrhs); // .. |
1513 | | #endif |
1514 | | // apply significant status |
1515 | 0 | if (status!=0) decStatus(res, status, set); |
1516 | | #if DECCHECK |
1517 | | decCheckInexact(res, set); |
1518 | | #endif |
1519 | 0 | return res; |
1520 | 0 | } // decNumberLog10 |
1521 | | |
1522 | | /* ------------------------------------------------------------------ */ |
1523 | | /* decNumberMax -- compare two Numbers and return the maximum */ |
1524 | | /* */ |
1525 | | /* This computes C = A ? B, returning the maximum by 754 rules */ |
1526 | | /* */ |
1527 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1528 | | /* lhs is A */ |
1529 | | /* rhs is B */ |
1530 | | /* set is the context */ |
1531 | | /* */ |
1532 | | /* C must have space for set->digits digits. */ |
1533 | | /* ------------------------------------------------------------------ */ |
1534 | | decNumber * decNumberMax(decNumber *res, const decNumber *lhs, |
1535 | 0 | const decNumber *rhs, decContext *set) { |
1536 | 0 | uInt status=0; // accumulator |
1537 | 0 | decCompareOp(res, lhs, rhs, set, COMPMAX, &status); |
1538 | 0 | if (status!=0) decStatus(res, status, set); |
1539 | | #if DECCHECK |
1540 | | decCheckInexact(res, set); |
1541 | | #endif |
1542 | 0 | return res; |
1543 | 0 | } // decNumberMax |
1544 | | |
1545 | | /* ------------------------------------------------------------------ */ |
1546 | | /* decNumberMaxMag -- compare and return the maximum by magnitude */ |
1547 | | /* */ |
1548 | | /* This computes C = A ? B, returning the maximum by 754 rules */ |
1549 | | /* */ |
1550 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1551 | | /* lhs is A */ |
1552 | | /* rhs is B */ |
1553 | | /* set is the context */ |
1554 | | /* */ |
1555 | | /* C must have space for set->digits digits. */ |
1556 | | /* ------------------------------------------------------------------ */ |
1557 | | decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs, |
1558 | 0 | const decNumber *rhs, decContext *set) { |
1559 | 0 | uInt status=0; // accumulator |
1560 | 0 | decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status); |
1561 | 0 | if (status!=0) decStatus(res, status, set); |
1562 | | #if DECCHECK |
1563 | | decCheckInexact(res, set); |
1564 | | #endif |
1565 | 0 | return res; |
1566 | 0 | } // decNumberMaxMag |
1567 | | |
1568 | | /* ------------------------------------------------------------------ */ |
1569 | | /* decNumberMin -- compare two Numbers and return the minimum */ |
1570 | | /* */ |
1571 | | /* This computes C = A ? B, returning the minimum by 754 rules */ |
1572 | | /* */ |
1573 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1574 | | /* lhs is A */ |
1575 | | /* rhs is B */ |
1576 | | /* set is the context */ |
1577 | | /* */ |
1578 | | /* C must have space for set->digits digits. */ |
1579 | | /* ------------------------------------------------------------------ */ |
1580 | | decNumber * decNumberMin(decNumber *res, const decNumber *lhs, |
1581 | 0 | const decNumber *rhs, decContext *set) { |
1582 | 0 | uInt status=0; // accumulator |
1583 | 0 | decCompareOp(res, lhs, rhs, set, COMPMIN, &status); |
1584 | 0 | if (status!=0) decStatus(res, status, set); |
1585 | | #if DECCHECK |
1586 | | decCheckInexact(res, set); |
1587 | | #endif |
1588 | 0 | return res; |
1589 | 0 | } // decNumberMin |
1590 | | |
1591 | | /* ------------------------------------------------------------------ */ |
1592 | | /* decNumberMinMag -- compare and return the minimum by magnitude */ |
1593 | | /* */ |
1594 | | /* This computes C = A ? B, returning the minimum by 754 rules */ |
1595 | | /* */ |
1596 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1597 | | /* lhs is A */ |
1598 | | /* rhs is B */ |
1599 | | /* set is the context */ |
1600 | | /* */ |
1601 | | /* C must have space for set->digits digits. */ |
1602 | | /* ------------------------------------------------------------------ */ |
1603 | | decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs, |
1604 | 0 | const decNumber *rhs, decContext *set) { |
1605 | 0 | uInt status=0; // accumulator |
1606 | 0 | decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status); |
1607 | 0 | if (status!=0) decStatus(res, status, set); |
1608 | | #if DECCHECK |
1609 | | decCheckInexact(res, set); |
1610 | | #endif |
1611 | 0 | return res; |
1612 | 0 | } // decNumberMinMag |
1613 | | |
1614 | | /* ------------------------------------------------------------------ */ |
1615 | | /* decNumberMinus -- prefix minus operator */ |
1616 | | /* */ |
1617 | | /* This computes C = 0 - A */ |
1618 | | /* */ |
1619 | | /* res is C, the result. C may be A */ |
1620 | | /* rhs is A */ |
1621 | | /* set is the context */ |
1622 | | /* */ |
1623 | | /* See also decNumberCopyNegate for a quiet bitwise version of this. */ |
1624 | | /* C must have space for set->digits digits. */ |
1625 | | /* ------------------------------------------------------------------ */ |
1626 | | /* Simply use AddOp for the subtract, which will do the necessary. */ |
1627 | | /* ------------------------------------------------------------------ */ |
1628 | | decNumber * decNumberMinus(decNumber *res, const decNumber *rhs, |
1629 | 3.79M | decContext *set) { |
1630 | 3.79M | decNumber dzero; |
1631 | 3.79M | uInt status=0; // accumulator |
1632 | | |
1633 | | #if DECCHECK |
1634 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1635 | | #endif |
1636 | | |
1637 | 3.79M | decNumberZero(&dzero); // make 0 |
1638 | 3.79M | dzero.exponent=rhs->exponent; // [no coefficient expansion] |
1639 | 3.79M | decAddOp(res, &dzero, rhs, set, DECNEG, &status); |
1640 | 3.79M | if (status!=0) decStatus(res, status, set); |
1641 | | #if DECCHECK |
1642 | | decCheckInexact(res, set); |
1643 | | #endif |
1644 | 3.79M | return res; |
1645 | 3.79M | } // decNumberMinus |
1646 | | |
1647 | | /* ------------------------------------------------------------------ */ |
1648 | | /* decNumberNextMinus -- next towards -Infinity */ |
1649 | | /* */ |
1650 | | /* This computes C = A - infinitesimal, rounded towards -Infinity */ |
1651 | | /* */ |
1652 | | /* res is C, the result. C may be A */ |
1653 | | /* rhs is A */ |
1654 | | /* set is the context */ |
1655 | | /* */ |
1656 | | /* This is a generalization of 754 NextDown. */ |
1657 | | /* ------------------------------------------------------------------ */ |
1658 | | decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs, |
1659 | 0 | decContext *set) { |
1660 | 0 | decNumber dtiny; // constant |
1661 | 0 | decContext workset=*set; // work |
1662 | 0 | uInt status=0; // accumulator |
1663 | | #if DECCHECK |
1664 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1665 | | #endif |
1666 | | |
1667 | | // +Infinity is the special case |
1668 | 0 | if ((rhs->bits&(DECINF|DECNEG))==DECINF) { |
1669 | 0 | decSetMaxValue(res, set); // is +ve |
1670 | | // there is no status to set |
1671 | 0 | return res; |
1672 | 0 | } |
1673 | 0 | decNumberZero(&dtiny); // start with 0 |
1674 | 0 | dtiny.lsu[0]=1; // make number that is .. |
1675 | 0 | dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest |
1676 | 0 | workset.round=DEC_ROUND_FLOOR; |
1677 | 0 | decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status); |
1678 | 0 | status&=DEC_Invalid_operation|DEC_sNaN; // only sNaN Invalid please |
1679 | 0 | if (status!=0) decStatus(res, status, set); |
1680 | 0 | return res; |
1681 | 0 | } // decNumberNextMinus |
1682 | | |
1683 | | /* ------------------------------------------------------------------ */ |
1684 | | /* decNumberNextPlus -- next towards +Infinity */ |
1685 | | /* */ |
1686 | | /* This computes C = A + infinitesimal, rounded towards +Infinity */ |
1687 | | /* */ |
1688 | | /* res is C, the result. C may be A */ |
1689 | | /* rhs is A */ |
1690 | | /* set is the context */ |
1691 | | /* */ |
1692 | | /* This is a generalization of 754 NextUp. */ |
1693 | | /* ------------------------------------------------------------------ */ |
1694 | | decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs, |
1695 | 0 | decContext *set) { |
1696 | 0 | decNumber dtiny; // constant |
1697 | 0 | decContext workset=*set; // work |
1698 | 0 | uInt status=0; // accumulator |
1699 | | #if DECCHECK |
1700 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1701 | | #endif |
1702 | | |
1703 | | // -Infinity is the special case |
1704 | 0 | if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { |
1705 | 0 | decSetMaxValue(res, set); |
1706 | 0 | res->bits=DECNEG; // negative |
1707 | | // there is no status to set |
1708 | 0 | return res; |
1709 | 0 | } |
1710 | 0 | decNumberZero(&dtiny); // start with 0 |
1711 | 0 | dtiny.lsu[0]=1; // make number that is .. |
1712 | 0 | dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest |
1713 | 0 | workset.round=DEC_ROUND_CEILING; |
1714 | 0 | decAddOp(res, rhs, &dtiny, &workset, 0, &status); |
1715 | 0 | status&=DEC_Invalid_operation|DEC_sNaN; // only sNaN Invalid please |
1716 | 0 | if (status!=0) decStatus(res, status, set); |
1717 | 0 | return res; |
1718 | 0 | } // decNumberNextPlus |
1719 | | |
1720 | | /* ------------------------------------------------------------------ */ |
1721 | | /* decNumberNextToward -- next towards rhs */ |
1722 | | /* */ |
1723 | | /* This computes C = A +/- infinitesimal, rounded towards */ |
1724 | | /* +/-Infinity in the direction of B, as per 754-1985 nextafter */ |
1725 | | /* modified during revision but dropped from 754-2008. */ |
1726 | | /* */ |
1727 | | /* res is C, the result. C may be A or B. */ |
1728 | | /* lhs is A */ |
1729 | | /* rhs is B */ |
1730 | | /* set is the context */ |
1731 | | /* */ |
1732 | | /* This is a generalization of 754-1985 NextAfter. */ |
1733 | | /* ------------------------------------------------------------------ */ |
1734 | | decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs, |
1735 | 0 | const decNumber *rhs, decContext *set) { |
1736 | 0 | decNumber dtiny; // constant |
1737 | 0 | decContext workset=*set; // work |
1738 | 0 | Int result; // .. |
1739 | 0 | uInt status=0; // accumulator |
1740 | | #if DECCHECK |
1741 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1742 | | #endif |
1743 | |
|
1744 | 0 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { |
1745 | 0 | decNaNs(res, lhs, rhs, set, &status); |
1746 | 0 | } |
1747 | 0 | else { // Is numeric, so no chance of sNaN Invalid, etc. |
1748 | 0 | result=decCompare(lhs, rhs, 0); // sign matters |
1749 | 0 | if (result==BADINT) status|=DEC_Insufficient_storage; // rare |
1750 | 0 | else { // valid compare |
1751 | 0 | if (result==0) decNumberCopySign(res, lhs, rhs); // easy |
1752 | 0 | else { // differ: need NextPlus or NextMinus |
1753 | 0 | uByte sub; // add or subtract |
1754 | 0 | if (result<0) { // lhs<rhs, do nextplus |
1755 | | // -Infinity is the special case |
1756 | 0 | if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { |
1757 | 0 | decSetMaxValue(res, set); |
1758 | 0 | res->bits=DECNEG; // negative |
1759 | 0 | return res; // there is no status to set |
1760 | 0 | } |
1761 | 0 | workset.round=DEC_ROUND_CEILING; |
1762 | 0 | sub=0; // add, please |
1763 | 0 | } // plus |
1764 | 0 | else { // lhs>rhs, do nextminus |
1765 | | // +Infinity is the special case |
1766 | 0 | if ((lhs->bits&(DECINF|DECNEG))==DECINF) { |
1767 | 0 | decSetMaxValue(res, set); |
1768 | 0 | return res; // there is no status to set |
1769 | 0 | } |
1770 | 0 | workset.round=DEC_ROUND_FLOOR; |
1771 | 0 | sub=DECNEG; // subtract, please |
1772 | 0 | } // minus |
1773 | 0 | decNumberZero(&dtiny); // start with 0 |
1774 | 0 | dtiny.lsu[0]=1; // make number that is .. |
1775 | 0 | dtiny.exponent=DEC_MIN_EMIN-1; // .. smaller than tiniest |
1776 | 0 | decAddOp(res, lhs, &dtiny, &workset, sub, &status); // + or - |
1777 | | // turn off exceptions if the result is a normal number |
1778 | | // (including Nmin), otherwise let all status through |
1779 | 0 | if (decNumberIsNormal(res, set)) status=0; |
1780 | 0 | } // unequal |
1781 | 0 | } // compare OK |
1782 | 0 | } // numeric |
1783 | 0 | if (status!=0) decStatus(res, status, set); |
1784 | 0 | return res; |
1785 | 0 | } // decNumberNextToward |
1786 | | |
1787 | | /* ------------------------------------------------------------------ */ |
1788 | | /* decNumberOr -- OR two Numbers, digitwise */ |
1789 | | /* */ |
1790 | | /* This computes C = A | B */ |
1791 | | /* */ |
1792 | | /* res is C, the result. C may be A and/or B (e.g., X=X|X) */ |
1793 | | /* lhs is A */ |
1794 | | /* rhs is B */ |
1795 | | /* set is the context (used for result length and error report) */ |
1796 | | /* */ |
1797 | | /* C must have space for set->digits digits. */ |
1798 | | /* */ |
1799 | | /* Logical function restrictions apply (see above); a NaN is */ |
1800 | | /* returned with Invalid_operation if a restriction is violated. */ |
1801 | | /* ------------------------------------------------------------------ */ |
1802 | | decNumber * decNumberOr(decNumber *res, const decNumber *lhs, |
1803 | 0 | const decNumber *rhs, decContext *set) { |
1804 | 0 | const Unit *ua, *ub; // -> operands |
1805 | 0 | const Unit *msua, *msub; // -> operand msus |
1806 | 0 | Unit *uc, *msuc; // -> result and its msu |
1807 | 0 | Int msudigs; // digits in res msu |
1808 | | #if DECCHECK |
1809 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1810 | | #endif |
1811 | |
|
1812 | 0 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
1813 | 0 | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
1814 | 0 | decStatus(res, DEC_Invalid_operation, set); |
1815 | 0 | return res; |
1816 | 0 | } |
1817 | | // operands are valid |
1818 | 0 | ua=lhs->lsu; // bottom-up |
1819 | 0 | ub=rhs->lsu; // .. |
1820 | 0 | uc=res->lsu; // .. |
1821 | 0 | msua=ua+D2U(lhs->digits)-1; // -> msu of lhs |
1822 | 0 | msub=ub+D2U(rhs->digits)-1; // -> msu of rhs |
1823 | 0 | msuc=uc+D2U(set->digits)-1; // -> msu of result |
1824 | 0 | msudigs=MSUDIGITS(set->digits); // [faster than remainder] |
1825 | 0 | for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop |
1826 | 0 | Unit a, b; // extract units |
1827 | 0 | if (ua>msua) a=0; |
1828 | 0 | else a=*ua; |
1829 | 0 | if (ub>msub) b=0; |
1830 | 0 | else b=*ub; |
1831 | 0 | *uc=0; // can now write back |
1832 | 0 | if (a|b) { // maybe 1 bits to examine |
1833 | 0 | Int i, j; |
1834 | | // This loop could be unrolled and/or use BIN2BCD tables |
1835 | 0 | for (i=0; i<DECDPUN; i++) { |
1836 | 0 | if ((a|b)&1) *uc=*uc+(Unit)powers[i]; // effect OR |
1837 | 0 | j=a%10; |
1838 | 0 | a=a/10; |
1839 | 0 | j|=b%10; |
1840 | 0 | b=b/10; |
1841 | 0 | if (j>1) { |
1842 | 0 | decStatus(res, DEC_Invalid_operation, set); |
1843 | 0 | return res; |
1844 | 0 | } |
1845 | 0 | if (uc==msuc && i==msudigs-1) break; // just did final digit |
1846 | 0 | } // each digit |
1847 | 0 | } // non-zero |
1848 | 0 | } // each unit |
1849 | | // [here uc-1 is the msu of the result] |
1850 | 0 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
1851 | 0 | res->exponent=0; // integer |
1852 | 0 | res->bits=0; // sign=0 |
1853 | 0 | return res; // [no status to set] |
1854 | 0 | } // decNumberOr |
1855 | | |
1856 | | /* ------------------------------------------------------------------ */ |
1857 | | /* decNumberPlus -- prefix plus operator */ |
1858 | | /* */ |
1859 | | /* This computes C = 0 + A */ |
1860 | | /* */ |
1861 | | /* res is C, the result. C may be A */ |
1862 | | /* rhs is A */ |
1863 | | /* set is the context */ |
1864 | | /* */ |
1865 | | /* See also decNumberCopy for a quiet bitwise version of this. */ |
1866 | | /* C must have space for set->digits digits. */ |
1867 | | /* ------------------------------------------------------------------ */ |
1868 | | /* This simply uses AddOp; Add will take fast path after preparing A. */ |
1869 | | /* Performance is a concern here, as this routine is often used to */ |
1870 | | /* check operands and apply rounding and overflow/underflow testing. */ |
1871 | | /* ------------------------------------------------------------------ */ |
1872 | | decNumber * decNumberPlus(decNumber *res, const decNumber *rhs, |
1873 | 0 | decContext *set) { |
1874 | 0 | decNumber dzero; |
1875 | 0 | uInt status=0; // accumulator |
1876 | | #if DECCHECK |
1877 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1878 | | #endif |
1879 | |
|
1880 | 0 | decNumberZero(&dzero); // make 0 |
1881 | 0 | dzero.exponent=rhs->exponent; // [no coefficient expansion] |
1882 | 0 | decAddOp(res, &dzero, rhs, set, 0, &status); |
1883 | 0 | if (status!=0) decStatus(res, status, set); |
1884 | | #if DECCHECK |
1885 | | decCheckInexact(res, set); |
1886 | | #endif |
1887 | 0 | return res; |
1888 | 0 | } // decNumberPlus |
1889 | | |
1890 | | /* ------------------------------------------------------------------ */ |
1891 | | /* decNumberMultiply -- multiply two Numbers */ |
1892 | | /* */ |
1893 | | /* This computes C = A x B */ |
1894 | | /* */ |
1895 | | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
1896 | | /* lhs is A */ |
1897 | | /* rhs is B */ |
1898 | | /* set is the context */ |
1899 | | /* */ |
1900 | | /* C must have space for set->digits digits. */ |
1901 | | /* ------------------------------------------------------------------ */ |
1902 | | decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs, |
1903 | 0 | const decNumber *rhs, decContext *set) { |
1904 | 0 | uInt status=0; // accumulator |
1905 | 0 | decMultiplyOp(res, lhs, rhs, set, &status); |
1906 | 0 | if (status!=0) decStatus(res, status, set); |
1907 | | #if DECCHECK |
1908 | | decCheckInexact(res, set); |
1909 | | #endif |
1910 | 0 | return res; |
1911 | 0 | } // decNumberMultiply |
1912 | | |
1913 | | /* ------------------------------------------------------------------ */ |
1914 | | /* decNumberPower -- raise a number to a power */ |
1915 | | /* */ |
1916 | | /* This computes C = A ** B */ |
1917 | | /* */ |
1918 | | /* res is C, the result. C may be A and/or B (e.g., X=X**X) */ |
1919 | | /* lhs is A */ |
1920 | | /* rhs is B */ |
1921 | | /* set is the context */ |
1922 | | /* */ |
1923 | | /* C must have space for set->digits digits. */ |
1924 | | /* */ |
1925 | | /* Mathematical function restrictions apply (see above); a NaN is */ |
1926 | | /* returned with Invalid_operation if a restriction is violated. */ |
1927 | | /* */ |
1928 | | /* However, if 1999999997<=B<=999999999 and B is an integer then the */ |
1929 | | /* restrictions on A and the context are relaxed to the usual bounds, */ |
1930 | | /* for compatibility with the earlier (integer power only) version */ |
1931 | | /* of this function. */ |
1932 | | /* */ |
1933 | | /* When B is an integer, the result may be exact, even if rounded. */ |
1934 | | /* */ |
1935 | | /* The final result is rounded according to the context; it will */ |
1936 | | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1937 | | /* error in rare cases. */ |
1938 | | /* ------------------------------------------------------------------ */ |
1939 | | decNumber * decNumberPower(decNumber *res, const decNumber *lhs, |
1940 | 0 | const decNumber *rhs, decContext *set) { |
1941 | | #if DECSUBSET |
1942 | | decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated |
1943 | | decNumber *allocrhs=NULL; // .., rhs |
1944 | | #endif |
1945 | 0 | decNumber *allocdac=NULL; // -> allocated acc buffer, iff used |
1946 | 0 | decNumber *allocinv=NULL; // -> allocated 1/x buffer, iff used |
1947 | 0 | Int reqdigits=set->digits; // requested DIGITS |
1948 | 0 | Int n; // rhs in binary |
1949 | 0 | Flag rhsint=0; // 1 if rhs is an integer |
1950 | 0 | Flag useint=0; // 1 if can use integer calculation |
1951 | 0 | Flag isoddint=0; // 1 if rhs is an integer and odd |
1952 | 0 | Int i; // work |
1953 | | #if DECSUBSET |
1954 | | Int dropped; // .. |
1955 | | #endif |
1956 | 0 | uInt needbytes; // buffer size needed |
1957 | 0 | Flag seenbit; // seen a bit while powering |
1958 | 0 | Int residue=0; // rounding residue |
1959 | 0 | uInt status=0; // accumulators |
1960 | 0 | uByte bits=0; // result sign if errors |
1961 | 0 | decContext aset; // working context |
1962 | 0 | decNumber dnOne; // work value 1... |
1963 | | // local accumulator buffer [a decNumber, with digits+elength+1 digits] |
1964 | 0 | decNumber dacbuff[D2N(DECBUFFER+9)]; |
1965 | 0 | decNumber *dac=dacbuff; // -> result accumulator |
1966 | | // same again for possible 1/lhs calculation |
1967 | 0 | decNumber invbuff[D2N(DECBUFFER+9)]; |
1968 | |
|
1969 | | #if DECCHECK |
1970 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1971 | | #endif |
1972 | |
|
1973 | 0 | do { // protect allocated storage |
1974 | | #if DECSUBSET |
1975 | | if (!set->extended) { // reduce operands and set status, as needed |
1976 | | if (lhs->digits>reqdigits) { |
1977 | | alloclhs=decRoundOperand(lhs, set, &status); |
1978 | | if (alloclhs==NULL) break; |
1979 | | lhs=alloclhs; |
1980 | | } |
1981 | | if (rhs->digits>reqdigits) { |
1982 | | allocrhs=decRoundOperand(rhs, set, &status); |
1983 | | if (allocrhs==NULL) break; |
1984 | | rhs=allocrhs; |
1985 | | } |
1986 | | } |
1987 | | #endif |
1988 | | // [following code does not require input rounding] |
1989 | | |
1990 | | // handle NaNs and rhs Infinity (lhs infinity is harder) |
1991 | 0 | if (SPECIALARGS) { |
1992 | 0 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { // NaNs |
1993 | 0 | decNaNs(res, lhs, rhs, set, &status); |
1994 | 0 | break;} |
1995 | 0 | if (decNumberIsInfinite(rhs)) { // rhs Infinity |
1996 | 0 | Flag rhsneg=rhs->bits&DECNEG; // save rhs sign |
1997 | 0 | if (decNumberIsNegative(lhs) // lhs<0 |
1998 | 0 | && !decNumberIsZero(lhs)) // .. |
1999 | 0 | status|=DEC_Invalid_operation; |
2000 | 0 | else { // lhs >=0 |
2001 | 0 | decNumberZero(&dnOne); // set up 1 |
2002 | 0 | dnOne.lsu[0]=1; |
2003 | 0 | decNumberCompare(dac, lhs, &dnOne, set); // lhs ? 1 |
2004 | 0 | decNumberZero(res); // prepare for 0/1/Infinity |
2005 | 0 | if (decNumberIsNegative(dac)) { // lhs<1 |
2006 | 0 | if (rhsneg) res->bits|=DECINF; // +Infinity [else is +0] |
2007 | 0 | } |
2008 | 0 | else if (dac->lsu[0]==0) { // lhs=1 |
2009 | | // 1**Infinity is inexact, so return fully-padded 1.0000 |
2010 | 0 | Int shift=set->digits-1; |
2011 | 0 | *res->lsu=1; // was 0, make int 1 |
2012 | 0 | res->digits=decShiftToMost(res->lsu, 1, shift); |
2013 | 0 | res->exponent=-shift; // make 1.0000... |
2014 | 0 | status|=DEC_Inexact|DEC_Rounded; // deemed inexact |
2015 | 0 | } |
2016 | 0 | else { // lhs>1 |
2017 | 0 | if (!rhsneg) res->bits|=DECINF; // +Infinity [else is +0] |
2018 | 0 | } |
2019 | 0 | } // lhs>=0 |
2020 | 0 | break;} |
2021 | | // [lhs infinity drops through] |
2022 | 0 | } // specials |
2023 | | |
2024 | | // Original rhs may be an integer that fits and is in range |
2025 | 0 | n=decGetInt(rhs); |
2026 | 0 | if (n!=BADINT) { // it is an integer |
2027 | 0 | rhsint=1; // record the fact for 1**n |
2028 | 0 | isoddint=(Flag)n&1; // [works even if big] |
2029 | 0 | if (n!=BIGEVEN && n!=BIGODD) // can use integer path? |
2030 | 0 | useint=1; // looks good |
2031 | 0 | } |
2032 | |
|
2033 | 0 | if (decNumberIsNegative(lhs) // -x .. |
2034 | 0 | && isoddint) bits=DECNEG; // .. to an odd power |
2035 | | |
2036 | | // handle LHS infinity |
2037 | 0 | if (decNumberIsInfinite(lhs)) { // [NaNs already handled] |
2038 | 0 | uByte rbits=rhs->bits; // save |
2039 | 0 | decNumberZero(res); // prepare |
2040 | 0 | if (n==0) *res->lsu=1; // [-]Inf**0 => 1 |
2041 | 0 | else { |
2042 | | // -Inf**nonint -> error |
2043 | 0 | if (!rhsint && decNumberIsNegative(lhs)) { |
2044 | 0 | status|=DEC_Invalid_operation; // -Inf**nonint is error |
2045 | 0 | break;} |
2046 | 0 | if (!(rbits & DECNEG)) bits|=DECINF; // was not a **-n |
2047 | | // [otherwise will be 0 or -0] |
2048 | 0 | res->bits=bits; |
2049 | 0 | } |
2050 | 0 | break;} |
2051 | | |
2052 | | // similarly handle LHS zero |
2053 | 0 | if (decNumberIsZero(lhs)) { |
2054 | 0 | if (n==0) { // 0**0 => Error |
2055 | | #if DECSUBSET |
2056 | | if (!set->extended) { // [unless subset] |
2057 | | decNumberZero(res); |
2058 | | *res->lsu=1; // return 1 |
2059 | | break;} |
2060 | | #endif |
2061 | 0 | status|=DEC_Invalid_operation; |
2062 | 0 | } |
2063 | 0 | else { // 0**x |
2064 | 0 | uByte rbits=rhs->bits; // save |
2065 | 0 | if (rbits & DECNEG) { // was a 0**(-n) |
2066 | | #if DECSUBSET |
2067 | | if (!set->extended) { // [bad if subset] |
2068 | | status|=DEC_Invalid_operation; |
2069 | | break;} |
2070 | | #endif |
2071 | 0 | bits|=DECINF; |
2072 | 0 | } |
2073 | 0 | decNumberZero(res); // prepare |
2074 | | // [otherwise will be 0 or -0] |
2075 | 0 | res->bits=bits; |
2076 | 0 | } |
2077 | 0 | break;} |
2078 | | |
2079 | | // here both lhs and rhs are finite; rhs==0 is handled in the |
2080 | | // integer path. Next handle the non-integer cases |
2081 | 0 | if (!useint) { // non-integral rhs |
2082 | | // any -ve lhs is bad, as is either operand or context out of |
2083 | | // bounds |
2084 | 0 | if (decNumberIsNegative(lhs)) { |
2085 | 0 | status|=DEC_Invalid_operation; |
2086 | 0 | break;} |
2087 | 0 | if (decCheckMath(lhs, set, &status) |
2088 | 0 | || decCheckMath(rhs, set, &status)) break; // variable status |
2089 | | |
2090 | 0 | decContextDefault(&aset, DEC_INIT_DECIMAL64); // clean context |
2091 | 0 | aset.emax=DEC_MAX_MATH; // usual bounds |
2092 | 0 | aset.emin=-DEC_MAX_MATH; // .. |
2093 | 0 | aset.clamp=0; // and no concrete format |
2094 | | |
2095 | | // calculate the result using exp(ln(lhs)*rhs), which can |
2096 | | // all be done into the accumulator, dac. The precision needed |
2097 | | // is enough to contain the full information in the lhs (which |
2098 | | // is the total digits, including exponent), or the requested |
2099 | | // precision, if larger, + 4; 6 is used for the exponent |
2100 | | // maximum length, and this is also used when it is shorter |
2101 | | // than the requested digits as it greatly reduces the >0.5 ulp |
2102 | | // cases at little cost (because Ln doubles digits each |
2103 | | // iteration so a few extra digits rarely causes an extra |
2104 | | // iteration) |
2105 | 0 | aset.digits=MAXI(lhs->digits, set->digits)+6+4; |
2106 | 0 | } // non-integer rhs |
2107 | | |
2108 | 0 | else { // rhs is in-range integer |
2109 | 0 | if (n==0) { // x**0 = 1 |
2110 | | // (0**0 was handled above) |
2111 | 0 | decNumberZero(res); // result=1 |
2112 | 0 | *res->lsu=1; // .. |
2113 | 0 | break;} |
2114 | | // rhs is a non-zero integer |
2115 | 0 | if (n<0) n=-n; // use abs(n) |
2116 | |
|
2117 | 0 | aset=*set; // clone the context |
2118 | 0 | aset.round=DEC_ROUND_HALF_EVEN; // internally use balanced |
2119 | | // calculate the working DIGITS |
2120 | 0 | aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; |
2121 | | #if DECSUBSET |
2122 | | if (!set->extended) aset.digits--; // use classic precision |
2123 | | #endif |
2124 | | // it's an error if this is more than can be handled |
2125 | 0 | if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} |
2126 | 0 | } // integer path |
2127 | | |
2128 | | // aset.digits is the count of digits for the accumulator needed |
2129 | | // if accumulator is too long for local storage, then allocate |
2130 | 0 | needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit); |
2131 | | // [needbytes also used below if 1/lhs needed] |
2132 | 0 | if (needbytes>sizeof(dacbuff)) { |
2133 | 0 | allocdac=(decNumber *)malloc(needbytes); |
2134 | 0 | if (allocdac==NULL) { // hopeless -- abandon |
2135 | 0 | status|=DEC_Insufficient_storage; |
2136 | 0 | break;} |
2137 | 0 | dac=allocdac; // use the allocated space |
2138 | 0 | } |
2139 | | // here, aset is set up and accumulator is ready for use |
2140 | | |
2141 | 0 | if (!useint) { // non-integral rhs |
2142 | | // x ** y; special-case x=1 here as it will otherwise always |
2143 | | // reduce to integer 1; decLnOp has a fastpath which detects |
2144 | | // the case of x=1 |
2145 | 0 | decLnOp(dac, lhs, &aset, &status); // dac=ln(lhs) |
2146 | | // [no error possible, as lhs 0 already handled] |
2147 | 0 | if (ISZERO(dac)) { // x==1, 1.0, etc. |
2148 | | // need to return fully-padded 1.0000 etc., but rhsint->1 |
2149 | 0 | *dac->lsu=1; // was 0, make int 1 |
2150 | 0 | if (!rhsint) { // add padding |
2151 | 0 | Int shift=set->digits-1; |
2152 | 0 | dac->digits=decShiftToMost(dac->lsu, 1, shift); |
2153 | 0 | dac->exponent=-shift; // make 1.0000... |
2154 | 0 | status|=DEC_Inexact|DEC_Rounded; // deemed inexact |
2155 | 0 | } |
2156 | 0 | } |
2157 | 0 | else { |
2158 | 0 | decMultiplyOp(dac, dac, rhs, &aset, &status); // dac=dac*rhs |
2159 | 0 | decExpOp(dac, dac, &aset, &status); // dac=exp(dac) |
2160 | 0 | } |
2161 | | // and drop through for final rounding |
2162 | 0 | } // non-integer rhs |
2163 | | |
2164 | 0 | else { // carry on with integer |
2165 | 0 | decNumberZero(dac); // acc=1 |
2166 | 0 | *dac->lsu=1; // .. |
2167 | | |
2168 | | // if a negative power the constant 1 is needed, and if not subset |
2169 | | // invert the lhs now rather than inverting the result later |
2170 | 0 | if (decNumberIsNegative(rhs)) { // was a **-n [hence digits>0] |
2171 | 0 | decNumber *inv=invbuff; // assume use fixed buffer |
2172 | 0 | decNumberCopy(&dnOne, dac); // dnOne=1; [needed now or later] |
2173 | | #if DECSUBSET |
2174 | | if (set->extended) { // need to calculate 1/lhs |
2175 | | #endif |
2176 | | // divide lhs into 1, putting result in dac [dac=1/dac] |
2177 | 0 | decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status); |
2178 | | // now locate or allocate space for the inverted lhs |
2179 | 0 | if (needbytes>sizeof(invbuff)) { |
2180 | 0 | allocinv=(decNumber *)malloc(needbytes); |
2181 | 0 | if (allocinv==NULL) { // hopeless -- abandon |
2182 | 0 | status|=DEC_Insufficient_storage; |
2183 | 0 | break;} |
2184 | 0 | inv=allocinv; // use the allocated space |
2185 | 0 | } |
2186 | | // [inv now points to big-enough buffer or allocated storage] |
2187 | 0 | decNumberCopy(inv, dac); // copy the 1/lhs |
2188 | 0 | decNumberCopy(dac, &dnOne); // restore acc=1 |
2189 | 0 | lhs=inv; // .. and go forward with new lhs |
2190 | | #if DECSUBSET |
2191 | | } |
2192 | | #endif |
2193 | 0 | } |
2194 | | |
2195 | | // Raise-to-the-power loop... |
2196 | 0 | seenbit=0; // set once a 1-bit is encountered |
2197 | 0 | for (i=1;;i++){ // for each bit [top bit ignored] |
2198 | | // abandon if had overflow or terminal underflow |
2199 | 0 | if (status & (DEC_Overflow|DEC_Underflow)) { // interesting? |
2200 | 0 | if (status&DEC_Overflow || ISZERO(dac)) break; |
2201 | 0 | } |
2202 | | // [the following two lines revealed an optimizer bug in a C++ |
2203 | | // compiler, with symptom: 5**3 -> 25, when n=n+n was used] |
2204 | 0 | n=n<<1; // move next bit to testable position |
2205 | 0 | if (n<0) { // top bit is set |
2206 | 0 | seenbit=1; // OK, significant bit seen |
2207 | 0 | decMultiplyOp(dac, dac, lhs, &aset, &status); // dac=dac*x |
2208 | 0 | } |
2209 | 0 | if (i==31) break; // that was the last bit |
2210 | 0 | if (!seenbit) continue; // no need to square 1 |
2211 | 0 | decMultiplyOp(dac, dac, dac, &aset, &status); // dac=dac*dac [square] |
2212 | 0 | } /*i*/ // 32 bits |
2213 | | |
2214 | | // complete internal overflow or underflow processing |
2215 | 0 | if (status & (DEC_Overflow|DEC_Underflow)) { |
2216 | | #if DECSUBSET |
2217 | | // If subset, and power was negative, reverse the kind of -erflow |
2218 | | // [1/x not yet done] |
2219 | | if (!set->extended && decNumberIsNegative(rhs)) { |
2220 | | if (status & DEC_Overflow) |
2221 | | status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal; |
2222 | | else { // trickier -- Underflow may or may not be set |
2223 | | status&=~(DEC_Underflow | DEC_Subnormal); // [one or both] |
2224 | | status|=DEC_Overflow; |
2225 | | } |
2226 | | } |
2227 | | #endif |
2228 | 0 | dac->bits=(dac->bits & ~DECNEG) | bits; // force correct sign |
2229 | | // round subnormals [to set.digits rather than aset.digits] |
2230 | | // or set overflow result similarly as required |
2231 | 0 | decFinalize(dac, set, &residue, &status); |
2232 | 0 | decNumberCopy(res, dac); // copy to result (is now OK length) |
2233 | 0 | break; |
2234 | 0 | } |
2235 | |
|
2236 | | #if DECSUBSET |
2237 | | if (!set->extended && // subset math |
2238 | | decNumberIsNegative(rhs)) { // was a **-n [hence digits>0] |
2239 | | // so divide result into 1 [dac=1/dac] |
2240 | | decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status); |
2241 | | } |
2242 | | #endif |
2243 | 0 | } // rhs integer path |
2244 | | |
2245 | | // reduce result to the requested length and copy to result |
2246 | 0 | decCopyFit(res, dac, set, &residue, &status); |
2247 | 0 | decFinish(res, set, &residue, &status); // final cleanup |
2248 | | #if DECSUBSET |
2249 | | if (!set->extended) decTrim(res, set, 0, 1, &dropped); // trailing zeros |
2250 | | #endif |
2251 | 0 | } while(0); // end protected |
2252 | |
|
2253 | 0 | if (allocdac!=NULL) free(allocdac); // drop any storage used |
2254 | 0 | if (allocinv!=NULL) free(allocinv); // .. |
2255 | | #if DECSUBSET |
2256 | | if (alloclhs!=NULL) free(alloclhs); // .. |
2257 | | if (allocrhs!=NULL) free(allocrhs); // .. |
2258 | | #endif |
2259 | 0 | if (status!=0) decStatus(res, status, set); |
2260 | | #if DECCHECK |
2261 | | decCheckInexact(res, set); |
2262 | | #endif |
2263 | 0 | return res; |
2264 | 0 | } // decNumberPower |
2265 | | |
2266 | | /* ------------------------------------------------------------------ */ |
2267 | | /* decNumberQuantize -- force exponent to requested value */ |
2268 | | /* */ |
2269 | | /* This computes C = op(A, B), where op adjusts the coefficient */ |
2270 | | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
2271 | | /* of C has exponent of B. The numerical value of C will equal A, */ |
2272 | | /* except for the effects of any rounding that occurred. */ |
2273 | | /* */ |
2274 | | /* res is C, the result. C may be A or B */ |
2275 | | /* lhs is A, the number to adjust */ |
2276 | | /* rhs is B, the number with exponent to match */ |
2277 | | /* set is the context */ |
2278 | | /* */ |
2279 | | /* C must have space for set->digits digits. */ |
2280 | | /* */ |
2281 | | /* Unless there is an error or the result is infinite, the exponent */ |
2282 | | /* after the operation is guaranteed to be equal to that of B. */ |
2283 | | /* ------------------------------------------------------------------ */ |
2284 | | decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs, |
2285 | 0 | const decNumber *rhs, decContext *set) { |
2286 | 0 | uInt status=0; // accumulator |
2287 | 0 | decQuantizeOp(res, lhs, rhs, set, 1, &status); |
2288 | 0 | if (status!=0) decStatus(res, status, set); |
2289 | 0 | return res; |
2290 | 0 | } // decNumberQuantize |
2291 | | |
2292 | | /* ------------------------------------------------------------------ */ |
2293 | | /* decNumberReduce -- remove trailing zeros */ |
2294 | | /* */ |
2295 | | /* This computes C = 0 + A, and normalizes the result */ |
2296 | | /* */ |
2297 | | /* res is C, the result. C may be A */ |
2298 | | /* rhs is A */ |
2299 | | /* set is the context */ |
2300 | | /* */ |
2301 | | /* C must have space for set->digits digits. */ |
2302 | | /* ------------------------------------------------------------------ */ |
2303 | | // Previously known as Normalize |
2304 | | decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs, |
2305 | 0 | decContext *set) { |
2306 | 0 | return decNumberReduce(res, rhs, set); |
2307 | 0 | } // decNumberNormalize |
2308 | | |
2309 | | decNumber * decNumberReduce(decNumber *res, const decNumber *rhs, |
2310 | 1.01M | decContext *set) { |
2311 | | #if DECSUBSET |
2312 | | decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated |
2313 | | #endif |
2314 | 1.01M | uInt status=0; // as usual |
2315 | 1.01M | Int residue=0; // as usual |
2316 | 1.01M | Int dropped; // work |
2317 | | |
2318 | | #if DECCHECK |
2319 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
2320 | | #endif |
2321 | | |
2322 | 1.01M | do { // protect allocated storage |
2323 | | #if DECSUBSET |
2324 | | if (!set->extended) { |
2325 | | // reduce operand and set lostDigits status, as needed |
2326 | | if (rhs->digits>set->digits) { |
2327 | | allocrhs=decRoundOperand(rhs, set, &status); |
2328 | | if (allocrhs==NULL) break; |
2329 | | rhs=allocrhs; |
2330 | | } |
2331 | | } |
2332 | | #endif |
2333 | | // [following code does not require input rounding] |
2334 | | |
2335 | | // Infinities copy through; NaNs need usual treatment |
2336 | 1.01M | if (decNumberIsNaN(rhs)) { |
2337 | 0 | decNaNs(res, rhs, NULL, set, &status); |
2338 | 0 | break; |
2339 | 0 | } |
2340 | | |
2341 | | // reduce result to the requested length and copy to result |
2342 | 1.01M | decCopyFit(res, rhs, set, &residue, &status); // copy & round |
2343 | 1.01M | decFinish(res, set, &residue, &status); // cleanup/set flags |
2344 | 1.01M | decTrim(res, set, 1, 0, &dropped); // normalize in place |
2345 | | // [may clamp] |
2346 | 1.01M | } while(0); // end protected |
2347 | | |
2348 | | #if DECSUBSET |
2349 | | if (allocrhs !=NULL) free(allocrhs); // .. |
2350 | | #endif |
2351 | 1.01M | if (status!=0) decStatus(res, status, set);// then report status |
2352 | 1.01M | return res; |
2353 | 1.01M | } // decNumberReduce |
2354 | | |
2355 | | /* ------------------------------------------------------------------ */ |
2356 | | /* decNumberRescale -- force exponent to requested value */ |
2357 | | /* */ |
2358 | | /* This computes C = op(A, B), where op adjusts the coefficient */ |
2359 | | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
2360 | | /* of C has the value B. The numerical value of C will equal A, */ |
2361 | | /* except for the effects of any rounding that occurred. */ |
2362 | | /* */ |
2363 | | /* res is C, the result. C may be A or B */ |
2364 | | /* lhs is A, the number to adjust */ |
2365 | | /* rhs is B, the requested exponent */ |
2366 | | /* set is the context */ |
2367 | | /* */ |
2368 | | /* C must have space for set->digits digits. */ |
2369 | | /* */ |
2370 | | /* Unless there is an error or the result is infinite, the exponent */ |
2371 | | /* after the operation is guaranteed to be equal to B. */ |
2372 | | /* ------------------------------------------------------------------ */ |
2373 | | decNumber * decNumberRescale(decNumber *res, const decNumber *lhs, |
2374 | 0 | const decNumber *rhs, decContext *set) { |
2375 | 0 | uInt status=0; // accumulator |
2376 | 0 | decQuantizeOp(res, lhs, rhs, set, 0, &status); |
2377 | 0 | if (status!=0) decStatus(res, status, set); |
2378 | 0 | return res; |
2379 | 0 | } // decNumberRescale |
2380 | | |
2381 | | /* ------------------------------------------------------------------ */ |
2382 | | /* decNumberRemainder -- divide and return remainder */ |
2383 | | /* */ |
2384 | | /* This computes C = A % B */ |
2385 | | /* */ |
2386 | | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
2387 | | /* lhs is A */ |
2388 | | /* rhs is B */ |
2389 | | /* set is the context */ |
2390 | | /* */ |
2391 | | /* C must have space for set->digits digits. */ |
2392 | | /* ------------------------------------------------------------------ */ |
2393 | | decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs, |
2394 | 0 | const decNumber *rhs, decContext *set) { |
2395 | 0 | uInt status=0; // accumulator |
2396 | 0 | decDivideOp(res, lhs, rhs, set, REMAINDER, &status); |
2397 | 0 | if (status!=0) decStatus(res, status, set); |
2398 | | #if DECCHECK |
2399 | | decCheckInexact(res, set); |
2400 | | #endif |
2401 | 0 | return res; |
2402 | 0 | } // decNumberRemainder |
2403 | | |
2404 | | /* ------------------------------------------------------------------ */ |
2405 | | /* decNumberRemainderNear -- divide and return remainder from nearest */ |
2406 | | /* */ |
2407 | | /* This computes C = A % B, where % is the IEEE remainder operator */ |
2408 | | /* */ |
2409 | | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
2410 | | /* lhs is A */ |
2411 | | /* rhs is B */ |
2412 | | /* set is the context */ |
2413 | | /* */ |
2414 | | /* C must have space for set->digits digits. */ |
2415 | | /* ------------------------------------------------------------------ */ |
2416 | | decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs, |
2417 | 0 | const decNumber *rhs, decContext *set) { |
2418 | 0 | uInt status=0; // accumulator |
2419 | 0 | decDivideOp(res, lhs, rhs, set, REMNEAR, &status); |
2420 | 0 | if (status!=0) decStatus(res, status, set); |
2421 | | #if DECCHECK |
2422 | | decCheckInexact(res, set); |
2423 | | #endif |
2424 | 0 | return res; |
2425 | 0 | } // decNumberRemainderNear |
2426 | | |
2427 | | /* ------------------------------------------------------------------ */ |
2428 | | /* decNumberRotate -- rotate the coefficient of a Number left/right */ |
2429 | | /* */ |
2430 | | /* This computes C = A rot B (in base ten and rotating set->digits */ |
2431 | | /* digits). */ |
2432 | | /* */ |
2433 | | /* res is C, the result. C may be A and/or B (e.g., X=XrotX) */ |
2434 | | /* lhs is A */ |
2435 | | /* rhs is B, the number of digits to rotate (-ve to right) */ |
2436 | | /* set is the context */ |
2437 | | /* */ |
2438 | | /* The digits of the coefficient of A are rotated to the left (if B */ |
2439 | | /* is positive) or to the right (if B is negative) without adjusting */ |
2440 | | /* the exponent or the sign of A. If lhs->digits is less than */ |
2441 | | /* set->digits the coefficient is padded with zeros on the left */ |
2442 | | /* before the rotate. Any leading zeros in the result are removed */ |
2443 | | /* as usual. */ |
2444 | | /* */ |
2445 | | /* B must be an integer (q=0) and in the range -set->digits through */ |
2446 | | /* +set->digits. */ |
2447 | | /* C must have space for set->digits digits. */ |
2448 | | /* NaNs are propagated as usual. Infinities are unaffected (but */ |
2449 | | /* B must be valid). No status is set unless B is invalid or an */ |
2450 | | /* operand is an sNaN. */ |
2451 | | /* ------------------------------------------------------------------ */ |
2452 | | decNumber * decNumberRotate(decNumber *res, const decNumber *lhs, |
2453 | 0 | const decNumber *rhs, decContext *set) { |
2454 | 0 | uInt status=0; // accumulator |
2455 | 0 | Int rotate; // rhs as an Int |
2456 | |
|
2457 | | #if DECCHECK |
2458 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
2459 | | #endif |
2460 | | |
2461 | | // NaNs propagate as normal |
2462 | 0 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
2463 | 0 | decNaNs(res, lhs, rhs, set, &status); |
2464 | | // rhs must be an integer |
2465 | 0 | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
2466 | 0 | status=DEC_Invalid_operation; |
2467 | 0 | else { // both numeric, rhs is an integer |
2468 | 0 | rotate=decGetInt(rhs); // [cannot fail] |
2469 | 0 | if (rotate==BADINT // something bad .. |
2470 | 0 | || rotate==BIGODD || rotate==BIGEVEN // .. very big .. |
2471 | 0 | || abs(rotate)>set->digits) // .. or out of range |
2472 | 0 | status=DEC_Invalid_operation; |
2473 | 0 | else { // rhs is OK |
2474 | 0 | decNumberCopy(res, lhs); |
2475 | | // convert -ve rotate to equivalent positive rotation |
2476 | 0 | if (rotate<0) rotate=set->digits+rotate; |
2477 | 0 | if (rotate!=0 && rotate!=set->digits // zero or full rotation |
2478 | 0 | && !decNumberIsInfinite(res)) { // lhs was infinite |
2479 | | // left-rotate to do; 0 < rotate < set->digits |
2480 | 0 | uInt units, shift; // work |
2481 | 0 | uInt msudigits; // digits in result msu |
2482 | 0 | Unit *msu=res->lsu+D2U(res->digits)-1; // current msu |
2483 | 0 | Unit *msumax=res->lsu+D2U(set->digits)-1; // rotation msu |
2484 | 0 | for (msu++; msu<=msumax; msu++) *msu=0; // ensure high units=0 |
2485 | 0 | res->digits=set->digits; // now full-length |
2486 | 0 | msudigits=MSUDIGITS(res->digits); // actual digits in msu |
2487 | | |
2488 | | // rotation here is done in-place, in three steps |
2489 | | // 1. shift all to least up to one unit to unit-align final |
2490 | | // lsd [any digits shifted out are rotated to the left, |
2491 | | // abutted to the original msd (which may require split)] |
2492 | | // |
2493 | | // [if there are no whole units left to rotate, the |
2494 | | // rotation is now complete] |
2495 | | // |
2496 | | // 2. shift to least, from below the split point only, so that |
2497 | | // the final msd is in the right place in its Unit [any |
2498 | | // digits shifted out will fit exactly in the current msu, |
2499 | | // left aligned, no split required] |
2500 | | // |
2501 | | // 3. rotate all the units by reversing left part, right |
2502 | | // part, and then whole |
2503 | | // |
2504 | | // example: rotate right 8 digits (2 units + 2), DECDPUN=3. |
2505 | | // |
2506 | | // start: 00a bcd efg hij klm npq |
2507 | | // |
2508 | | // 1a 000 0ab cde fgh|ijk lmn [pq saved] |
2509 | | // 1b 00p qab cde fgh|ijk lmn |
2510 | | // |
2511 | | // 2a 00p qab cde fgh|00i jkl [mn saved] |
2512 | | // 2b mnp qab cde fgh|00i jkl |
2513 | | // |
2514 | | // 3a fgh cde qab mnp|00i jkl |
2515 | | // 3b fgh cde qab mnp|jkl 00i |
2516 | | // 3c 00i jkl mnp qab cde fgh |
2517 | | |
2518 | | // Step 1: amount to shift is the partial right-rotate count |
2519 | 0 | rotate=set->digits-rotate; // make it right-rotate |
2520 | 0 | units=rotate/DECDPUN; // whole units to rotate |
2521 | 0 | shift=rotate%DECDPUN; // left-over digits count |
2522 | 0 | if (shift>0) { // not an exact number of units |
2523 | 0 | uInt save=res->lsu[0]%powers[shift]; // save low digit(s) |
2524 | 0 | decShiftToLeast(res->lsu, D2U(res->digits), shift); |
2525 | 0 | if (shift>msudigits) { // msumax-1 needs >0 digits |
2526 | 0 | uInt rem=save%powers[shift-msudigits];// split save |
2527 | 0 | *msumax=(Unit)(save/powers[shift-msudigits]); // and insert |
2528 | 0 | *(msumax-1)=*(msumax-1) |
2529 | 0 | +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); // .. |
2530 | 0 | } |
2531 | 0 | else { // all fits in msumax |
2532 | 0 | *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); // [maybe *1] |
2533 | 0 | } |
2534 | 0 | } // digits shift needed |
2535 | | |
2536 | | // If whole units to rotate... |
2537 | 0 | if (units>0) { // some to do |
2538 | | // Step 2: the units to touch are the whole ones in rotate, |
2539 | | // if any, and the shift is DECDPUN-msudigits (which may be |
2540 | | // 0, again) |
2541 | 0 | shift=DECDPUN-msudigits; |
2542 | 0 | if (shift>0) { // not an exact number of units |
2543 | 0 | uInt save=res->lsu[0]%powers[shift]; // save low digit(s) |
2544 | 0 | decShiftToLeast(res->lsu, units, shift); |
2545 | 0 | *msumax=*msumax+(Unit)(save*powers[msudigits]); |
2546 | 0 | } // partial shift needed |
2547 | | |
2548 | | // Step 3: rotate the units array using triple reverse |
2549 | | // (reversing is easy and fast) |
2550 | 0 | decReverse(res->lsu+units, msumax); // left part |
2551 | 0 | decReverse(res->lsu, res->lsu+units-1); // right part |
2552 | 0 | decReverse(res->lsu, msumax); // whole |
2553 | 0 | } // whole units to rotate |
2554 | | // the rotation may have left an undetermined number of zeros |
2555 | | // on the left, so true length needs to be calculated |
2556 | 0 | res->digits=decGetDigits(res->lsu, msumax-res->lsu+1); |
2557 | 0 | } // rotate needed |
2558 | 0 | } // rhs OK |
2559 | 0 | } // numerics |
2560 | 0 | if (status!=0) decStatus(res, status, set); |
2561 | 0 | return res; |
2562 | 0 | } // decNumberRotate |
2563 | | |
2564 | | /* ------------------------------------------------------------------ */ |
2565 | | /* decNumberSameQuantum -- test for equal exponents */ |
2566 | | /* */ |
2567 | | /* res is the result number, which will contain either 0 or 1 */ |
2568 | | /* lhs is a number to test */ |
2569 | | /* rhs is the second (usually a pattern) */ |
2570 | | /* */ |
2571 | | /* No errors are possible and no context is needed. */ |
2572 | | /* ------------------------------------------------------------------ */ |
2573 | | decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs, |
2574 | 0 | const decNumber *rhs) { |
2575 | 0 | Unit ret=0; // return value |
2576 | |
|
2577 | | #if DECCHECK |
2578 | | if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; |
2579 | | #endif |
2580 | |
|
2581 | 0 | if (SPECIALARGS) { |
2582 | 0 | if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1; |
2583 | 0 | else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1; |
2584 | | // [anything else with a special gives 0] |
2585 | 0 | } |
2586 | 0 | else if (lhs->exponent==rhs->exponent) ret=1; |
2587 | |
|
2588 | 0 | decNumberZero(res); // OK to overwrite an operand now |
2589 | 0 | *res->lsu=ret; |
2590 | 0 | return res; |
2591 | 0 | } // decNumberSameQuantum |
2592 | | |
2593 | | /* ------------------------------------------------------------------ */ |
2594 | | /* decNumberScaleB -- multiply by a power of 10 */ |
2595 | | /* */ |
2596 | | /* This computes C = A x 10**B where B is an integer (q=0) with */ |
2597 | | /* maximum magnitude 2*(emax+digits) */ |
2598 | | /* */ |
2599 | | /* res is C, the result. C may be A or B */ |
2600 | | /* lhs is A, the number to adjust */ |
2601 | | /* rhs is B, the requested power of ten to use */ |
2602 | | /* set is the context */ |
2603 | | /* */ |
2604 | | /* C must have space for set->digits digits. */ |
2605 | | /* */ |
2606 | | /* The result may underflow or overflow. */ |
2607 | | /* ------------------------------------------------------------------ */ |
2608 | | decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs, |
2609 | 0 | const decNumber *rhs, decContext *set) { |
2610 | 0 | Int reqexp; // requested exponent change [B] |
2611 | 0 | uInt status=0; // accumulator |
2612 | 0 | Int residue; // work |
2613 | |
|
2614 | | #if DECCHECK |
2615 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
2616 | | #endif |
2617 | | |
2618 | | // Handle special values except lhs infinite |
2619 | 0 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
2620 | 0 | decNaNs(res, lhs, rhs, set, &status); |
2621 | | // rhs must be an integer |
2622 | 0 | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
2623 | 0 | status=DEC_Invalid_operation; |
2624 | 0 | else { |
2625 | | // lhs is a number; rhs is a finite with q==0 |
2626 | 0 | reqexp=decGetInt(rhs); // [cannot fail] |
2627 | | // maximum range is larger than getInt can handle, so this is |
2628 | | // more restrictive than the specification |
2629 | 0 | if (reqexp==BADINT // something bad .. |
2630 | 0 | || reqexp==BIGODD || reqexp==BIGEVEN // it was huge |
2631 | 0 | || (abs(reqexp)+1)/2>(set->digits+set->emax)) // .. or out of range |
2632 | 0 | status=DEC_Invalid_operation; |
2633 | 0 | else { // rhs is OK |
2634 | 0 | decNumberCopy(res, lhs); // all done if infinite lhs |
2635 | 0 | if (!decNumberIsInfinite(res)) { // prepare to scale |
2636 | 0 | Int exp=res->exponent; // save for overflow test |
2637 | 0 | res->exponent+=reqexp; // adjust the exponent |
2638 | 0 | if (((exp^reqexp)>=0) // same sign ... |
2639 | 0 | && ((exp^res->exponent)<0)) { // .. but result had different |
2640 | | // the calculation overflowed, so force right treatment |
2641 | 0 | if (exp<0) res->exponent=DEC_MIN_EMIN-DEC_MAX_DIGITS; |
2642 | 0 | else res->exponent=DEC_MAX_EMAX+1; |
2643 | 0 | } |
2644 | 0 | residue=0; |
2645 | 0 | decFinalize(res, set, &residue, &status); // final check |
2646 | 0 | } // finite LHS |
2647 | 0 | } // rhs OK |
2648 | 0 | } // rhs finite |
2649 | 0 | if (status!=0) decStatus(res, status, set); |
2650 | 0 | return res; |
2651 | 0 | } // decNumberScaleB |
2652 | | |
2653 | | /* ------------------------------------------------------------------ */ |
2654 | | /* decNumberShift -- shift the coefficient of a Number left or right */ |
2655 | | /* */ |
2656 | | /* This computes C = A << B or C = A >> -B (in base ten). */ |
2657 | | /* */ |
2658 | | /* res is C, the result. C may be A and/or B (e.g., X=X<<X) */ |
2659 | | /* lhs is A */ |
2660 | | /* rhs is B, the number of digits to shift (-ve to right) */ |
2661 | | /* set is the context */ |
2662 | | /* */ |
2663 | | /* The digits of the coefficient of A are shifted to the left (if B */ |
2664 | | /* is positive) or to the right (if B is negative) without adjusting */ |
2665 | | /* the exponent or the sign of A. */ |
2666 | | /* */ |
2667 | | /* B must be an integer (q=0) and in the range -set->digits through */ |
2668 | | /* +set->digits. */ |
2669 | | /* C must have space for set->digits digits. */ |
2670 | | /* NaNs are propagated as usual. Infinities are unaffected (but */ |
2671 | | /* B must be valid). No status is set unless B is invalid or an */ |
2672 | | /* operand is an sNaN. */ |
2673 | | /* ------------------------------------------------------------------ */ |
2674 | | decNumber * decNumberShift(decNumber *res, const decNumber *lhs, |
2675 | 0 | const decNumber *rhs, decContext *set) { |
2676 | 0 | uInt status=0; // accumulator |
2677 | 0 | Int shift; // rhs as an Int |
2678 | |
|
2679 | | #if DECCHECK |
2680 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
2681 | | #endif |
2682 | | |
2683 | | // NaNs propagate as normal |
2684 | 0 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
2685 | 0 | decNaNs(res, lhs, rhs, set, &status); |
2686 | | // rhs must be an integer |
2687 | 0 | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
2688 | 0 | status=DEC_Invalid_operation; |
2689 | 0 | else { // both numeric, rhs is an integer |
2690 | 0 | shift=decGetInt(rhs); // [cannot fail] |
2691 | 0 | if (shift==BADINT // something bad .. |
2692 | 0 | || shift==BIGODD || shift==BIGEVEN // .. very big .. |
2693 | 0 | || abs(shift)>set->digits) // .. or out of range |
2694 | 0 | status=DEC_Invalid_operation; |
2695 | 0 | else { // rhs is OK |
2696 | 0 | decNumberCopy(res, lhs); |
2697 | 0 | if (shift!=0 && !decNumberIsInfinite(res)) { // something to do |
2698 | 0 | if (shift>0) { // to left |
2699 | 0 | if (shift==set->digits) { // removing all |
2700 | 0 | *res->lsu=0; // so place 0 |
2701 | 0 | res->digits=1; // .. |
2702 | 0 | } |
2703 | 0 | else { // |
2704 | | // first remove leading digits if necessary |
2705 | 0 | if (res->digits+shift>set->digits) { |
2706 | 0 | decDecap(res, res->digits+shift-set->digits); |
2707 | | // that updated res->digits; may have gone to 1 (for a |
2708 | | // single digit or for zero |
2709 | 0 | } |
2710 | 0 | if (res->digits>1 || *res->lsu) // if non-zero.. |
2711 | 0 | res->digits=decShiftToMost(res->lsu, res->digits, shift); |
2712 | 0 | } // partial left |
2713 | 0 | } // left |
2714 | 0 | else { // to right |
2715 | 0 | if (-shift>=res->digits) { // discarding all |
2716 | 0 | *res->lsu=0; // so place 0 |
2717 | 0 | res->digits=1; // .. |
2718 | 0 | } |
2719 | 0 | else { |
2720 | 0 | decShiftToLeast(res->lsu, D2U(res->digits), -shift); |
2721 | 0 | res->digits-=(-shift); |
2722 | 0 | } |
2723 | 0 | } // to right |
2724 | 0 | } // non-0 non-Inf shift |
2725 | 0 | } // rhs OK |
2726 | 0 | } // numerics |
2727 | 0 | if (status!=0) decStatus(res, status, set); |
2728 | 0 | return res; |
2729 | 0 | } // decNumberShift |
2730 | | |
2731 | | /* ------------------------------------------------------------------ */ |
2732 | | /* decNumberSquareRoot -- square root operator */ |
2733 | | /* */ |
2734 | | /* This computes C = squareroot(A) */ |
2735 | | /* */ |
2736 | | /* res is C, the result. C may be A */ |
2737 | | /* rhs is A */ |
2738 | | /* set is the context; note that rounding mode has no effect */ |
2739 | | /* */ |
2740 | | /* C must have space for set->digits digits. */ |
2741 | | /* ------------------------------------------------------------------ */ |
2742 | | /* This uses the following varying-precision algorithm in: */ |
2743 | | /* */ |
2744 | | /* Properly Rounded Variable Precision Square Root, T. E. Hull and */ |
2745 | | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ |
2746 | | /* pp229-237, ACM, September 1985. */ |
2747 | | /* */ |
2748 | | /* The square-root is calculated using Newton's method, after which */ |
2749 | | /* a check is made to ensure the result is correctly rounded. */ |
2750 | | /* */ |
2751 | | /* % [Reformatted original Numerical Turing source code follows.] */ |
2752 | | /* function sqrt(x : real) : real */ |
2753 | | /* % sqrt(x) returns the properly rounded approximation to the square */ |
2754 | | /* % root of x, in the precision of the calling environment, or it */ |
2755 | | /* % fails if x < 0. */ |
2756 | | /* % t e hull and a abrham, august, 1984 */ |
2757 | | /* if x <= 0 then */ |
2758 | | /* if x < 0 then */ |
2759 | | /* assert false */ |
2760 | | /* else */ |
2761 | | /* result 0 */ |
2762 | | /* end if */ |
2763 | | /* end if */ |
2764 | | /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */ |
2765 | | /* var e := getexp(x) % exponent part of x */ |
2766 | | /* var approx : real */ |
2767 | | /* if e mod 2 = 0 then */ |
2768 | | /* approx := .259 + .819 * f % approx to root of f */ |
2769 | | /* else */ |
2770 | | /* f := f/l0 % adjustments */ |
2771 | | /* e := e + 1 % for odd */ |
2772 | | /* approx := .0819 + 2.59 * f % exponent */ |
2773 | | /* end if */ |
2774 | | /* */ |
2775 | | /* var p:= 3 */ |
2776 | | /* const maxp := currentprecision + 2 */ |
2777 | | /* loop */ |
2778 | | /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */ |
2779 | | /* precision p */ |
2780 | | /* approx := .5 * (approx + f/approx) */ |
2781 | | /* exit when p = maxp */ |
2782 | | /* end loop */ |
2783 | | /* */ |
2784 | | /* % approx is now within 1 ulp of the properly rounded square root */ |
2785 | | /* % of f; to ensure proper rounding, compare squares of (approx - */ |
2786 | | /* % l/2 ulp) and (approx + l/2 ulp) with f. */ |
2787 | | /* p := currentprecision */ |
2788 | | /* begin */ |
2789 | | /* precision p + 2 */ |
2790 | | /* const approxsubhalf := approx - setexp(.5, -p) */ |
2791 | | /* if mulru(approxsubhalf, approxsubhalf) > f then */ |
2792 | | /* approx := approx - setexp(.l, -p + 1) */ |
2793 | | /* else */ |
2794 | | /* const approxaddhalf := approx + setexp(.5, -p) */ |
2795 | | /* if mulrd(approxaddhalf, approxaddhalf) < f then */ |
2796 | | /* approx := approx + setexp(.l, -p + 1) */ |
2797 | | /* end if */ |
2798 | | /* end if */ |
2799 | | /* end */ |
2800 | | /* result setexp(approx, e div 2) % fix exponent */ |
2801 | | /* end sqrt */ |
2802 | | /* ------------------------------------------------------------------ */ |
2803 | | decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs, |
2804 | 0 | decContext *set) { |
2805 | 0 | decContext workset, approxset; // work contexts |
2806 | 0 | decNumber dzero; // used for constant zero |
2807 | 0 | Int maxp; // largest working precision |
2808 | 0 | Int workp; // working precision |
2809 | 0 | Int residue=0; // rounding residue |
2810 | 0 | uInt status=0, ignore=0; // status accumulators |
2811 | 0 | uInt rstatus; // .. |
2812 | 0 | Int exp; // working exponent |
2813 | 0 | Int ideal; // ideal (preferred) exponent |
2814 | 0 | Int needbytes; // work |
2815 | 0 | Int dropped; // .. |
2816 | |
|
2817 | | #if DECSUBSET |
2818 | | decNumber *allocrhs=NULL; // non-NULL if rounded rhs allocated |
2819 | | #endif |
2820 | | // buffer for f [needs +1 in case DECBUFFER 0] |
2821 | 0 | decNumber buff[D2N(DECBUFFER+1)]; |
2822 | | // buffer for a [needs +2 to match likely maxp] |
2823 | 0 | decNumber bufa[D2N(DECBUFFER+2)]; |
2824 | | // buffer for temporary, b [must be same size as a] |
2825 | 0 | decNumber bufb[D2N(DECBUFFER+2)]; |
2826 | 0 | decNumber *allocbuff=NULL; // -> allocated buff, iff allocated |
2827 | 0 | decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated |
2828 | 0 | decNumber *allocbufb=NULL; // -> allocated bufb, iff allocated |
2829 | 0 | decNumber *f=buff; // reduced fraction |
2830 | 0 | decNumber *a=bufa; // approximation to result |
2831 | 0 | decNumber *b=bufb; // intermediate result |
2832 | | // buffer for temporary variable, up to 3 digits |
2833 | 0 | decNumber buft[D2N(3)]; |
2834 | 0 | decNumber *t=buft; // up-to-3-digit constant or work |
2835 | |
|
2836 | | #if DECCHECK |
2837 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
2838 | | #endif |
2839 | |
|
2840 | 0 | do { // protect allocated storage |
2841 | | #if DECSUBSET |
2842 | | if (!set->extended) { |
2843 | | // reduce operand and set lostDigits status, as needed |
2844 | | if (rhs->digits>set->digits) { |
2845 | | allocrhs=decRoundOperand(rhs, set, &status); |
2846 | | if (allocrhs==NULL) break; |
2847 | | // [Note: 'f' allocation below could reuse this buffer if |
2848 | | // used, but as this is rare they are kept separate for clarity.] |
2849 | | rhs=allocrhs; |
2850 | | } |
2851 | | } |
2852 | | #endif |
2853 | | // [following code does not require input rounding] |
2854 | | |
2855 | | // handle infinities and NaNs |
2856 | 0 | if (SPECIALARG) { |
2857 | 0 | if (decNumberIsInfinite(rhs)) { // an infinity |
2858 | 0 | if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation; |
2859 | 0 | else decNumberCopy(res, rhs); // +Infinity |
2860 | 0 | } |
2861 | 0 | else decNaNs(res, rhs, NULL, set, &status); // a NaN |
2862 | 0 | break; |
2863 | 0 | } |
2864 | | |
2865 | | // calculate the ideal (preferred) exponent [floor(exp/2)] |
2866 | | // [It would be nicer to write: ideal=rhs->exponent>>1, but this |
2867 | | // generates a compiler warning. Generated code is the same.] |
2868 | 0 | ideal=(rhs->exponent&~1)/2; // target |
2869 | | |
2870 | | // handle zeros |
2871 | 0 | if (ISZERO(rhs)) { |
2872 | 0 | decNumberCopy(res, rhs); // could be 0 or -0 |
2873 | 0 | res->exponent=ideal; // use the ideal [safe] |
2874 | | // use decFinish to clamp any out-of-range exponent, etc. |
2875 | 0 | decFinish(res, set, &residue, &status); |
2876 | 0 | break; |
2877 | 0 | } |
2878 | | |
2879 | | // any other -x is an oops |
2880 | 0 | if (decNumberIsNegative(rhs)) { |
2881 | 0 | status|=DEC_Invalid_operation; |
2882 | 0 | break; |
2883 | 0 | } |
2884 | | |
2885 | | // space is needed for three working variables |
2886 | | // f -- the same precision as the RHS, reduced to 0.01->0.99... |
2887 | | // a -- Hull's approximation -- precision, when assigned, is |
2888 | | // currentprecision+1 or the input argument precision, |
2889 | | // whichever is larger (+2 for use as temporary) |
2890 | | // b -- intermediate temporary result (same size as a) |
2891 | | // if any is too long for local storage, then allocate |
2892 | 0 | workp=MAXI(set->digits+1, rhs->digits); // actual rounding precision |
2893 | 0 | workp=MAXI(workp, 7); // at least 7 for low cases |
2894 | 0 | maxp=workp+2; // largest working precision |
2895 | |
|
2896 | 0 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
2897 | 0 | if (needbytes>(Int)sizeof(buff)) { |
2898 | 0 | allocbuff=(decNumber *)malloc(needbytes); |
2899 | 0 | if (allocbuff==NULL) { // hopeless -- abandon |
2900 | 0 | status|=DEC_Insufficient_storage; |
2901 | 0 | break;} |
2902 | 0 | f=allocbuff; // use the allocated space |
2903 | 0 | } |
2904 | | // a and b both need to be able to hold a maxp-length number |
2905 | 0 | needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit); |
2906 | 0 | if (needbytes>(Int)sizeof(bufa)) { // [same applies to b] |
2907 | 0 | allocbufa=(decNumber *)malloc(needbytes); |
2908 | 0 | allocbufb=(decNumber *)malloc(needbytes); |
2909 | 0 | if (allocbufa==NULL || allocbufb==NULL) { // hopeless |
2910 | 0 | status|=DEC_Insufficient_storage; |
2911 | 0 | break;} |
2912 | 0 | a=allocbufa; // use the allocated spaces |
2913 | 0 | b=allocbufb; // .. |
2914 | 0 | } |
2915 | | |
2916 | | // copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 |
2917 | 0 | decNumberCopy(f, rhs); |
2918 | 0 | exp=f->exponent+f->digits; // adjusted to Hull rules |
2919 | 0 | f->exponent=-(f->digits); // to range |
2920 | | |
2921 | | // set up working context |
2922 | 0 | decContextDefault(&workset, DEC_INIT_DECIMAL64); |
2923 | 0 | workset.emax=DEC_MAX_EMAX; |
2924 | 0 | workset.emin=DEC_MIN_EMIN; |
2925 | | |
2926 | | // [Until further notice, no error is possible and status bits |
2927 | | // (Rounded, etc.) should be ignored, not accumulated.] |
2928 | | |
2929 | | // Calculate initial approximation, and allow for odd exponent |
2930 | 0 | workset.digits=workp; // p for initial calculation |
2931 | 0 | t->bits=0; t->digits=3; |
2932 | 0 | a->bits=0; a->digits=3; |
2933 | 0 | if ((exp & 1)==0) { // even exponent |
2934 | | // Set t=0.259, a=0.819 |
2935 | 0 | t->exponent=-3; |
2936 | 0 | a->exponent=-3; |
2937 | 0 | #if DECDPUN>=3 |
2938 | 0 | t->lsu[0]=259; |
2939 | 0 | a->lsu[0]=819; |
2940 | | #elif DECDPUN==2 |
2941 | | t->lsu[0]=59; t->lsu[1]=2; |
2942 | | a->lsu[0]=19; a->lsu[1]=8; |
2943 | | #else |
2944 | | t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; |
2945 | | a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; |
2946 | | #endif |
2947 | 0 | } |
2948 | 0 | else { // odd exponent |
2949 | | // Set t=0.0819, a=2.59 |
2950 | 0 | f->exponent--; // f=f/10 |
2951 | 0 | exp++; // e=e+1 |
2952 | 0 | t->exponent=-4; |
2953 | 0 | a->exponent=-2; |
2954 | 0 | #if DECDPUN>=3 |
2955 | 0 | t->lsu[0]=819; |
2956 | 0 | a->lsu[0]=259; |
2957 | | #elif DECDPUN==2 |
2958 | | t->lsu[0]=19; t->lsu[1]=8; |
2959 | | a->lsu[0]=59; a->lsu[1]=2; |
2960 | | #else |
2961 | | t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; |
2962 | | a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; |
2963 | | #endif |
2964 | 0 | } |
2965 | |
|
2966 | 0 | decMultiplyOp(a, a, f, &workset, &ignore); // a=a*f |
2967 | 0 | decAddOp(a, a, t, &workset, 0, &ignore); // ..+t |
2968 | | // [a is now the initial approximation for sqrt(f), calculated with |
2969 | | // currentprecision, which is also a's precision.] |
2970 | | |
2971 | | // the main calculation loop |
2972 | 0 | decNumberZero(&dzero); // make 0 |
2973 | 0 | decNumberZero(t); // set t = 0.5 |
2974 | 0 | t->lsu[0]=5; // .. |
2975 | 0 | t->exponent=-1; // .. |
2976 | 0 | workset.digits=3; // initial p |
2977 | 0 | for (; workset.digits<maxp;) { |
2978 | | // set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] |
2979 | 0 | workset.digits=MINI(workset.digits*2-2, maxp); |
2980 | | // a = 0.5 * (a + f/a) |
2981 | | // [calculated at p then rounded to currentprecision] |
2982 | 0 | decDivideOp(b, f, a, &workset, DIVIDE, &ignore); // b=f/a |
2983 | 0 | decAddOp(b, b, a, &workset, 0, &ignore); // b=b+a |
2984 | 0 | decMultiplyOp(a, b, t, &workset, &ignore); // a=b*0.5 |
2985 | 0 | } // loop |
2986 | | |
2987 | | // Here, 0.1 <= a < 1 [Hull], and a has maxp digits |
2988 | | // now reduce to length, etc.; this needs to be done with a |
2989 | | // having the correct exponent so as to handle subnormals |
2990 | | // correctly |
2991 | 0 | approxset=*set; // get emin, emax, etc. |
2992 | 0 | approxset.round=DEC_ROUND_HALF_EVEN; |
2993 | 0 | a->exponent+=exp/2; // set correct exponent |
2994 | 0 | rstatus=0; // clear status |
2995 | 0 | residue=0; // .. and accumulator |
2996 | 0 | decCopyFit(a, a, &approxset, &residue, &rstatus); // reduce (if needed) |
2997 | 0 | decFinish(a, &approxset, &residue, &rstatus); // clean and finalize |
2998 | | |
2999 | | // Overflow was possible if the input exponent was out-of-range, |
3000 | | // in which case quit |
3001 | 0 | if (rstatus&DEC_Overflow) { |
3002 | 0 | status=rstatus; // use the status as-is |
3003 | 0 | decNumberCopy(res, a); // copy to result |
3004 | 0 | break; |
3005 | 0 | } |
3006 | | |
3007 | | // Preserve status except Inexact/Rounded |
3008 | 0 | status|=(rstatus & ~(DEC_Rounded|DEC_Inexact)); |
3009 | | |
3010 | | // Carry out the Hull correction |
3011 | 0 | a->exponent-=exp/2; // back to 0.1->1 |
3012 | | |
3013 | | // a is now at final precision and within 1 ulp of the properly |
3014 | | // rounded square root of f; to ensure proper rounding, compare |
3015 | | // squares of (a - l/2 ulp) and (a + l/2 ulp) with f. |
3016 | | // Here workset.digits=maxp and t=0.5, and a->digits determines |
3017 | | // the ulp |
3018 | 0 | workset.digits--; // maxp-1 is OK now |
3019 | 0 | t->exponent=-a->digits-1; // make 0.5 ulp |
3020 | 0 | decAddOp(b, a, t, &workset, DECNEG, &ignore); // b = a - 0.5 ulp |
3021 | 0 | workset.round=DEC_ROUND_UP; |
3022 | 0 | decMultiplyOp(b, b, b, &workset, &ignore); // b = mulru(b, b) |
3023 | 0 | decCompareOp(b, f, b, &workset, COMPARE, &ignore); // b ? f, reversed |
3024 | 0 | if (decNumberIsNegative(b)) { // f < b [i.e., b > f] |
3025 | | // this is the more common adjustment, though both are rare |
3026 | 0 | t->exponent++; // make 1.0 ulp |
3027 | 0 | t->lsu[0]=1; // .. |
3028 | 0 | decAddOp(a, a, t, &workset, DECNEG, &ignore); // a = a - 1 ulp |
3029 | | // assign to approx [round to length] |
3030 | 0 | approxset.emin-=exp/2; // adjust to match a |
3031 | 0 | approxset.emax-=exp/2; |
3032 | 0 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
3033 | 0 | } |
3034 | 0 | else { |
3035 | 0 | decAddOp(b, a, t, &workset, 0, &ignore); // b = a + 0.5 ulp |
3036 | 0 | workset.round=DEC_ROUND_DOWN; |
3037 | 0 | decMultiplyOp(b, b, b, &workset, &ignore); // b = mulrd(b, b) |
3038 | 0 | decCompareOp(b, b, f, &workset, COMPARE, &ignore); // b ? f |
3039 | 0 | if (decNumberIsNegative(b)) { // b < f |
3040 | 0 | t->exponent++; // make 1.0 ulp |
3041 | 0 | t->lsu[0]=1; // .. |
3042 | 0 | decAddOp(a, a, t, &workset, 0, &ignore); // a = a + 1 ulp |
3043 | | // assign to approx [round to length] |
3044 | 0 | approxset.emin-=exp/2; // adjust to match a |
3045 | 0 | approxset.emax-=exp/2; |
3046 | 0 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
3047 | 0 | } |
3048 | 0 | } |
3049 | | // [no errors are possible in the above, and rounding/inexact during |
3050 | | // estimation are irrelevant, so status was not accumulated] |
3051 | | |
3052 | | // Here, 0.1 <= a < 1 (still), so adjust back |
3053 | 0 | a->exponent+=exp/2; // set correct exponent |
3054 | | |
3055 | | // count droppable zeros [after any subnormal rounding] by |
3056 | | // trimming a copy |
3057 | 0 | decNumberCopy(b, a); |
3058 | 0 | decTrim(b, set, 1, 1, &dropped); // [drops trailing zeros] |
3059 | | |
3060 | | // Set Inexact and Rounded. The answer can only be exact if |
3061 | | // it is short enough so that squaring it could fit in workp |
3062 | | // digits, so this is the only (relatively rare) condition that |
3063 | | // a careful check is needed |
3064 | 0 | if (b->digits*2-1 > workp) { // cannot fit |
3065 | 0 | status|=DEC_Inexact|DEC_Rounded; |
3066 | 0 | } |
3067 | 0 | else { // could be exact/unrounded |
3068 | 0 | uInt mstatus=0; // local status |
3069 | 0 | decMultiplyOp(b, b, b, &workset, &mstatus); // try the multiply |
3070 | 0 | if (mstatus&DEC_Overflow) { // result just won't fit |
3071 | 0 | status|=DEC_Inexact|DEC_Rounded; |
3072 | 0 | } |
3073 | 0 | else { // plausible |
3074 | 0 | decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); // b ? rhs |
3075 | 0 | if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; // not equal |
3076 | 0 | else { // is Exact |
3077 | | // here, dropped is the count of trailing zeros in 'a' |
3078 | | // use closest exponent to ideal... |
3079 | 0 | Int todrop=ideal-a->exponent; // most that can be dropped |
3080 | 0 | if (todrop<0) status|=DEC_Rounded; // ideally would add 0s |
3081 | 0 | else { // unrounded |
3082 | | // there are some to drop, but emax may not allow all |
3083 | 0 | Int maxexp=set->emax-set->digits+1; |
3084 | 0 | Int maxdrop=maxexp-a->exponent; |
3085 | 0 | if (todrop>maxdrop && set->clamp) { // apply clamping |
3086 | 0 | todrop=maxdrop; |
3087 | 0 | status|=DEC_Clamped; |
3088 | 0 | } |
3089 | 0 | if (dropped<todrop) { // clamp to those available |
3090 | 0 | todrop=dropped; |
3091 | 0 | status|=DEC_Clamped; |
3092 | 0 | } |
3093 | 0 | if (todrop>0) { // have some to drop |
3094 | 0 | decShiftToLeast(a->lsu, D2U(a->digits), todrop); |
3095 | 0 | a->exponent+=todrop; // maintain numerical value |
3096 | 0 | a->digits-=todrop; // new length |
3097 | 0 | } |
3098 | 0 | } |
3099 | 0 | } |
3100 | 0 | } |
3101 | 0 | } |
3102 | | |
3103 | | // double-check Underflow, as perhaps the result could not have |
3104 | | // been subnormal (initial argument too big), or it is now Exact |
3105 | 0 | if (status&DEC_Underflow) { |
3106 | 0 | Int ae=rhs->exponent+rhs->digits-1; // adjusted exponent |
3107 | | // check if truly subnormal |
3108 | | #if DECEXTFLAG // DEC_Subnormal too |
3109 | 0 | if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow); |
3110 | | #else |
3111 | | if (ae>=set->emin*2) status&=~DEC_Underflow; |
3112 | | #endif |
3113 | | // check if truly inexact |
3114 | 0 | if (!(status&DEC_Inexact)) status&=~DEC_Underflow; |
3115 | 0 | } |
3116 | |
|
3117 | 0 | decNumberCopy(res, a); // a is now the result |
3118 | 0 | } while(0); // end protected |
3119 | |
|
3120 | 0 | if (allocbuff!=NULL) free(allocbuff); // drop any storage used |
3121 | 0 | if (allocbufa!=NULL) free(allocbufa); // .. |
3122 | 0 | if (allocbufb!=NULL) free(allocbufb); // .. |
3123 | | #if DECSUBSET |
3124 | | if (allocrhs !=NULL) free(allocrhs); // .. |
3125 | | #endif |
3126 | 0 | if (status!=0) decStatus(res, status, set);// then report status |
3127 | | #if DECCHECK |
3128 | | decCheckInexact(res, set); |
3129 | | #endif |
3130 | 0 | return res; |
3131 | 0 | } // decNumberSquareRoot |
3132 | | |
3133 | | /* ------------------------------------------------------------------ */ |
3134 | | /* decNumberSubtract -- subtract two Numbers */ |
3135 | | /* */ |
3136 | | /* This computes C = A - B */ |
3137 | | /* */ |
3138 | | /* res is C, the result. C may be A and/or B (e.g., X=X-X) */ |
3139 | | /* lhs is A */ |
3140 | | /* rhs is B */ |
3141 | | /* set is the context */ |
3142 | | /* */ |
3143 | | /* C must have space for set->digits digits. */ |
3144 | | /* ------------------------------------------------------------------ */ |
3145 | | decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs, |
3146 | 0 | const decNumber *rhs, decContext *set) { |
3147 | 0 | uInt status=0; // accumulator |
3148 | |
|
3149 | 0 | decAddOp(res, lhs, rhs, set, DECNEG, &status); |
3150 | 0 | if (status!=0) decStatus(res, status, set); |
3151 | | #if DECCHECK |
3152 | | decCheckInexact(res, set); |
3153 | | #endif |
3154 | 0 | return res; |
3155 | 0 | } // decNumberSubtract |
3156 | | |
3157 | | /* ------------------------------------------------------------------ */ |
3158 | | /* decNumberToIntegralExact -- round-to-integral-value with InExact */ |
3159 | | /* decNumberToIntegralValue -- round-to-integral-value */ |
3160 | | /* */ |
3161 | | /* res is the result */ |
3162 | | /* rhs is input number */ |
3163 | | /* set is the context */ |
3164 | | /* */ |
3165 | | /* res must have space for any value of rhs. */ |
3166 | | /* */ |
3167 | | /* This implements the IEEE special operators and therefore treats */ |
3168 | | /* special values as valid. For finite numbers it returns */ |
3169 | | /* rescale(rhs, 0) if rhs->exponent is <0. */ |
3170 | | /* Otherwise the result is rhs (so no error is possible, except for */ |
3171 | | /* sNaN). */ |
3172 | | /* */ |
3173 | | /* The context is used for rounding mode and status after sNaN, but */ |
3174 | | /* the digits setting is ignored. The Exact version will signal */ |
3175 | | /* Inexact if the result differs numerically from rhs; the other */ |
3176 | | /* never signals Inexact. */ |
3177 | | /* ------------------------------------------------------------------ */ |
3178 | | decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs, |
3179 | 0 | decContext *set) { |
3180 | 0 | decNumber dn; |
3181 | 0 | decContext workset; // working context |
3182 | 0 | uInt status=0; // accumulator |
3183 | |
|
3184 | | #if DECCHECK |
3185 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
3186 | | #endif |
3187 | | |
3188 | | // handle infinities and NaNs |
3189 | 0 | if (SPECIALARG) { |
3190 | 0 | if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); // an Infinity |
3191 | 0 | else decNaNs(res, rhs, NULL, set, &status); // a NaN |
3192 | 0 | } |
3193 | 0 | else { // finite |
3194 | | // have a finite number; no error possible (res must be big enough) |
3195 | 0 | if (rhs->exponent>=0) return decNumberCopy(res, rhs); |
3196 | | // that was easy, but if negative exponent there is work to do... |
3197 | 0 | workset=*set; // clone rounding, etc. |
3198 | 0 | workset.digits=rhs->digits; // no length rounding |
3199 | 0 | workset.traps=0; // no traps |
3200 | 0 | decNumberZero(&dn); // make a number with exponent 0 |
3201 | 0 | decNumberQuantize(res, rhs, &dn, &workset); |
3202 | 0 | status|=workset.status; |
3203 | 0 | } |
3204 | 0 | if (status!=0) decStatus(res, status, set); |
3205 | 0 | return res; |
3206 | 0 | } // decNumberToIntegralExact |
3207 | | |
3208 | | decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs, |
3209 | 0 | decContext *set) { |
3210 | 0 | decContext workset=*set; // working context |
3211 | 0 | workset.traps=0; // no traps |
3212 | 0 | decNumberToIntegralExact(res, rhs, &workset); |
3213 | | // this never affects set, except for sNaNs; NaN will have been set |
3214 | | // or propagated already, so no need to call decStatus |
3215 | 0 | set->status|=workset.status&DEC_Invalid_operation; |
3216 | 0 | return res; |
3217 | 0 | } // decNumberToIntegralValue |
3218 | | |
3219 | | /* ------------------------------------------------------------------ */ |
3220 | | /* decNumberXor -- XOR two Numbers, digitwise */ |
3221 | | /* */ |
3222 | | /* This computes C = A ^ B */ |
3223 | | /* */ |
3224 | | /* res is C, the result. C may be A and/or B (e.g., X=X^X) */ |
3225 | | /* lhs is A */ |
3226 | | /* rhs is B */ |
3227 | | /* set is the context (used for result length and error report) */ |
3228 | | /* */ |
3229 | | /* C must have space for set->digits digits. */ |
3230 | | /* */ |
3231 | | /* Logical function restrictions apply (see above); a NaN is */ |
3232 | | /* returned with Invalid_operation if a restriction is violated. */ |
3233 | | /* ------------------------------------------------------------------ */ |
3234 | | decNumber * decNumberXor(decNumber *res, const decNumber *lhs, |
3235 | 0 | const decNumber *rhs, decContext *set) { |
3236 | 0 | const Unit *ua, *ub; // -> operands |
3237 | 0 | const Unit *msua, *msub; // -> operand msus |
3238 | 0 | Unit *uc, *msuc; // -> result and its msu |
3239 | 0 | Int msudigs; // digits in res msu |
3240 | | #if DECCHECK |
3241 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
3242 | | #endif |
3243 | |
|
3244 | 0 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
3245 | 0 | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
3246 | 0 | decStatus(res, DEC_Invalid_operation, set); |
3247 | 0 | return res; |
3248 | 0 | } |
3249 | | // operands are valid |
3250 | 0 | ua=lhs->lsu; // bottom-up |
3251 | 0 | ub=rhs->lsu; // .. |
3252 | 0 | uc=res->lsu; // .. |
3253 | 0 | msua=ua+D2U(lhs->digits)-1; // -> msu of lhs |
3254 | 0 | msub=ub+D2U(rhs->digits)-1; // -> msu of rhs |
3255 | 0 | msuc=uc+D2U(set->digits)-1; // -> msu of result |
3256 | 0 | msudigs=MSUDIGITS(set->digits); // [faster than remainder] |
3257 | 0 | for (; uc<=msuc; ua++, ub++, uc++) { // Unit loop |
3258 | 0 | Unit a, b; // extract units |
3259 | 0 | if (ua>msua) a=0; |
3260 | 0 | else a=*ua; |
3261 | 0 | if (ub>msub) b=0; |
3262 | 0 | else b=*ub; |
3263 | 0 | *uc=0; // can now write back |
3264 | 0 | if (a|b) { // maybe 1 bits to examine |
3265 | 0 | Int i, j; |
3266 | | // This loop could be unrolled and/or use BIN2BCD tables |
3267 | 0 | for (i=0; i<DECDPUN; i++) { |
3268 | 0 | if ((a^b)&1) *uc=*uc+(Unit)powers[i]; // effect XOR |
3269 | 0 | j=a%10; |
3270 | 0 | a=a/10; |
3271 | 0 | j|=b%10; |
3272 | 0 | b=b/10; |
3273 | 0 | if (j>1) { |
3274 | 0 | decStatus(res, DEC_Invalid_operation, set); |
3275 | 0 | return res; |
3276 | 0 | } |
3277 | 0 | if (uc==msuc && i==msudigs-1) break; // just did final digit |
3278 | 0 | } // each digit |
3279 | 0 | } // non-zero |
3280 | 0 | } // each unit |
3281 | | // [here uc-1 is the msu of the result] |
3282 | 0 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
3283 | 0 | res->exponent=0; // integer |
3284 | 0 | res->bits=0; // sign=0 |
3285 | 0 | return res; // [no status to set] |
3286 | 0 | } // decNumberXor |
3287 | | |
3288 | | |
3289 | | /* ================================================================== */ |
3290 | | /* Utility routines */ |
3291 | | /* ================================================================== */ |
3292 | | |
3293 | | /* ------------------------------------------------------------------ */ |
3294 | | /* decNumberClass -- return the decClass of a decNumber */ |
3295 | | /* dn -- the decNumber to test */ |
3296 | | /* set -- the context to use for Emin */ |
3297 | | /* returns the decClass enum */ |
3298 | | /* ------------------------------------------------------------------ */ |
3299 | 0 | enum decClass decNumberClass(const decNumber *dn, decContext *set) { |
3300 | 0 | if (decNumberIsSpecial(dn)) { |
3301 | 0 | if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN; |
3302 | 0 | if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN; |
3303 | | // must be an infinity |
3304 | 0 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF; |
3305 | 0 | return DEC_CLASS_POS_INF; |
3306 | 0 | } |
3307 | | // is finite |
3308 | 0 | if (decNumberIsNormal(dn, set)) { // most common |
3309 | 0 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL; |
3310 | 0 | return DEC_CLASS_POS_NORMAL; |
3311 | 0 | } |
3312 | | // is subnormal or zero |
3313 | 0 | if (decNumberIsZero(dn)) { // most common |
3314 | 0 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO; |
3315 | 0 | return DEC_CLASS_POS_ZERO; |
3316 | 0 | } |
3317 | 0 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL; |
3318 | 0 | return DEC_CLASS_POS_SUBNORMAL; |
3319 | 0 | } // decNumberClass |
3320 | | |
3321 | | /* ------------------------------------------------------------------ */ |
3322 | | /* decNumberClassToString -- convert decClass to a string */ |
3323 | | /* */ |
3324 | | /* eclass is a valid decClass */ |
3325 | | /* returns a constant string describing the class (max 13+1 chars) */ |
3326 | | /* ------------------------------------------------------------------ */ |
3327 | 0 | const char *decNumberClassToString(enum decClass eclass) { |
3328 | 0 | if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN; |
3329 | 0 | if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN; |
3330 | 0 | if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ; |
3331 | 0 | if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ; |
3332 | 0 | if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; |
3333 | 0 | if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; |
3334 | 0 | if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI; |
3335 | 0 | if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI; |
3336 | 0 | if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN; |
3337 | 0 | if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN; |
3338 | 0 | return DEC_ClassString_UN; // Unknown |
3339 | 0 | } // decNumberClassToString |
3340 | | |
3341 | | /* ------------------------------------------------------------------ */ |
3342 | | /* decNumberCopy -- copy a number */ |
3343 | | /* */ |
3344 | | /* dest is the target decNumber */ |
3345 | | /* src is the source decNumber */ |
3346 | | /* returns dest */ |
3347 | | /* */ |
3348 | | /* (dest==src is allowed and is a no-op) */ |
3349 | | /* All fields are updated as required. This is a utility operation, */ |
3350 | | /* so special values are unchanged and no error is possible. */ |
3351 | | /* ------------------------------------------------------------------ */ |
3352 | 0 | decNumber * decNumberCopy(decNumber *dest, const decNumber *src) { |
3353 | |
|
3354 | | #if DECCHECK |
3355 | | if (src==NULL) return decNumberZero(dest); |
3356 | | #endif |
3357 | |
|
3358 | 0 | if (dest==src) return dest; // no copy required |
3359 | | |
3360 | | // Use explicit assignments here as structure assignment could copy |
3361 | | // more than just the lsu (for small DECDPUN). This would not affect |
3362 | | // the value of the results, but could disturb test harness spill |
3363 | | // checking. |
3364 | 0 | dest->bits=src->bits; |
3365 | 0 | dest->exponent=src->exponent; |
3366 | 0 | dest->digits=src->digits; |
3367 | 0 | dest->lsu[0]=src->lsu[0]; |
3368 | 0 | if (src->digits>DECDPUN) { // more Units to come |
3369 | 0 | const Unit *smsup, *s; // work |
3370 | 0 | Unit *d; // .. |
3371 | | // memcpy for the remaining Units would be safe as they cannot |
3372 | | // overlap. However, this explicit loop is faster in short cases. |
3373 | 0 | d=dest->lsu+1; // -> first destination |
3374 | 0 | smsup=src->lsu+D2U(src->digits); // -> source msu+1 |
3375 | 0 | for (s=src->lsu+1; s<smsup; s++, d++) *d=*s; |
3376 | 0 | } |
3377 | 0 | return dest; |
3378 | 0 | } // decNumberCopy |
3379 | | |
3380 | | /* ------------------------------------------------------------------ */ |
3381 | | /* decNumberCopyAbs -- quiet absolute value operator */ |
3382 | | /* */ |
3383 | | /* This sets C = abs(A) */ |
3384 | | /* */ |
3385 | | /* res is C, the result. C may be A */ |
3386 | | /* rhs is A */ |
3387 | | /* */ |
3388 | | /* C must have space for set->digits digits. */ |
3389 | | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
3390 | | /* See also decNumberAbs for a checking version of this. */ |
3391 | | /* ------------------------------------------------------------------ */ |
3392 | 0 | decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) { |
3393 | | #if DECCHECK |
3394 | | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
3395 | | #endif |
3396 | 0 | decNumberCopy(res, rhs); |
3397 | 0 | res->bits&=~DECNEG; // turn off sign |
3398 | 0 | return res; |
3399 | 0 | } // decNumberCopyAbs |
3400 | | |
3401 | | /* ------------------------------------------------------------------ */ |
3402 | | /* decNumberCopyNegate -- quiet negate value operator */ |
3403 | | /* */ |
3404 | | /* This sets C = negate(A) */ |
3405 | | /* */ |
3406 | | /* res is C, the result. C may be A */ |
3407 | | /* rhs is A */ |
3408 | | /* */ |
3409 | | /* C must have space for set->digits digits. */ |
3410 | | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
3411 | | /* See also decNumberMinus for a checking version of this. */ |
3412 | | /* ------------------------------------------------------------------ */ |
3413 | 0 | decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) { |
3414 | | #if DECCHECK |
3415 | | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
3416 | | #endif |
3417 | 0 | decNumberCopy(res, rhs); |
3418 | 0 | res->bits^=DECNEG; // invert the sign |
3419 | 0 | return res; |
3420 | 0 | } // decNumberCopyNegate |
3421 | | |
3422 | | /* ------------------------------------------------------------------ */ |
3423 | | /* decNumberCopySign -- quiet copy and set sign operator */ |
3424 | | /* */ |
3425 | | /* This sets C = A with the sign of B */ |
3426 | | /* */ |
3427 | | /* res is C, the result. C may be A */ |
3428 | | /* lhs is A */ |
3429 | | /* rhs is B */ |
3430 | | /* */ |
3431 | | /* C must have space for set->digits digits. */ |
3432 | | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
3433 | | /* ------------------------------------------------------------------ */ |
3434 | | decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs, |
3435 | 0 | const decNumber *rhs) { |
3436 | 0 | uByte sign; // rhs sign |
3437 | | #if DECCHECK |
3438 | | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
3439 | | #endif |
3440 | 0 | sign=rhs->bits & DECNEG; // save sign bit |
3441 | 0 | decNumberCopy(res, lhs); |
3442 | 0 | res->bits&=~DECNEG; // clear the sign |
3443 | 0 | res->bits|=sign; // set from rhs |
3444 | 0 | return res; |
3445 | 0 | } // decNumberCopySign |
3446 | | |
3447 | | /* ------------------------------------------------------------------ */ |
3448 | | /* decNumberGetBCD -- get the coefficient in BCD8 */ |
3449 | | /* dn is the source decNumber */ |
3450 | | /* bcd is the uInt array that will receive dn->digits BCD bytes, */ |
3451 | | /* most-significant at offset 0 */ |
3452 | | /* returns bcd */ |
3453 | | /* */ |
3454 | | /* bcd must have at least dn->digits bytes. No error is possible; if */ |
3455 | | /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */ |
3456 | | /* ------------------------------------------------------------------ */ |
3457 | 0 | uByte * decNumberGetBCD(const decNumber *dn, uByte *bcd) { |
3458 | 0 | uByte *ub=bcd+dn->digits-1; // -> lsd |
3459 | 0 | const Unit *up=dn->lsu; // Unit pointer, -> lsu |
3460 | |
|
3461 | | #if DECDPUN==1 // trivial simple copy |
3462 | | for (; ub>=bcd; ub--, up++) *ub=*up; |
3463 | | #else // chopping needed |
3464 | 0 | uInt u=*up; // work |
3465 | 0 | uInt cut=DECDPUN; // downcounter through unit |
3466 | 0 | for (; ub>=bcd; ub--) { |
3467 | 0 | *ub=(uByte)(u%10); // [*6554 trick inhibits, here] |
3468 | 0 | u=u/10; |
3469 | 0 | cut--; |
3470 | 0 | if (cut>0) continue; // more in this unit |
3471 | 0 | up++; |
3472 | 0 | u=*up; |
3473 | 0 | cut=DECDPUN; |
3474 | 0 | } |
3475 | 0 | #endif |
3476 | 0 | return bcd; |
3477 | 0 | } // decNumberGetBCD |
3478 | | |
3479 | | /* ------------------------------------------------------------------ */ |
3480 | | /* decNumberSetBCD -- set (replace) the coefficient from BCD8 */ |
3481 | | /* dn is the target decNumber */ |
3482 | | /* bcd is the uInt array that will source n BCD bytes, most- */ |
3483 | | /* significant at offset 0 */ |
3484 | | /* n is the number of digits in the source BCD array (bcd) */ |
3485 | | /* returns dn */ |
3486 | | /* */ |
3487 | | /* dn must have space for at least n digits. No error is possible; */ |
3488 | | /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */ |
3489 | | /* and bcd[0] zero. */ |
3490 | | /* ------------------------------------------------------------------ */ |
3491 | 0 | decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { |
3492 | 0 | Unit *up=dn->lsu+D2U(dn->digits)-1; // -> msu [target pointer] |
3493 | 0 | const uByte *ub=bcd; // -> source msd |
3494 | |
|
3495 | | #if DECDPUN==1 // trivial simple copy |
3496 | | for (; ub<bcd+n; ub++, up--) *up=*ub; |
3497 | | #else // some assembly needed |
3498 | | // calculate how many digits in msu, and hence first cut |
3499 | 0 | Int cut=MSUDIGITS(n); // [faster than remainder] |
3500 | 0 | for (;up>=dn->lsu; up--) { // each Unit from msu |
3501 | 0 | *up=0; // will take <=DECDPUN digits |
3502 | 0 | for (; cut>0; ub++, cut--) *up=X10(*up)+*ub; |
3503 | 0 | cut=DECDPUN; // next Unit has all digits |
3504 | 0 | } |
3505 | 0 | #endif |
3506 | 0 | dn->digits=n; // set digit count |
3507 | 0 | return dn; |
3508 | 0 | } // decNumberSetBCD |
3509 | | |
3510 | | /* ------------------------------------------------------------------ */ |
3511 | | /* decNumberIsNormal -- test normality of a decNumber */ |
3512 | | /* dn is the decNumber to test */ |
3513 | | /* set is the context to use for Emin */ |
3514 | | /* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */ |
3515 | | /* ------------------------------------------------------------------ */ |
3516 | 0 | Int decNumberIsNormal(const decNumber *dn, decContext *set) { |
3517 | 0 | Int ae; // adjusted exponent |
3518 | | #if DECCHECK |
3519 | | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
3520 | | #endif |
3521 | |
|
3522 | 0 | if (decNumberIsSpecial(dn)) return 0; // not finite |
3523 | 0 | if (decNumberIsZero(dn)) return 0; // not non-zero |
3524 | | |
3525 | 0 | ae=dn->exponent+dn->digits-1; // adjusted exponent |
3526 | 0 | if (ae<set->emin) return 0; // is subnormal |
3527 | 0 | return 1; |
3528 | 0 | } // decNumberIsNormal |
3529 | | |
3530 | | /* ------------------------------------------------------------------ */ |
3531 | | /* decNumberIsSubnormal -- test subnormality of a decNumber */ |
3532 | | /* dn is the decNumber to test */ |
3533 | | /* set is the context to use for Emin */ |
3534 | | /* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */ |
3535 | | /* ------------------------------------------------------------------ */ |
3536 | 0 | Int decNumberIsSubnormal(const decNumber *dn, decContext *set) { |
3537 | 0 | Int ae; // adjusted exponent |
3538 | | #if DECCHECK |
3539 | | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
3540 | | #endif |
3541 | |
|
3542 | 0 | if (decNumberIsSpecial(dn)) return 0; // not finite |
3543 | 0 | if (decNumberIsZero(dn)) return 0; // not non-zero |
3544 | | |
3545 | 0 | ae=dn->exponent+dn->digits-1; // adjusted exponent |
3546 | 0 | if (ae<set->emin) return 1; // is subnormal |
3547 | 0 | return 0; |
3548 | 0 | } // decNumberIsSubnormal |
3549 | | |
3550 | | /* ------------------------------------------------------------------ */ |
3551 | | /* decNumberTrim -- remove insignificant zeros */ |
3552 | | /* */ |
3553 | | /* dn is the number to trim */ |
3554 | | /* returns dn */ |
3555 | | /* */ |
3556 | | /* All fields are updated as required. This is a utility operation, */ |
3557 | | /* so special values are unchanged and no error is possible. The */ |
3558 | | /* zeros are removed unconditionally. */ |
3559 | | /* ------------------------------------------------------------------ */ |
3560 | 0 | decNumber * decNumberTrim(decNumber *dn) { |
3561 | 0 | Int dropped; // work |
3562 | 0 | decContext set; // .. |
3563 | | #if DECCHECK |
3564 | | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; |
3565 | | #endif |
3566 | 0 | decContextDefault(&set, DEC_INIT_BASE); // clamp=0 |
3567 | 0 | return decTrim(dn, &set, 0, 1, &dropped); |
3568 | 0 | } // decNumberTrim |
3569 | | |
3570 | | /* ------------------------------------------------------------------ */ |
3571 | | /* decNumberVersion -- return the name and version of this module */ |
3572 | | /* */ |
3573 | | /* No error is possible. */ |
3574 | | /* ------------------------------------------------------------------ */ |
3575 | 0 | const char * decNumberVersion(void) { |
3576 | 0 | return DECVERSION; |
3577 | 0 | } // decNumberVersion |
3578 | | |
3579 | | /* ------------------------------------------------------------------ */ |
3580 | | /* decNumberZero -- set a number to 0 */ |
3581 | | /* */ |
3582 | | /* dn is the number to set, with space for one digit */ |
3583 | | /* returns dn */ |
3584 | | /* */ |
3585 | | /* No error is possible. */ |
3586 | | /* ------------------------------------------------------------------ */ |
3587 | | // Memset is not used as it is much slower in some environments. |
3588 | 7.79M | decNumber * decNumberZero(decNumber *dn) { |
3589 | | |
3590 | | #if DECCHECK |
3591 | | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; |
3592 | | #endif |
3593 | | |
3594 | 7.79M | dn->bits=0; |
3595 | 7.79M | dn->exponent=0; |
3596 | 7.79M | dn->digits=1; |
3597 | 7.79M | dn->lsu[0]=0; |
3598 | 7.79M | return dn; |
3599 | 7.79M | } // decNumberZero |
3600 | | |
3601 | | /* ================================================================== */ |
3602 | | /* Local routines */ |
3603 | | /* ================================================================== */ |
3604 | | |
3605 | | /* ------------------------------------------------------------------ */ |
3606 | | /* decToString -- lay out a number into a string */ |
3607 | | /* */ |
3608 | | /* dn is the number to lay out */ |
3609 | | /* string is where to lay out the number */ |
3610 | | /* eng is 1 if Engineering, 0 if Scientific */ |
3611 | | /* */ |
3612 | | /* string must be at least dn->digits+14 characters long */ |
3613 | | /* No error is possible. */ |
3614 | | /* */ |
3615 | | /* Note that this routine can generate a -0 or 0.000. These are */ |
3616 | | /* never generated in subset to-number or arithmetic, but can occur */ |
3617 | | /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */ |
3618 | | /* ------------------------------------------------------------------ */ |
3619 | | // If DECCHECK is enabled the string "?" is returned if a number is |
3620 | | // invalid. |
3621 | 3.00M | static void decToString(const decNumber *dn, char *string, Flag eng) { |
3622 | 3.00M | Int exp=dn->exponent; // local copy |
3623 | 3.00M | Int e; // E-part value |
3624 | 3.00M | Int pre; // digits before the '.' |
3625 | 3.00M | Int cut; // for counting digits in a Unit |
3626 | 3.00M | char *c=string; // work [output pointer] |
3627 | 3.00M | const Unit *up=dn->lsu+D2U(dn->digits)-1; // -> msu [input pointer] |
3628 | 3.00M | uInt u, pow; // work |
3629 | | |
3630 | | #if DECCHECK |
3631 | | if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { |
3632 | | strcpy(string, "?"); |
3633 | | return;} |
3634 | | #endif |
3635 | | |
3636 | 3.00M | if (decNumberIsNegative(dn)) { // Negatives get a minus |
3637 | 372k | *c='-'; |
3638 | 372k | c++; |
3639 | 372k | } |
3640 | 3.00M | if (dn->bits&DECSPECIAL) { // Is a special value |
3641 | 14.8k | if (decNumberIsInfinite(dn)) { |
3642 | 14.8k | strcpy(c, "Inf"); |
3643 | 14.8k | strcpy(c+3, "inity"); |
3644 | 14.8k | return;} |
3645 | | // a NaN |
3646 | 0 | if (dn->bits&DECSNAN) { // signalling NaN |
3647 | 0 | *c='s'; |
3648 | 0 | c++; |
3649 | 0 | } |
3650 | 0 | strcpy(c, "NaN"); |
3651 | 0 | c+=3; // step past |
3652 | | // if not a clean non-zero coefficient, that's all there is in a |
3653 | | // NaN string |
3654 | 0 | if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; |
3655 | | // [drop through to add integer] |
3656 | 0 | } |
3657 | | |
3658 | | // calculate how many digits in msu, and hence first cut |
3659 | 2.99M | cut=MSUDIGITS(dn->digits); // [faster than remainder] |
3660 | 2.99M | cut--; // power of ten for digit |
3661 | | |
3662 | 2.99M | if (exp==0) { // simple integer [common fastpath] |
3663 | 6.43M | for (;up>=dn->lsu; up--) { // each Unit from msu |
3664 | 4.14M | u=*up; // contains DECDPUN digits to lay out |
3665 | 12.2M | for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow); |
3666 | 4.14M | cut=DECDPUN-1; // next Unit has all digits |
3667 | 4.14M | } |
3668 | 2.29M | *c='\0'; // terminate the string |
3669 | 2.29M | return;} |
3670 | | |
3671 | | /* non-0 exponent -- assume plain form */ |
3672 | 698k | pre=dn->digits+exp; // digits before '.' |
3673 | 698k | e=0; // no E |
3674 | 698k | if ((exp>0) || (pre<-5)) { // need exponential form |
3675 | 426k | e=exp+dn->digits-1; // calculate E value |
3676 | 426k | pre=1; // assume one digit before '.' |
3677 | 426k | if (eng && (e!=0)) { // engineering: may need to adjust |
3678 | 0 | Int adj; // adjustment |
3679 | | // The C remainder operator is undefined for negative numbers, so |
3680 | | // a positive remainder calculation must be used here |
3681 | 0 | if (e<0) { |
3682 | 0 | adj=(-e)%3; |
3683 | 0 | if (adj!=0) adj=3-adj; |
3684 | 0 | } |
3685 | 0 | else { // e>0 |
3686 | 0 | adj=e%3; |
3687 | 0 | } |
3688 | 0 | e=e-adj; |
3689 | | // if dealing with zero still produce an exponent which is a |
3690 | | // multiple of three, as expected, but there will only be the |
3691 | | // one zero before the E, still. Otherwise note the padding. |
3692 | 0 | if (!ISZERO(dn)) pre+=adj; |
3693 | 0 | else { // is zero |
3694 | 0 | if (adj!=0) { // 0.00Esnn needed |
3695 | 0 | e=e+3; |
3696 | 0 | pre=-(2-adj); |
3697 | 0 | } |
3698 | 0 | } // zero |
3699 | 0 | } // eng |
3700 | 426k | } // need exponent |
3701 | | |
3702 | | /* lay out the digits of the coefficient, adding 0s and . as needed */ |
3703 | 698k | u=*up; |
3704 | 698k | if (pre>0) { // xxx.xxx or xx00 (engineering) form |
3705 | 446k | Int n=pre; |
3706 | 6.86M | for (; pre>0; pre--, c++, cut--) { |
3707 | 6.41M | if (cut<0) { // need new Unit |
3708 | 1.99M | if (up==dn->lsu) break; // out of input digits (pre>digits) |
3709 | 1.99M | up--; |
3710 | 1.99M | cut=DECDPUN-1; |
3711 | 1.99M | u=*up; |
3712 | 1.99M | } |
3713 | 6.41M | TODIGIT(u, cut, c, pow); |
3714 | 6.41M | } |
3715 | 446k | if (n<dn->digits) { // more to come, after '.' |
3716 | 391k | *c='.'; c++; |
3717 | 35.4M | for (;; c++, cut--) { |
3718 | 35.4M | if (cut<0) { // need new Unit |
3719 | 11.9M | if (up==dn->lsu) break; // out of input digits |
3720 | 11.5M | up--; |
3721 | 11.5M | cut=DECDPUN-1; |
3722 | 11.5M | u=*up; |
3723 | 11.5M | } |
3724 | 35.0M | TODIGIT(u, cut, c, pow); |
3725 | 35.0M | } |
3726 | 391k | } |
3727 | 55.5k | else for (; pre>0; pre--, c++) *c='0'; // 0 padding (for engineering) needed |
3728 | 446k | } |
3729 | 251k | else { // 0.xxx or 0.000xxx form |
3730 | 251k | *c='0'; c++; |
3731 | 251k | *c='.'; c++; |
3732 | 257k | for (; pre<0; pre++, c++) *c='0'; // add any 0's after '.' |
3733 | 552k | for (; ; c++, cut--) { |
3734 | 552k | if (cut<0) { // need new Unit |
3735 | 265k | if (up==dn->lsu) break; // out of input digits |
3736 | 14.4k | up--; |
3737 | 14.4k | cut=DECDPUN-1; |
3738 | 14.4k | u=*up; |
3739 | 14.4k | } |
3740 | 300k | TODIGIT(u, cut, c, pow); |
3741 | 300k | } |
3742 | 251k | } |
3743 | | |
3744 | | /* Finally add the E-part, if needed. It will never be 0, has a |
3745 | | base maximum and minimum of +999999999 through -999999999, but |
3746 | | could range down to -1999999998 for anormal numbers */ |
3747 | 698k | if (e!=0) { |
3748 | 426k | Flag had=0; // 1=had non-zero |
3749 | 426k | *c='E'; c++; |
3750 | 426k | *c='+'; c++; // assume positive |
3751 | 426k | u=e; // .. |
3752 | 426k | if (e<0) { |
3753 | 46.2k | *(c-1)='-'; // oops, need - |
3754 | 46.2k | u=-e; // uInt, please |
3755 | 46.2k | } |
3756 | | // lay out the exponent [_itoa or equivalent is not ANSI C] |
3757 | 4.69M | for (cut=9; cut>=0; cut--) { |
3758 | 4.26M | TODIGIT(u, cut, c, pow); |
3759 | 4.26M | if (*c=='0' && !had) continue; // skip leading zeros |
3760 | 914k | had=1; // had non-0 |
3761 | 914k | c++; // step for next |
3762 | 914k | } // cut |
3763 | 426k | } |
3764 | 698k | *c='\0'; // terminate the string (all paths) |
3765 | 698k | return; |
3766 | 2.99M | } // decToString |
3767 | | |
3768 | | /* ------------------------------------------------------------------ */ |
3769 | | /* decAddOp -- add/subtract operation */ |
3770 | | /* */ |
3771 | | /* This computes C = A + B */ |
3772 | | /* */ |
3773 | | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
3774 | | /* lhs is A */ |
3775 | | /* rhs is B */ |
3776 | | /* set is the context */ |
3777 | | /* negate is DECNEG if rhs should be negated, or 0 otherwise */ |
3778 | | /* status accumulates status for the caller */ |
3779 | | /* */ |
3780 | | /* C must have space for set->digits digits. */ |
3781 | | /* Inexact in status must be 0 for correct Exact zero sign in result */ |
3782 | | /* ------------------------------------------------------------------ */ |
3783 | | /* If possible, the coefficient is calculated directly into C. */ |
3784 | | /* However, if: */ |
3785 | | /* -- a digits+1 calculation is needed because the numbers are */ |
3786 | | /* unaligned and span more than set->digits digits */ |
3787 | | /* -- a carry to digits+1 digits looks possible */ |
3788 | | /* -- C is the same as A or B, and the result would destructively */ |
3789 | | /* overlap the A or B coefficient */ |
3790 | | /* then the result must be calculated into a temporary buffer. In */ |
3791 | | /* this case a local (stack) buffer is used if possible, and only if */ |
3792 | | /* too long for that does malloc become the final resort. */ |
3793 | | /* */ |
3794 | | /* Misalignment is handled as follows: */ |
3795 | | /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */ |
3796 | | /* BPad: Apply the padding by a combination of shifting (whole */ |
3797 | | /* units) and multiplication (part units). */ |
3798 | | /* */ |
3799 | | /* Addition, especially x=x+1, is speed-critical. */ |
3800 | | /* The static buffer is larger than might be expected to allow for */ |
3801 | | /* calls from higher-level functions (notable exp). */ |
3802 | | /* ------------------------------------------------------------------ */ |
3803 | | static decNumber * decAddOp(decNumber *res, const decNumber *lhs, |
3804 | | const decNumber *rhs, decContext *set, |
3805 | 4.10M | uByte negate, uInt *status) { |
3806 | | #if DECSUBSET |
3807 | | decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated |
3808 | | decNumber *allocrhs=NULL; // .., rhs |
3809 | | #endif |
3810 | 4.10M | Int rhsshift; // working shift (in Units) |
3811 | 4.10M | Int maxdigits; // longest logical length |
3812 | 4.10M | Int mult; // multiplier |
3813 | 4.10M | Int residue; // rounding accumulator |
3814 | 4.10M | uByte bits; // result bits |
3815 | 4.10M | Flag diffsign; // non-0 if arguments have different sign |
3816 | 4.10M | Unit *acc; // accumulator for result |
3817 | 4.10M | Unit accbuff[SD2U(DECBUFFER*2+20)]; // local buffer [*2+20 reduces many |
3818 | | // allocations when called from |
3819 | | // other operations, notable exp] |
3820 | 4.10M | Unit *allocacc=NULL; // -> allocated acc buffer, iff allocated |
3821 | 4.10M | Int reqdigits=set->digits; // local copy; requested DIGITS |
3822 | 4.10M | Int padding; // work |
3823 | | |
3824 | | #if DECCHECK |
3825 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
3826 | | #endif |
3827 | | |
3828 | 4.10M | do { // protect allocated storage |
3829 | | #if DECSUBSET |
3830 | | if (!set->extended) { |
3831 | | // reduce operands and set lostDigits status, as needed |
3832 | | if (lhs->digits>reqdigits) { |
3833 | | alloclhs=decRoundOperand(lhs, set, status); |
3834 | | if (alloclhs==NULL) break; |
3835 | | lhs=alloclhs; |
3836 | | } |
3837 | | if (rhs->digits>reqdigits) { |
3838 | | allocrhs=decRoundOperand(rhs, set, status); |
3839 | | if (allocrhs==NULL) break; |
3840 | | rhs=allocrhs; |
3841 | | } |
3842 | | } |
3843 | | #endif |
3844 | | // [following code does not require input rounding] |
3845 | | |
3846 | | // note whether signs differ [used all paths] |
3847 | 4.10M | diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG); |
3848 | | |
3849 | | // handle infinities and NaNs |
3850 | 4.10M | if (SPECIALARGS) { // a special bit set |
3851 | 1.48k | if (SPECIALARGS & (DECSNAN | DECNAN)) // a NaN |
3852 | 0 | decNaNs(res, lhs, rhs, set, status); |
3853 | 1.48k | else { // one or two infinities |
3854 | 1.48k | if (decNumberIsInfinite(lhs)) { // LHS is infinity |
3855 | | // two infinities with different signs is invalid |
3856 | 0 | if (decNumberIsInfinite(rhs) && diffsign) { |
3857 | 0 | *status|=DEC_Invalid_operation; |
3858 | 0 | break; |
3859 | 0 | } |
3860 | 0 | bits=lhs->bits & DECNEG; // get sign from LHS |
3861 | 0 | } |
3862 | 1.48k | else bits=(rhs->bits^negate) & DECNEG;// RHS must be Infinity |
3863 | 1.48k | bits|=DECINF; |
3864 | 1.48k | decNumberZero(res); |
3865 | 1.48k | res->bits=bits; // set +/- infinity |
3866 | 1.48k | } // an infinity |
3867 | 1.48k | break; |
3868 | 1.48k | } |
3869 | | |
3870 | | // Quick exit for add 0s; return the non-0, modified as need be |
3871 | 4.10M | if (ISZERO(lhs)) { |
3872 | 4.10M | Int adjust; // work |
3873 | 4.10M | Int lexp=lhs->exponent; // save in case LHS==RES |
3874 | 4.10M | bits=lhs->bits; // .. |
3875 | 4.10M | residue=0; // clear accumulator |
3876 | 4.10M | decCopyFit(res, rhs, set, &residue, status); // copy (as needed) |
3877 | 4.10M | res->bits^=negate; // flip if rhs was negated |
3878 | | #if DECSUBSET |
3879 | | if (set->extended) { // exponents on zeros count |
3880 | | #endif |
3881 | | // exponent will be the lower of the two |
3882 | 4.10M | adjust=lexp-res->exponent; // adjustment needed [if -ve] |
3883 | 4.10M | if (ISZERO(res)) { // both 0: special IEEE 754 rules |
3884 | 251k | if (adjust<0) res->exponent=lexp; // set exponent |
3885 | | // 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 |
3886 | 251k | if (diffsign) { |
3887 | 248k | if (set->round!=DEC_ROUND_FLOOR) res->bits=0; |
3888 | 0 | else res->bits=DECNEG; // preserve 0 sign |
3889 | 248k | } |
3890 | 251k | } |
3891 | 3.85M | else { // non-0 res |
3892 | 3.85M | if (adjust<0) { // 0-padding needed |
3893 | 0 | if ((res->digits-adjust)>set->digits) { |
3894 | 0 | adjust=res->digits-set->digits; // to fit exactly |
3895 | 0 | *status|=DEC_Rounded; // [but exact] |
3896 | 0 | } |
3897 | 0 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
3898 | 0 | res->exponent+=adjust; // set the exponent. |
3899 | 0 | } |
3900 | 3.85M | } // non-0 res |
3901 | | #if DECSUBSET |
3902 | | } // extended |
3903 | | #endif |
3904 | 4.10M | decFinish(res, set, &residue, status); // clean and finalize |
3905 | 4.10M | break;} |
3906 | | |
3907 | 0 | if (ISZERO(rhs)) { // [lhs is non-zero] |
3908 | 0 | Int adjust; // work |
3909 | 0 | Int rexp=rhs->exponent; // save in case RHS==RES |
3910 | 0 | bits=rhs->bits; // be clean |
3911 | 0 | residue=0; // clear accumulator |
3912 | 0 | decCopyFit(res, lhs, set, &residue, status); // copy (as needed) |
3913 | | #if DECSUBSET |
3914 | | if (set->extended) { // exponents on zeros count |
3915 | | #endif |
3916 | | // exponent will be the lower of the two |
3917 | | // [0-0 case handled above] |
3918 | 0 | adjust=rexp-res->exponent; // adjustment needed [if -ve] |
3919 | 0 | if (adjust<0) { // 0-padding needed |
3920 | 0 | if ((res->digits-adjust)>set->digits) { |
3921 | 0 | adjust=res->digits-set->digits; // to fit exactly |
3922 | 0 | *status|=DEC_Rounded; // [but exact] |
3923 | 0 | } |
3924 | 0 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
3925 | 0 | res->exponent+=adjust; // set the exponent. |
3926 | 0 | } |
3927 | | #if DECSUBSET |
3928 | | } // extended |
3929 | | #endif |
3930 | 0 | decFinish(res, set, &residue, status); // clean and finalize |
3931 | 0 | break;} |
3932 | | |
3933 | | // [NB: both fastpath and mainpath code below assume these cases |
3934 | | // (notably 0-0) have already been handled] |
3935 | | |
3936 | | // calculate the padding needed to align the operands |
3937 | 0 | padding=rhs->exponent-lhs->exponent; |
3938 | | |
3939 | | // Fastpath cases where the numbers are aligned and normal, the RHS |
3940 | | // is all in one unit, no operand rounding is needed, and no carry, |
3941 | | // lengthening, or borrow is needed |
3942 | 0 | if (padding==0 |
3943 | 0 | && rhs->digits<=DECDPUN |
3944 | 0 | && rhs->exponent>=set->emin // [some normals drop through] |
3945 | 0 | && rhs->exponent<=set->emax-set->digits+1 // [could clamp] |
3946 | 0 | && rhs->digits<=reqdigits |
3947 | 0 | && lhs->digits<=reqdigits) { |
3948 | 0 | Int partial=*lhs->lsu; |
3949 | 0 | if (!diffsign) { // adding |
3950 | 0 | partial+=*rhs->lsu; |
3951 | 0 | if ((partial<=DECDPUNMAX) // result fits in unit |
3952 | 0 | && (lhs->digits>=DECDPUN || // .. and no digits-count change |
3953 | 0 | partial<(Int)powers[lhs->digits])) { // .. |
3954 | 0 | if (res!=lhs) decNumberCopy(res, lhs); // not in place |
3955 | 0 | *res->lsu=(Unit)partial; // [copy could have overwritten RHS] |
3956 | 0 | break; |
3957 | 0 | } |
3958 | | // else drop out for careful add |
3959 | 0 | } |
3960 | 0 | else { // signs differ |
3961 | 0 | partial-=*rhs->lsu; |
3962 | 0 | if (partial>0) { // no borrow needed, and non-0 result |
3963 | 0 | if (res!=lhs) decNumberCopy(res, lhs); // not in place |
3964 | 0 | *res->lsu=(Unit)partial; |
3965 | | // this could have reduced digits [but result>0] |
3966 | 0 | res->digits=decGetDigits(res->lsu, D2U(res->digits)); |
3967 | 0 | break; |
3968 | 0 | } |
3969 | | // else drop out for careful subtract |
3970 | 0 | } |
3971 | 0 | } |
3972 | | |
3973 | | // Now align (pad) the lhs or rhs so they can be added or |
3974 | | // subtracted, as necessary. If one number is much larger than |
3975 | | // the other (that is, if in plain form there is a least one |
3976 | | // digit between the lowest digit of one and the highest of the |
3977 | | // other) padding with up to DIGITS-1 trailing zeros may be |
3978 | | // needed; then apply rounding (as exotic rounding modes may be |
3979 | | // affected by the residue). |
3980 | 0 | rhsshift=0; // rhs shift to left (padding) in Units |
3981 | 0 | bits=lhs->bits; // assume sign is that of LHS |
3982 | 0 | mult=1; // likely multiplier |
3983 | | |
3984 | | // [if padding==0 the operands are aligned; no padding is needed] |
3985 | 0 | if (padding!=0) { |
3986 | | // some padding needed; always pad the RHS, as any required |
3987 | | // padding can then be effected by a simple combination of |
3988 | | // shifts and a multiply |
3989 | 0 | Flag swapped=0; |
3990 | 0 | if (padding<0) { // LHS needs the padding |
3991 | 0 | const decNumber *t; |
3992 | 0 | padding=-padding; // will be +ve |
3993 | 0 | bits=(uByte)(rhs->bits^negate); // assumed sign is now that of RHS |
3994 | 0 | t=lhs; lhs=rhs; rhs=t; |
3995 | 0 | swapped=1; |
3996 | 0 | } |
3997 | | |
3998 | | // If, after pad, rhs would be longer than lhs by digits+1 or |
3999 | | // more then lhs cannot affect the answer, except as a residue, |
4000 | | // so only need to pad up to a length of DIGITS+1. |
4001 | 0 | if (rhs->digits+padding > lhs->digits+reqdigits+1) { |
4002 | | // The RHS is sufficient |
4003 | | // for residue use the relative sign indication... |
4004 | 0 | Int shift=reqdigits-rhs->digits; // left shift needed |
4005 | 0 | residue=1; // residue for rounding |
4006 | 0 | if (diffsign) residue=-residue; // signs differ |
4007 | | // copy, shortening if necessary |
4008 | 0 | decCopyFit(res, rhs, set, &residue, status); |
4009 | | // if it was already shorter, then need to pad with zeros |
4010 | 0 | if (shift>0) { |
4011 | 0 | res->digits=decShiftToMost(res->lsu, res->digits, shift); |
4012 | 0 | res->exponent-=shift; // adjust the exponent. |
4013 | 0 | } |
4014 | | // flip the result sign if unswapped and rhs was negated |
4015 | 0 | if (!swapped) res->bits^=negate; |
4016 | 0 | decFinish(res, set, &residue, status); // done |
4017 | 0 | break;} |
4018 | | |
4019 | | // LHS digits may affect result |
4020 | 0 | rhsshift=D2U(padding+1)-1; // this much by Unit shift .. |
4021 | 0 | mult=powers[padding-(rhsshift*DECDPUN)]; // .. this by multiplication |
4022 | 0 | } // padding needed |
4023 | | |
4024 | 0 | if (diffsign) mult=-mult; // signs differ |
4025 | | |
4026 | | // determine the longer operand |
4027 | 0 | maxdigits=rhs->digits+padding; // virtual length of RHS |
4028 | 0 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
4029 | | |
4030 | | // Decide on the result buffer to use; if possible place directly |
4031 | | // into result. |
4032 | 0 | acc=res->lsu; // assume add direct to result |
4033 | | // If destructive overlap, or the number is too long, or a carry or |
4034 | | // borrow to DIGITS+1 might be possible, a buffer must be used. |
4035 | | // [Might be worth more sophisticated tests when maxdigits==reqdigits] |
4036 | 0 | if ((maxdigits>=reqdigits) // is, or could be, too large |
4037 | 0 | || (res==rhs && rhsshift>0)) { // destructive overlap |
4038 | | // buffer needed, choose it; units for maxdigits digits will be |
4039 | | // needed, +1 Unit for carry or borrow |
4040 | 0 | Int need=D2U(maxdigits)+1; |
4041 | 0 | acc=accbuff; // assume use local buffer |
4042 | 0 | if (need*sizeof(Unit)>sizeof(accbuff)) { |
4043 | | // printf("malloc add %ld %ld\n", need, sizeof(accbuff)); |
4044 | 0 | allocacc=(Unit *)malloc(need*sizeof(Unit)); |
4045 | 0 | if (allocacc==NULL) { // hopeless -- abandon |
4046 | 0 | *status|=DEC_Insufficient_storage; |
4047 | 0 | break;} |
4048 | 0 | acc=allocacc; |
4049 | 0 | } |
4050 | 0 | } |
4051 | | |
4052 | 0 | res->bits=(uByte)(bits&DECNEG); // it's now safe to overwrite.. |
4053 | 0 | res->exponent=lhs->exponent; // .. operands (even if aliased) |
4054 | |
|
4055 | | #if DECTRACE |
4056 | | decDumpAr('A', lhs->lsu, D2U(lhs->digits)); |
4057 | | decDumpAr('B', rhs->lsu, D2U(rhs->digits)); |
4058 | | printf(" :h: %ld %ld\n", rhsshift, mult); |
4059 | | #endif |
4060 | | |
4061 | | // add [A+B*m] or subtract [A+B*(-m)] |
4062 | 0 | res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits), |
4063 | 0 | rhs->lsu, D2U(rhs->digits), |
4064 | 0 | rhsshift, acc, mult) |
4065 | 0 | *DECDPUN; // [units -> digits] |
4066 | 0 | if (res->digits<0) { // borrowed... |
4067 | 0 | res->digits=-res->digits; |
4068 | 0 | res->bits^=DECNEG; // flip the sign |
4069 | 0 | } |
4070 | | #if DECTRACE |
4071 | | decDumpAr('+', acc, D2U(res->digits)); |
4072 | | #endif |
4073 | | |
4074 | | // If a buffer was used the result must be copied back, possibly |
4075 | | // shortening. (If no buffer was used then the result must have |
4076 | | // fit, so can't need rounding and residue must be 0.) |
4077 | 0 | residue=0; // clear accumulator |
4078 | 0 | if (acc!=res->lsu) { |
4079 | | #if DECSUBSET |
4080 | | if (set->extended) { // round from first significant digit |
4081 | | #endif |
4082 | | // remove leading zeros that were added due to rounding up to |
4083 | | // integral Units -- before the test for rounding. |
4084 | 0 | if (res->digits>reqdigits) |
4085 | 0 | res->digits=decGetDigits(acc, D2U(res->digits)); |
4086 | 0 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
4087 | | #if DECSUBSET |
4088 | | } |
4089 | | else { // subset arithmetic rounds from original significant digit |
4090 | | // May have an underestimate. This only occurs when both |
4091 | | // numbers fit in DECDPUN digits and are padding with a |
4092 | | // negative multiple (-10, -100...) and the top digit(s) become |
4093 | | // 0. (This only matters when using X3.274 rules where the |
4094 | | // leading zero could be included in the rounding.) |
4095 | | if (res->digits<maxdigits) { |
4096 | | *(acc+D2U(res->digits))=0; // ensure leading 0 is there |
4097 | | res->digits=maxdigits; |
4098 | | } |
4099 | | else { |
4100 | | // remove leading zeros that added due to rounding up to |
4101 | | // integral Units (but only those in excess of the original |
4102 | | // maxdigits length, unless extended) before test for rounding. |
4103 | | if (res->digits>reqdigits) { |
4104 | | res->digits=decGetDigits(acc, D2U(res->digits)); |
4105 | | if (res->digits<maxdigits) res->digits=maxdigits; |
4106 | | } |
4107 | | } |
4108 | | decSetCoeff(res, set, acc, res->digits, &residue, status); |
4109 | | // Now apply rounding if needed before removing leading zeros. |
4110 | | // This is safe because subnormals are not a possibility |
4111 | | if (residue!=0) { |
4112 | | decApplyRound(res, set, residue, status); |
4113 | | residue=0; // did what needed to be done |
4114 | | } |
4115 | | } // subset |
4116 | | #endif |
4117 | 0 | } // used buffer |
4118 | | |
4119 | | // strip leading zeros [these were left on in case of subset subtract] |
4120 | 0 | res->digits=decGetDigits(res->lsu, D2U(res->digits)); |
4121 | | |
4122 | | // apply checks and rounding |
4123 | 0 | decFinish(res, set, &residue, status); |
4124 | | |
4125 | | // "When the sum of two operands with opposite signs is exactly |
4126 | | // zero, the sign of that sum shall be '+' in all rounding modes |
4127 | | // except round toward -Infinity, in which mode that sign shall be |
4128 | | // '-'." [Subset zeros also never have '-', set by decFinish.] |
4129 | 0 | if (ISZERO(res) && diffsign |
4130 | | #if DECSUBSET |
4131 | | && set->extended |
4132 | | #endif |
4133 | 0 | && (*status&DEC_Inexact)==0) { |
4134 | 0 | if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; // sign - |
4135 | 0 | else res->bits&=~DECNEG; // sign + |
4136 | 0 | } |
4137 | 0 | } while(0); // end protected |
4138 | | |
4139 | 4.10M | if (allocacc!=NULL) free(allocacc); // drop any storage used |
4140 | | #if DECSUBSET |
4141 | | if (allocrhs!=NULL) free(allocrhs); // .. |
4142 | | if (alloclhs!=NULL) free(alloclhs); // .. |
4143 | | #endif |
4144 | 4.10M | return res; |
4145 | 4.10M | } // decAddOp |
4146 | | |
4147 | | /* ------------------------------------------------------------------ */ |
4148 | | /* decDivideOp -- division operation */ |
4149 | | /* */ |
4150 | | /* This routine performs the calculations for all four division */ |
4151 | | /* operators (divide, divideInteger, remainder, remainderNear). */ |
4152 | | /* */ |
4153 | | /* C=A op B */ |
4154 | | /* */ |
4155 | | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
4156 | | /* lhs is A */ |
4157 | | /* rhs is B */ |
4158 | | /* set is the context */ |
4159 | | /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */ |
4160 | | /* status is the usual accumulator */ |
4161 | | /* */ |
4162 | | /* C must have space for set->digits digits. */ |
4163 | | /* */ |
4164 | | /* ------------------------------------------------------------------ */ |
4165 | | /* The underlying algorithm of this routine is the same as in the */ |
4166 | | /* 1981 S/370 implementation, that is, non-restoring long division */ |
4167 | | /* with bi-unit (rather than bi-digit) estimation for each unit */ |
4168 | | /* multiplier. In this pseudocode overview, complications for the */ |
4169 | | /* Remainder operators and division residues for exact rounding are */ |
4170 | | /* omitted for clarity. */ |
4171 | | /* */ |
4172 | | /* Prepare operands and handle special values */ |
4173 | | /* Test for x/0 and then 0/x */ |
4174 | | /* Exp =Exp1 - Exp2 */ |
4175 | | /* Exp =Exp +len(var1) -len(var2) */ |
4176 | | /* Sign=Sign1 * Sign2 */ |
4177 | | /* Pad accumulator (Var1) to double-length with 0's (pad1) */ |
4178 | | /* Pad Var2 to same length as Var1 */ |
4179 | | /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */ |
4180 | | /* have=0 */ |
4181 | | /* Do until (have=digits+1 OR residue=0) */ |
4182 | | /* if exp<0 then if integer divide/residue then leave */ |
4183 | | /* this_unit=0 */ |
4184 | | /* Do forever */ |
4185 | | /* compare numbers */ |
4186 | | /* if <0 then leave inner_loop */ |
4187 | | /* if =0 then (* quick exit without subtract *) do */ |
4188 | | /* this_unit=this_unit+1; output this_unit */ |
4189 | | /* leave outer_loop; end */ |
4190 | | /* Compare lengths of numbers (mantissae): */ |
4191 | | /* If same then tops2=msu2pair -- {units 1&2 of var2} */ |
4192 | | /* else tops2=msu2plus -- {0, unit 1 of var2} */ |
4193 | | /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ |
4194 | | /* mult=tops1/tops2 -- Good and safe guess at divisor */ |
4195 | | /* if mult=0 then mult=1 */ |
4196 | | /* this_unit=this_unit+mult */ |
4197 | | /* subtract */ |
4198 | | /* end inner_loop */ |
4199 | | /* if have\=0 | this_unit\=0 then do */ |
4200 | | /* output this_unit */ |
4201 | | /* have=have+1; end */ |
4202 | | /* var2=var2/10 */ |
4203 | | /* exp=exp-1 */ |
4204 | | /* end outer_loop */ |
4205 | | /* exp=exp+1 -- set the proper exponent */ |
4206 | | /* if have=0 then generate answer=0 */ |
4207 | | /* Return (Result is defined by Var1) */ |
4208 | | /* */ |
4209 | | /* ------------------------------------------------------------------ */ |
4210 | | /* Two working buffers are needed during the division; one (digits+ */ |
4211 | | /* 1) to accumulate the result, and the other (up to 2*digits+1) for */ |
4212 | | /* long subtractions. These are acc and var1 respectively. */ |
4213 | | /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ |
4214 | | /* The static buffers may be larger than might be expected to allow */ |
4215 | | /* for calls from higher-level functions (notable exp). */ |
4216 | | /* ------------------------------------------------------------------ */ |
4217 | | static decNumber * decDivideOp(decNumber *res, |
4218 | | const decNumber *lhs, const decNumber *rhs, |
4219 | 0 | decContext *set, Flag op, uInt *status) { |
4220 | | #if DECSUBSET |
4221 | | decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated |
4222 | | decNumber *allocrhs=NULL; // .., rhs |
4223 | | #endif |
4224 | 0 | Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; // local buffer |
4225 | 0 | Unit *acc=accbuff; // -> accumulator array for result |
4226 | 0 | Unit *allocacc=NULL; // -> allocated buffer, iff allocated |
4227 | 0 | Unit *accnext; // -> where next digit will go |
4228 | 0 | Int acclength; // length of acc needed [Units] |
4229 | 0 | Int accunits; // count of units accumulated |
4230 | 0 | Int accdigits; // count of digits accumulated |
4231 | |
|
4232 | 0 | Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)]; // buffer for var1 |
4233 | 0 | Unit *var1=varbuff; // -> var1 array for long subtraction |
4234 | 0 | Unit *varalloc=NULL; // -> allocated buffer, iff used |
4235 | 0 | Unit *msu1; // -> msu of var1 |
4236 | |
|
4237 | 0 | const Unit *var2; // -> var2 array |
4238 | 0 | const Unit *msu2; // -> msu of var2 |
4239 | 0 | Int msu2plus; // msu2 plus one [does not vary] |
4240 | 0 | eInt msu2pair; // msu2 pair plus one [does not vary] |
4241 | |
|
4242 | 0 | Int var1units, var2units; // actual lengths |
4243 | 0 | Int var2ulen; // logical length (units) |
4244 | 0 | Int var1initpad=0; // var1 initial padding (digits) |
4245 | 0 | Int maxdigits; // longest LHS or required acc length |
4246 | 0 | Int mult; // multiplier for subtraction |
4247 | 0 | Unit thisunit; // current unit being accumulated |
4248 | 0 | Int residue; // for rounding |
4249 | 0 | Int reqdigits=set->digits; // requested DIGITS |
4250 | 0 | Int exponent; // working exponent |
4251 | 0 | Int maxexponent=0; // DIVIDE maximum exponent if unrounded |
4252 | 0 | uByte bits; // working sign |
4253 | 0 | Unit *target; // work |
4254 | 0 | const Unit *source; // .. |
4255 | 0 | uInt const *pow; // .. |
4256 | 0 | Int shift, cut; // .. |
4257 | | #if DECSUBSET |
4258 | | Int dropped; // work |
4259 | | #endif |
4260 | |
|
4261 | | #if DECCHECK |
4262 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
4263 | | #endif |
4264 | |
|
4265 | 0 | do { // protect allocated storage |
4266 | | #if DECSUBSET |
4267 | | if (!set->extended) { |
4268 | | // reduce operands and set lostDigits status, as needed |
4269 | | if (lhs->digits>reqdigits) { |
4270 | | alloclhs=decRoundOperand(lhs, set, status); |
4271 | | if (alloclhs==NULL) break; |
4272 | | lhs=alloclhs; |
4273 | | } |
4274 | | if (rhs->digits>reqdigits) { |
4275 | | allocrhs=decRoundOperand(rhs, set, status); |
4276 | | if (allocrhs==NULL) break; |
4277 | | rhs=allocrhs; |
4278 | | } |
4279 | | } |
4280 | | #endif |
4281 | | // [following code does not require input rounding] |
4282 | |
|
4283 | 0 | bits=(lhs->bits^rhs->bits)&DECNEG; // assumed sign for divisions |
4284 | | |
4285 | | // handle infinities and NaNs |
4286 | 0 | if (SPECIALARGS) { // a special bit set |
4287 | 0 | if (SPECIALARGS & (DECSNAN | DECNAN)) { // one or two NaNs |
4288 | 0 | decNaNs(res, lhs, rhs, set, status); |
4289 | 0 | break; |
4290 | 0 | } |
4291 | | // one or two infinities |
4292 | 0 | if (decNumberIsInfinite(lhs)) { // LHS (dividend) is infinite |
4293 | 0 | if (decNumberIsInfinite(rhs) || // two infinities are invalid .. |
4294 | 0 | op & (REMAINDER | REMNEAR)) { // as is remainder of infinity |
4295 | 0 | *status|=DEC_Invalid_operation; |
4296 | 0 | break; |
4297 | 0 | } |
4298 | | // [Note that infinity/0 raises no exceptions] |
4299 | 0 | decNumberZero(res); |
4300 | 0 | res->bits=bits|DECINF; // set +/- infinity |
4301 | 0 | break; |
4302 | 0 | } |
4303 | 0 | else { // RHS (divisor) is infinite |
4304 | 0 | residue=0; |
4305 | 0 | if (op&(REMAINDER|REMNEAR)) { |
4306 | | // result is [finished clone of] lhs |
4307 | 0 | decCopyFit(res, lhs, set, &residue, status); |
4308 | 0 | } |
4309 | 0 | else { // a division |
4310 | 0 | decNumberZero(res); |
4311 | 0 | res->bits=bits; // set +/- zero |
4312 | | // for DIVIDEINT the exponent is always 0. For DIVIDE, result |
4313 | | // is a 0 with infinitely negative exponent, clamped to minimum |
4314 | 0 | if (op&DIVIDE) { |
4315 | 0 | res->exponent=set->emin-set->digits+1; |
4316 | 0 | *status|=DEC_Clamped; |
4317 | 0 | } |
4318 | 0 | } |
4319 | 0 | decFinish(res, set, &residue, status); |
4320 | 0 | break; |
4321 | 0 | } |
4322 | 0 | } |
4323 | | |
4324 | | // handle 0 rhs (x/0) |
4325 | 0 | if (ISZERO(rhs)) { // x/0 is always exceptional |
4326 | 0 | if (ISZERO(lhs)) { |
4327 | 0 | decNumberZero(res); // [after lhs test] |
4328 | 0 | *status|=DEC_Division_undefined;// 0/0 will become NaN |
4329 | 0 | } |
4330 | 0 | else { |
4331 | 0 | decNumberZero(res); |
4332 | 0 | if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation; |
4333 | 0 | else { |
4334 | 0 | *status|=DEC_Division_by_zero; // x/0 |
4335 | 0 | res->bits=bits|DECINF; // .. is +/- Infinity |
4336 | 0 | } |
4337 | 0 | } |
4338 | 0 | break;} |
4339 | | |
4340 | | // handle 0 lhs (0/x) |
4341 | 0 | if (ISZERO(lhs)) { // 0/x [x!=0] |
4342 | | #if DECSUBSET |
4343 | | if (!set->extended) decNumberZero(res); |
4344 | | else { |
4345 | | #endif |
4346 | 0 | if (op&DIVIDE) { |
4347 | 0 | residue=0; |
4348 | 0 | exponent=lhs->exponent-rhs->exponent; // ideal exponent |
4349 | 0 | decNumberCopy(res, lhs); // [zeros always fit] |
4350 | 0 | res->bits=bits; // sign as computed |
4351 | 0 | res->exponent=exponent; // exponent, too |
4352 | 0 | decFinalize(res, set, &residue, status); // check exponent |
4353 | 0 | } |
4354 | 0 | else if (op&DIVIDEINT) { |
4355 | 0 | decNumberZero(res); // integer 0 |
4356 | 0 | res->bits=bits; // sign as computed |
4357 | 0 | } |
4358 | 0 | else { // a remainder |
4359 | 0 | exponent=rhs->exponent; // [save in case overwrite] |
4360 | 0 | decNumberCopy(res, lhs); // [zeros always fit] |
4361 | 0 | if (exponent<res->exponent) res->exponent=exponent; // use lower |
4362 | 0 | } |
4363 | | #if DECSUBSET |
4364 | | } |
4365 | | #endif |
4366 | 0 | break;} |
4367 | | |
4368 | | // Precalculate exponent. This starts off adjusted (and hence fits |
4369 | | // in 31 bits) and becomes the usual unadjusted exponent as the |
4370 | | // division proceeds. The order of evaluation is important, here, |
4371 | | // to avoid wrap. |
4372 | 0 | exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); |
4373 | | |
4374 | | // If the working exponent is -ve, then some quick exits are |
4375 | | // possible because the quotient is known to be <1 |
4376 | | // [for REMNEAR, it needs to be < -1, as -0.5 could need work] |
4377 | 0 | if (exponent<0 && !(op==DIVIDE)) { |
4378 | 0 | if (op&DIVIDEINT) { |
4379 | 0 | decNumberZero(res); // integer part is 0 |
4380 | | #if DECSUBSET |
4381 | | if (set->extended) |
4382 | | #endif |
4383 | 0 | res->bits=bits; // set +/- zero |
4384 | 0 | break;} |
4385 | | // fastpath remainders so long as the lhs has the smaller |
4386 | | // (or equal) exponent |
4387 | 0 | if (lhs->exponent<=rhs->exponent) { |
4388 | 0 | if (op&REMAINDER || exponent<-1) { |
4389 | | // It is REMAINDER or safe REMNEAR; result is [finished |
4390 | | // clone of] lhs (r = x - 0*y) |
4391 | 0 | residue=0; |
4392 | 0 | decCopyFit(res, lhs, set, &residue, status); |
4393 | 0 | decFinish(res, set, &residue, status); |
4394 | 0 | break; |
4395 | 0 | } |
4396 | | // [unsafe REMNEAR drops through] |
4397 | 0 | } |
4398 | 0 | } // fastpaths |
4399 | | |
4400 | | /* Long (slow) division is needed; roll up the sleeves... */ |
4401 | | |
4402 | | // The accumulator will hold the quotient of the division. |
4403 | | // If it needs to be too long for stack storage, then allocate. |
4404 | 0 | acclength=D2U(reqdigits+DECDPUN); // in Units |
4405 | 0 | if (acclength*sizeof(Unit)>sizeof(accbuff)) { |
4406 | | // printf("malloc dvacc %ld units\n", acclength); |
4407 | 0 | allocacc=(Unit *)malloc(acclength*sizeof(Unit)); |
4408 | 0 | if (allocacc==NULL) { // hopeless -- abandon |
4409 | 0 | *status|=DEC_Insufficient_storage; |
4410 | 0 | break;} |
4411 | 0 | acc=allocacc; // use the allocated space |
4412 | 0 | } |
4413 | | |
4414 | | // var1 is the padded LHS ready for subtractions. |
4415 | | // If it needs to be too long for stack storage, then allocate. |
4416 | | // The maximum units needed for var1 (long subtraction) is: |
4417 | | // Enough for |
4418 | | // (rhs->digits+reqdigits-1) -- to allow full slide to right |
4419 | | // or (lhs->digits) -- to allow for long lhs |
4420 | | // whichever is larger |
4421 | | // +1 -- for rounding of slide to right |
4422 | | // +1 -- for leading 0s |
4423 | | // +1 -- for pre-adjust if a remainder or DIVIDEINT |
4424 | | // [Note: unused units do not participate in decUnitAddSub data] |
4425 | 0 | maxdigits=rhs->digits+reqdigits-1; |
4426 | 0 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
4427 | 0 | var1units=D2U(maxdigits)+2; |
4428 | | // allocate a guard unit above msu1 for REMAINDERNEAR |
4429 | 0 | if (!(op&DIVIDE)) var1units++; |
4430 | 0 | if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { |
4431 | | // printf("malloc dvvar %ld units\n", var1units+1); |
4432 | 0 | varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit)); |
4433 | 0 | if (varalloc==NULL) { // hopeless -- abandon |
4434 | 0 | *status|=DEC_Insufficient_storage; |
4435 | 0 | break;} |
4436 | 0 | var1=varalloc; // use the allocated space |
4437 | 0 | } |
4438 | | |
4439 | | // Extend the lhs and rhs to full long subtraction length. The lhs |
4440 | | // is truly extended into the var1 buffer, with 0 padding, so a |
4441 | | // subtract in place is always possible. The rhs (var2) has |
4442 | | // virtual padding (implemented by decUnitAddSub). |
4443 | | // One guard unit was allocated above msu1 for rem=rem+rem in |
4444 | | // REMAINDERNEAR. |
4445 | 0 | msu1=var1+var1units-1; // msu of var1 |
4446 | 0 | source=lhs->lsu+D2U(lhs->digits)-1; // msu of input array |
4447 | 0 | for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; |
4448 | 0 | for (; target>=var1; target--) *target=0; |
4449 | | |
4450 | | // rhs (var2) is left-aligned with var1 at the start |
4451 | 0 | var2ulen=var1units; // rhs logical length (units) |
4452 | 0 | var2units=D2U(rhs->digits); // rhs actual length (units) |
4453 | 0 | var2=rhs->lsu; // -> rhs array |
4454 | 0 | msu2=var2+var2units-1; // -> msu of var2 [never changes] |
4455 | | // now set up the variables which will be used for estimating the |
4456 | | // multiplication factor. If these variables are not exact, add |
4457 | | // 1 to make sure that the multiplier is never overestimated. |
4458 | 0 | msu2plus=*msu2; // it's value .. |
4459 | 0 | if (var2units>1) msu2plus++; // .. +1 if any more |
4460 | 0 | msu2pair=(eInt)*msu2*(DECDPUNMAX+1);// top two pair .. |
4461 | 0 | if (var2units>1) { // .. [else treat 2nd as 0] |
4462 | 0 | msu2pair+=*(msu2-1); // .. |
4463 | 0 | if (var2units>2) msu2pair++; // .. +1 if any more |
4464 | 0 | } |
4465 | | |
4466 | | // The calculation is working in units, which may have leading zeros, |
4467 | | // but the exponent was calculated on the assumption that they are |
4468 | | // both left-aligned. Adjust the exponent to compensate: add the |
4469 | | // number of leading zeros in var1 msu and subtract those in var2 msu. |
4470 | | // [This is actually done by counting the digits and negating, as |
4471 | | // lead1=DECDPUN-digits1, and similarly for lead2.] |
4472 | 0 | for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--; |
4473 | 0 | for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++; |
4474 | | |
4475 | | // Now, if doing an integer divide or remainder, ensure that |
4476 | | // the result will be Unit-aligned. To do this, shift the var1 |
4477 | | // accumulator towards least if need be. (It's much easier to |
4478 | | // do this now than to reassemble the residue afterwards, if |
4479 | | // doing a remainder.) Also ensure the exponent is not negative. |
4480 | 0 | if (!(op&DIVIDE)) { |
4481 | 0 | Unit *u; // work |
4482 | | // save the initial 'false' padding of var1, in digits |
4483 | 0 | var1initpad=(var1units-D2U(lhs->digits))*DECDPUN; |
4484 | | // Determine the shift to do. |
4485 | 0 | if (exponent<0) cut=-exponent; |
4486 | 0 | else cut=DECDPUN-exponent%DECDPUN; |
4487 | 0 | decShiftToLeast(var1, var1units, cut); |
4488 | 0 | exponent+=cut; // maintain numerical value |
4489 | 0 | var1initpad-=cut; // .. and reduce padding |
4490 | | // clean any most-significant units which were just emptied |
4491 | 0 | for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0; |
4492 | 0 | } // align |
4493 | 0 | else { // is DIVIDE |
4494 | 0 | maxexponent=lhs->exponent-rhs->exponent; // save |
4495 | | // optimization: if the first iteration will just produce 0, |
4496 | | // preadjust to skip it [valid for DIVIDE only] |
4497 | 0 | if (*msu1<*msu2) { |
4498 | 0 | var2ulen--; // shift down |
4499 | 0 | exponent-=DECDPUN; // update the exponent |
4500 | 0 | } |
4501 | 0 | } |
4502 | | |
4503 | | // ---- start the long-division loops ------------------------------ |
4504 | 0 | accunits=0; // no units accumulated yet |
4505 | 0 | accdigits=0; // .. or digits |
4506 | 0 | accnext=acc+acclength-1; // -> msu of acc [NB: allows digits+1] |
4507 | 0 | for (;;) { // outer forever loop |
4508 | 0 | thisunit=0; // current unit assumed 0 |
4509 | | // find the next unit |
4510 | 0 | for (;;) { // inner forever loop |
4511 | | // strip leading zero units [from either pre-adjust or from |
4512 | | // subtract last time around]. Leave at least one unit. |
4513 | 0 | for (; *msu1==0 && msu1>var1; msu1--) var1units--; |
4514 | |
|
4515 | 0 | if (var1units<var2ulen) break; // var1 too low for subtract |
4516 | 0 | if (var1units==var2ulen) { // unit-by-unit compare needed |
4517 | | // compare the two numbers, from msu |
4518 | 0 | const Unit *pv1, *pv2; |
4519 | 0 | Unit v2; // units to compare |
4520 | 0 | pv2=msu2; // -> msu |
4521 | 0 | for (pv1=msu1; ; pv1--, pv2--) { |
4522 | | // v1=*pv1 -- always OK |
4523 | 0 | v2=0; // assume in padding |
4524 | 0 | if (pv2>=var2) v2=*pv2; // in range |
4525 | 0 | if (*pv1!=v2) break; // no longer the same |
4526 | 0 | if (pv1==var1) break; // done; leave pv1 as is |
4527 | 0 | } |
4528 | | // here when all inspected or a difference seen |
4529 | 0 | if (*pv1<v2) break; // var1 too low to subtract |
4530 | 0 | if (*pv1==v2) { // var1 == var2 |
4531 | | // reach here if var1 and var2 are identical; subtraction |
4532 | | // would increase digit by one, and the residue will be 0 so |
4533 | | // the calculation is done; leave the loop with residue=0. |
4534 | 0 | thisunit++; // as though subtracted |
4535 | 0 | *var1=0; // set var1 to 0 |
4536 | 0 | var1units=1; // .. |
4537 | 0 | break; // from inner |
4538 | 0 | } // var1 == var2 |
4539 | | // *pv1>v2. Prepare for real subtraction; the lengths are equal |
4540 | | // Estimate the multiplier (there's always a msu1-1)... |
4541 | | // Bring in two units of var2 to provide a good estimate. |
4542 | 0 | mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair); |
4543 | 0 | } // lengths the same |
4544 | 0 | else { // var1units > var2ulen, so subtraction is safe |
4545 | | // The var2 msu is one unit towards the lsu of the var1 msu, |
4546 | | // so only one unit for var2 can be used. |
4547 | 0 | mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus); |
4548 | 0 | } |
4549 | 0 | if (mult==0) mult=1; // must always be at least 1 |
4550 | | // subtraction needed; var1 is > var2 |
4551 | 0 | thisunit=(Unit)(thisunit+mult); // accumulate |
4552 | | // subtract var1-var2, into var1; only the overlap needs |
4553 | | // processing, as this is an in-place calculation |
4554 | 0 | shift=var2ulen-var2units; |
4555 | | #if DECTRACE |
4556 | | decDumpAr('1', &var1[shift], var1units-shift); |
4557 | | decDumpAr('2', var2, var2units); |
4558 | | printf("m=%ld\n", -mult); |
4559 | | #endif |
4560 | 0 | decUnitAddSub(&var1[shift], var1units-shift, |
4561 | 0 | var2, var2units, 0, |
4562 | 0 | &var1[shift], -mult); |
4563 | | #if DECTRACE |
4564 | | decDumpAr('#', &var1[shift], var1units-shift); |
4565 | | #endif |
4566 | | // var1 now probably has leading zeros; these are removed at the |
4567 | | // top of the inner loop. |
4568 | 0 | } // inner loop |
4569 | | |
4570 | | // The next unit has been calculated in full; unless it's a |
4571 | | // leading zero, add to acc |
4572 | 0 | if (accunits!=0 || thisunit!=0) { // is first or non-zero |
4573 | 0 | *accnext=thisunit; // store in accumulator |
4574 | | // account exactly for the new digits |
4575 | 0 | if (accunits==0) { |
4576 | 0 | accdigits++; // at least one |
4577 | 0 | for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++; |
4578 | 0 | } |
4579 | 0 | else accdigits+=DECDPUN; |
4580 | 0 | accunits++; // update count |
4581 | 0 | accnext--; // ready for next |
4582 | 0 | if (accdigits>reqdigits) break; // have enough digits |
4583 | 0 | } |
4584 | | |
4585 | | // if the residue is zero, the operation is done (unless divide |
4586 | | // or divideInteger and still not enough digits yet) |
4587 | 0 | if (*var1==0 && var1units==1) { // residue is 0 |
4588 | 0 | if (op&(REMAINDER|REMNEAR)) break; |
4589 | 0 | if ((op&DIVIDE) && (exponent<=maxexponent)) break; |
4590 | | // [drop through if divideInteger] |
4591 | 0 | } |
4592 | | // also done enough if calculating remainder or integer |
4593 | | // divide and just did the last ('units') unit |
4594 | 0 | if (exponent==0 && !(op&DIVIDE)) break; |
4595 | | |
4596 | | // to get here, var1 is less than var2, so divide var2 by the per- |
4597 | | // Unit power of ten and go for the next digit |
4598 | 0 | var2ulen--; // shift down |
4599 | 0 | exponent-=DECDPUN; // update the exponent |
4600 | 0 | } // outer loop |
4601 | | |
4602 | | // ---- division is complete --------------------------------------- |
4603 | | // here: acc has at least reqdigits+1 of good results (or fewer |
4604 | | // if early stop), starting at accnext+1 (its lsu) |
4605 | | // var1 has any residue at the stopping point |
4606 | | // accunits is the number of digits collected in acc |
4607 | 0 | if (accunits==0) { // acc is 0 |
4608 | 0 | accunits=1; // show have a unit .. |
4609 | 0 | accdigits=1; // .. |
4610 | 0 | *accnext=0; // .. whose value is 0 |
4611 | 0 | } |
4612 | 0 | else accnext++; // back to last placed |
4613 | | // accnext now -> lowest unit of result |
4614 | |
|
4615 | 0 | residue=0; // assume no residue |
4616 | 0 | if (op&DIVIDE) { |
4617 | | // record the presence of any residue, for rounding |
4618 | 0 | if (*var1!=0 || var1units>1) residue=1; |
4619 | 0 | else { // no residue |
4620 | | // Had an exact division; clean up spurious trailing 0s. |
4621 | | // There will be at most DECDPUN-1, from the final multiply, |
4622 | | // and then only if the result is non-0 (and even) and the |
4623 | | // exponent is 'loose'. |
4624 | 0 | #if DECDPUN>1 |
4625 | 0 | Unit lsu=*accnext; |
4626 | 0 | if (!(lsu&0x01) && (lsu!=0)) { |
4627 | | // count the trailing zeros |
4628 | 0 | Int drop=0; |
4629 | 0 | for (;; drop++) { // [will terminate because lsu!=0] |
4630 | 0 | if (exponent>=maxexponent) break; // don't chop real 0s |
4631 | 0 | #if DECDPUN<=4 |
4632 | 0 | if ((lsu-QUOT10(lsu, drop+1) |
4633 | 0 | *powers[drop+1])!=0) break; // found non-0 digit |
4634 | | #else |
4635 | | if (lsu%powers[drop+1]!=0) break; // found non-0 digit |
4636 | | #endif |
4637 | 0 | exponent++; |
4638 | 0 | } |
4639 | 0 | if (drop>0) { |
4640 | 0 | accunits=decShiftToLeast(accnext, accunits, drop); |
4641 | 0 | accdigits=decGetDigits(accnext, accunits); |
4642 | 0 | accunits=D2U(accdigits); |
4643 | | // [exponent was adjusted in the loop] |
4644 | 0 | } |
4645 | 0 | } // neither odd nor 0 |
4646 | 0 | #endif |
4647 | 0 | } // exact divide |
4648 | 0 | } // divide |
4649 | 0 | else /* op!=DIVIDE */ { |
4650 | | // check for coefficient overflow |
4651 | 0 | if (accdigits+exponent>reqdigits) { |
4652 | 0 | *status|=DEC_Division_impossible; |
4653 | 0 | break; |
4654 | 0 | } |
4655 | 0 | if (op & (REMAINDER|REMNEAR)) { |
4656 | | // [Here, the exponent will be 0, because var1 was adjusted |
4657 | | // appropriately.] |
4658 | 0 | Int postshift; // work |
4659 | 0 | Flag wasodd=0; // integer was odd |
4660 | 0 | Unit *quotlsu; // for save |
4661 | 0 | Int quotdigits; // .. |
4662 | |
|
4663 | 0 | bits=lhs->bits; // remainder sign is always as lhs |
4664 | | |
4665 | | // Fastpath when residue is truly 0 is worthwhile [and |
4666 | | // simplifies the code below] |
4667 | 0 | if (*var1==0 && var1units==1) { // residue is 0 |
4668 | 0 | Int exp=lhs->exponent; // save min(exponents) |
4669 | 0 | if (rhs->exponent<exp) exp=rhs->exponent; |
4670 | 0 | decNumberZero(res); // 0 coefficient |
4671 | | #if DECSUBSET |
4672 | | if (set->extended) |
4673 | | #endif |
4674 | 0 | res->exponent=exp; // .. with proper exponent |
4675 | 0 | res->bits=(uByte)(bits&DECNEG); // [cleaned] |
4676 | 0 | decFinish(res, set, &residue, status); // might clamp |
4677 | 0 | break; |
4678 | 0 | } |
4679 | | // note if the quotient was odd |
4680 | 0 | if (*accnext & 0x01) wasodd=1; // acc is odd |
4681 | 0 | quotlsu=accnext; // save in case need to reinspect |
4682 | 0 | quotdigits=accdigits; // .. |
4683 | | |
4684 | | // treat the residue, in var1, as the value to return, via acc |
4685 | | // calculate the unused zero digits. This is the smaller of: |
4686 | | // var1 initial padding (saved above) |
4687 | | // var2 residual padding, which happens to be given by: |
4688 | 0 | postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; |
4689 | | // [the 'exponent' term accounts for the shifts during divide] |
4690 | 0 | if (var1initpad<postshift) postshift=var1initpad; |
4691 | | |
4692 | | // shift var1 the requested amount, and adjust its digits |
4693 | 0 | var1units=decShiftToLeast(var1, var1units, postshift); |
4694 | 0 | accnext=var1; |
4695 | 0 | accdigits=decGetDigits(var1, var1units); |
4696 | 0 | accunits=D2U(accdigits); |
4697 | |
|
4698 | 0 | exponent=lhs->exponent; // exponent is smaller of lhs & rhs |
4699 | 0 | if (rhs->exponent<exponent) exponent=rhs->exponent; |
4700 | | |
4701 | | // Now correct the result if doing remainderNear; if it |
4702 | | // (looking just at coefficients) is > rhs/2, or == rhs/2 and |
4703 | | // the integer was odd then the result should be rem-rhs. |
4704 | 0 | if (op&REMNEAR) { |
4705 | 0 | Int compare, tarunits; // work |
4706 | 0 | Unit *up; // .. |
4707 | | // calculate remainder*2 into the var1 buffer (which has |
4708 | | // 'headroom' of an extra unit and hence enough space) |
4709 | | // [a dedicated 'double' loop would be faster, here] |
4710 | 0 | tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, |
4711 | 0 | 0, accnext, 1); |
4712 | | // decDumpAr('r', accnext, tarunits); |
4713 | | |
4714 | | // Here, accnext (var1) holds tarunits Units with twice the |
4715 | | // remainder's coefficient, which must now be compared to the |
4716 | | // RHS. The remainder's exponent may be smaller than the RHS's. |
4717 | 0 | compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits), |
4718 | 0 | rhs->exponent-exponent); |
4719 | 0 | if (compare==BADINT) { // deep trouble |
4720 | 0 | *status|=DEC_Insufficient_storage; |
4721 | 0 | break;} |
4722 | | |
4723 | | // now restore the remainder by dividing by two; the lsu |
4724 | | // is known to be even. |
4725 | 0 | for (up=accnext; up<accnext+tarunits; up++) { |
4726 | 0 | Int half; // half to add to lower unit |
4727 | 0 | half=*up & 0x01; |
4728 | 0 | *up/=2; // [shift] |
4729 | 0 | if (!half) continue; |
4730 | 0 | *(up-1)+=(DECDPUNMAX+1)/2; |
4731 | 0 | } |
4732 | | // [accunits still describes the original remainder length] |
4733 | |
|
4734 | 0 | if (compare>0 || (compare==0 && wasodd)) { // adjustment needed |
4735 | 0 | Int exp, expunits, exprem; // work |
4736 | | // This is effectively causing round-up of the quotient, |
4737 | | // so if it was the rare case where it was full and all |
4738 | | // nines, it would overflow and hence division-impossible |
4739 | | // should be raised |
4740 | 0 | Flag allnines=0; // 1 if quotient all nines |
4741 | 0 | if (quotdigits==reqdigits) { // could be borderline |
4742 | 0 | for (up=quotlsu; ; up++) { |
4743 | 0 | if (quotdigits>DECDPUN) { |
4744 | 0 | if (*up!=DECDPUNMAX) break;// non-nines |
4745 | 0 | } |
4746 | 0 | else { // this is the last Unit |
4747 | 0 | if (*up==powers[quotdigits]-1) allnines=1; |
4748 | 0 | break; |
4749 | 0 | } |
4750 | 0 | quotdigits-=DECDPUN; // checked those digits |
4751 | 0 | } // up |
4752 | 0 | } // borderline check |
4753 | 0 | if (allnines) { |
4754 | 0 | *status|=DEC_Division_impossible; |
4755 | 0 | break;} |
4756 | | |
4757 | | // rem-rhs is needed; the sign will invert. Again, var1 |
4758 | | // can safely be used for the working Units array. |
4759 | 0 | exp=rhs->exponent-exponent; // RHS padding needed |
4760 | | // Calculate units and remainder from exponent. |
4761 | 0 | expunits=exp/DECDPUN; |
4762 | 0 | exprem=exp%DECDPUN; |
4763 | | // subtract [A+B*(-m)]; the result will always be negative |
4764 | 0 | accunits=-decUnitAddSub(accnext, accunits, |
4765 | 0 | rhs->lsu, D2U(rhs->digits), |
4766 | 0 | expunits, accnext, -(Int)powers[exprem]); |
4767 | 0 | accdigits=decGetDigits(accnext, accunits); // count digits exactly |
4768 | 0 | accunits=D2U(accdigits); // and recalculate the units for copy |
4769 | | // [exponent is as for original remainder] |
4770 | 0 | bits^=DECNEG; // flip the sign |
4771 | 0 | } |
4772 | 0 | } // REMNEAR |
4773 | 0 | } // REMAINDER or REMNEAR |
4774 | 0 | } // not DIVIDE |
4775 | | |
4776 | | // Set exponent and bits |
4777 | 0 | res->exponent=exponent; |
4778 | 0 | res->bits=(uByte)(bits&DECNEG); // [cleaned] |
4779 | | |
4780 | | // Now the coefficient. |
4781 | 0 | decSetCoeff(res, set, accnext, accdigits, &residue, status); |
4782 | |
|
4783 | 0 | decFinish(res, set, &residue, status); // final cleanup |
4784 | |
|
4785 | | #if DECSUBSET |
4786 | | // If a divide then strip trailing zeros if subset [after round] |
4787 | | if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped); |
4788 | | #endif |
4789 | 0 | } while(0); // end protected |
4790 | |
|
4791 | 0 | if (varalloc!=NULL) free(varalloc); // drop any storage used |
4792 | 0 | if (allocacc!=NULL) free(allocacc); // .. |
4793 | | #if DECSUBSET |
4794 | | if (allocrhs!=NULL) free(allocrhs); // .. |
4795 | | if (alloclhs!=NULL) free(alloclhs); // .. |
4796 | | #endif |
4797 | 0 | return res; |
4798 | 0 | } // decDivideOp |
4799 | | |
4800 | | /* ------------------------------------------------------------------ */ |
4801 | | /* decMultiplyOp -- multiplication operation */ |
4802 | | /* */ |
4803 | | /* This routine performs the multiplication C=A x B. */ |
4804 | | /* */ |
4805 | | /* res is C, the result. C may be A and/or B (e.g., X=X*X) */ |
4806 | | /* lhs is A */ |
4807 | | /* rhs is B */ |
4808 | | /* set is the context */ |
4809 | | /* status is the usual accumulator */ |
4810 | | /* */ |
4811 | | /* C must have space for set->digits digits. */ |
4812 | | /* */ |
4813 | | /* ------------------------------------------------------------------ */ |
4814 | | /* 'Classic' multiplication is used rather than Karatsuba, as the */ |
4815 | | /* latter would give only a minor improvement for the short numbers */ |
4816 | | /* expected to be handled most (and uses much more memory). */ |
4817 | | /* */ |
4818 | | /* There are two major paths here: the general-purpose ('old code') */ |
4819 | | /* path which handles all DECDPUN values, and a fastpath version */ |
4820 | | /* which is used if 64-bit ints are available, DECDPUN<=4, and more */ |
4821 | | /* than two calls to decUnitAddSub would be made. */ |
4822 | | /* */ |
4823 | | /* The fastpath version lumps units together into 8-digit or 9-digit */ |
4824 | | /* chunks, and also uses a lazy carry strategy to minimise expensive */ |
4825 | | /* 64-bit divisions. The chunks are then broken apart again into */ |
4826 | | /* units for continuing processing. Despite this overhead, the */ |
4827 | | /* fastpath can speed up some 16-digit operations by 10x (and much */ |
4828 | | /* more for higher-precision calculations). */ |
4829 | | /* */ |
4830 | | /* A buffer always has to be used for the accumulator; in the */ |
4831 | | /* fastpath, buffers are also always needed for the chunked copies of */ |
4832 | | /* of the operand coefficients. */ |
4833 | | /* Static buffers are larger than needed just for multiply, to allow */ |
4834 | | /* for calls from other operations (notably exp). */ |
4835 | | /* ------------------------------------------------------------------ */ |
4836 | | #define FASTMUL (DECUSE64 && DECDPUN<5) |
4837 | | static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, |
4838 | | const decNumber *rhs, decContext *set, |
4839 | 0 | uInt *status) { |
4840 | 0 | Int accunits; // Units of accumulator in use |
4841 | 0 | Int exponent; // work |
4842 | 0 | Int residue=0; // rounding residue |
4843 | 0 | uByte bits; // result sign |
4844 | 0 | Unit *acc; // -> accumulator Unit array |
4845 | 0 | Int needbytes; // size calculator |
4846 | 0 | void *allocacc=NULL; // -> allocated accumulator, iff allocated |
4847 | 0 | Unit accbuff[SD2U(DECBUFFER*4+1)]; // buffer (+1 for DECBUFFER==0, |
4848 | | // *4 for calls from other operations) |
4849 | 0 | const Unit *mer, *mermsup; // work |
4850 | 0 | Int madlength; // Units in multiplicand |
4851 | 0 | Int shift; // Units to shift multiplicand by |
4852 | |
|
4853 | 0 | #if FASTMUL |
4854 | | // if DECDPUN is 1 or 3 work in base 10**9, otherwise |
4855 | | // (DECDPUN is 2 or 4) then work in base 10**8 |
4856 | 0 | #if DECDPUN & 1 // odd |
4857 | 0 | #define FASTBASE 1000000000 // base |
4858 | 0 | #define FASTDIGS 9 // digits in base |
4859 | 0 | #define FASTLAZY 18 // carry resolution point [1->18] |
4860 | | #else |
4861 | | #define FASTBASE 100000000 |
4862 | | #define FASTDIGS 8 |
4863 | | #define FASTLAZY 1844 // carry resolution point [1->1844] |
4864 | | #endif |
4865 | | // three buffers are used, two for chunked copies of the operands |
4866 | | // (base 10**8 or base 10**9) and one base 2**64 accumulator with |
4867 | | // lazy carry evaluation |
4868 | 0 | uInt zlhibuff[(DECBUFFER*2+1)/8+1]; // buffer (+1 for DECBUFFER==0) |
4869 | 0 | uInt *zlhi=zlhibuff; // -> lhs array |
4870 | 0 | uInt *alloclhi=NULL; // -> allocated buffer, iff allocated |
4871 | 0 | uInt zrhibuff[(DECBUFFER*2+1)/8+1]; // buffer (+1 for DECBUFFER==0) |
4872 | 0 | uInt *zrhi=zrhibuff; // -> rhs array |
4873 | 0 | uInt *allocrhi=NULL; // -> allocated buffer, iff allocated |
4874 | 0 | uLong zaccbuff[(DECBUFFER*2+1)/4+2]; // buffer (+1 for DECBUFFER==0) |
4875 | | // [allocacc is shared for both paths, as only one will run] |
4876 | 0 | uLong *zacc=zaccbuff; // -> accumulator array for exact result |
4877 | | #if DECDPUN==1 |
4878 | | Int zoff; // accumulator offset |
4879 | | #endif |
4880 | 0 | uInt *lip, *rip; // item pointers |
4881 | 0 | uInt *lmsi, *rmsi; // most significant items |
4882 | 0 | Int ilhs, irhs, iacc; // item counts in the arrays |
4883 | 0 | Int lazy; // lazy carry counter |
4884 | 0 | uLong lcarry; // uLong carry |
4885 | 0 | uInt carry; // carry (NB not uLong) |
4886 | 0 | Int count; // work |
4887 | 0 | const Unit *cup; // .. |
4888 | 0 | Unit *up; // .. |
4889 | 0 | uLong *lp; // .. |
4890 | 0 | Int p; // .. |
4891 | 0 | #endif |
4892 | |
|
4893 | | #if DECSUBSET |
4894 | | decNumber *alloclhs=NULL; // -> allocated buffer, iff allocated |
4895 | | decNumber *allocrhs=NULL; // -> allocated buffer, iff allocated |
4896 | | #endif |
4897 | |
|
4898 | | #if DECCHECK |
4899 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
4900 | | #endif |
4901 | | |
4902 | | // precalculate result sign |
4903 | 0 | bits=(uByte)((lhs->bits^rhs->bits)&DECNEG); |
4904 | | |
4905 | | // handle infinities and NaNs |
4906 | 0 | if (SPECIALARGS) { // a special bit set |
4907 | 0 | if (SPECIALARGS & (DECSNAN | DECNAN)) { // one or two NaNs |
4908 | 0 | decNaNs(res, lhs, rhs, set, status); |
4909 | 0 | return res;} |
4910 | | // one or two infinities; Infinity * 0 is invalid |
4911 | 0 | if (((lhs->bits & DECINF)==0 && ISZERO(lhs)) |
4912 | 0 | ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { |
4913 | 0 | *status|=DEC_Invalid_operation; |
4914 | 0 | return res;} |
4915 | 0 | decNumberZero(res); |
4916 | 0 | res->bits=bits|DECINF; // infinity |
4917 | 0 | return res;} |
4918 | | |
4919 | | // For best speed, as in DMSRCN [the original Rexx numerics |
4920 | | // module], use the shorter number as the multiplier (rhs) and |
4921 | | // the longer as the multiplicand (lhs) to minimise the number of |
4922 | | // adds (partial products) |
4923 | 0 | if (lhs->digits<rhs->digits) { // swap... |
4924 | 0 | const decNumber *hold=lhs; |
4925 | 0 | lhs=rhs; |
4926 | 0 | rhs=hold; |
4927 | 0 | } |
4928 | |
|
4929 | 0 | do { // protect allocated storage |
4930 | | #if DECSUBSET |
4931 | | if (!set->extended) { |
4932 | | // reduce operands and set lostDigits status, as needed |
4933 | | if (lhs->digits>set->digits) { |
4934 | | alloclhs=decRoundOperand(lhs, set, status); |
4935 | | if (alloclhs==NULL) break; |
4936 | | lhs=alloclhs; |
4937 | | } |
4938 | | if (rhs->digits>set->digits) { |
4939 | | allocrhs=decRoundOperand(rhs, set, status); |
4940 | | if (allocrhs==NULL) break; |
4941 | | rhs=allocrhs; |
4942 | | } |
4943 | | } |
4944 | | #endif |
4945 | | // [following code does not require input rounding] |
4946 | |
|
4947 | | #if FASTMUL // fastpath can be used |
4948 | | // use the fast path if there are enough digits in the shorter |
4949 | | // operand to make the setup and takedown worthwhile |
4950 | 0 | #define NEEDTWO (DECDPUN*2) // within two decUnitAddSub calls |
4951 | 0 | if (rhs->digits>NEEDTWO) { // use fastpath... |
4952 | | // calculate the number of elements in each array |
4953 | 0 | ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; // [ceiling] |
4954 | 0 | irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; // .. |
4955 | 0 | iacc=ilhs+irhs; |
4956 | | |
4957 | | // allocate buffers if required, as usual |
4958 | 0 | needbytes=ilhs*sizeof(uInt); |
4959 | 0 | if (needbytes>(Int)sizeof(zlhibuff)) { |
4960 | 0 | alloclhi=(uInt *)malloc(needbytes); |
4961 | 0 | zlhi=alloclhi;} |
4962 | 0 | needbytes=irhs*sizeof(uInt); |
4963 | 0 | if (needbytes>(Int)sizeof(zrhibuff)) { |
4964 | 0 | allocrhi=(uInt *)malloc(needbytes); |
4965 | 0 | zrhi=allocrhi;} |
4966 | | |
4967 | | // Allocating the accumulator space needs a special case when |
4968 | | // DECDPUN=1 because when converting the accumulator to Units |
4969 | | // after the multiplication each 8-byte item becomes 9 1-byte |
4970 | | // units. Therefore iacc extra bytes are needed at the front |
4971 | | // (rounded up to a multiple of 8 bytes), and the uLong |
4972 | | // accumulator starts offset the appropriate number of units |
4973 | | // to the right to avoid overwrite during the unchunking. |
4974 | 0 | needbytes=iacc*sizeof(uLong); |
4975 | | #if DECDPUN==1 |
4976 | | zoff=(iacc+7)/8; // items to offset by |
4977 | | needbytes+=zoff*8; |
4978 | | #endif |
4979 | 0 | if (needbytes>(Int)sizeof(zaccbuff)) { |
4980 | 0 | allocacc=(uLong *)malloc(needbytes); |
4981 | 0 | zacc=(uLong *)allocacc;} |
4982 | 0 | if (zlhi==NULL||zrhi==NULL||zacc==NULL) { |
4983 | 0 | *status|=DEC_Insufficient_storage; |
4984 | 0 | break;} |
4985 | | |
4986 | 0 | acc=(Unit *)zacc; // -> target Unit array |
4987 | | #if DECDPUN==1 |
4988 | | zacc+=zoff; // start uLong accumulator to right |
4989 | | #endif |
4990 | | |
4991 | | // assemble the chunked copies of the left and right sides |
4992 | 0 | for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) |
4993 | 0 | for (p=0, *lip=0; p<FASTDIGS && count>0; |
4994 | 0 | p+=DECDPUN, cup++, count-=DECDPUN) |
4995 | 0 | *lip+=*cup*powers[p]; |
4996 | 0 | lmsi=lip-1; // save -> msi |
4997 | 0 | for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) |
4998 | 0 | for (p=0, *rip=0; p<FASTDIGS && count>0; |
4999 | 0 | p+=DECDPUN, cup++, count-=DECDPUN) |
5000 | 0 | *rip+=*cup*powers[p]; |
5001 | 0 | rmsi=rip-1; // save -> msi |
5002 | | |
5003 | | // zero the accumulator |
5004 | 0 | for (lp=zacc; lp<zacc+iacc; lp++) *lp=0; |
5005 | | |
5006 | | /* Start the multiplication */ |
5007 | | // Resolving carries can dominate the cost of accumulating the |
5008 | | // partial products, so this is only done when necessary. |
5009 | | // Each uLong item in the accumulator can hold values up to |
5010 | | // 2**64-1, and each partial product can be as large as |
5011 | | // (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to |
5012 | | // itself 18.4 times in a uLong without overflowing, so during |
5013 | | // the main calculation resolution is carried out every 18th |
5014 | | // add -- every 162 digits. Similarly, when FASTDIGS=8, the |
5015 | | // partial products can be added to themselves 1844.6 times in |
5016 | | // a uLong without overflowing, so intermediate carry |
5017 | | // resolution occurs only every 14752 digits. Hence for common |
5018 | | // short numbers usually only the one final carry resolution |
5019 | | // occurs. |
5020 | | // (The count is set via FASTLAZY to simplify experiments to |
5021 | | // measure the value of this approach: a 35% improvement on a |
5022 | | // [34x34] multiply.) |
5023 | 0 | lazy=FASTLAZY; // carry delay count |
5024 | 0 | for (rip=zrhi; rip<=rmsi; rip++) { // over each item in rhs |
5025 | 0 | lp=zacc+(rip-zrhi); // where to add the lhs |
5026 | 0 | for (lip=zlhi; lip<=lmsi; lip++, lp++) { // over each item in lhs |
5027 | 0 | *lp+=(uLong)(*lip)*(*rip); // [this should in-line] |
5028 | 0 | } // lip loop |
5029 | 0 | lazy--; |
5030 | 0 | if (lazy>0 && rip!=rmsi) continue; |
5031 | 0 | lazy=FASTLAZY; // reset delay count |
5032 | | // spin up the accumulator resolving overflows |
5033 | 0 | for (lp=zacc; lp<zacc+iacc; lp++) { |
5034 | 0 | if (*lp<FASTBASE) continue; // it fits |
5035 | 0 | lcarry=*lp/FASTBASE; // top part [slow divide] |
5036 | | // lcarry can exceed 2**32-1, so check again; this check |
5037 | | // and occasional extra divide (slow) is well worth it, as |
5038 | | // it allows FASTLAZY to be increased to 18 rather than 4 |
5039 | | // in the FASTDIGS=9 case |
5040 | 0 | if (lcarry<FASTBASE) carry=(uInt)lcarry; // [usual] |
5041 | 0 | else { // two-place carry [fairly rare] |
5042 | 0 | uInt carry2=(uInt)(lcarry/FASTBASE); // top top part |
5043 | 0 | *(lp+2)+=carry2; // add to item+2 |
5044 | 0 | *lp-=((uLong)FASTBASE*FASTBASE*carry2); // [slow] |
5045 | 0 | carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); // [inline] |
5046 | 0 | } |
5047 | 0 | *(lp+1)+=carry; // add to item above [inline] |
5048 | 0 | *lp-=((uLong)FASTBASE*carry); // [inline] |
5049 | 0 | } // carry resolution |
5050 | 0 | } // rip loop |
5051 | | |
5052 | | // The multiplication is complete; time to convert back into |
5053 | | // units. This can be done in-place in the accumulator and in |
5054 | | // 32-bit operations, because carries were resolved after the |
5055 | | // final add. This needs N-1 divides and multiplies for |
5056 | | // each item in the accumulator (which will become up to N |
5057 | | // units, where 2<=N<=9). |
5058 | 0 | for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { |
5059 | 0 | uInt item=(uInt)*lp; // decapitate to uInt |
5060 | 0 | for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) { |
5061 | 0 | uInt part=item/(DECDPUNMAX+1); |
5062 | 0 | *up=(Unit)(item-(part*(DECDPUNMAX+1))); |
5063 | 0 | item=part; |
5064 | 0 | } // p |
5065 | 0 | *up=(Unit)item; up++; // [final needs no division] |
5066 | 0 | } // lp |
5067 | 0 | accunits=up-acc; // count of units |
5068 | 0 | } |
5069 | 0 | else { // here to use units directly, without chunking ['old code'] |
5070 | 0 | #endif |
5071 | | |
5072 | | // if accumulator will be too long for local storage, then allocate |
5073 | 0 | acc=accbuff; // -> assume buffer for accumulator |
5074 | 0 | needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit); |
5075 | 0 | if (needbytes>(Int)sizeof(accbuff)) { |
5076 | 0 | allocacc=(Unit *)malloc(needbytes); |
5077 | 0 | if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} |
5078 | 0 | acc=(Unit *)allocacc; // use the allocated space |
5079 | 0 | } |
5080 | | |
5081 | | /* Now the main long multiplication loop */ |
5082 | | // Unlike the equivalent in the IBM Java implementation, there |
5083 | | // is no advantage in calculating from msu to lsu. So, do it |
5084 | | // by the book, as it were. |
5085 | | // Each iteration calculates ACC=ACC+MULTAND*MULT |
5086 | 0 | accunits=1; // accumulator starts at '0' |
5087 | 0 | *acc=0; // .. (lsu=0) |
5088 | 0 | shift=0; // no multiplicand shift at first |
5089 | 0 | madlength=D2U(lhs->digits); // this won't change |
5090 | 0 | mermsup=rhs->lsu+D2U(rhs->digits); // -> msu+1 of multiplier |
5091 | |
|
5092 | 0 | for (mer=rhs->lsu; mer<mermsup; mer++) { |
5093 | | // Here, *mer is the next Unit in the multiplier to use |
5094 | | // If non-zero [optimization] add it... |
5095 | 0 | if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift, |
5096 | 0 | lhs->lsu, madlength, 0, |
5097 | 0 | &acc[shift], *mer) |
5098 | 0 | + shift; |
5099 | 0 | else { // extend acc with a 0; it will be used shortly |
5100 | 0 | *(acc+accunits)=0; // [this avoids length of <=0 later] |
5101 | 0 | accunits++; |
5102 | 0 | } |
5103 | | // multiply multiplicand by 10**DECDPUN for next Unit to left |
5104 | 0 | shift++; // add this for 'logical length' |
5105 | 0 | } // n |
5106 | 0 | #if FASTMUL |
5107 | 0 | } // unchunked units |
5108 | 0 | #endif |
5109 | | // common end-path |
5110 | | #if DECTRACE |
5111 | | decDumpAr('*', acc, accunits); // Show exact result |
5112 | | #endif |
5113 | | |
5114 | | // acc now contains the exact result of the multiplication, |
5115 | | // possibly with a leading zero unit; build the decNumber from |
5116 | | // it, noting if any residue |
5117 | 0 | res->bits=bits; // set sign |
5118 | 0 | res->digits=decGetDigits(acc, accunits); // count digits exactly |
5119 | | |
5120 | | // There can be a 31-bit wrap in calculating the exponent. |
5121 | | // This can only happen if both input exponents are negative and |
5122 | | // both their magnitudes are large. If there was a wrap, set a |
5123 | | // safe very negative exponent, from which decFinalize() will |
5124 | | // raise a hard underflow shortly. |
5125 | 0 | exponent=lhs->exponent+rhs->exponent; // calculate exponent |
5126 | 0 | if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) |
5127 | 0 | exponent=-2*DECNUMMAXE; // force underflow |
5128 | 0 | res->exponent=exponent; // OK to overwrite now |
5129 | | |
5130 | | |
5131 | | // Set the coefficient. If any rounding, residue records |
5132 | 0 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
5133 | 0 | decFinish(res, set, &residue, status); // final cleanup |
5134 | 0 | } while(0); // end protected |
5135 | |
|
5136 | 0 | if (allocacc!=NULL) free(allocacc); // drop any storage used |
5137 | | #if DECSUBSET |
5138 | | if (allocrhs!=NULL) free(allocrhs); // .. |
5139 | | if (alloclhs!=NULL) free(alloclhs); // .. |
5140 | | #endif |
5141 | 0 | #if FASTMUL |
5142 | 0 | if (allocrhi!=NULL) free(allocrhi); // .. |
5143 | 0 | if (alloclhi!=NULL) free(alloclhi); // .. |
5144 | 0 | #endif |
5145 | 0 | return res; |
5146 | 0 | } // decMultiplyOp |
5147 | | |
5148 | | /* ------------------------------------------------------------------ */ |
5149 | | /* decExpOp -- effect exponentiation */ |
5150 | | /* */ |
5151 | | /* This computes C = exp(A) */ |
5152 | | /* */ |
5153 | | /* res is C, the result. C may be A */ |
5154 | | /* rhs is A */ |
5155 | | /* set is the context; note that rounding mode has no effect */ |
5156 | | /* */ |
5157 | | /* C must have space for set->digits digits. status is updated but */ |
5158 | | /* not set. */ |
5159 | | /* */ |
5160 | | /* Restrictions: */ |
5161 | | /* */ |
5162 | | /* digits, emax, and -emin in the context must be less than */ |
5163 | | /* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */ |
5164 | | /* bounds or a zero. This is an internal routine, so these */ |
5165 | | /* restrictions are contractual and not enforced. */ |
5166 | | /* */ |
5167 | | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
5168 | | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
5169 | | /* error in rare cases. */ |
5170 | | /* */ |
5171 | | /* Finite results will always be full precision and Inexact, except */ |
5172 | | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
5173 | | /* ------------------------------------------------------------------ */ |
5174 | | /* This approach used here is similar to the algorithm described in */ |
5175 | | /* */ |
5176 | | /* Variable Precision Exponential Function, T. E. Hull and */ |
5177 | | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ |
5178 | | /* pp79-91, ACM, June 1986. */ |
5179 | | /* */ |
5180 | | /* with the main difference being that the iterations in the series */ |
5181 | | /* evaluation are terminated dynamically (which does not require the */ |
5182 | | /* extra variable-precision variables which are expensive in this */ |
5183 | | /* context). */ |
5184 | | /* */ |
5185 | | /* The error analysis in Hull & Abrham's paper applies except for the */ |
5186 | | /* round-off error accumulation during the series evaluation. This */ |
5187 | | /* code does not precalculate the number of iterations and so cannot */ |
5188 | | /* use Horner's scheme. Instead, the accumulation is done at double- */ |
5189 | | /* precision, which ensures that the additions of the terms are exact */ |
5190 | | /* and do not accumulate round-off (and any round-off errors in the */ |
5191 | | /* terms themselves move 'to the right' faster than they can */ |
5192 | | /* accumulate). This code also extends the calculation by allowing, */ |
5193 | | /* in the spirit of other decNumber operators, the input to be more */ |
5194 | | /* precise than the result (the precision used is based on the more */ |
5195 | | /* precise of the input or requested result). */ |
5196 | | /* */ |
5197 | | /* Implementation notes: */ |
5198 | | /* */ |
5199 | | /* 1. This is separated out as decExpOp so it can be called from */ |
5200 | | /* other Mathematical functions (notably Ln) with a wider range */ |
5201 | | /* than normal. In particular, it can handle the slightly wider */ |
5202 | | /* (double) range needed by Ln (which has to be able to calculate */ |
5203 | | /* exp(-x) where x can be the tiniest number (Ntiny). */ |
5204 | | /* */ |
5205 | | /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */ |
5206 | | /* iterations by approximately a third with additional (although */ |
5207 | | /* diminishing) returns as the range is reduced to even smaller */ |
5208 | | /* fractions. However, h (the power of 10 used to correct the */ |
5209 | | /* result at the end, see below) must be kept <=8 as otherwise */ |
5210 | | /* the final result cannot be computed. Hence the leverage is a */ |
5211 | | /* sliding value (8-h), where potentially the range is reduced */ |
5212 | | /* more for smaller values. */ |
5213 | | /* */ |
5214 | | /* The leverage that can be applied in this way is severely */ |
5215 | | /* limited by the cost of the raise-to-the power at the end, */ |
5216 | | /* which dominates when the number of iterations is small (less */ |
5217 | | /* than ten) or when rhs is short. As an example, the adjustment */ |
5218 | | /* x**10,000,000 needs 31 multiplications, all but one full-width. */ |
5219 | | /* */ |
5220 | | /* 3. The restrictions (especially precision) could be raised with */ |
5221 | | /* care, but the full decNumber range seems very hard within the */ |
5222 | | /* 32-bit limits. */ |
5223 | | /* */ |
5224 | | /* 4. The working precisions for the static buffers are twice the */ |
5225 | | /* obvious size to allow for calls from decNumberPower. */ |
5226 | | /* ------------------------------------------------------------------ */ |
5227 | | decNumber * decExpOp(decNumber *res, const decNumber *rhs, |
5228 | 0 | decContext *set, uInt *status) { |
5229 | 0 | uInt ignore=0; // working status |
5230 | 0 | Int h; // adjusted exponent for 0.xxxx |
5231 | 0 | Int p; // working precision |
5232 | 0 | Int residue; // rounding residue |
5233 | 0 | uInt needbytes; // for space calculations |
5234 | 0 | const decNumber *x=rhs; // (may point to safe copy later) |
5235 | 0 | decContext aset, tset, dset; // working contexts |
5236 | 0 | Int comp; // work |
5237 | | |
5238 | | // the argument is often copied to normalize it, so (unusually) it |
5239 | | // is treated like other buffers, using DECBUFFER, +1 in case |
5240 | | // DECBUFFER is 0 |
5241 | 0 | decNumber bufr[D2N(DECBUFFER*2+1)]; |
5242 | 0 | decNumber *allocrhs=NULL; // non-NULL if rhs buffer allocated |
5243 | | |
5244 | | // the working precision will be no more than set->digits+8+1 |
5245 | | // so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER |
5246 | | // is 0 (and twice that for the accumulator) |
5247 | | |
5248 | | // buffer for t, term (working precision plus) |
5249 | 0 | decNumber buft[D2N(DECBUFFER*2+9+1)]; |
5250 | 0 | decNumber *allocbuft=NULL; // -> allocated buft, iff allocated |
5251 | 0 | decNumber *t=buft; // term |
5252 | | // buffer for a, accumulator (working precision * 2), at least 9 |
5253 | 0 | decNumber bufa[D2N(DECBUFFER*4+18+1)]; |
5254 | 0 | decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated |
5255 | 0 | decNumber *a=bufa; // accumulator |
5256 | | // decNumber for the divisor term; this needs at most 9 digits |
5257 | | // and so can be fixed size [16 so can use standard context] |
5258 | 0 | decNumber bufd[D2N(16)]; |
5259 | 0 | decNumber *d=bufd; // divisor |
5260 | 0 | decNumber numone; // constant 1 |
5261 | |
|
5262 | | #if DECCHECK |
5263 | | Int iterations=0; // for later sanity check |
5264 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
5265 | | #endif |
5266 | |
|
5267 | 0 | do { // protect allocated storage |
5268 | 0 | if (SPECIALARG) { // handle infinities and NaNs |
5269 | 0 | if (decNumberIsInfinite(rhs)) { // an infinity |
5270 | 0 | if (decNumberIsNegative(rhs)) // -Infinity -> +0 |
5271 | 0 | decNumberZero(res); |
5272 | 0 | else decNumberCopy(res, rhs); // +Infinity -> self |
5273 | 0 | } |
5274 | 0 | else decNaNs(res, rhs, NULL, set, status); // a NaN |
5275 | 0 | break;} |
5276 | | |
5277 | 0 | if (ISZERO(rhs)) { // zeros -> exact 1 |
5278 | 0 | decNumberZero(res); // make clean 1 |
5279 | 0 | *res->lsu=1; // .. |
5280 | 0 | break;} // [no status to set] |
5281 | | |
5282 | | // e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path |
5283 | | // positive and negative tiny cases which will result in inexact |
5284 | | // 1. This also allows the later add-accumulate to always be |
5285 | | // exact (because its length will never be more than twice the |
5286 | | // working precision). |
5287 | | // The comparator (tiny) needs just one digit, so use the |
5288 | | // decNumber d for it (reused as the divisor, etc., below); its |
5289 | | // exponent is such that if x is positive it will have |
5290 | | // set->digits-1 zeros between the decimal point and the digit, |
5291 | | // which is 4, and if x is negative one more zero there as the |
5292 | | // more precise result will be of the form 0.9999999 rather than |
5293 | | // 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 |
5294 | | // or 0.00000004 if digits=7 and x<0. If RHS not larger than |
5295 | | // this then the result will be 1.000000 |
5296 | 0 | decNumberZero(d); // clean |
5297 | 0 | *d->lsu=4; // set 4 .. |
5298 | 0 | d->exponent=-set->digits; // * 10**(-d) |
5299 | 0 | if (decNumberIsNegative(rhs)) d->exponent--; // negative case |
5300 | 0 | comp=decCompare(d, rhs, 1); // signless compare |
5301 | 0 | if (comp==BADINT) { |
5302 | 0 | *status|=DEC_Insufficient_storage; |
5303 | 0 | break;} |
5304 | 0 | if (comp>=0) { // rhs < d |
5305 | 0 | Int shift=set->digits-1; |
5306 | 0 | decNumberZero(res); // set 1 |
5307 | 0 | *res->lsu=1; // .. |
5308 | 0 | res->digits=decShiftToMost(res->lsu, 1, shift); |
5309 | 0 | res->exponent=-shift; // make 1.0000... |
5310 | 0 | *status|=DEC_Inexact | DEC_Rounded; // .. inexactly |
5311 | 0 | break;} // tiny |
5312 | | |
5313 | | // set up the context to be used for calculating a, as this is |
5314 | | // used on both paths below |
5315 | 0 | decContextDefault(&aset, DEC_INIT_DECIMAL64); |
5316 | | // accumulator bounds are as requested (could underflow) |
5317 | 0 | aset.emax=set->emax; // usual bounds |
5318 | 0 | aset.emin=set->emin; // .. |
5319 | 0 | aset.clamp=0; // and no concrete format |
5320 | | |
5321 | | // calculate the adjusted (Hull & Abrham) exponent (where the |
5322 | | // decimal point is just to the left of the coefficient msd) |
5323 | 0 | h=rhs->exponent+rhs->digits; |
5324 | | // if h>8 then 10**h cannot be calculated safely; however, when |
5325 | | // h=8 then exp(|rhs|) will be at least exp(1E+7) which is at |
5326 | | // least 6.59E+4342944, so (due to the restriction on Emax/Emin) |
5327 | | // overflow (or underflow to 0) is guaranteed -- so this case can |
5328 | | // be handled by simply forcing the appropriate excess |
5329 | 0 | if (h>8) { // overflow/underflow |
5330 | | // set up here so Power call below will over or underflow to |
5331 | | // zero; set accumulator to either 2 or 0.02 |
5332 | | // [stack buffer for a is always big enough for this] |
5333 | 0 | decNumberZero(a); |
5334 | 0 | *a->lsu=2; // not 1 but < exp(1) |
5335 | 0 | if (decNumberIsNegative(rhs)) a->exponent=-2; // make 0.02 |
5336 | 0 | h=8; // clamp so 10**h computable |
5337 | 0 | p=9; // set a working precision |
5338 | 0 | } |
5339 | 0 | else { // h<=8 |
5340 | 0 | Int maxlever=(rhs->digits>8?1:0); |
5341 | | // [could/should increase this for precisions >40 or so, too] |
5342 | | |
5343 | | // if h is 8, cannot normalize to a lower upper limit because |
5344 | | // the final result will not be computable (see notes above), |
5345 | | // but leverage can be applied whenever h is less than 8. |
5346 | | // Apply as much as possible, up to a MAXLEVER digits, which |
5347 | | // sets the tradeoff against the cost of the later a**(10**h). |
5348 | | // As h is increased, the working precision below also |
5349 | | // increases to compensate for the "constant digits at the |
5350 | | // front" effect. |
5351 | 0 | Int lever=MINI(8-h, maxlever); // leverage attainable |
5352 | 0 | Int use=-rhs->digits-lever; // exponent to use for RHS |
5353 | 0 | h+=lever; // apply leverage selected |
5354 | 0 | if (h<0) { // clamp |
5355 | 0 | use+=h; // [may end up subnormal] |
5356 | 0 | h=0; |
5357 | 0 | } |
5358 | | // Take a copy of RHS if it needs normalization (true whenever x>=1) |
5359 | 0 | if (rhs->exponent!=use) { |
5360 | 0 | decNumber *newrhs=bufr; // assume will fit on stack |
5361 | 0 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
5362 | 0 | if (needbytes>sizeof(bufr)) { // need malloc space |
5363 | 0 | allocrhs=(decNumber *)malloc(needbytes); |
5364 | 0 | if (allocrhs==NULL) { // hopeless -- abandon |
5365 | 0 | *status|=DEC_Insufficient_storage; |
5366 | 0 | break;} |
5367 | 0 | newrhs=allocrhs; // use the allocated space |
5368 | 0 | } |
5369 | 0 | decNumberCopy(newrhs, rhs); // copy to safe space |
5370 | 0 | newrhs->exponent=use; // normalize; now <1 |
5371 | 0 | x=newrhs; // ready for use |
5372 | | // decNumberShow(x); |
5373 | 0 | } |
5374 | | |
5375 | | // Now use the usual power series to evaluate exp(x). The |
5376 | | // series starts as 1 + x + x^2/2 ... so prime ready for the |
5377 | | // third term by setting the term variable t=x, the accumulator |
5378 | | // a=1, and the divisor d=2. |
5379 | | |
5380 | | // First determine the working precision. From Hull & Abrham |
5381 | | // this is set->digits+h+2. However, if x is 'over-precise' we |
5382 | | // need to allow for all its digits to potentially participate |
5383 | | // (consider an x where all the excess digits are 9s) so in |
5384 | | // this case use x->digits+h+2 |
5385 | 0 | p=MAXI(x->digits, set->digits)+h+2; // [h<=8] |
5386 | | |
5387 | | // a and t are variable precision, and depend on p, so space |
5388 | | // must be allocated for them if necessary |
5389 | | |
5390 | | // the accumulator needs to be able to hold 2p digits so that |
5391 | | // the additions on the second and subsequent iterations are |
5392 | | // sufficiently exact. |
5393 | 0 | needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit); |
5394 | 0 | if (needbytes>sizeof(bufa)) { // need malloc space |
5395 | 0 | allocbufa=(decNumber *)malloc(needbytes); |
5396 | 0 | if (allocbufa==NULL) { // hopeless -- abandon |
5397 | 0 | *status|=DEC_Insufficient_storage; |
5398 | 0 | break;} |
5399 | 0 | a=allocbufa; // use the allocated space |
5400 | 0 | } |
5401 | | // the term needs to be able to hold p digits (which is |
5402 | | // guaranteed to be larger than x->digits, so the initial copy |
5403 | | // is safe); it may also be used for the raise-to-power |
5404 | | // calculation below, which needs an extra two digits |
5405 | 0 | needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit); |
5406 | 0 | if (needbytes>sizeof(buft)) { // need malloc space |
5407 | 0 | allocbuft=(decNumber *)malloc(needbytes); |
5408 | 0 | if (allocbuft==NULL) { // hopeless -- abandon |
5409 | 0 | *status|=DEC_Insufficient_storage; |
5410 | 0 | break;} |
5411 | 0 | t=allocbuft; // use the allocated space |
5412 | 0 | } |
5413 | | |
5414 | 0 | decNumberCopy(t, x); // term=x |
5415 | 0 | decNumberZero(a); *a->lsu=1; // accumulator=1 |
5416 | 0 | decNumberZero(d); *d->lsu=2; // divisor=2 |
5417 | 0 | decNumberZero(&numone); *numone.lsu=1; // constant 1 for increment |
5418 | | |
5419 | | // set up the contexts for calculating a, t, and d |
5420 | 0 | decContextDefault(&tset, DEC_INIT_DECIMAL64); |
5421 | 0 | dset=tset; |
5422 | | // accumulator bounds are set above, set precision now |
5423 | 0 | aset.digits=p*2; // double |
5424 | | // term bounds avoid any underflow or overflow |
5425 | 0 | tset.digits=p; |
5426 | 0 | tset.emin=DEC_MIN_EMIN; // [emax is plenty] |
5427 | | // [dset.digits=16, etc., are sufficient] |
5428 | | |
5429 | | // finally ready to roll |
5430 | 0 | for (;;) { |
5431 | | #if DECCHECK |
5432 | | iterations++; |
5433 | | #endif |
5434 | | // only the status from the accumulation is interesting |
5435 | | // [but it should remain unchanged after first add] |
5436 | 0 | decAddOp(a, a, t, &aset, 0, status); // a=a+t |
5437 | 0 | decMultiplyOp(t, t, x, &tset, &ignore); // t=t*x |
5438 | 0 | decDivideOp(t, t, d, &tset, DIVIDE, &ignore); // t=t/d |
5439 | | // the iteration ends when the term cannot affect the result, |
5440 | | // if rounded to p digits, which is when its value is smaller |
5441 | | // than the accumulator by p+1 digits. There must also be |
5442 | | // full precision in a. |
5443 | 0 | if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) |
5444 | 0 | && (a->digits>=p)) break; |
5445 | 0 | decAddOp(d, d, &numone, &dset, 0, &ignore); // d=d+1 |
5446 | 0 | } // iterate |
5447 | |
|
5448 | | #if DECCHECK |
5449 | | // just a sanity check; comment out test to show always |
5450 | | if (iterations>p+3) |
5451 | | printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", |
5452 | | (LI)iterations, (LI)*status, (LI)p, (LI)x->digits); |
5453 | | #endif |
5454 | 0 | } // h<=8 |
5455 | | |
5456 | | // apply postconditioning: a=a**(10**h) -- this is calculated |
5457 | | // at a slightly higher precision than Hull & Abrham suggest |
5458 | 0 | if (h>0) { |
5459 | 0 | Int seenbit=0; // set once a 1-bit is seen |
5460 | 0 | Int i; // counter |
5461 | 0 | Int n=powers[h]; // always positive |
5462 | 0 | aset.digits=p+2; // sufficient precision |
5463 | | // avoid the overhead and many extra digits of decNumberPower |
5464 | | // as all that is needed is the short 'multipliers' loop; here |
5465 | | // accumulate the answer into t |
5466 | 0 | decNumberZero(t); *t->lsu=1; // acc=1 |
5467 | 0 | for (i=1;;i++){ // for each bit [top bit ignored] |
5468 | | // abandon if have had overflow or terminal underflow |
5469 | 0 | if (*status & (DEC_Overflow|DEC_Underflow)) { // interesting? |
5470 | 0 | if (*status&DEC_Overflow || ISZERO(t)) break;} |
5471 | 0 | n=n<<1; // move next bit to testable position |
5472 | 0 | if (n<0) { // top bit is set |
5473 | 0 | seenbit=1; // OK, have a significant bit |
5474 | 0 | decMultiplyOp(t, t, a, &aset, status); // acc=acc*x |
5475 | 0 | } |
5476 | 0 | if (i==31) break; // that was the last bit |
5477 | 0 | if (!seenbit) continue; // no need to square 1 |
5478 | 0 | decMultiplyOp(t, t, t, &aset, status); // acc=acc*acc [square] |
5479 | 0 | } /*i*/ // 32 bits |
5480 | | // decNumberShow(t); |
5481 | 0 | a=t; // and carry on using t instead of a |
5482 | 0 | } |
5483 | | |
5484 | | // Copy and round the result to res |
5485 | 0 | residue=1; // indicate dirt to right .. |
5486 | 0 | if (ISZERO(a)) residue=0; // .. unless underflowed to 0 |
5487 | 0 | aset.digits=set->digits; // [use default rounding] |
5488 | 0 | decCopyFit(res, a, &aset, &residue, status); // copy & shorten |
5489 | 0 | decFinish(res, set, &residue, status); // cleanup/set flags |
5490 | 0 | } while(0); // end protected |
5491 | |
|
5492 | 0 | if (allocrhs !=NULL) free(allocrhs); // drop any storage used |
5493 | 0 | if (allocbufa!=NULL) free(allocbufa); // .. |
5494 | 0 | if (allocbuft!=NULL) free(allocbuft); // .. |
5495 | | // [status is handled by caller] |
5496 | 0 | return res; |
5497 | 0 | } // decExpOp |
5498 | | |
5499 | | /* ------------------------------------------------------------------ */ |
5500 | | /* Initial-estimate natural logarithm table */ |
5501 | | /* */ |
5502 | | /* LNnn -- 90-entry 16-bit table for values from .10 through .99. */ |
5503 | | /* The result is a 4-digit encode of the coefficient (c=the */ |
5504 | | /* top 14 bits encoding 0-9999) and a 2-digit encode of the */ |
5505 | | /* exponent (e=the bottom 2 bits encoding 0-3) */ |
5506 | | /* */ |
5507 | | /* The resulting value is given by: */ |
5508 | | /* */ |
5509 | | /* v = -c * 10**(-e-3) */ |
5510 | | /* */ |
5511 | | /* where e and c are extracted from entry k = LNnn[x-10] */ |
5512 | | /* where x is truncated (NB) into the range 10 through 99, */ |
5513 | | /* and then c = k>>2 and e = k&3. */ |
5514 | | /* ------------------------------------------------------------------ */ |
5515 | | const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208, |
5516 | | 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312, |
5517 | | 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032, |
5518 | | 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, |
5519 | | 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, |
5520 | | 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, |
5521 | | 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, |
5522 | | 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801, |
5523 | | 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, |
5524 | | 10130, 6046, 20055}; |
5525 | | |
5526 | | /* ------------------------------------------------------------------ */ |
5527 | | /* decLnOp -- effect natural logarithm */ |
5528 | | /* */ |
5529 | | /* This computes C = ln(A) */ |
5530 | | /* */ |
5531 | | /* res is C, the result. C may be A */ |
5532 | | /* rhs is A */ |
5533 | | /* set is the context; note that rounding mode has no effect */ |
5534 | | /* */ |
5535 | | /* C must have space for set->digits digits. */ |
5536 | | /* */ |
5537 | | /* Notable cases: */ |
5538 | | /* A<0 -> Invalid */ |
5539 | | /* A=0 -> -Infinity (Exact) */ |
5540 | | /* A=+Infinity -> +Infinity (Exact) */ |
5541 | | /* A=1 exactly -> 0 (Exact) */ |
5542 | | /* */ |
5543 | | /* Restrictions (as for Exp): */ |
5544 | | /* */ |
5545 | | /* digits, emax, and -emin in the context must be less than */ |
5546 | | /* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */ |
5547 | | /* bounds or a zero. This is an internal routine, so these */ |
5548 | | /* restrictions are contractual and not enforced. */ |
5549 | | /* */ |
5550 | | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
5551 | | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
5552 | | /* error in rare cases. */ |
5553 | | /* ------------------------------------------------------------------ */ |
5554 | | /* The result is calculated using Newton's method, with each */ |
5555 | | /* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */ |
5556 | | /* Epperson 1989. */ |
5557 | | /* */ |
5558 | | /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ |
5559 | | /* This has to be calculated at the sum of the precision of x and the */ |
5560 | | /* working precision. */ |
5561 | | /* */ |
5562 | | /* Implementation notes: */ |
5563 | | /* */ |
5564 | | /* 1. This is separated out as decLnOp so it can be called from */ |
5565 | | /* other Mathematical functions (e.g., Log 10) with a wider range */ |
5566 | | /* than normal. In particular, it can handle the slightly wider */ |
5567 | | /* (+9+2) range needed by a power function. */ |
5568 | | /* */ |
5569 | | /* 2. The speed of this function is about 10x slower than exp, as */ |
5570 | | /* it typically needs 4-6 iterations for short numbers, and the */ |
5571 | | /* extra precision needed adds a squaring effect, twice. */ |
5572 | | /* */ |
5573 | | /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */ |
5574 | | /* as these are common requests. ln(10) is used by log10(x). */ |
5575 | | /* */ |
5576 | | /* 4. An iteration might be saved by widening the LNnn table, and */ |
5577 | | /* would certainly save at least one if it were made ten times */ |
5578 | | /* bigger, too (for truncated fractions 0.100 through 0.999). */ |
5579 | | /* However, for most practical evaluations, at least four or five */ |
5580 | | /* iterations will be neede -- so this would only speed up by */ |
5581 | | /* 20-25% and that probably does not justify increasing the table */ |
5582 | | /* size. */ |
5583 | | /* */ |
5584 | | /* 5. The static buffers are larger than might be expected to allow */ |
5585 | | /* for calls from decNumberPower. */ |
5586 | | /* ------------------------------------------------------------------ */ |
5587 | | decNumber * decLnOp(decNumber *res, const decNumber *rhs, |
5588 | 0 | decContext *set, uInt *status) { |
5589 | 0 | uInt ignore=0; // working status accumulator |
5590 | 0 | uInt needbytes; // for space calculations |
5591 | 0 | Int residue; // rounding residue |
5592 | 0 | Int r; // rhs=f*10**r [see below] |
5593 | 0 | Int p; // working precision |
5594 | 0 | Int pp; // precision for iteration |
5595 | 0 | Int t; // work |
5596 | | |
5597 | | // buffers for a (accumulator, typically precision+2) and b |
5598 | | // (adjustment calculator, same size) |
5599 | 0 | decNumber bufa[D2N(DECBUFFER+12)]; |
5600 | 0 | decNumber *allocbufa=NULL; // -> allocated bufa, iff allocated |
5601 | 0 | decNumber *a=bufa; // accumulator/work |
5602 | 0 | decNumber bufb[D2N(DECBUFFER*2+2)]; |
5603 | 0 | decNumber *allocbufb=NULL; // -> allocated bufa, iff allocated |
5604 | 0 | decNumber *b=bufb; // adjustment/work |
5605 | |
|
5606 | 0 | decNumber numone; // constant 1 |
5607 | 0 | decNumber cmp; // work |
5608 | 0 | decContext aset, bset; // working contexts |
5609 | |
|
5610 | | #if DECCHECK |
5611 | | Int iterations=0; // for later sanity check |
5612 | | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
5613 | | #endif |
5614 | |
|
5615 | 0 | do { // protect allocated storage |
5616 | 0 | if (SPECIALARG) { // handle infinities and NaNs |
5617 | 0 | if (decNumberIsInfinite(rhs)) { // an infinity |
5618 | 0 | if (decNumberIsNegative(rhs)) // -Infinity -> error |
5619 | 0 | *status|=DEC_Invalid_operation; |
5620 | 0 | else decNumberCopy(res, rhs); // +Infinity -> self |
5621 | 0 | } |
5622 | 0 | else decNaNs(res, rhs, NULL, set, status); // a NaN |
5623 | 0 | break;} |
5624 | | |
5625 | 0 | if (ISZERO(rhs)) { // +/- zeros -> -Infinity |
5626 | 0 | decNumberZero(res); // make clean |
5627 | 0 | res->bits=DECINF|DECNEG; // set - infinity |
5628 | 0 | break;} // [no status to set] |
5629 | | |
5630 | | // Non-zero negatives are bad... |
5631 | 0 | if (decNumberIsNegative(rhs)) { // -x -> error |
5632 | 0 | *status|=DEC_Invalid_operation; |
5633 | 0 | break;} |
5634 | | |
5635 | | // Here, rhs is positive, finite, and in range |
5636 | | |
5637 | | // lookaside fastpath code for ln(2) and ln(10) at common lengths |
5638 | 0 | if (rhs->exponent==0 && set->digits<=40) { |
5639 | | #if DECDPUN==1 |
5640 | | if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { // ln(10) |
5641 | | #else |
5642 | 0 | if (rhs->lsu[0]==10 && rhs->digits==2) { // ln(10) |
5643 | 0 | #endif |
5644 | 0 | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; |
5645 | 0 | #define LN10 "2.302585092994045684017991454684364207601" |
5646 | 0 | decNumberFromString(res, LN10, &aset); |
5647 | 0 | *status|=(DEC_Inexact | DEC_Rounded); // is inexact |
5648 | 0 | break;} |
5649 | 0 | if (rhs->lsu[0]==2 && rhs->digits==1) { // ln(2) |
5650 | 0 | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; |
5651 | 0 | #define LN2 "0.6931471805599453094172321214581765680755" |
5652 | 0 | decNumberFromString(res, LN2, &aset); |
5653 | 0 | *status|=(DEC_Inexact | DEC_Rounded); |
5654 | 0 | break;} |
5655 | 0 | } // integer and short |
5656 | | |
5657 | | // Determine the working precision. This is normally the |
5658 | | // requested precision + 2, with a minimum of 9. However, if |
5659 | | // the rhs is 'over-precise' then allow for all its digits to |
5660 | | // potentially participate (consider an rhs where all the excess |
5661 | | // digits are 9s) so in this case use rhs->digits+2. |
5662 | 0 | p=MAXI(rhs->digits, MAXI(set->digits, 7))+2; |
5663 | | |
5664 | | // Allocate space for the accumulator and the high-precision |
5665 | | // adjustment calculator, if necessary. The accumulator must |
5666 | | // be able to hold p digits, and the adjustment up to |
5667 | | // rhs->digits+p digits. They are also made big enough for 16 |
5668 | | // digits so that they can be used for calculating the initial |
5669 | | // estimate. |
5670 | 0 | needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit); |
5671 | 0 | if (needbytes>sizeof(bufa)) { // need malloc space |
5672 | 0 | allocbufa=(decNumber *)malloc(needbytes); |
5673 | 0 | if (allocbufa==NULL) { // hopeless -- abandon |
5674 | 0 | *status|=DEC_Insufficient_storage; |
5675 | 0 | break;} |
5676 | 0 | a=allocbufa; // use the allocated space |
5677 | 0 | } |
5678 | 0 | pp=p+rhs->digits; |
5679 | 0 | needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit); |
5680 | 0 | if (needbytes>sizeof(bufb)) { // need malloc space |
5681 | 0 | allocbufb=(decNumber *)malloc(needbytes); |
5682 | 0 | if (allocbufb==NULL) { // hopeless -- abandon |
5683 | 0 | *status|=DEC_Insufficient_storage; |
5684 | 0 | break;} |
5685 | 0 | b=allocbufb; // use the allocated space |
5686 | 0 | } |
5687 | | |
5688 | | // Prepare an initial estimate in acc. Calculate this by |
5689 | | // considering the coefficient of x to be a normalized fraction, |
5690 | | // f, with the decimal point at far left and multiplied by |
5691 | | // 10**r. Then, rhs=f*10**r and 0.1<=f<1, and |
5692 | | // ln(x) = ln(f) + ln(10)*r |
5693 | | // Get the initial estimate for ln(f) from a small lookup |
5694 | | // table (see above) indexed by the first two digits of f, |
5695 | | // truncated. |
5696 | | |
5697 | 0 | decContextDefault(&aset, DEC_INIT_DECIMAL64); // 16-digit extended |
5698 | 0 | r=rhs->exponent+rhs->digits; // 'normalised' exponent |
5699 | 0 | decNumberFromInt32(a, r); // a=r |
5700 | 0 | decNumberFromInt32(b, 2302585); // b=ln(10) (2.302585) |
5701 | 0 | b->exponent=-6; // .. |
5702 | 0 | decMultiplyOp(a, a, b, &aset, &ignore); // a=a*b |
5703 | | // now get top two digits of rhs into b by simple truncate and |
5704 | | // force to integer |
5705 | 0 | residue=0; // (no residue) |
5706 | 0 | aset.digits=2; aset.round=DEC_ROUND_DOWN; |
5707 | 0 | decCopyFit(b, rhs, &aset, &residue, &ignore); // copy & shorten |
5708 | 0 | b->exponent=0; // make integer |
5709 | 0 | t=decGetInt(b); // [cannot fail] |
5710 | 0 | if (t<10) t=X10(t); // adjust single-digit b |
5711 | 0 | t=LNnn[t-10]; // look up ln(b) |
5712 | 0 | decNumberFromInt32(b, t>>2); // b=ln(b) coefficient |
5713 | 0 | b->exponent=-(t&3)-3; // set exponent |
5714 | 0 | b->bits=DECNEG; // ln(0.10)->ln(0.99) always -ve |
5715 | 0 | aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; // restore |
5716 | 0 | decAddOp(a, a, b, &aset, 0, &ignore); // acc=a+b |
5717 | | // the initial estimate is now in a, with up to 4 digits correct. |
5718 | | // When rhs is at or near Nmax the estimate will be low, so we |
5719 | | // will approach it from below, avoiding overflow when calling exp. |
5720 | |
|
5721 | 0 | decNumberZero(&numone); *numone.lsu=1; // constant 1 for adjustment |
5722 | | |
5723 | | // accumulator bounds are as requested (could underflow, but |
5724 | | // cannot overflow) |
5725 | 0 | aset.emax=set->emax; |
5726 | 0 | aset.emin=set->emin; |
5727 | 0 | aset.clamp=0; // no concrete format |
5728 | | // set up a context to be used for the multiply and subtract |
5729 | 0 | bset=aset; |
5730 | 0 | bset.emax=DEC_MAX_MATH*2; // use double bounds for the |
5731 | 0 | bset.emin=-DEC_MAX_MATH*2; // adjustment calculation |
5732 | | // [see decExpOp call below] |
5733 | | // for each iteration double the number of digits to calculate, |
5734 | | // up to a maximum of p |
5735 | 0 | pp=9; // initial precision |
5736 | | // [initially 9 as then the sequence starts 7+2, 16+2, and |
5737 | | // 34+2, which is ideal for standard-sized numbers] |
5738 | 0 | aset.digits=pp; // working context |
5739 | 0 | bset.digits=pp+rhs->digits; // wider context |
5740 | 0 | for (;;) { // iterate |
5741 | | #if DECCHECK |
5742 | | iterations++; |
5743 | | if (iterations>24) break; // consider 9 * 2**24 |
5744 | | #endif |
5745 | | // calculate the adjustment (exp(-a)*x-1) into b. This is a |
5746 | | // catastrophic subtraction but it really is the difference |
5747 | | // from 1 that is of interest. |
5748 | | // Use the internal entry point to Exp as it allows the double |
5749 | | // range for calculating exp(-a) when a is the tiniest subnormal. |
5750 | 0 | a->bits^=DECNEG; // make -a |
5751 | 0 | decExpOp(b, a, &bset, &ignore); // b=exp(-a) |
5752 | 0 | a->bits^=DECNEG; // restore sign of a |
5753 | | // now multiply by rhs and subtract 1, at the wider precision |
5754 | 0 | decMultiplyOp(b, b, rhs, &bset, &ignore); // b=b*rhs |
5755 | 0 | decAddOp(b, b, &numone, &bset, DECNEG, &ignore); // b=b-1 |
5756 | | |
5757 | | // the iteration ends when the adjustment cannot affect the |
5758 | | // result by >=0.5 ulp (at the requested digits), which |
5759 | | // is when its value is smaller than the accumulator by |
5760 | | // set->digits+1 digits (or it is zero) -- this is a looser |
5761 | | // requirement than for Exp because all that happens to the |
5762 | | // accumulator after this is the final rounding (but note that |
5763 | | // there must also be full precision in a, or a=0). |
5764 | |
|
5765 | 0 | if (decNumberIsZero(b) || |
5766 | 0 | (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { |
5767 | 0 | if (a->digits==p) break; |
5768 | 0 | if (decNumberIsZero(a)) { |
5769 | 0 | decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); // rhs=1 ? |
5770 | 0 | if (cmp.lsu[0]==0) a->exponent=0; // yes, exact 0 |
5771 | 0 | else *status|=(DEC_Inexact | DEC_Rounded); // no, inexact |
5772 | 0 | break; |
5773 | 0 | } |
5774 | | // force padding if adjustment has gone to 0 before full length |
5775 | 0 | if (decNumberIsZero(b)) b->exponent=a->exponent-p; |
5776 | 0 | } |
5777 | | |
5778 | | // not done yet ... |
5779 | 0 | decAddOp(a, a, b, &aset, 0, &ignore); // a=a+b for next estimate |
5780 | 0 | if (pp==p) continue; // precision is at maximum |
5781 | | // lengthen the next calculation |
5782 | 0 | pp=pp*2; // double precision |
5783 | 0 | if (pp>p) pp=p; // clamp to maximum |
5784 | 0 | aset.digits=pp; // working context |
5785 | 0 | bset.digits=pp+rhs->digits; // wider context |
5786 | 0 | } // Newton's iteration |
5787 | |
|
5788 | | #if DECCHECK |
5789 | | // just a sanity check; remove the test to show always |
5790 | | if (iterations>24) |
5791 | | printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", |
5792 | | (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits); |
5793 | | #endif |
5794 | | |
5795 | | // Copy and round the result to res |
5796 | 0 | residue=1; // indicate dirt to right |
5797 | 0 | if (ISZERO(a)) residue=0; // .. unless underflowed to 0 |
5798 | 0 | aset.digits=set->digits; // [use default rounding] |
5799 | 0 | decCopyFit(res, a, &aset, &residue, status); // copy & shorten |
5800 | 0 | decFinish(res, set, &residue, status); // cleanup/set flags |
5801 | 0 | } while(0); // end protected |
5802 | |
|
5803 | 0 | if (allocbufa!=NULL) free(allocbufa); // drop any storage used |
5804 | 0 | if (allocbufb!=NULL) free(allocbufb); // .. |
5805 | | // [status is handled by caller] |
5806 | 0 | return res; |
5807 | 0 | } // decLnOp |
5808 | | |
5809 | | /* ------------------------------------------------------------------ */ |
5810 | | /* decQuantizeOp -- force exponent to requested value */ |
5811 | | /* */ |
5812 | | /* This computes C = op(A, B), where op adjusts the coefficient */ |
5813 | | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
5814 | | /* of C has the value B or matches the exponent of B. */ |
5815 | | /* The numerical value of C will equal A, except for the effects of */ |
5816 | | /* any rounding that occurred. */ |
5817 | | /* */ |
5818 | | /* res is C, the result. C may be A or B */ |
5819 | | /* lhs is A, the number to adjust */ |
5820 | | /* rhs is B, the requested exponent */ |
5821 | | /* set is the context */ |
5822 | | /* quant is 1 for quantize or 0 for rescale */ |
5823 | | /* status is the status accumulator (this can be called without */ |
5824 | | /* risk of control loss) */ |
5825 | | /* */ |
5826 | | /* C must have space for set->digits digits. */ |
5827 | | /* */ |
5828 | | /* Unless there is an error or the result is infinite, the exponent */ |
5829 | | /* after the operation is guaranteed to be that requested. */ |
5830 | | /* ------------------------------------------------------------------ */ |
5831 | | static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, |
5832 | | const decNumber *rhs, decContext *set, |
5833 | 0 | Flag quant, uInt *status) { |
5834 | | #if DECSUBSET |
5835 | | decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated |
5836 | | decNumber *allocrhs=NULL; // .., rhs |
5837 | | #endif |
5838 | 0 | const decNumber *inrhs=rhs; // save original rhs |
5839 | 0 | Int reqdigits=set->digits; // requested DIGITS |
5840 | 0 | Int reqexp; // requested exponent [-scale] |
5841 | 0 | Int residue=0; // rounding residue |
5842 | 0 | Int etiny=set->emin-(reqdigits-1); |
5843 | |
|
5844 | | #if DECCHECK |
5845 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
5846 | | #endif |
5847 | |
|
5848 | 0 | do { // protect allocated storage |
5849 | | #if DECSUBSET |
5850 | | if (!set->extended) { |
5851 | | // reduce operands and set lostDigits status, as needed |
5852 | | if (lhs->digits>reqdigits) { |
5853 | | alloclhs=decRoundOperand(lhs, set, status); |
5854 | | if (alloclhs==NULL) break; |
5855 | | lhs=alloclhs; |
5856 | | } |
5857 | | if (rhs->digits>reqdigits) { // [this only checks lostDigits] |
5858 | | allocrhs=decRoundOperand(rhs, set, status); |
5859 | | if (allocrhs==NULL) break; |
5860 | | rhs=allocrhs; |
5861 | | } |
5862 | | } |
5863 | | #endif |
5864 | | // [following code does not require input rounding] |
5865 | | |
5866 | | // Handle special values |
5867 | 0 | if (SPECIALARGS) { |
5868 | | // NaNs get usual processing |
5869 | 0 | if (SPECIALARGS & (DECSNAN | DECNAN)) |
5870 | 0 | decNaNs(res, lhs, rhs, set, status); |
5871 | | // one infinity but not both is bad |
5872 | 0 | else if ((lhs->bits ^ rhs->bits) & DECINF) |
5873 | 0 | *status|=DEC_Invalid_operation; |
5874 | | // both infinity: return lhs |
5875 | 0 | else decNumberCopy(res, lhs); // [nop if in place] |
5876 | 0 | break; |
5877 | 0 | } |
5878 | | |
5879 | | // set requested exponent |
5880 | 0 | if (quant) reqexp=inrhs->exponent; // quantize -- match exponents |
5881 | 0 | else { // rescale -- use value of rhs |
5882 | | // Original rhs must be an integer that fits and is in range, |
5883 | | // which could be from -1999999997 to +999999999, thanks to |
5884 | | // subnormals |
5885 | 0 | reqexp=decGetInt(inrhs); // [cannot fail] |
5886 | 0 | } |
5887 | |
|
5888 | | #if DECSUBSET |
5889 | | if (!set->extended) etiny=set->emin; // no subnormals |
5890 | | #endif |
5891 | |
|
5892 | 0 | if (reqexp==BADINT // bad (rescale only) or .. |
5893 | 0 | || reqexp==BIGODD || reqexp==BIGEVEN // very big (ditto) or .. |
5894 | 0 | || (reqexp<etiny) // < lowest |
5895 | 0 | || (reqexp>set->emax)) { // > emax |
5896 | 0 | *status|=DEC_Invalid_operation; |
5897 | 0 | break;} |
5898 | | |
5899 | | // the RHS has been processed, so it can be overwritten now if necessary |
5900 | 0 | if (ISZERO(lhs)) { // zero coefficient unchanged |
5901 | 0 | decNumberCopy(res, lhs); // [nop if in place] |
5902 | 0 | res->exponent=reqexp; // .. just set exponent |
5903 | | #if DECSUBSET |
5904 | | if (!set->extended) res->bits=0; // subset specification; no -0 |
5905 | | #endif |
5906 | 0 | } |
5907 | 0 | else { // non-zero lhs |
5908 | 0 | Int adjust=reqexp-lhs->exponent; // digit adjustment needed |
5909 | | // if adjusted coefficient will definitely not fit, give up now |
5910 | 0 | if ((lhs->digits-adjust)>reqdigits) { |
5911 | 0 | *status|=DEC_Invalid_operation; |
5912 | 0 | break; |
5913 | 0 | } |
5914 | | |
5915 | 0 | if (adjust>0) { // increasing exponent |
5916 | | // this will decrease the length of the coefficient by adjust |
5917 | | // digits, and must round as it does so |
5918 | 0 | decContext workset; // work |
5919 | 0 | workset=*set; // clone rounding, etc. |
5920 | 0 | workset.digits=lhs->digits-adjust; // set requested length |
5921 | | // [note that the latter can be <1, here] |
5922 | 0 | decCopyFit(res, lhs, &workset, &residue, status); // fit to result |
5923 | 0 | decApplyRound(res, &workset, residue, status); // .. and round |
5924 | 0 | residue=0; // [used] |
5925 | | // If just rounded a 999s case, exponent will be off by one; |
5926 | | // adjust back (after checking space), if so. |
5927 | 0 | if (res->exponent>reqexp) { |
5928 | | // re-check needed, e.g., for quantize(0.9999, 0.001) under |
5929 | | // set->digits==3 |
5930 | 0 | if (res->digits==reqdigits) { // cannot shift by 1 |
5931 | 0 | *status&=~(DEC_Inexact | DEC_Rounded); // [clean these] |
5932 | 0 | *status|=DEC_Invalid_operation; |
5933 | 0 | break; |
5934 | 0 | } |
5935 | 0 | res->digits=decShiftToMost(res->lsu, res->digits, 1); // shift |
5936 | 0 | res->exponent--; // (re)adjust the exponent. |
5937 | 0 | } |
5938 | | #if DECSUBSET |
5939 | | if (ISZERO(res) && !set->extended) res->bits=0; // subset; no -0 |
5940 | | #endif |
5941 | 0 | } // increase |
5942 | 0 | else /* adjust<=0 */ { // decreasing or = exponent |
5943 | | // this will increase the length of the coefficient by -adjust |
5944 | | // digits, by adding zero or more trailing zeros; this is |
5945 | | // already checked for fit, above |
5946 | 0 | decNumberCopy(res, lhs); // [it will fit] |
5947 | | // if padding needed (adjust<0), add it now... |
5948 | 0 | if (adjust<0) { |
5949 | 0 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
5950 | 0 | res->exponent+=adjust; // adjust the exponent |
5951 | 0 | } |
5952 | 0 | } // decrease |
5953 | 0 | } // non-zero |
5954 | | |
5955 | | // Check for overflow [do not use Finalize in this case, as an |
5956 | | // overflow here is a "don't fit" situation] |
5957 | 0 | if (res->exponent>set->emax-res->digits+1) { // too big |
5958 | 0 | *status|=DEC_Invalid_operation; |
5959 | 0 | break; |
5960 | 0 | } |
5961 | 0 | else { |
5962 | 0 | decFinalize(res, set, &residue, status); // set subnormal flags |
5963 | 0 | *status&=~DEC_Underflow; // suppress Underflow [as per 754] |
5964 | 0 | } |
5965 | 0 | } while(0); // end protected |
5966 | |
|
5967 | | #if DECSUBSET |
5968 | | if (allocrhs!=NULL) free(allocrhs); // drop any storage used |
5969 | | if (alloclhs!=NULL) free(alloclhs); // .. |
5970 | | #endif |
5971 | 0 | return res; |
5972 | 0 | } // decQuantizeOp |
5973 | | |
5974 | | /* ------------------------------------------------------------------ */ |
5975 | | /* decCompareOp -- compare, min, or max two Numbers */ |
5976 | | /* */ |
5977 | | /* This computes C = A ? B and carries out one of four operations: */ |
5978 | | /* COMPARE -- returns the signum (as a number) giving the */ |
5979 | | /* result of a comparison unless one or both */ |
5980 | | /* operands is a NaN (in which case a NaN results) */ |
5981 | | /* COMPSIG -- as COMPARE except that a quiet NaN raises */ |
5982 | | /* Invalid operation. */ |
5983 | | /* COMPMAX -- returns the larger of the operands, using the */ |
5984 | | /* 754 maxnum operation */ |
5985 | | /* COMPMAXMAG -- ditto, comparing absolute values */ |
5986 | | /* COMPMIN -- the 754 minnum operation */ |
5987 | | /* COMPMINMAG -- ditto, comparing absolute values */ |
5988 | | /* COMTOTAL -- returns the signum (as a number) giving the */ |
5989 | | /* result of a comparison using 754 total ordering */ |
5990 | | /* */ |
5991 | | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
5992 | | /* lhs is A */ |
5993 | | /* rhs is B */ |
5994 | | /* set is the context */ |
5995 | | /* op is the operation flag */ |
5996 | | /* status is the usual accumulator */ |
5997 | | /* */ |
5998 | | /* C must have space for one digit for COMPARE or set->digits for */ |
5999 | | /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */ |
6000 | | /* ------------------------------------------------------------------ */ |
6001 | | /* The emphasis here is on speed for common cases, and avoiding */ |
6002 | | /* coefficient comparison if possible. */ |
6003 | | /* ------------------------------------------------------------------ */ |
6004 | | decNumber * decCompareOp(decNumber *res, const decNumber *lhs, |
6005 | | const decNumber *rhs, decContext *set, |
6006 | 3.58M | Flag op, uInt *status) { |
6007 | | #if DECSUBSET |
6008 | | decNumber *alloclhs=NULL; // non-NULL if rounded lhs allocated |
6009 | | decNumber *allocrhs=NULL; // .., rhs |
6010 | | #endif |
6011 | 3.58M | Int result=0; // default result value |
6012 | 3.58M | uByte merged; // work |
6013 | | |
6014 | | #if DECCHECK |
6015 | | if (decCheckOperands(res, lhs, rhs, set)) return res; |
6016 | | #endif |
6017 | | |
6018 | 3.58M | do { // protect allocated storage |
6019 | | #if DECSUBSET |
6020 | | if (!set->extended) { |
6021 | | // reduce operands and set lostDigits status, as needed |
6022 | | if (lhs->digits>set->digits) { |
6023 | | alloclhs=decRoundOperand(lhs, set, status); |
6024 | | if (alloclhs==NULL) {result=BADINT; break;} |
6025 | | lhs=alloclhs; |
6026 | | } |
6027 | | if (rhs->digits>set->digits) { |
6028 | | allocrhs=decRoundOperand(rhs, set, status); |
6029 | | if (allocrhs==NULL) {result=BADINT; break;} |
6030 | | rhs=allocrhs; |
6031 | | } |
6032 | | } |
6033 | | #endif |
6034 | | // [following code does not require input rounding] |
6035 | | |
6036 | | // If total ordering then handle differing signs 'up front' |
6037 | 3.58M | if (op==COMPTOTAL) { // total ordering |
6038 | 0 | if (decNumberIsNegative(lhs) & !decNumberIsNegative(rhs)) { |
6039 | 0 | result=-1; |
6040 | 0 | break; |
6041 | 0 | } |
6042 | 0 | if (!decNumberIsNegative(lhs) & decNumberIsNegative(rhs)) { |
6043 | 0 | result=+1; |
6044 | 0 | break; |
6045 | 0 | } |
6046 | 0 | } |
6047 | | |
6048 | | // handle NaNs specially; let infinities drop through |
6049 | | // This assumes sNaN (even just one) leads to NaN. |
6050 | 3.58M | merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN); |
6051 | 3.58M | if (merged) { // a NaN bit set |
6052 | 0 | if (op==COMPARE); // result will be NaN |
6053 | 0 | else if (op==COMPSIG) // treat qNaN as sNaN |
6054 | 0 | *status|=DEC_Invalid_operation | DEC_sNaN; |
6055 | 0 | else if (op==COMPTOTAL) { // total ordering, always finite |
6056 | | // signs are known to be the same; compute the ordering here |
6057 | | // as if the signs are both positive, then invert for negatives |
6058 | 0 | if (!decNumberIsNaN(lhs)) result=-1; |
6059 | 0 | else if (!decNumberIsNaN(rhs)) result=+1; |
6060 | | // here if both NaNs |
6061 | 0 | else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1; |
6062 | 0 | else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1; |
6063 | 0 | else { // both NaN or both sNaN |
6064 | | // now it just depends on the payload |
6065 | 0 | result=decUnitCompare(lhs->lsu, D2U(lhs->digits), |
6066 | 0 | rhs->lsu, D2U(rhs->digits), 0); |
6067 | | // [Error not possible, as these are 'aligned'] |
6068 | 0 | } // both same NaNs |
6069 | 0 | if (decNumberIsNegative(lhs)) result=-result; |
6070 | 0 | break; |
6071 | 0 | } // total order |
6072 | | |
6073 | 0 | else if (merged & DECSNAN); // sNaN -> qNaN |
6074 | 0 | else { // here if MIN or MAX and one or two quiet NaNs |
6075 | | // min or max -- 754 rules ignore single NaN |
6076 | 0 | if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { |
6077 | | // just one NaN; force choice to be the non-NaN operand |
6078 | 0 | op=COMPMAX; |
6079 | 0 | if (lhs->bits & DECNAN) result=-1; // pick rhs |
6080 | 0 | else result=+1; // pick lhs |
6081 | 0 | break; |
6082 | 0 | } |
6083 | 0 | } // max or min |
6084 | 0 | op=COMPNAN; // use special path |
6085 | 0 | decNaNs(res, lhs, rhs, set, status); // propagate NaN |
6086 | 0 | break; |
6087 | 0 | } |
6088 | | // have numbers |
6089 | 3.58M | if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1); |
6090 | 3.58M | else result=decCompare(lhs, rhs, 0); // sign matters |
6091 | 3.58M | } while(0); // end protected |
6092 | | |
6093 | 3.58M | if (result==BADINT) *status|=DEC_Insufficient_storage; // rare |
6094 | 3.58M | else { |
6095 | 3.58M | if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { // returning signum |
6096 | 3.58M | if (op==COMPTOTAL && result==0) { |
6097 | | // operands are numerically equal or same NaN (and same sign, |
6098 | | // tested first); if identical, leave result 0 |
6099 | 0 | if (lhs->exponent!=rhs->exponent) { |
6100 | 0 | if (lhs->exponent<rhs->exponent) result=-1; |
6101 | 0 | else result=+1; |
6102 | 0 | if (decNumberIsNegative(lhs)) result=-result; |
6103 | 0 | } // lexp!=rexp |
6104 | 0 | } // total-order by exponent |
6105 | 3.58M | decNumberZero(res); // [always a valid result] |
6106 | 3.58M | if (result!=0) { // must be -1 or +1 |
6107 | 1.68M | *res->lsu=1; |
6108 | 1.68M | if (result<0) res->bits=DECNEG; |
6109 | 1.68M | } |
6110 | 3.58M | } |
6111 | 0 | else if (op==COMPNAN); // special, drop through |
6112 | 0 | else { // MAX or MIN, non-NaN result |
6113 | 0 | Int residue=0; // rounding accumulator |
6114 | | // choose the operand for the result |
6115 | 0 | const decNumber *choice; |
6116 | 0 | if (result==0) { // operands are numerically equal |
6117 | | // choose according to sign then exponent (see 754) |
6118 | 0 | uByte slhs=(lhs->bits & DECNEG); |
6119 | 0 | uByte srhs=(rhs->bits & DECNEG); |
6120 | | #if DECSUBSET |
6121 | | if (!set->extended) { // subset: force left-hand |
6122 | | op=COMPMAX; |
6123 | | result=+1; |
6124 | | } |
6125 | | else |
6126 | | #endif |
6127 | 0 | if (slhs!=srhs) { // signs differ |
6128 | 0 | if (slhs) result=-1; // rhs is max |
6129 | 0 | else result=+1; // lhs is max |
6130 | 0 | } |
6131 | 0 | else if (slhs && srhs) { // both negative |
6132 | 0 | if (lhs->exponent<rhs->exponent) result=+1; |
6133 | 0 | else result=-1; |
6134 | | // [if equal, use lhs, technically identical] |
6135 | 0 | } |
6136 | 0 | else { // both positive |
6137 | 0 | if (lhs->exponent>rhs->exponent) result=+1; |
6138 | 0 | else result=-1; |
6139 | | // [ditto] |
6140 | 0 | } |
6141 | 0 | } // numerically equal |
6142 | | // here result will be non-0; reverse if looking for MIN |
6143 | 0 | if (op==COMPMIN || op==COMPMINMAG) result=-result; |
6144 | 0 | choice=(result>0 ? lhs : rhs); // choose |
6145 | | // copy chosen to result, rounding if need be |
6146 | 0 | decCopyFit(res, choice, set, &residue, status); |
6147 | 0 | decFinish(res, set, &residue, status); |
6148 | 0 | } |
6149 | 3.58M | } |
6150 | | #if DECSUBSET |
6151 | | if (allocrhs!=NULL) free(allocrhs); // free any storage used |
6152 | | if (alloclhs!=NULL) free(alloclhs); // .. |
6153 | | #endif |
6154 | 3.58M | return res; |
6155 | 3.58M | } // decCompareOp |
6156 | | |
6157 | | /* ------------------------------------------------------------------ */ |
6158 | | /* decCompare -- compare two decNumbers by numerical value */ |
6159 | | /* */ |
6160 | | /* This routine compares A ? B without altering them. */ |
6161 | | /* */ |
6162 | | /* Arg1 is A, a decNumber which is not a NaN */ |
6163 | | /* Arg2 is B, a decNumber which is not a NaN */ |
6164 | | /* Arg3 is 1 for a sign-independent compare, 0 otherwise */ |
6165 | | /* */ |
6166 | | /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ |
6167 | | /* (the only possible failure is an allocation error) */ |
6168 | | /* ------------------------------------------------------------------ */ |
6169 | | static Int decCompare(const decNumber *lhs, const decNumber *rhs, |
6170 | 3.58M | Flag abs) { |
6171 | 3.58M | Int result; // result value |
6172 | 3.58M | Int sigr; // rhs signum |
6173 | 3.58M | Int compare; // work |
6174 | | |
6175 | 3.58M | result=1; // assume signum(lhs) |
6176 | 3.58M | if (ISZERO(lhs)) result=0; |
6177 | 3.58M | if (abs) { |
6178 | 1.88k | if (ISZERO(rhs)) return result; // LHS wins or both 0 |
6179 | | // RHS is non-zero |
6180 | 1.88k | if (result==0) return -1; // LHS is 0; RHS wins |
6181 | | // [here, both non-zero, result=1] |
6182 | 1.88k | } |
6183 | 3.58M | else { // signs matter |
6184 | 3.58M | if (result && decNumberIsNegative(lhs)) result=-1; |
6185 | 3.58M | sigr=1; // compute signum(rhs) |
6186 | 3.58M | if (ISZERO(rhs)) sigr=0; |
6187 | 3.55M | else if (decNumberIsNegative(rhs)) sigr=-1; |
6188 | 3.58M | if (result > sigr) return +1; // L > R, return 1 |
6189 | 3.56M | if (result < sigr) return -1; // L < R, return -1 |
6190 | 3.54M | if (result==0) return 0; // both 0 |
6191 | 3.54M | } |
6192 | | |
6193 | | // signums are the same; both are non-zero |
6194 | 3.53M | if ((lhs->bits | rhs->bits) & DECINF) { // one or more infinities |
6195 | 5.76k | if (decNumberIsInfinite(rhs)) { |
6196 | 4.47k | if (decNumberIsInfinite(lhs)) result=0;// both infinite |
6197 | 2.10k | else result=-result; // only rhs infinite |
6198 | 4.47k | } |
6199 | 5.76k | return result; |
6200 | 5.76k | } |
6201 | | // must compare the coefficients, allowing for exponents |
6202 | 3.52M | if (lhs->exponent>rhs->exponent) { // LHS exponent larger |
6203 | | // swap sides, and sign |
6204 | 68.2k | const decNumber *temp=lhs; |
6205 | 68.2k | lhs=rhs; |
6206 | 68.2k | rhs=temp; |
6207 | 68.2k | result=-result; |
6208 | 68.2k | } |
6209 | 3.52M | compare=decUnitCompare(lhs->lsu, D2U(lhs->digits), |
6210 | 3.52M | rhs->lsu, D2U(rhs->digits), |
6211 | 3.52M | rhs->exponent-lhs->exponent); |
6212 | 3.52M | if (compare!=BADINT) compare*=result; // comparison succeeded |
6213 | 3.52M | return compare; |
6214 | 3.53M | } // decCompare |
6215 | | |
6216 | | /* ------------------------------------------------------------------ */ |
6217 | | /* decUnitCompare -- compare two >=0 integers in Unit arrays */ |
6218 | | /* */ |
6219 | | /* This routine compares A ? B*10**E where A and B are unit arrays */ |
6220 | | /* A is a plain integer */ |
6221 | | /* B has an exponent of E (which must be non-negative) */ |
6222 | | /* */ |
6223 | | /* Arg1 is A first Unit (lsu) */ |
6224 | | /* Arg2 is A length in Units */ |
6225 | | /* Arg3 is B first Unit (lsu) */ |
6226 | | /* Arg4 is B length in Units */ |
6227 | | /* Arg5 is E (0 if the units are aligned) */ |
6228 | | /* */ |
6229 | | /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ |
6230 | | /* (the only possible failure is an allocation error, which can */ |
6231 | | /* only occur if E!=0) */ |
6232 | | /* ------------------------------------------------------------------ */ |
6233 | | static Int decUnitCompare(const Unit *a, Int alength, |
6234 | 3.52M | const Unit *b, Int blength, Int exp) { |
6235 | 3.52M | Unit *acc; // accumulator for result |
6236 | 3.52M | Unit accbuff[SD2U(DECBUFFER*2+1)]; // local buffer |
6237 | 3.52M | Unit *allocacc=NULL; // -> allocated acc buffer, iff allocated |
6238 | 3.52M | Int accunits, need; // units in use or needed for acc |
6239 | 3.52M | const Unit *l, *r, *u; // work |
6240 | 3.52M | Int expunits, exprem, result; // .. |
6241 | | |
6242 | 3.52M | if (exp==0) { // aligned; fastpath |
6243 | 3.21M | if (alength>blength) return 1; |
6244 | 3.17M | if (alength<blength) return -1; |
6245 | | // same number of units in both -- need unit-by-unit compare |
6246 | 2.98M | l=a+alength-1; |
6247 | 2.98M | r=b+alength-1; |
6248 | 5.18M | for (;l>=a; l--, r--) { |
6249 | 3.30M | if (*l>*r) return 1; |
6250 | 2.31M | if (*l<*r) return -1; |
6251 | 2.31M | } |
6252 | 1.88M | return 0; // all units match |
6253 | 2.98M | } // aligned |
6254 | | |
6255 | | // Unaligned. If one is >1 unit longer than the other, padded |
6256 | | // approximately, then can return easily |
6257 | 319k | if (alength>blength+(Int)D2U(exp)) return 1; |
6258 | 273k | if (alength+1<blength+(Int)D2U(exp)) return -1; |
6259 | | |
6260 | | // Need to do a real subtract. For this, a result buffer is needed |
6261 | | // even though only the sign is of interest. Its length needs |
6262 | | // to be the larger of alength and padded blength, +2 |
6263 | 221k | need=blength+D2U(exp); // maximum real length of B |
6264 | 221k | if (need<alength) need=alength; |
6265 | 221k | need+=2; |
6266 | 221k | acc=accbuff; // assume use local buffer |
6267 | 221k | if (need*sizeof(Unit)>sizeof(accbuff)) { |
6268 | 1.90k | allocacc=(Unit *)malloc(need*sizeof(Unit)); |
6269 | 1.90k | if (allocacc==NULL) return BADINT; // hopeless -- abandon |
6270 | 1.90k | acc=allocacc; |
6271 | 1.90k | } |
6272 | | // Calculate units and remainder from exponent. |
6273 | 221k | expunits=exp/DECDPUN; |
6274 | 221k | exprem=exp%DECDPUN; |
6275 | | // subtract [A+B*(-m)] |
6276 | 221k | accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, |
6277 | 221k | -(Int)powers[exprem]); |
6278 | | // [UnitAddSub result may have leading zeros, even on zero] |
6279 | 221k | if (accunits<0) result=-1; // negative result |
6280 | 201k | else { // non-negative result |
6281 | | // check units of the result before freeing any storage |
6282 | 1.35M | for (u=acc; u<acc+accunits-1 && *u==0;) u++; |
6283 | 201k | result=(*u==0 ? 0 : +1); |
6284 | 201k | } |
6285 | | // clean up and return the result |
6286 | 221k | if (allocacc!=NULL) free(allocacc); // drop any storage used |
6287 | 221k | return result; |
6288 | 221k | } // decUnitCompare |
6289 | | |
6290 | | /* ------------------------------------------------------------------ */ |
6291 | | /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */ |
6292 | | /* */ |
6293 | | /* This routine performs the calculation: */ |
6294 | | /* */ |
6295 | | /* C=A+(B*M) */ |
6296 | | /* */ |
6297 | | /* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */ |
6298 | | /* */ |
6299 | | /* A may be shorter or longer than B. */ |
6300 | | /* */ |
6301 | | /* Leading zeros are not removed after a calculation. The result is */ |
6302 | | /* either the same length as the longer of A and B (adding any */ |
6303 | | /* shift), or one Unit longer than that (if a Unit carry occurred). */ |
6304 | | /* */ |
6305 | | /* A and B content are not altered unless C is also A or B. */ |
6306 | | /* C may be the same array as A or B, but only if no zero padding is */ |
6307 | | /* requested (that is, C may be B only if bshift==0). */ |
6308 | | /* C is filled from the lsu; only those units necessary to complete */ |
6309 | | /* the calculation are referenced. */ |
6310 | | /* */ |
6311 | | /* Arg1 is A first Unit (lsu) */ |
6312 | | /* Arg2 is A length in Units */ |
6313 | | /* Arg3 is B first Unit (lsu) */ |
6314 | | /* Arg4 is B length in Units */ |
6315 | | /* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */ |
6316 | | /* Arg6 is C first Unit (lsu) */ |
6317 | | /* Arg7 is M, the multiplier */ |
6318 | | /* */ |
6319 | | /* returns the count of Units written to C, which will be non-zero */ |
6320 | | /* and negated if the result is negative. That is, the sign of the */ |
6321 | | /* returned Int is the sign of the result (positive for zero) and */ |
6322 | | /* the absolute value of the Int is the count of Units. */ |
6323 | | /* */ |
6324 | | /* It is the caller's responsibility to make sure that C size is */ |
6325 | | /* safe, allowing space if necessary for a one-Unit carry. */ |
6326 | | /* */ |
6327 | | /* This routine is severely performance-critical; *any* change here */ |
6328 | | /* must be measured (timed) to assure no performance degradation. */ |
6329 | | /* In particular, trickery here tends to be counter-productive, as */ |
6330 | | /* increased complexity of code hurts register optimizations on */ |
6331 | | /* register-poor architectures. Avoiding divisions is nearly */ |
6332 | | /* always a Good Idea, however. */ |
6333 | | /* */ |
6334 | | /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */ |
6335 | | /* (IBM Warwick, UK) for some of the ideas used in this routine. */ |
6336 | | /* ------------------------------------------------------------------ */ |
6337 | | static Int decUnitAddSub(const Unit *a, Int alength, |
6338 | | const Unit *b, Int blength, Int bshift, |
6339 | 266k | Unit *c, Int m) { |
6340 | 266k | const Unit *alsu=a; // A lsu [need to remember it] |
6341 | 266k | Unit *clsu=c; // C ditto |
6342 | 266k | Unit *minC; // low water mark for C |
6343 | 266k | Unit *maxC; // high water mark for C |
6344 | 266k | eInt carry=0; // carry integer (could be Long) |
6345 | 266k | Int add; // work |
6346 | 266k | #if DECDPUN<=4 // myriadal, millenary, etc. |
6347 | 266k | Int est; // estimated quotient |
6348 | 266k | #endif |
6349 | | |
6350 | | #if DECTRACE |
6351 | | if (alength<1 || blength<1) |
6352 | | printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); |
6353 | | #endif |
6354 | | |
6355 | 266k | maxC=c+alength; // A is usually the longer |
6356 | 266k | minC=c+blength; // .. and B the shorter |
6357 | 266k | if (bshift!=0) { // B is shifted; low As copy across |
6358 | 9.95k | minC+=bshift; |
6359 | | // if in place [common], skip copy unless there's a gap [rare] |
6360 | 9.95k | if (a==c && bshift<=alength) { |
6361 | 0 | c+=bshift; |
6362 | 0 | a+=bshift; |
6363 | 0 | } |
6364 | 12.4M | else for (; c<clsu+bshift; a++, c++) { // copy needed |
6365 | 12.4M | if (a<alsu+alength) *c=*a; |
6366 | 0 | else *c=0; |
6367 | 12.4M | } |
6368 | 9.95k | } |
6369 | 266k | if (minC>maxC) { // swap |
6370 | 2.07k | Unit *hold=minC; |
6371 | 2.07k | minC=maxC; |
6372 | 2.07k | maxC=hold; |
6373 | 2.07k | } |
6374 | | |
6375 | | // For speed, do the addition as two loops; the first where both A |
6376 | | // and B contribute, and the second (if necessary) where only one or |
6377 | | // other of the numbers contribute. |
6378 | | // Carry handling is the same (i.e., duplicated) in each case. |
6379 | 544k | for (; c<minC; c++) { |
6380 | 277k | carry+=*a; |
6381 | 277k | a++; |
6382 | 277k | carry+=((eInt)*b)*m; // [special-casing m=1/-1 |
6383 | 277k | b++; // here is not a win] |
6384 | | // here carry is new Unit of digits; it could be +ve or -ve |
6385 | 277k | if ((ueInt)carry<=DECDPUNMAX) { // fastpath 0-DECDPUNMAX |
6386 | 240k | *c=(Unit)carry; |
6387 | 240k | carry=0; |
6388 | 240k | continue; |
6389 | 240k | } |
6390 | | #if DECDPUN==4 // use divide-by-multiply |
6391 | | if (carry>=0) { |
6392 | | est=(((ueInt)carry>>11)*53687)>>18; |
6393 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder |
6394 | | carry=est; // likely quotient [89%] |
6395 | | if (*c<DECDPUNMAX+1) continue; // estimate was correct |
6396 | | carry++; |
6397 | | *c-=DECDPUNMAX+1; |
6398 | | continue; |
6399 | | } |
6400 | | // negative case |
6401 | | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6402 | | est=(((ueInt)carry>>11)*53687)>>18; |
6403 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
6404 | | carry=est-(DECDPUNMAX+1); // correctly negative |
6405 | | if (*c<DECDPUNMAX+1) continue; // was OK |
6406 | | carry++; |
6407 | | *c-=DECDPUNMAX+1; |
6408 | | #elif DECDPUN==3 |
6409 | 37.0k | if (carry>=0) { |
6410 | 2.62k | est=(((ueInt)carry>>3)*16777)>>21; |
6411 | 2.62k | *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder |
6412 | 2.62k | carry=est; // likely quotient [99%] |
6413 | 2.62k | if (*c<DECDPUNMAX+1) continue; // estimate was correct |
6414 | 2.62k | carry++; |
6415 | 2.62k | *c-=DECDPUNMAX+1; |
6416 | 2.62k | continue; |
6417 | 2.62k | } |
6418 | | // negative case |
6419 | 34.4k | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6420 | 34.4k | est=(((ueInt)carry>>3)*16777)>>21; |
6421 | 34.4k | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
6422 | 34.4k | carry=est-(DECDPUNMAX+1); // correctly negative |
6423 | 34.4k | if (*c<DECDPUNMAX+1) continue; // was OK |
6424 | 10.8k | carry++; |
6425 | 10.8k | *c-=DECDPUNMAX+1; |
6426 | | #elif DECDPUN<=2 |
6427 | | // Can use QUOT10 as carry <= 4 digits |
6428 | | if (carry>=0) { |
6429 | | est=QUOT10(carry, DECDPUN); |
6430 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder |
6431 | | carry=est; // quotient |
6432 | | continue; |
6433 | | } |
6434 | | // negative case |
6435 | | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6436 | | est=QUOT10(carry, DECDPUN); |
6437 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
6438 | | carry=est-(DECDPUNMAX+1); // correctly negative |
6439 | | #else |
6440 | | // remainder operator is undefined if negative, so must test |
6441 | | if ((ueInt)carry<(DECDPUNMAX+1)*2) { // fastpath carry +1 |
6442 | | *c=(Unit)(carry-(DECDPUNMAX+1)); // [helps additions] |
6443 | | carry=1; |
6444 | | continue; |
6445 | | } |
6446 | | if (carry>=0) { |
6447 | | *c=(Unit)(carry%(DECDPUNMAX+1)); |
6448 | | carry=carry/(DECDPUNMAX+1); |
6449 | | continue; |
6450 | | } |
6451 | | // negative case |
6452 | | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6453 | | *c=(Unit)(carry%(DECDPUNMAX+1)); |
6454 | | carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); |
6455 | | #endif |
6456 | 10.8k | } // c |
6457 | | |
6458 | | // now may have one or other to complete |
6459 | | // [pretest to avoid loop setup/shutdown] |
6460 | 12.6M | if (c<maxC) for (; c<maxC; c++) { |
6461 | 12.5M | if (a<alsu+alength) { // still in A |
6462 | 12.5M | carry+=*a; |
6463 | 12.5M | a++; |
6464 | 12.5M | } |
6465 | 2.07k | else { // inside B |
6466 | 2.07k | carry+=((eInt)*b)*m; |
6467 | 2.07k | b++; |
6468 | 2.07k | } |
6469 | | // here carry is new Unit of digits; it could be +ve or -ve and |
6470 | | // magnitude up to DECDPUNMAX squared |
6471 | 12.5M | if ((ueInt)carry<=DECDPUNMAX) { // fastpath 0-DECDPUNMAX |
6472 | 9.44M | *c=(Unit)carry; |
6473 | 9.44M | carry=0; |
6474 | 9.44M | continue; |
6475 | 9.44M | } |
6476 | | // result for this unit is negative or >DECDPUNMAX |
6477 | | #if DECDPUN==4 // use divide-by-multiply |
6478 | | if (carry>=0) { |
6479 | | est=(((ueInt)carry>>11)*53687)>>18; |
6480 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder |
6481 | | carry=est; // likely quotient [79.7%] |
6482 | | if (*c<DECDPUNMAX+1) continue; // estimate was correct |
6483 | | carry++; |
6484 | | *c-=DECDPUNMAX+1; |
6485 | | continue; |
6486 | | } |
6487 | | // negative case |
6488 | | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6489 | | est=(((ueInt)carry>>11)*53687)>>18; |
6490 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
6491 | | carry=est-(DECDPUNMAX+1); // correctly negative |
6492 | | if (*c<DECDPUNMAX+1) continue; // was OK |
6493 | | carry++; |
6494 | | *c-=DECDPUNMAX+1; |
6495 | | #elif DECDPUN==3 |
6496 | 3.11M | if (carry>=0) { |
6497 | 3.11M | est=(((ueInt)carry>>3)*16777)>>21; |
6498 | 3.11M | *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder |
6499 | 3.11M | carry=est; // likely quotient [99%] |
6500 | 3.11M | if (*c<DECDPUNMAX+1) continue; // estimate was correct |
6501 | 3.11M | carry++; |
6502 | 3.11M | *c-=DECDPUNMAX+1; |
6503 | 3.11M | continue; |
6504 | 3.11M | } |
6505 | | // negative case |
6506 | 3.71k | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6507 | 3.71k | est=(((ueInt)carry>>3)*16777)>>21; |
6508 | 3.71k | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
6509 | 3.71k | carry=est-(DECDPUNMAX+1); // correctly negative |
6510 | 3.71k | if (*c<DECDPUNMAX+1) continue; // was OK |
6511 | 507 | carry++; |
6512 | 507 | *c-=DECDPUNMAX+1; |
6513 | | #elif DECDPUN<=2 |
6514 | | if (carry>=0) { |
6515 | | est=QUOT10(carry, DECDPUN); |
6516 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); // remainder |
6517 | | carry=est; // quotient |
6518 | | continue; |
6519 | | } |
6520 | | // negative case |
6521 | | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6522 | | est=QUOT10(carry, DECDPUN); |
6523 | | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
6524 | | carry=est-(DECDPUNMAX+1); // correctly negative |
6525 | | #else |
6526 | | if ((ueInt)carry<(DECDPUNMAX+1)*2){ // fastpath carry 1 |
6527 | | *c=(Unit)(carry-(DECDPUNMAX+1)); |
6528 | | carry=1; |
6529 | | continue; |
6530 | | } |
6531 | | // remainder operator is undefined if negative, so must test |
6532 | | if (carry>=0) { |
6533 | | *c=(Unit)(carry%(DECDPUNMAX+1)); |
6534 | | carry=carry/(DECDPUNMAX+1); |
6535 | | continue; |
6536 | | } |
6537 | | // negative case |
6538 | | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); // make positive |
6539 | | *c=(Unit)(carry%(DECDPUNMAX+1)); |
6540 | | carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); |
6541 | | #endif |
6542 | 507 | } // c |
6543 | | |
6544 | | // OK, all A and B processed; might still have carry or borrow |
6545 | | // return number of Units in the result, negated if a borrow |
6546 | 266k | if (carry==0) return c-clsu; // no carry, so no more to do |
6547 | 19.3k | if (carry>0) { // positive carry |
6548 | 0 | *c=(Unit)carry; // place as new unit |
6549 | 0 | c++; // .. |
6550 | 0 | return c-clsu; |
6551 | 0 | } |
6552 | | // -ve carry: it's a borrow; complement needed |
6553 | 19.3k | add=1; // temporary carry... |
6554 | 7.25M | for (c=clsu; c<maxC; c++) { |
6555 | 7.23M | add=DECDPUNMAX+add-*c; |
6556 | 7.23M | if (add<=DECDPUNMAX) { |
6557 | 6.39M | *c=(Unit)add; |
6558 | 6.39M | add=0; |
6559 | 6.39M | } |
6560 | 842k | else { |
6561 | 842k | *c=0; |
6562 | 842k | add=1; |
6563 | 842k | } |
6564 | 7.23M | } |
6565 | | // add an extra unit iff it would be non-zero |
6566 | | #if DECTRACE |
6567 | | printf("UAS borrow: add %ld, carry %ld\n", add, carry); |
6568 | | #endif |
6569 | 19.3k | if ((add-carry-1)!=0) { |
6570 | 7.95k | *c=(Unit)(add-carry-1); |
6571 | 7.95k | c++; // interesting, include it |
6572 | 7.95k | } |
6573 | 19.3k | return clsu-c; // -ve result indicates borrowed |
6574 | 19.3k | } // decUnitAddSub |
6575 | | |
6576 | | /* ------------------------------------------------------------------ */ |
6577 | | /* decTrim -- trim trailing zeros or normalize */ |
6578 | | /* */ |
6579 | | /* dn is the number to trim or normalize */ |
6580 | | /* set is the context to use to check for clamp */ |
6581 | | /* all is 1 to remove all trailing zeros, 0 for just fraction ones */ |
6582 | | /* noclamp is 1 to unconditional (unclamped) trim */ |
6583 | | /* dropped returns the number of discarded trailing zeros */ |
6584 | | /* returns dn */ |
6585 | | /* */ |
6586 | | /* If clamp is set in the context then the number of zeros trimmed */ |
6587 | | /* may be limited if the exponent is high. */ |
6588 | | /* All fields are updated as required. This is a utility operation, */ |
6589 | | /* so special values are unchanged and no error is possible. */ |
6590 | | /* ------------------------------------------------------------------ */ |
6591 | | static decNumber * decTrim(decNumber *dn, decContext *set, Flag all, |
6592 | 1.01M | Flag noclamp, Int *dropped) { |
6593 | 1.01M | Int d, exp; // work |
6594 | 1.01M | uInt cut; // .. |
6595 | 1.01M | Unit *up; // -> current Unit |
6596 | | |
6597 | | #if DECCHECK |
6598 | | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; |
6599 | | #endif |
6600 | | |
6601 | 1.01M | *dropped=0; // assume no zeros dropped |
6602 | 1.01M | if ((dn->bits & DECSPECIAL) // fast exit if special .. |
6603 | 999k | || (*dn->lsu & 0x01)) return dn; // .. or odd |
6604 | 665k | if (ISZERO(dn)) { // .. or 0 |
6605 | 81.0k | dn->exponent=0; // (sign is preserved) |
6606 | 81.0k | return dn; |
6607 | 81.0k | } |
6608 | | |
6609 | | // have a finite number which is even |
6610 | 584k | exp=dn->exponent; |
6611 | 584k | cut=1; // digit (1-DECDPUN) in Unit |
6612 | 584k | up=dn->lsu; // -> current Unit |
6613 | 1.99M | for (d=0; d<dn->digits-1; d++) { // [don't strip the final digit] |
6614 | | // slice by powers |
6615 | 1.85M | #if DECDPUN<=4 |
6616 | 1.85M | uInt quot=QUOT10(*up, cut); |
6617 | 1.85M | if ((*up-quot*powers[cut])!=0) break; // found non-0 digit |
6618 | | #else |
6619 | | if (*up%powers[cut]!=0) break; // found non-0 digit |
6620 | | #endif |
6621 | | // have a trailing 0 |
6622 | 1.41M | if (!all) { // trimming |
6623 | | // [if exp>0 then all trailing 0s are significant for trim] |
6624 | 0 | if (exp<=0) { // if digit might be significant |
6625 | 0 | if (exp==0) break; // then quit |
6626 | 0 | exp++; // next digit might be significant |
6627 | 0 | } |
6628 | 0 | } |
6629 | 1.41M | cut++; // next power |
6630 | 1.41M | if (cut>DECDPUN) { // need new Unit |
6631 | 312k | up++; |
6632 | 312k | cut=1; |
6633 | 312k | } |
6634 | 1.41M | } // d |
6635 | 584k | if (d==0) return dn; // none to drop |
6636 | | |
6637 | | // may need to limit drop if clamping |
6638 | 335k | if (set->clamp && !noclamp) { |
6639 | 335k | Int maxd=set->emax-set->digits+1-dn->exponent; |
6640 | 335k | if (maxd<=0) return dn; // nothing possible |
6641 | 330k | if (d>maxd) d=maxd; |
6642 | 330k | } |
6643 | | |
6644 | | // effect the drop |
6645 | 330k | decShiftToLeast(dn->lsu, D2U(dn->digits), d); |
6646 | 330k | dn->exponent+=d; // maintain numerical value |
6647 | 330k | dn->digits-=d; // new length |
6648 | 330k | *dropped=d; // report the count |
6649 | 330k | return dn; |
6650 | 335k | } // decTrim |
6651 | | |
6652 | | /* ------------------------------------------------------------------ */ |
6653 | | /* decReverse -- reverse a Unit array in place */ |
6654 | | /* */ |
6655 | | /* ulo is the start of the array */ |
6656 | | /* uhi is the end of the array (highest Unit to include) */ |
6657 | | /* */ |
6658 | | /* The units ulo through uhi are reversed in place (if the number */ |
6659 | | /* of units is odd, the middle one is untouched). Note that the */ |
6660 | | /* digit(s) in each unit are unaffected. */ |
6661 | | /* ------------------------------------------------------------------ */ |
6662 | 0 | static void decReverse(Unit *ulo, Unit *uhi) { |
6663 | 0 | Unit temp; |
6664 | 0 | for (; ulo<uhi; ulo++, uhi--) { |
6665 | 0 | temp=*ulo; |
6666 | 0 | *ulo=*uhi; |
6667 | 0 | *uhi=temp; |
6668 | 0 | } |
6669 | 0 | return; |
6670 | 0 | } // decReverse |
6671 | | |
6672 | | /* ------------------------------------------------------------------ */ |
6673 | | /* decShiftToMost -- shift digits in array towards most significant */ |
6674 | | /* */ |
6675 | | /* uar is the array */ |
6676 | | /* digits is the count of digits in use in the array */ |
6677 | | /* shift is the number of zeros to pad with (least significant); */ |
6678 | | /* it must be zero or positive */ |
6679 | | /* */ |
6680 | | /* returns the new length of the integer in the array, in digits */ |
6681 | | /* */ |
6682 | | /* No overflow is permitted (that is, the uar array must be known to */ |
6683 | | /* be large enough to hold the result, after shifting). */ |
6684 | | /* ------------------------------------------------------------------ */ |
6685 | 17.4k | static Int decShiftToMost(Unit *uar, Int digits, Int shift) { |
6686 | 17.4k | Unit *target, *source, *first; // work |
6687 | 17.4k | Int cut; // odd 0's to add |
6688 | 17.4k | uInt next; // work |
6689 | | |
6690 | 17.4k | if (shift==0) return digits; // [fastpath] nothing to do |
6691 | 17.4k | if ((digits+shift)<=DECDPUN) { // [fastpath] single-unit case |
6692 | 4.84k | *uar=(Unit)(*uar*powers[shift]); |
6693 | 4.84k | return digits+shift; |
6694 | 4.84k | } |
6695 | | |
6696 | 12.5k | next=0; // all paths |
6697 | 12.5k | source=uar+D2U(digits)-1; // where msu comes from |
6698 | 12.5k | target=source+D2U(shift); // where upper part of first cut goes |
6699 | 12.5k | cut=DECDPUN-MSUDIGITS(shift); // where to slice |
6700 | 12.5k | if (cut==0) { // unit-boundary case |
6701 | 5.43k | for (; source>=uar; source--, target--) *target=*source; |
6702 | 1.71k | } |
6703 | 10.8k | else { |
6704 | 10.8k | first=uar+D2U(digits+shift)-1; // where msu of source will end up |
6705 | 17.1M | for (; source>=uar; source--, target--) { |
6706 | | // split the source Unit and accumulate remainder for next |
6707 | 17.1M | #if DECDPUN<=4 |
6708 | 17.1M | uInt quot=QUOT10(*source, cut); |
6709 | 17.1M | uInt rem=*source-quot*powers[cut]; |
6710 | 17.1M | next+=quot; |
6711 | | #else |
6712 | | uInt rem=*source%powers[cut]; |
6713 | | next+=*source/powers[cut]; |
6714 | | #endif |
6715 | 17.1M | if (target<=first) *target=(Unit)next; // write to target iff valid |
6716 | 17.1M | next=rem*powers[DECDPUN-cut]; // save remainder for next Unit |
6717 | 17.1M | } |
6718 | 10.8k | } // shift-move |
6719 | | |
6720 | | // propagate any partial unit to one below and clear the rest |
6721 | 33.0k | for (; target>=uar; target--) { |
6722 | 20.4k | *target=(Unit)next; |
6723 | 20.4k | next=0; |
6724 | 20.4k | } |
6725 | 12.5k | return digits+shift; |
6726 | 17.4k | } // decShiftToMost |
6727 | | |
6728 | | /* ------------------------------------------------------------------ */ |
6729 | | /* decShiftToLeast -- shift digits in array towards least significant */ |
6730 | | /* */ |
6731 | | /* uar is the array */ |
6732 | | /* units is length of the array, in units */ |
6733 | | /* shift is the number of digits to remove from the lsu end; it */ |
6734 | | /* must be zero or positive and <= than units*DECDPUN. */ |
6735 | | /* */ |
6736 | | /* returns the new length of the integer in the array, in units */ |
6737 | | /* */ |
6738 | | /* Removed digits are discarded (lost). Units not required to hold */ |
6739 | | /* the final result are unchanged. */ |
6740 | | /* ------------------------------------------------------------------ */ |
6741 | 330k | static Int decShiftToLeast(Unit *uar, Int units, Int shift) { |
6742 | 330k | Unit *target, *up; // work |
6743 | 330k | Int cut, count; // work |
6744 | 330k | Int quot, rem; // for division |
6745 | | |
6746 | 330k | if (shift==0) return units; // [fastpath] nothing to do |
6747 | 330k | if (shift==units*DECDPUN) { // [fastpath] little to do |
6748 | 0 | *uar=0; // all digits cleared gives zero |
6749 | 0 | return 1; // leaves just the one |
6750 | 0 | } |
6751 | | |
6752 | 330k | target=uar; // both paths |
6753 | 330k | cut=MSUDIGITS(shift); |
6754 | 330k | if (cut==DECDPUN) { // unit-boundary case; easy |
6755 | 4.63k | up=uar+D2U(shift); |
6756 | 11.9k | for (; up<uar+units; target++, up++) *target=*up; |
6757 | 4.63k | return target-uar; |
6758 | 4.63k | } |
6759 | | |
6760 | | // messier |
6761 | 326k | up=uar+D2U(shift-cut); // source; correct to whole Units |
6762 | 326k | count=units*DECDPUN-shift; // the maximum new length |
6763 | 326k | #if DECDPUN<=4 |
6764 | 326k | quot=QUOT10(*up, cut); |
6765 | | #else |
6766 | | quot=*up/powers[cut]; |
6767 | | #endif |
6768 | 1.51M | for (; ; target++) { |
6769 | 1.51M | *target=(Unit)quot; |
6770 | 1.51M | count-=(DECDPUN-cut); |
6771 | 1.51M | if (count<=0) break; |
6772 | 1.18M | up++; |
6773 | 1.18M | quot=*up; |
6774 | 1.18M | #if DECDPUN<=4 |
6775 | 1.18M | quot=QUOT10(quot, cut); |
6776 | 1.18M | rem=*up-quot*powers[cut]; |
6777 | | #else |
6778 | | rem=quot%powers[cut]; |
6779 | | quot=quot/powers[cut]; |
6780 | | #endif |
6781 | 1.18M | *target=(Unit)(*target+rem*powers[DECDPUN-cut]); |
6782 | 1.18M | count-=cut; |
6783 | 1.18M | if (count<=0) break; |
6784 | 1.18M | } |
6785 | 326k | return target-uar+1; |
6786 | 330k | } // decShiftToLeast |
6787 | | |
6788 | | #if DECSUBSET |
6789 | | /* ------------------------------------------------------------------ */ |
6790 | | /* decRoundOperand -- round an operand [used for subset only] */ |
6791 | | /* */ |
6792 | | /* dn is the number to round (dn->digits is > set->digits) */ |
6793 | | /* set is the relevant context */ |
6794 | | /* status is the status accumulator */ |
6795 | | /* */ |
6796 | | /* returns an allocated decNumber with the rounded result. */ |
6797 | | /* */ |
6798 | | /* lostDigits and other status may be set by this. */ |
6799 | | /* */ |
6800 | | /* Since the input is an operand, it must not be modified. */ |
6801 | | /* Instead, return an allocated decNumber, rounded as required. */ |
6802 | | /* It is the caller's responsibility to free the allocated storage. */ |
6803 | | /* */ |
6804 | | /* If no storage is available then the result cannot be used, so NULL */ |
6805 | | /* is returned. */ |
6806 | | /* ------------------------------------------------------------------ */ |
6807 | | static decNumber *decRoundOperand(const decNumber *dn, decContext *set, |
6808 | | uInt *status) { |
6809 | | decNumber *res; // result structure |
6810 | | uInt newstatus=0; // status from round |
6811 | | Int residue=0; // rounding accumulator |
6812 | | |
6813 | | // Allocate storage for the returned decNumber, big enough for the |
6814 | | // length specified by the context |
6815 | | res=(decNumber *)malloc(sizeof(decNumber) |
6816 | | +(D2U(set->digits)-1)*sizeof(Unit)); |
6817 | | if (res==NULL) { |
6818 | | *status|=DEC_Insufficient_storage; |
6819 | | return NULL; |
6820 | | } |
6821 | | decCopyFit(res, dn, set, &residue, &newstatus); |
6822 | | decApplyRound(res, set, residue, &newstatus); |
6823 | | |
6824 | | // If that set Inexact then "lost digits" is raised... |
6825 | | if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits; |
6826 | | *status|=newstatus; |
6827 | | return res; |
6828 | | } // decRoundOperand |
6829 | | #endif |
6830 | | |
6831 | | /* ------------------------------------------------------------------ */ |
6832 | | /* decCopyFit -- copy a number, truncating the coefficient if needed */ |
6833 | | /* */ |
6834 | | /* dest is the target decNumber */ |
6835 | | /* src is the source decNumber */ |
6836 | | /* set is the context [used for length (digits) and rounding mode] */ |
6837 | | /* residue is the residue accumulator */ |
6838 | | /* status contains the current status to be updated */ |
6839 | | /* */ |
6840 | | /* (dest==src is allowed and will be a no-op if fits) */ |
6841 | | /* All fields are updated as required. */ |
6842 | | /* ------------------------------------------------------------------ */ |
6843 | | static void decCopyFit(decNumber *dest, const decNumber *src, |
6844 | 5.12M | decContext *set, Int *residue, uInt *status) { |
6845 | 5.12M | dest->bits=src->bits; |
6846 | 5.12M | dest->exponent=src->exponent; |
6847 | 5.12M | decSetCoeff(dest, set, src->lsu, src->digits, residue, status); |
6848 | 5.12M | } // decCopyFit |
6849 | | |
6850 | | /* ------------------------------------------------------------------ */ |
6851 | | /* decSetCoeff -- set the coefficient of a number */ |
6852 | | /* */ |
6853 | | /* dn is the number whose coefficient array is to be set. */ |
6854 | | /* It must have space for set->digits digits */ |
6855 | | /* set is the context [for size] */ |
6856 | | /* lsu -> lsu of the source coefficient [may be dn->lsu] */ |
6857 | | /* len is digits in the source coefficient [may be dn->digits] */ |
6858 | | /* residue is the residue accumulator. This has values as in */ |
6859 | | /* decApplyRound, and will be unchanged unless the */ |
6860 | | /* target size is less than len. In this case, the */ |
6861 | | /* coefficient is truncated and the residue is updated to */ |
6862 | | /* reflect the previous residue and the dropped digits. */ |
6863 | | /* status is the status accumulator, as usual */ |
6864 | | /* */ |
6865 | | /* The coefficient may already be in the number, or it can be an */ |
6866 | | /* external intermediate array. If it is in the number, lsu must == */ |
6867 | | /* dn->lsu and len must == dn->digits. */ |
6868 | | /* */ |
6869 | | /* Note that the coefficient length (len) may be < set->digits, and */ |
6870 | | /* in this case this merely copies the coefficient (or is a no-op */ |
6871 | | /* if dn->lsu==lsu). */ |
6872 | | /* */ |
6873 | | /* Note also that (only internally, from decQuantizeOp and */ |
6874 | | /* decSetSubnormal) the value of set->digits may be less than one, */ |
6875 | | /* indicating a round to left. This routine handles that case */ |
6876 | | /* correctly; caller ensures space. */ |
6877 | | /* */ |
6878 | | /* dn->digits, dn->lsu (and as required), and dn->exponent are */ |
6879 | | /* updated as necessary. dn->bits (sign) is unchanged. */ |
6880 | | /* */ |
6881 | | /* DEC_Rounded status is set if any digits are discarded. */ |
6882 | | /* DEC_Inexact status is set if any non-zero digits are discarded, or */ |
6883 | | /* incoming residue was non-0 (implies rounded) */ |
6884 | | /* ------------------------------------------------------------------ */ |
6885 | | // mapping array: maps 0-9 to canonical residues, so that a residue |
6886 | | // can be adjusted in the range [-1, +1] and achieve correct rounding |
6887 | | // 0 1 2 3 4 5 6 7 8 9 |
6888 | | static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; |
6889 | | static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu, |
6890 | 5.20M | Int len, Int *residue, uInt *status) { |
6891 | 5.20M | Int discard; // number of digits to discard |
6892 | 5.20M | uInt cut; // cut point in Unit |
6893 | 5.20M | const Unit *up; // work |
6894 | 5.20M | Unit *target; // .. |
6895 | 5.20M | Int count; // .. |
6896 | 5.20M | #if DECDPUN<=4 |
6897 | 5.20M | uInt temp; // .. |
6898 | 5.20M | #endif |
6899 | | |
6900 | 5.20M | discard=len-set->digits; // digits to discard |
6901 | 5.20M | if (discard<=0) { // no digits are being discarded |
6902 | 4.77M | if (dn->lsu!=lsu) { // copy needed |
6903 | | // copy the coefficient array to the result number; no shift needed |
6904 | 4.77M | count=len; // avoids D2U |
6905 | 4.77M | up=lsu; |
6906 | 21.5M | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) |
6907 | 16.7M | *target=*up; |
6908 | 4.77M | dn->digits=len; // set the new length |
6909 | 4.77M | } |
6910 | | // dn->exponent and residue are unchanged, record any inexactitude |
6911 | 4.77M | if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded); |
6912 | 4.77M | return; |
6913 | 4.77M | } |
6914 | | |
6915 | | // some digits must be discarded ... |
6916 | 429k | dn->exponent+=discard; // maintain numerical value |
6917 | 429k | *status|=DEC_Rounded; // accumulate Rounded status |
6918 | 429k | if (*residue>1) *residue=1; // previous residue now to right, so reduce |
6919 | | |
6920 | 429k | if (discard>len) { // everything, +1, is being discarded |
6921 | | // guard digit is 0 |
6922 | | // residue is all the number [NB could be all 0s] |
6923 | 11.1k | if (*residue<=0) { // not already positive |
6924 | 10.0k | count=len; // avoids D2U |
6925 | 361k | for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { // found non-0 |
6926 | 10.0k | *residue=1; |
6927 | 10.0k | break; // no need to check any others |
6928 | 10.0k | } |
6929 | 10.0k | } |
6930 | 11.1k | if (*residue!=0) *status|=DEC_Inexact; // record inexactitude |
6931 | 11.1k | *dn->lsu=0; // coefficient will now be 0 |
6932 | 11.1k | dn->digits=1; // .. |
6933 | 11.1k | return; |
6934 | 11.1k | } // total discard |
6935 | | |
6936 | | // partial discard [most common case] |
6937 | | // here, at least the first (most significant) discarded digit exists |
6938 | | |
6939 | | // spin up the number, noting residue during the spin, until get to |
6940 | | // the Unit with the first discarded digit. When reach it, extract |
6941 | | // it and remember its position |
6942 | 418k | count=0; |
6943 | 5.40M | for (up=lsu;; up++) { |
6944 | 5.40M | count+=DECDPUN; |
6945 | 5.40M | if (count>=discard) break; // full ones all checked |
6946 | 4.98M | if (*up!=0) *residue=1; |
6947 | 4.98M | } // up |
6948 | | |
6949 | | // here up -> Unit with first discarded digit |
6950 | 418k | cut=discard-(count-DECDPUN)-1; |
6951 | 418k | if (cut==DECDPUN-1) { // unit-boundary case (fast) |
6952 | 17.8k | Unit half=(Unit)powers[DECDPUN]>>1; |
6953 | | // set residue directly |
6954 | 17.8k | if (*up>=half) { |
6955 | 10.2k | if (*up>half) *residue=7; |
6956 | 3.84k | else *residue+=5; // add sticky bit |
6957 | 10.2k | } |
6958 | 7.60k | else { // <half |
6959 | 7.60k | if (*up!=0) *residue=3; // [else is 0, leave as sticky bit] |
6960 | 7.60k | } |
6961 | 17.8k | if (set->digits<=0) { // special for Quantize/Subnormal :-( |
6962 | 5.51k | *dn->lsu=0; // .. result is 0 |
6963 | 5.51k | dn->digits=1; // .. |
6964 | 5.51k | } |
6965 | 12.3k | else { // shift to least |
6966 | 12.3k | count=set->digits; // now digits to end up with |
6967 | 12.3k | dn->digits=count; // set the new length |
6968 | 12.3k | up++; // move to next |
6969 | | // on unit boundary, so shift-down copy loop is simple |
6970 | 2.26M | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) |
6971 | 2.25M | *target=*up; |
6972 | 12.3k | } |
6973 | 17.8k | } // unit-boundary case |
6974 | | |
6975 | 400k | else { // discard digit is in low digit(s), and not top digit |
6976 | 400k | uInt discard1; // first discarded digit |
6977 | 400k | uInt quot, rem; // for divisions |
6978 | 400k | if (cut==0) quot=*up; // is at bottom of unit |
6979 | 23.7k | else /* cut>0 */ { // it's not at bottom of unit |
6980 | 23.7k | #if DECDPUN<=4 |
6981 | 23.7k | quot=QUOT10(*up, cut); |
6982 | 23.7k | rem=*up-quot*powers[cut]; |
6983 | | #else |
6984 | | rem=*up%powers[cut]; |
6985 | | quot=*up/powers[cut]; |
6986 | | #endif |
6987 | 23.7k | if (rem!=0) *residue=1; |
6988 | 23.7k | } |
6989 | | // discard digit is now at bottom of quot |
6990 | 400k | #if DECDPUN<=4 |
6991 | 400k | temp=(quot*6554)>>16; // fast /10 |
6992 | | // Vowels algorithm here not a win (9 instructions) |
6993 | 400k | discard1=quot-X10(temp); |
6994 | 400k | quot=temp; |
6995 | | #else |
6996 | | discard1=quot%10; |
6997 | | quot=quot/10; |
6998 | | #endif |
6999 | | // here, discard1 is the guard digit, and residue is everything |
7000 | | // else [use mapping array to accumulate residue safely] |
7001 | 400k | *residue+=resmap[discard1]; |
7002 | 400k | cut++; // update cut |
7003 | | // here: up -> Unit of the array with bottom digit |
7004 | | // cut is the division point for each Unit |
7005 | | // quot holds the uncut high-order digits for the current unit |
7006 | 400k | if (set->digits<=0) { // special for Quantize/Subnormal :-( |
7007 | 3.96k | *dn->lsu=0; // .. result is 0 |
7008 | 3.96k | dn->digits=1; // .. |
7009 | 3.96k | } |
7010 | 396k | else { // shift to least needed |
7011 | 396k | count=set->digits; // now digits to end up with |
7012 | 396k | dn->digits=count; // set the new length |
7013 | | // shift-copy the coefficient array to the result number |
7014 | 35.5M | for (target=dn->lsu; ; target++) { |
7015 | 35.5M | *target=(Unit)quot; |
7016 | 35.5M | count-=(DECDPUN-cut); |
7017 | 35.5M | if (count<=0) break; |
7018 | 35.1M | up++; |
7019 | 35.1M | quot=*up; |
7020 | 35.1M | #if DECDPUN<=4 |
7021 | 35.1M | quot=QUOT10(quot, cut); |
7022 | 35.1M | rem=*up-quot*powers[cut]; |
7023 | | #else |
7024 | | rem=quot%powers[cut]; |
7025 | | quot=quot/powers[cut]; |
7026 | | #endif |
7027 | 35.1M | *target=(Unit)(*target+rem*powers[DECDPUN-cut]); |
7028 | 35.1M | count-=cut; |
7029 | 35.1M | if (count<=0) break; |
7030 | 35.1M | } // shift-copy loop |
7031 | 396k | } // shift to least |
7032 | 400k | } // not unit boundary |
7033 | | |
7034 | 418k | if (*residue!=0) *status|=DEC_Inexact; // record inexactitude |
7035 | 418k | return; |
7036 | 429k | } // decSetCoeff |
7037 | | |
7038 | | /* ------------------------------------------------------------------ */ |
7039 | | /* decApplyRound -- apply pending rounding to a number */ |
7040 | | /* */ |
7041 | | /* dn is the number, with space for set->digits digits */ |
7042 | | /* set is the context [for size and rounding mode] */ |
7043 | | /* residue indicates pending rounding, being any accumulated */ |
7044 | | /* guard and sticky information. It may be: */ |
7045 | | /* 6-9: rounding digit is >5 */ |
7046 | | /* 5: rounding digit is exactly half-way */ |
7047 | | /* 1-4: rounding digit is <5 and >0 */ |
7048 | | /* 0: the coefficient is exact */ |
7049 | | /* -1: as 1, but the hidden digits are subtractive, that */ |
7050 | | /* is, of the opposite sign to dn. In this case the */ |
7051 | | /* coefficient must be non-0. This case occurs when */ |
7052 | | /* subtracting a small number (which can be reduced to */ |
7053 | | /* a sticky bit); see decAddOp. */ |
7054 | | /* status is the status accumulator, as usual */ |
7055 | | /* */ |
7056 | | /* This routine applies rounding while keeping the length of the */ |
7057 | | /* coefficient constant. The exponent and status are unchanged */ |
7058 | | /* except if: */ |
7059 | | /* */ |
7060 | | /* -- the coefficient was increased and is all nines (in which */ |
7061 | | /* case Overflow could occur, and is handled directly here so */ |
7062 | | /* the caller does not need to re-test for overflow) */ |
7063 | | /* */ |
7064 | | /* -- the coefficient was decreased and becomes all nines (in which */ |
7065 | | /* case Underflow could occur, and is also handled directly). */ |
7066 | | /* */ |
7067 | | /* All fields in dn are updated as required. */ |
7068 | | /* */ |
7069 | | /* ------------------------------------------------------------------ */ |
7070 | | static void decApplyRound(decNumber *dn, decContext *set, Int residue, |
7071 | 425k | uInt *status) { |
7072 | 425k | Int bump; // 1 if coefficient needs to be incremented |
7073 | | // -1 if coefficient needs to be decremented |
7074 | | |
7075 | 425k | if (residue==0) return; // nothing to apply |
7076 | | |
7077 | 382k | bump=0; // assume a smooth ride |
7078 | | |
7079 | | // now decide whether, and how, to round, depending on mode |
7080 | 382k | switch (set->round) { |
7081 | 0 | case DEC_ROUND_05UP: { // round zero or five up (for reround) |
7082 | | // This is the same as DEC_ROUND_DOWN unless there is a |
7083 | | // positive residue and the lsd of dn is 0 or 5, in which case |
7084 | | // it is bumped; when residue is <0, the number is therefore |
7085 | | // bumped down unless the final digit was 1 or 6 (in which |
7086 | | // case it is bumped down and then up -- a no-op) |
7087 | 0 | Int lsd5=*dn->lsu%5; // get lsd and quintate |
7088 | 0 | if (residue<0 && lsd5!=1) bump=-1; |
7089 | 0 | else if (residue>0 && lsd5==0) bump=1; |
7090 | | // [bump==1 could be applied directly; use common path for clarity] |
7091 | 0 | break;} // r-05 |
7092 | | |
7093 | 0 | case DEC_ROUND_DOWN: { |
7094 | | // no change, except if negative residue |
7095 | 0 | if (residue<0) bump=-1; |
7096 | 0 | break;} // r-d |
7097 | | |
7098 | 0 | case DEC_ROUND_HALF_DOWN: { |
7099 | 0 | if (residue>5) bump=1; |
7100 | 0 | break;} // r-h-d |
7101 | | |
7102 | 348k | case DEC_ROUND_HALF_EVEN: { |
7103 | 348k | if (residue>5) bump=1; // >0.5 goes up |
7104 | 313k | else if (residue==5) { // exactly 0.5000... |
7105 | | // 0.5 goes up iff [new] lsd is odd |
7106 | 4.51k | if (*dn->lsu & 0x01) bump=1; |
7107 | 4.51k | } |
7108 | 348k | break;} // r-h-e |
7109 | | |
7110 | 33.9k | case DEC_ROUND_HALF_UP: { |
7111 | 33.9k | if (residue>=5) bump=1; |
7112 | 33.9k | break;} // r-h-u |
7113 | | |
7114 | 0 | case DEC_ROUND_UP: { |
7115 | 0 | if (residue>0) bump=1; |
7116 | 0 | break;} // r-u |
7117 | | |
7118 | 0 | case DEC_ROUND_CEILING: { |
7119 | | // same as _UP for positive numbers, and as _DOWN for negatives |
7120 | | // [negative residue cannot occur on 0] |
7121 | 0 | if (decNumberIsNegative(dn)) { |
7122 | 0 | if (residue<0) bump=-1; |
7123 | 0 | } |
7124 | 0 | else { |
7125 | 0 | if (residue>0) bump=1; |
7126 | 0 | } |
7127 | 0 | break;} // r-c |
7128 | | |
7129 | 0 | case DEC_ROUND_FLOOR: { |
7130 | | // same as _UP for negative numbers, and as _DOWN for positive |
7131 | | // [negative residue cannot occur on 0] |
7132 | 0 | if (!decNumberIsNegative(dn)) { |
7133 | 0 | if (residue<0) bump=-1; |
7134 | 0 | } |
7135 | 0 | else { |
7136 | 0 | if (residue>0) bump=1; |
7137 | 0 | } |
7138 | 0 | break;} // r-f |
7139 | | |
7140 | 0 | default: { // e.g., DEC_ROUND_MAX |
7141 | 0 | *status|=DEC_Invalid_context; |
7142 | | #if DECTRACE || (DECCHECK && DECVERB) |
7143 | | printf("Unknown rounding mode: %d\n", set->round); |
7144 | | #endif |
7145 | 0 | break;} |
7146 | 382k | } // switch |
7147 | | |
7148 | | // now bump the number, up or down, if need be |
7149 | 382k | if (bump==0) return; // no action required |
7150 | | |
7151 | | // Simply use decUnitAddSub unless bumping up and the number is |
7152 | | // all nines. In this special case set to 100... explicitly |
7153 | | // and adjust the exponent by one (as otherwise could overflow |
7154 | | // the array) |
7155 | | // Similarly handle all-nines result if bumping down. |
7156 | 61.5k | if (bump>0) { |
7157 | 61.5k | Unit *up; // work |
7158 | 61.5k | uInt count=dn->digits; // digits to be checked |
7159 | 20.2M | for (up=dn->lsu; ; up++) { |
7160 | 20.2M | if (count<=DECDPUN) { |
7161 | | // this is the last Unit (the msu) |
7162 | 25.5k | if (*up!=powers[count]-1) break; // not still 9s |
7163 | | // here if it, too, is all nines |
7164 | 16.2k | *up=(Unit)powers[count-1]; // here 999 -> 100 etc. |
7165 | 17.1M | for (up=up-1; up>=dn->lsu; up--) *up=0; // others all to 0 |
7166 | 16.2k | dn->exponent++; // and bump exponent |
7167 | | // [which, very rarely, could cause Overflow...] |
7168 | 16.2k | if ((dn->exponent+dn->digits)>set->emax+1) { |
7169 | 1.53k | decSetOverflow(dn, set, status); |
7170 | 1.53k | } |
7171 | 16.2k | return; // done |
7172 | 25.5k | } |
7173 | | // a full unit to check, with more to come |
7174 | 20.2M | if (*up!=DECDPUNMAX) break; // not still 9s |
7175 | 20.2M | count-=DECDPUN; |
7176 | 20.2M | } // up |
7177 | 61.5k | } // bump>0 |
7178 | 0 | else { // -1 |
7179 | | // here checking for a pre-bump of 1000... (leading 1, all |
7180 | | // other digits zero) |
7181 | 0 | Unit *up, *sup; // work |
7182 | 0 | uInt count=dn->digits; // digits to be checked |
7183 | 0 | for (up=dn->lsu; ; up++) { |
7184 | 0 | if (count<=DECDPUN) { |
7185 | | // this is the last Unit (the msu) |
7186 | 0 | if (*up!=powers[count-1]) break; // not 100.. |
7187 | | // here if have the 1000... case |
7188 | 0 | sup=up; // save msu pointer |
7189 | 0 | *up=(Unit)powers[count]-1; // here 100 in msu -> 999 |
7190 | | // others all to all-nines, too |
7191 | 0 | for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1; |
7192 | 0 | dn->exponent--; // and bump exponent |
7193 | | |
7194 | | // iff the number was at the subnormal boundary (exponent=etiny) |
7195 | | // then the exponent is now out of range, so it will in fact get |
7196 | | // clamped to etiny and the final 9 dropped. |
7197 | | // printf(">> emin=%d exp=%d sdig=%d\n", set->emin, |
7198 | | // dn->exponent, set->digits); |
7199 | 0 | if (dn->exponent+1==set->emin-set->digits+1) { |
7200 | 0 | if (count==1 && dn->digits==1) *sup=0; // here 9 -> 0[.9] |
7201 | 0 | else { |
7202 | 0 | *sup=(Unit)powers[count-1]-1; // here 999.. in msu -> 99.. |
7203 | 0 | dn->digits--; |
7204 | 0 | } |
7205 | 0 | dn->exponent++; |
7206 | 0 | *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; |
7207 | 0 | } |
7208 | 0 | return; // done |
7209 | 0 | } |
7210 | | |
7211 | | // a full unit to check, with more to come |
7212 | 0 | if (*up!=0) break; // not still 0s |
7213 | 0 | count-=DECDPUN; |
7214 | 0 | } // up |
7215 | |
|
7216 | 0 | } // bump<0 |
7217 | | |
7218 | | // Actual bump needed. Do it. |
7219 | 45.2k | decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump); |
7220 | 45.2k | } // decApplyRound |
7221 | | |
7222 | | #if DECSUBSET |
7223 | | /* ------------------------------------------------------------------ */ |
7224 | | /* decFinish -- finish processing a number */ |
7225 | | /* */ |
7226 | | /* dn is the number */ |
7227 | | /* set is the context */ |
7228 | | /* residue is the rounding accumulator (as in decApplyRound) */ |
7229 | | /* status is the accumulator */ |
7230 | | /* */ |
7231 | | /* This finishes off the current number by: */ |
7232 | | /* 1. If not extended: */ |
7233 | | /* a. Converting a zero result to clean '0' */ |
7234 | | /* b. Reducing positive exponents to 0, if would fit in digits */ |
7235 | | /* 2. Checking for overflow and subnormals (always) */ |
7236 | | /* Note this is just Finalize when no subset arithmetic. */ |
7237 | | /* All fields are updated as required. */ |
7238 | | /* ------------------------------------------------------------------ */ |
7239 | | static void decFinish(decNumber *dn, decContext *set, Int *residue, |
7240 | | uInt *status) { |
7241 | | if (!set->extended) { |
7242 | | if ISZERO(dn) { // value is zero |
7243 | | dn->exponent=0; // clean exponent .. |
7244 | | dn->bits=0; // .. and sign |
7245 | | return; // no error possible |
7246 | | } |
7247 | | if (dn->exponent>=0) { // non-negative exponent |
7248 | | // >0; reduce to integer if possible |
7249 | | if (set->digits >= (dn->exponent+dn->digits)) { |
7250 | | dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); |
7251 | | dn->exponent=0; |
7252 | | } |
7253 | | } |
7254 | | } // !extended |
7255 | | |
7256 | | decFinalize(dn, set, residue, status); |
7257 | | } // decFinish |
7258 | | #endif |
7259 | | |
7260 | | /* ------------------------------------------------------------------ */ |
7261 | | /* decFinalize -- final check, clamp, and round of a number */ |
7262 | | /* */ |
7263 | | /* dn is the number */ |
7264 | | /* set is the context */ |
7265 | | /* residue is the rounding accumulator (as in decApplyRound) */ |
7266 | | /* status is the status accumulator */ |
7267 | | /* */ |
7268 | | /* This finishes off the current number by checking for subnormal */ |
7269 | | /* results, applying any pending rounding, checking for overflow, */ |
7270 | | /* and applying any clamping. */ |
7271 | | /* Underflow and overflow conditions are raised as appropriate. */ |
7272 | | /* All fields are updated as required. */ |
7273 | | /* ------------------------------------------------------------------ */ |
7274 | | static void decFinalize(decNumber *dn, decContext *set, Int *residue, |
7275 | 5.26M | uInt *status) { |
7276 | 5.26M | Int shift; // shift needed if clamping |
7277 | 5.26M | Int tinyexp=set->emin-dn->digits+1; // precalculate subnormal boundary |
7278 | | |
7279 | | // Must be careful, here, when checking the exponent as the |
7280 | | // adjusted exponent could overflow 31 bits [because it may already |
7281 | | // be up to twice the expected]. |
7282 | | |
7283 | | // First test for subnormal. This must be done before any final |
7284 | | // round as the result could be rounded to Nmin or 0. |
7285 | 5.26M | if (dn->exponent<=tinyexp) { // prefilter |
7286 | 102k | Int comp; |
7287 | 102k | decNumber nmin; |
7288 | | // A very nasty case here is dn == Nmin and residue<0 |
7289 | 102k | if (dn->exponent<tinyexp) { |
7290 | | // Go handle subnormals; this will apply round if needed. |
7291 | 100k | decSetSubnormal(dn, set, residue, status); |
7292 | 100k | return; |
7293 | 100k | } |
7294 | | // Equals case: only subnormal if dn=Nmin and negative residue |
7295 | 1.88k | decNumberZero(&nmin); |
7296 | 1.88k | nmin.lsu[0]=1; |
7297 | 1.88k | nmin.exponent=set->emin; |
7298 | 1.88k | comp=decCompare(dn, &nmin, 1); // (signless compare) |
7299 | 1.88k | if (comp==BADINT) { // oops |
7300 | 0 | *status|=DEC_Insufficient_storage; // abandon... |
7301 | 0 | return; |
7302 | 0 | } |
7303 | 1.88k | if (*residue<0 && comp==0) { // neg residue and dn==Nmin |
7304 | 0 | decApplyRound(dn, set, *residue, status); // might force down |
7305 | 0 | decSetSubnormal(dn, set, residue, status); |
7306 | 0 | return; |
7307 | 0 | } |
7308 | 1.88k | } |
7309 | | |
7310 | | // now apply any pending round (this could raise overflow). |
7311 | 5.16M | if (*residue!=0) decApplyRound(dn, set, *residue, status); |
7312 | | |
7313 | | // Check for overflow [redundant in the 'rare' case] or clamp |
7314 | 5.16M | if (dn->exponent<=set->emax-set->digits+1) return; // neither needed |
7315 | | |
7316 | | |
7317 | | // here when might have an overflow or clamp to do |
7318 | 65.4k | if (dn->exponent>set->emax-dn->digits+1) { // too big |
7319 | 58.7k | decSetOverflow(dn, set, status); |
7320 | 58.7k | return; |
7321 | 58.7k | } |
7322 | | // here when the result is normal but in clamp range |
7323 | 6.74k | if (!set->clamp) return; |
7324 | | |
7325 | | // here when need to apply the IEEE exponent clamp (fold-down) |
7326 | 4.89k | shift=dn->exponent-(set->emax-set->digits+1); |
7327 | | |
7328 | | // shift coefficient (if non-zero) |
7329 | 4.89k | if (!ISZERO(dn)) { |
7330 | 4.24k | dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); |
7331 | 4.24k | } |
7332 | 4.89k | dn->exponent-=shift; // adjust the exponent to match |
7333 | 4.89k | *status|=DEC_Clamped; // and record the dirty deed |
7334 | 4.89k | return; |
7335 | 6.74k | } // decFinalize |
7336 | | |
7337 | | /* ------------------------------------------------------------------ */ |
7338 | | /* decSetOverflow -- set number to proper overflow value */ |
7339 | | /* */ |
7340 | | /* dn is the number (used for sign [only] and result) */ |
7341 | | /* set is the context [used for the rounding mode, etc.] */ |
7342 | | /* status contains the current status to be updated */ |
7343 | | /* */ |
7344 | | /* This sets the sign of a number and sets its value to either */ |
7345 | | /* Infinity or the maximum finite value, depending on the sign of */ |
7346 | | /* dn and the rounding mode, following IEEE 754 rules. */ |
7347 | | /* ------------------------------------------------------------------ */ |
7348 | 60.2k | static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { |
7349 | 60.2k | Flag needmax=0; // result is maximum finite value |
7350 | 60.2k | uByte sign=dn->bits&DECNEG; // clean and save sign bit |
7351 | | |
7352 | 60.2k | if (ISZERO(dn)) { // zero does not overflow magnitude |
7353 | 5.60k | Int emax=set->emax; // limit value |
7354 | 5.60k | if (set->clamp) emax-=set->digits-1; // lower if clamping |
7355 | 5.60k | if (dn->exponent>emax) { // clamp required |
7356 | 5.60k | dn->exponent=emax; |
7357 | 5.60k | *status|=DEC_Clamped; |
7358 | 5.60k | } |
7359 | 5.60k | return; |
7360 | 5.60k | } |
7361 | | |
7362 | 54.6k | decNumberZero(dn); |
7363 | 54.6k | switch (set->round) { |
7364 | 0 | case DEC_ROUND_DOWN: { |
7365 | 0 | needmax=1; // never Infinity |
7366 | 0 | break;} // r-d |
7367 | 0 | case DEC_ROUND_05UP: { |
7368 | 0 | needmax=1; // never Infinity |
7369 | 0 | break;} // r-05 |
7370 | 0 | case DEC_ROUND_CEILING: { |
7371 | 0 | if (sign) needmax=1; // Infinity if non-negative |
7372 | 0 | break;} // r-c |
7373 | 0 | case DEC_ROUND_FLOOR: { |
7374 | 0 | if (!sign) needmax=1; // Infinity if negative |
7375 | 0 | break;} // r-f |
7376 | 54.6k | default: break; // Infinity in all other cases |
7377 | 54.6k | } |
7378 | 54.6k | if (needmax) { |
7379 | 0 | decSetMaxValue(dn, set); |
7380 | 0 | dn->bits=sign; // set sign |
7381 | 0 | } |
7382 | 54.6k | else dn->bits=sign|DECINF; // Value is +/-Infinity |
7383 | 54.6k | *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded; |
7384 | 54.6k | } // decSetOverflow |
7385 | | |
7386 | | /* ------------------------------------------------------------------ */ |
7387 | | /* decSetMaxValue -- set number to +Nmax (maximum normal value) */ |
7388 | | /* */ |
7389 | | /* dn is the number to set */ |
7390 | | /* set is the context [used for digits and emax] */ |
7391 | | /* */ |
7392 | | /* This sets the number to the maximum positive value. */ |
7393 | | /* ------------------------------------------------------------------ */ |
7394 | 0 | static void decSetMaxValue(decNumber *dn, decContext *set) { |
7395 | 0 | Unit *up; // work |
7396 | 0 | Int count=set->digits; // nines to add |
7397 | 0 | dn->digits=count; |
7398 | | // fill in all nines to set maximum value |
7399 | 0 | for (up=dn->lsu; ; up++) { |
7400 | 0 | if (count>DECDPUN) *up=DECDPUNMAX; // unit full o'nines |
7401 | 0 | else { // this is the msu |
7402 | 0 | *up=(Unit)(powers[count]-1); |
7403 | 0 | break; |
7404 | 0 | } |
7405 | 0 | count-=DECDPUN; // filled those digits |
7406 | 0 | } // up |
7407 | 0 | dn->bits=0; // + sign |
7408 | 0 | dn->exponent=set->emax-set->digits+1; |
7409 | 0 | } // decSetMaxValue |
7410 | | |
7411 | | /* ------------------------------------------------------------------ */ |
7412 | | /* decSetSubnormal -- process value whose exponent is <Emin */ |
7413 | | /* */ |
7414 | | /* dn is the number (used as input as well as output; it may have */ |
7415 | | /* an allowed subnormal value, which may need to be rounded) */ |
7416 | | /* set is the context [used for the rounding mode] */ |
7417 | | /* residue is any pending residue */ |
7418 | | /* status contains the current status to be updated */ |
7419 | | /* */ |
7420 | | /* If subset mode, set result to zero and set Underflow flags. */ |
7421 | | /* */ |
7422 | | /* Value may be zero with a low exponent; this does not set Subnormal */ |
7423 | | /* but the exponent will be clamped to Etiny. */ |
7424 | | /* */ |
7425 | | /* Otherwise ensure exponent is not out of range, and round as */ |
7426 | | /* necessary. Underflow is set if the result is Inexact. */ |
7427 | | /* ------------------------------------------------------------------ */ |
7428 | | static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue, |
7429 | 100k | uInt *status) { |
7430 | 100k | decContext workset; // work |
7431 | 100k | Int etiny, adjust; // .. |
7432 | | |
7433 | | #if DECSUBSET |
7434 | | // simple set to zero and 'hard underflow' for subset |
7435 | | if (!set->extended) { |
7436 | | decNumberZero(dn); |
7437 | | // always full overflow |
7438 | | *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; |
7439 | | return; |
7440 | | } |
7441 | | #endif |
7442 | | |
7443 | | // Full arithmetic -- allow subnormals, rounded to minimum exponent |
7444 | | // (Etiny) if needed |
7445 | 100k | etiny=set->emin-(set->digits-1); // smallest allowed exponent |
7446 | | |
7447 | 100k | if ISZERO(dn) { // value is zero |
7448 | | // residue can never be non-zero here |
7449 | | #if DECCHECK |
7450 | | if (*residue!=0) { |
7451 | | printf("++ Subnormal 0 residue %ld\n", (LI)*residue); |
7452 | | *status|=DEC_Invalid_operation; |
7453 | | } |
7454 | | #endif |
7455 | 9.24k | if (dn->exponent<etiny) { // clamp required |
7456 | 5.25k | dn->exponent=etiny; |
7457 | 5.25k | *status|=DEC_Clamped; |
7458 | 5.25k | } |
7459 | 9.24k | return; |
7460 | 9.24k | } |
7461 | | |
7462 | 91.3k | *status|=DEC_Subnormal; // have a non-zero subnormal |
7463 | 91.3k | adjust=etiny-dn->exponent; // calculate digits to remove |
7464 | 91.3k | if (adjust<=0) { // not out of range; unrounded |
7465 | | // residue can never be non-zero here, except in the Nmin-residue |
7466 | | // case (which is a subnormal result), so can take fast-path here |
7467 | | // it may already be inexact (from setting the coefficient) |
7468 | 5.07k | if (*status&DEC_Inexact) *status|=DEC_Underflow; |
7469 | 5.07k | return; |
7470 | 5.07k | } |
7471 | | |
7472 | | // adjust>0, so need to rescale the result so exponent becomes Etiny |
7473 | | // [this code is similar to that in rescale] |
7474 | 86.2k | workset=*set; // clone rounding, etc. |
7475 | 86.2k | workset.digits=dn->digits-adjust; // set requested length |
7476 | 86.2k | workset.emin-=adjust; // and adjust emin to match |
7477 | | // [note that the latter can be <1, here, similar to Rescale case] |
7478 | 86.2k | decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); |
7479 | 86.2k | decApplyRound(dn, &workset, *residue, status); |
7480 | | |
7481 | | // Use 754 default rule: Underflow is set iff Inexact |
7482 | | // [independent of whether trapped] |
7483 | 86.2k | if (*status&DEC_Inexact) *status|=DEC_Underflow; |
7484 | | |
7485 | | // if rounded up a 999s case, exponent will be off by one; adjust |
7486 | | // back if so [it will fit, because it was shortened earlier] |
7487 | 86.2k | if (dn->exponent>etiny) { |
7488 | 13.1k | dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); |
7489 | 13.1k | dn->exponent--; // (re)adjust the exponent. |
7490 | 13.1k | } |
7491 | | |
7492 | | // if rounded to zero, it is by definition clamped... |
7493 | 86.2k | if (ISZERO(dn)) *status|=DEC_Clamped; |
7494 | 86.2k | } // decSetSubnormal |
7495 | | |
7496 | | /* ------------------------------------------------------------------ */ |
7497 | | /* decCheckMath - check entry conditions for a math function */ |
7498 | | /* */ |
7499 | | /* This checks the context and the operand */ |
7500 | | /* */ |
7501 | | /* rhs is the operand to check */ |
7502 | | /* set is the context to check */ |
7503 | | /* status is unchanged if both are good */ |
7504 | | /* */ |
7505 | | /* returns non-zero if status is changed, 0 otherwise */ |
7506 | | /* */ |
7507 | | /* Restrictions enforced: */ |
7508 | | /* */ |
7509 | | /* digits, emax, and -emin in the context must be less than */ |
7510 | | /* DEC_MAX_MATH (999999), and A must be within these bounds if */ |
7511 | | /* non-zero. Invalid_operation is set in the status if a */ |
7512 | | /* restriction is violated. */ |
7513 | | /* ------------------------------------------------------------------ */ |
7514 | | static uInt decCheckMath(const decNumber *rhs, decContext *set, |
7515 | 0 | uInt *status) { |
7516 | 0 | uInt save=*status; // record |
7517 | 0 | if (set->digits>DEC_MAX_MATH |
7518 | 0 | || set->emax>DEC_MAX_MATH |
7519 | 0 | || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context; |
7520 | 0 | else if ((rhs->digits>DEC_MAX_MATH |
7521 | 0 | || rhs->exponent+rhs->digits>DEC_MAX_MATH+1 |
7522 | 0 | || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH)) |
7523 | 0 | && !ISZERO(rhs)) *status|=DEC_Invalid_operation; |
7524 | 0 | return (*status!=save); |
7525 | 0 | } // decCheckMath |
7526 | | |
7527 | | /* ------------------------------------------------------------------ */ |
7528 | | /* decGetInt -- get integer from a number */ |
7529 | | /* */ |
7530 | | /* dn is the number [which will not be altered] */ |
7531 | | /* */ |
7532 | | /* returns one of: */ |
7533 | | /* BADINT if there is a non-zero fraction */ |
7534 | | /* the converted integer */ |
7535 | | /* BIGEVEN if the integer is even and magnitude > 2*10**9 */ |
7536 | | /* BIGODD if the integer is odd and magnitude > 2*10**9 */ |
7537 | | /* */ |
7538 | | /* This checks and gets a whole number from the input decNumber. */ |
7539 | | /* The sign can be determined from dn by the caller when BIGEVEN or */ |
7540 | | /* BIGODD is returned. */ |
7541 | | /* ------------------------------------------------------------------ */ |
7542 | 0 | static Int decGetInt(const decNumber *dn) { |
7543 | 0 | Int theInt; // result accumulator |
7544 | 0 | const Unit *up; // work |
7545 | 0 | Int got; // digits (real or not) processed |
7546 | 0 | Int ilength=dn->digits+dn->exponent; // integral length |
7547 | 0 | Flag neg=decNumberIsNegative(dn); // 1 if -ve |
7548 | | |
7549 | | // The number must be an integer that fits in 10 digits |
7550 | | // Assert, here, that 10 is enough for any rescale Etiny |
7551 | | #if DEC_MAX_EMAX > 999999999 |
7552 | | #error GetInt may need updating [for Emax] |
7553 | | #endif |
7554 | | #if DEC_MIN_EMIN < -999999999 |
7555 | | #error GetInt may need updating [for Emin] |
7556 | | #endif |
7557 | 0 | if (ISZERO(dn)) return 0; // zeros are OK, with any exponent |
7558 | | |
7559 | 0 | up=dn->lsu; // ready for lsu |
7560 | 0 | theInt=0; // ready to accumulate |
7561 | 0 | if (dn->exponent>=0) { // relatively easy |
7562 | | // no fractional part [usual]; allow for positive exponent |
7563 | 0 | got=dn->exponent; |
7564 | 0 | } |
7565 | 0 | else { // -ve exponent; some fractional part to check and discard |
7566 | 0 | Int count=-dn->exponent; // digits to discard |
7567 | | // spin up whole units until reach the Unit with the unit digit |
7568 | 0 | for (; count>=DECDPUN; up++) { |
7569 | 0 | if (*up!=0) return BADINT; // non-zero Unit to discard |
7570 | 0 | count-=DECDPUN; |
7571 | 0 | } |
7572 | 0 | if (count==0) got=0; // [a multiple of DECDPUN] |
7573 | 0 | else { // [not multiple of DECDPUN] |
7574 | 0 | Int rem; // work |
7575 | | // slice off fraction digits and check for non-zero |
7576 | 0 | #if DECDPUN<=4 |
7577 | 0 | theInt=QUOT10(*up, count); |
7578 | 0 | rem=*up-theInt*powers[count]; |
7579 | | #else |
7580 | | rem=*up%powers[count]; // slice off discards |
7581 | | theInt=*up/powers[count]; |
7582 | | #endif |
7583 | 0 | if (rem!=0) return BADINT; // non-zero fraction |
7584 | | // it looks good |
7585 | 0 | got=DECDPUN-count; // number of digits so far |
7586 | 0 | up++; // ready for next |
7587 | 0 | } |
7588 | 0 | } |
7589 | | // now it's known there's no fractional part |
7590 | | |
7591 | | // tricky code now, to accumulate up to 9.3 digits |
7592 | 0 | if (got==0) {theInt=*up; got+=DECDPUN; up++;} // ensure lsu is there |
7593 | |
|
7594 | 0 | if (ilength<11) { |
7595 | 0 | Int save=theInt; |
7596 | | // collect any remaining unit(s) |
7597 | 0 | for (; got<ilength; up++) { |
7598 | 0 | theInt+=*up*powers[got]; |
7599 | 0 | got+=DECDPUN; |
7600 | 0 | } |
7601 | 0 | if (ilength==10) { // need to check for wrap |
7602 | 0 | if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11; |
7603 | | // [that test also disallows the BADINT result case] |
7604 | 0 | else if (neg && theInt>1999999997) ilength=11; |
7605 | 0 | else if (!neg && theInt>999999999) ilength=11; |
7606 | 0 | if (ilength==11) theInt=save; // restore correct low bit |
7607 | 0 | } |
7608 | 0 | } |
7609 | |
|
7610 | 0 | if (ilength>10) { // too big |
7611 | 0 | if (theInt&1) return BIGODD; // bottom bit 1 |
7612 | 0 | return BIGEVEN; // bottom bit 0 |
7613 | 0 | } |
7614 | | |
7615 | 0 | if (neg) theInt=-theInt; // apply sign |
7616 | 0 | return theInt; |
7617 | 0 | } // decGetInt |
7618 | | |
7619 | | /* ------------------------------------------------------------------ */ |
7620 | | /* decDecap -- decapitate the coefficient of a number */ |
7621 | | /* */ |
7622 | | /* dn is the number to be decapitated */ |
7623 | | /* drop is the number of digits to be removed from the left of dn; */ |
7624 | | /* this must be <= dn->digits (if equal, the coefficient is */ |
7625 | | /* set to 0) */ |
7626 | | /* */ |
7627 | | /* Returns dn; dn->digits will be <= the initial digits less drop */ |
7628 | | /* (after removing drop digits there may be leading zero digits */ |
7629 | | /* which will also be removed). Only dn->lsu and dn->digits change. */ |
7630 | | /* ------------------------------------------------------------------ */ |
7631 | 0 | static decNumber *decDecap(decNumber *dn, Int drop) { |
7632 | 0 | Unit *msu; // -> target cut point |
7633 | 0 | Int cut; // work |
7634 | 0 | if (drop>=dn->digits) { // losing the whole thing |
7635 | | #if DECCHECK |
7636 | | if (drop>dn->digits) |
7637 | | printf("decDecap called with drop>digits [%ld>%ld]\n", |
7638 | | (LI)drop, (LI)dn->digits); |
7639 | | #endif |
7640 | 0 | dn->lsu[0]=0; |
7641 | 0 | dn->digits=1; |
7642 | 0 | return dn; |
7643 | 0 | } |
7644 | 0 | msu=dn->lsu+D2U(dn->digits-drop)-1; // -> likely msu |
7645 | 0 | cut=MSUDIGITS(dn->digits-drop); // digits to be in use in msu |
7646 | 0 | if (cut!=DECDPUN) *msu%=powers[cut]; // clear left digits |
7647 | | // that may have left leading zero digits, so do a proper count... |
7648 | 0 | dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1); |
7649 | 0 | return dn; |
7650 | 0 | } // decDecap |
7651 | | |
7652 | | /* ------------------------------------------------------------------ */ |
7653 | | /* decBiStr -- compare string with pairwise options */ |
7654 | | /* */ |
7655 | | /* targ is the string to compare */ |
7656 | | /* str1 is one of the strings to compare against (length may be 0) */ |
7657 | | /* str2 is the other; it must be the same length as str1 */ |
7658 | | /* */ |
7659 | | /* returns 1 if strings compare equal, (that is, it is the same */ |
7660 | | /* length as str1 and str2, and each character of targ is in either */ |
7661 | | /* str1 or str2 in the corresponding position), or 0 otherwise */ |
7662 | | /* */ |
7663 | | /* This is used for generic caseless compare, including the awkward */ |
7664 | | /* case of the Turkish dotted and dotless Is. Use as (for example): */ |
7665 | | /* if (decBiStr(test, "mike", "MIKE")) ... */ |
7666 | | /* ------------------------------------------------------------------ */ |
7667 | 56.4k | static Flag decBiStr(const char *targ, const char *str1, const char *str2) { |
7668 | 106k | for (;;targ++, str1++, str2++) { |
7669 | 106k | if (*targ!=*str1 && *targ!=*str2) return 0; |
7670 | | // *targ has a match in one (or both, if terminator) |
7671 | 57.4k | if (*targ=='\0') break; |
7672 | 57.4k | } // forever |
7673 | 7.71k | return 1; |
7674 | 56.4k | } // decBiStr |
7675 | | |
7676 | | /* ------------------------------------------------------------------ */ |
7677 | | /* decNaNs -- handle NaN operand or operands */ |
7678 | | /* */ |
7679 | | /* res is the result number */ |
7680 | | /* lhs is the first operand */ |
7681 | | /* rhs is the second operand, or NULL if none */ |
7682 | | /* context is used to limit payload length */ |
7683 | | /* status contains the current status */ |
7684 | | /* returns res in case convenient */ |
7685 | | /* */ |
7686 | | /* Called when one or both operands is a NaN, and propagates the */ |
7687 | | /* appropriate result to res. When an sNaN is found, it is changed */ |
7688 | | /* to a qNaN and Invalid operation is set. */ |
7689 | | /* ------------------------------------------------------------------ */ |
7690 | | static decNumber * decNaNs(decNumber *res, const decNumber *lhs, |
7691 | | const decNumber *rhs, decContext *set, |
7692 | 0 | uInt *status) { |
7693 | | // This decision tree ends up with LHS being the source pointer, |
7694 | | // and status updated if need be |
7695 | 0 | if (lhs->bits & DECSNAN) |
7696 | 0 | *status|=DEC_Invalid_operation | DEC_sNaN; |
7697 | 0 | else if (rhs==NULL); |
7698 | 0 | else if (rhs->bits & DECSNAN) { |
7699 | 0 | lhs=rhs; |
7700 | 0 | *status|=DEC_Invalid_operation | DEC_sNaN; |
7701 | 0 | } |
7702 | 0 | else if (lhs->bits & DECNAN); |
7703 | 0 | else lhs=rhs; |
7704 | | |
7705 | | // propagate the payload |
7706 | 0 | if (lhs->digits<=set->digits) decNumberCopy(res, lhs); // easy |
7707 | 0 | else { // too long |
7708 | 0 | const Unit *ul; |
7709 | 0 | Unit *ur, *uresp1; |
7710 | | // copy safe number of units, then decapitate |
7711 | 0 | res->bits=lhs->bits; // need sign etc. |
7712 | 0 | uresp1=res->lsu+D2U(set->digits); |
7713 | 0 | for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul; |
7714 | 0 | res->digits=D2U(set->digits)*DECDPUN; |
7715 | | // maybe still too long |
7716 | 0 | if (res->digits>set->digits) decDecap(res, res->digits-set->digits); |
7717 | 0 | } |
7718 | |
|
7719 | 0 | res->bits&=~DECSNAN; // convert any sNaN to NaN, while |
7720 | 0 | res->bits|=DECNAN; // .. preserving sign |
7721 | 0 | res->exponent=0; // clean exponent |
7722 | | // [coefficient was copied/decapitated] |
7723 | 0 | return res; |
7724 | 0 | } // decNaNs |
7725 | | |
7726 | | /* ------------------------------------------------------------------ */ |
7727 | | /* decStatus -- apply non-zero status */ |
7728 | | /* */ |
7729 | | /* dn is the number to set if error */ |
7730 | | /* status contains the current status (not yet in context) */ |
7731 | | /* set is the context */ |
7732 | | /* */ |
7733 | | /* If the status is an error status, the number is set to a NaN, */ |
7734 | | /* unless the error was an overflow, divide-by-zero, or underflow, */ |
7735 | | /* in which case the number will have already been set. */ |
7736 | | /* */ |
7737 | | /* The context status is then updated with the new status. Note that */ |
7738 | | /* this may raise a signal, so control may never return from this */ |
7739 | | /* routine (hence resources must be recovered before it is called). */ |
7740 | | /* ------------------------------------------------------------------ */ |
7741 | 516k | static void decStatus(decNumber *dn, uInt status, decContext *set) { |
7742 | 516k | if (status & DEC_NaNs) { // error status -> NaN |
7743 | | // if cause was an sNaN, clear and propagate [NaN is already set up] |
7744 | 15.2k | if (status & DEC_sNaN) status&=~DEC_sNaN; |
7745 | 15.2k | else { |
7746 | 15.2k | decNumberZero(dn); // other error: clean throughout |
7747 | 15.2k | dn->bits=DECNAN; // and make a quiet NaN |
7748 | 15.2k | } |
7749 | 15.2k | } |
7750 | 516k | decContextSetStatus(set, status); // [may not return] |
7751 | 516k | return; |
7752 | 516k | } // decStatus |
7753 | | |
7754 | | /* ------------------------------------------------------------------ */ |
7755 | | /* decGetDigits -- count digits in a Units array */ |
7756 | | /* */ |
7757 | | /* uar is the Unit array holding the number (this is often an */ |
7758 | | /* accumulator of some sort) */ |
7759 | | /* len is the length of the array in units [>=1] */ |
7760 | | /* */ |
7761 | | /* returns the number of (significant) digits in the array */ |
7762 | | /* */ |
7763 | | /* All leading zeros are excluded, except the last if the array has */ |
7764 | | /* only zero Units. */ |
7765 | | /* ------------------------------------------------------------------ */ |
7766 | | // This may be called twice during some operations. |
7767 | 0 | static Int decGetDigits(Unit *uar, Int len) { |
7768 | 0 | Unit *up=uar+(len-1); // -> msu |
7769 | 0 | Int digits=(len-1)*DECDPUN+1; // possible digits excluding msu |
7770 | | #if DECDPUN>4 |
7771 | | uInt const *pow; // work |
7772 | | #endif |
7773 | | // (at least 1 in final msu) |
7774 | | #if DECCHECK |
7775 | | if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); |
7776 | | #endif |
7777 | |
|
7778 | 0 | for (; up>=uar; up--) { |
7779 | 0 | if (*up==0) { // unit is all 0s |
7780 | 0 | if (digits==1) break; // a zero has one digit |
7781 | 0 | digits-=DECDPUN; // adjust for 0 unit |
7782 | 0 | continue;} |
7783 | | // found the first (most significant) non-zero Unit |
7784 | 0 | #if DECDPUN>1 // not done yet |
7785 | 0 | if (*up<10) break; // is 1-9 |
7786 | 0 | digits++; |
7787 | 0 | #if DECDPUN>2 // not done yet |
7788 | 0 | if (*up<100) break; // is 10-99 |
7789 | 0 | digits++; |
7790 | | #if DECDPUN>3 // not done yet |
7791 | | if (*up<1000) break; // is 100-999 |
7792 | | digits++; |
7793 | | #if DECDPUN>4 // count the rest ... |
7794 | | for (pow=&powers[4]; *up>=*pow; pow++) digits++; |
7795 | | #endif |
7796 | | #endif |
7797 | 0 | #endif |
7798 | 0 | #endif |
7799 | 0 | break; |
7800 | 0 | } // up |
7801 | 0 | return digits; |
7802 | 0 | } // decGetDigits |
7803 | | |
7804 | | #if DECTRACE | DECCHECK |
7805 | | /* ------------------------------------------------------------------ */ |
7806 | | /* decNumberShow -- display a number [debug aid] */ |
7807 | | /* dn is the number to show */ |
7808 | | /* */ |
7809 | | /* Shows: sign, exponent, coefficient (msu first), digits */ |
7810 | | /* or: sign, special-value */ |
7811 | | /* ------------------------------------------------------------------ */ |
7812 | | // this is public so other modules can use it |
7813 | | void decNumberShow(const decNumber *dn) { |
7814 | | const Unit *up; // work |
7815 | | uInt u, d; // .. |
7816 | | Int cut; // .. |
7817 | | char isign='+'; // main sign |
7818 | | if (dn==NULL) { |
7819 | | printf("NULL\n"); |
7820 | | return;} |
7821 | | if (decNumberIsNegative(dn)) isign='-'; |
7822 | | printf(" >> %c ", isign); |
7823 | | if (dn->bits&DECSPECIAL) { // Is a special value |
7824 | | if (decNumberIsInfinite(dn)) printf("Infinity"); |
7825 | | else { // a NaN |
7826 | | if (dn->bits&DECSNAN) printf("sNaN"); // signalling NaN |
7827 | | else printf("NaN"); |
7828 | | } |
7829 | | // if coefficient and exponent are 0, no more to do |
7830 | | if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { |
7831 | | printf("\n"); |
7832 | | return;} |
7833 | | // drop through to report other information |
7834 | | printf(" "); |
7835 | | } |
7836 | | |
7837 | | // now carefully display the coefficient |
7838 | | up=dn->lsu+D2U(dn->digits)-1; // msu |
7839 | | printf("%ld", (LI)*up); |
7840 | | for (up=up-1; up>=dn->lsu; up--) { |
7841 | | u=*up; |
7842 | | printf(":"); |
7843 | | for (cut=DECDPUN-1; cut>=0; cut--) { |
7844 | | d=u/powers[cut]; |
7845 | | u-=d*powers[cut]; |
7846 | | printf("%ld", (LI)d); |
7847 | | } // cut |
7848 | | } // up |
7849 | | if (dn->exponent!=0) { |
7850 | | char esign='+'; |
7851 | | if (dn->exponent<0) esign='-'; |
7852 | | printf(" E%c%ld", esign, (LI)abs(dn->exponent)); |
7853 | | } |
7854 | | printf(" [%ld]\n", (LI)dn->digits); |
7855 | | } // decNumberShow |
7856 | | #endif |
7857 | | |
7858 | | #if DECTRACE || DECCHECK |
7859 | | /* ------------------------------------------------------------------ */ |
7860 | | /* decDumpAr -- display a unit array [debug/check aid] */ |
7861 | | /* name is a single-character tag name */ |
7862 | | /* ar is the array to display */ |
7863 | | /* len is the length of the array in Units */ |
7864 | | /* ------------------------------------------------------------------ */ |
7865 | | static void decDumpAr(char name, const Unit *ar, Int len) { |
7866 | | Int i; |
7867 | | const char *spec; |
7868 | | #if DECDPUN==9 |
7869 | | spec="%09d "; |
7870 | | #elif DECDPUN==8 |
7871 | | spec="%08d "; |
7872 | | #elif DECDPUN==7 |
7873 | | spec="%07d "; |
7874 | | #elif DECDPUN==6 |
7875 | | spec="%06d "; |
7876 | | #elif DECDPUN==5 |
7877 | | spec="%05d "; |
7878 | | #elif DECDPUN==4 |
7879 | | spec="%04d "; |
7880 | | #elif DECDPUN==3 |
7881 | | spec="%03d "; |
7882 | | #elif DECDPUN==2 |
7883 | | spec="%02d "; |
7884 | | #else |
7885 | | spec="%d "; |
7886 | | #endif |
7887 | | printf(" :%c: ", name); |
7888 | | for (i=len-1; i>=0; i--) { |
7889 | | if (i==len-1) printf("%ld ", (LI)ar[i]); |
7890 | | else printf(spec, ar[i]); |
7891 | | } |
7892 | | printf("\n"); |
7893 | | return;} |
7894 | | #endif |
7895 | | |
7896 | | #if DECCHECK |
7897 | | /* ------------------------------------------------------------------ */ |
7898 | | /* decCheckOperands -- check operand(s) to a routine */ |
7899 | | /* res is the result structure (not checked; it will be set to */ |
7900 | | /* quiet NaN if error found (and it is not NULL)) */ |
7901 | | /* lhs is the first operand (may be DECUNRESU) */ |
7902 | | /* rhs is the second (may be DECUNUSED) */ |
7903 | | /* set is the context (may be DECUNCONT) */ |
7904 | | /* returns 0 if both operands, and the context are clean, or 1 */ |
7905 | | /* otherwise (in which case the context will show an error, */ |
7906 | | /* unless NULL). Note that res is not cleaned; caller should */ |
7907 | | /* handle this so res=NULL case is safe. */ |
7908 | | /* The caller is expected to abandon immediately if 1 is returned. */ |
7909 | | /* ------------------------------------------------------------------ */ |
7910 | | static Flag decCheckOperands(decNumber *res, const decNumber *lhs, |
7911 | | const decNumber *rhs, decContext *set) { |
7912 | | Flag bad=0; |
7913 | | if (set==NULL) { // oops; hopeless |
7914 | | #if DECTRACE || DECVERB |
7915 | | printf("Reference to context is NULL.\n"); |
7916 | | #endif |
7917 | | bad=1; |
7918 | | return 1;} |
7919 | | else if (set!=DECUNCONT |
7920 | | && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { |
7921 | | bad=1; |
7922 | | #if DECTRACE || DECVERB |
7923 | | printf("Bad context [digits=%ld round=%ld].\n", |
7924 | | (LI)set->digits, (LI)set->round); |
7925 | | #endif |
7926 | | } |
7927 | | else { |
7928 | | if (res==NULL) { |
7929 | | bad=1; |
7930 | | #if DECTRACE |
7931 | | // this one not DECVERB as standard tests include NULL |
7932 | | printf("Reference to result is NULL.\n"); |
7933 | | #endif |
7934 | | } |
7935 | | if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); |
7936 | | if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); |
7937 | | } |
7938 | | if (bad) { |
7939 | | if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation); |
7940 | | if (res!=DECUNRESU && res!=NULL) { |
7941 | | decNumberZero(res); |
7942 | | res->bits=DECNAN; // qNaN |
7943 | | } |
7944 | | } |
7945 | | return bad; |
7946 | | } // decCheckOperands |
7947 | | |
7948 | | /* ------------------------------------------------------------------ */ |
7949 | | /* decCheckNumber -- check a number */ |
7950 | | /* dn is the number to check */ |
7951 | | /* returns 0 if the number is clean, or 1 otherwise */ |
7952 | | /* */ |
7953 | | /* The number is considered valid if it could be a result from some */ |
7954 | | /* operation in some valid context. */ |
7955 | | /* ------------------------------------------------------------------ */ |
7956 | | static Flag decCheckNumber(const decNumber *dn) { |
7957 | | const Unit *up; // work |
7958 | | uInt maxuint; // .. |
7959 | | Int ae, d, digits; // .. |
7960 | | Int emin, emax; // .. |
7961 | | |
7962 | | if (dn==NULL) { // hopeless |
7963 | | #if DECTRACE |
7964 | | // this one not DECVERB as standard tests include NULL |
7965 | | printf("Reference to decNumber is NULL.\n"); |
7966 | | #endif |
7967 | | return 1;} |
7968 | | |
7969 | | // check special values |
7970 | | if (dn->bits & DECSPECIAL) { |
7971 | | if (dn->exponent!=0) { |
7972 | | #if DECTRACE || DECVERB |
7973 | | printf("Exponent %ld (not 0) for a special value [%02x].\n", |
7974 | | (LI)dn->exponent, dn->bits); |
7975 | | #endif |
7976 | | return 1;} |
7977 | | |
7978 | | // 2003.09.08: NaNs may now have coefficients, so next tests Inf only |
7979 | | if (decNumberIsInfinite(dn)) { |
7980 | | if (dn->digits!=1) { |
7981 | | #if DECTRACE || DECVERB |
7982 | | printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); |
7983 | | #endif |
7984 | | return 1;} |
7985 | | if (*dn->lsu!=0) { |
7986 | | #if DECTRACE || DECVERB |
7987 | | printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); |
7988 | | #endif |
7989 | | decDumpAr('I', dn->lsu, D2U(dn->digits)); |
7990 | | return 1;} |
7991 | | } // Inf |
7992 | | // 2002.12.26: negative NaNs can now appear through proposed IEEE |
7993 | | // concrete formats (decimal64, etc.). |
7994 | | return 0; |
7995 | | } |
7996 | | |
7997 | | // check the coefficient |
7998 | | if (dn->digits<1 || dn->digits>DECNUMMAXP) { |
7999 | | #if DECTRACE || DECVERB |
8000 | | printf("Digits %ld in number.\n", (LI)dn->digits); |
8001 | | #endif |
8002 | | return 1;} |
8003 | | |
8004 | | d=dn->digits; |
8005 | | |
8006 | | for (up=dn->lsu; d>0; up++) { |
8007 | | if (d>DECDPUN) maxuint=DECDPUNMAX; |
8008 | | else { // reached the msu |
8009 | | maxuint=powers[d]-1; |
8010 | | if (dn->digits>1 && *up<powers[d-1]) { |
8011 | | #if DECTRACE || DECVERB |
8012 | | printf("Leading 0 in number.\n"); |
8013 | | decNumberShow(dn); |
8014 | | #endif |
8015 | | return 1;} |
8016 | | } |
8017 | | if (*up>maxuint) { |
8018 | | #if DECTRACE || DECVERB |
8019 | | printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", |
8020 | | (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); |
8021 | | #endif |
8022 | | return 1;} |
8023 | | d-=DECDPUN; |
8024 | | } |
8025 | | |
8026 | | // check the exponent. Note that input operands can have exponents |
8027 | | // which are out of the set->emin/set->emax and set->digits range |
8028 | | // (just as they can have more digits than set->digits). |
8029 | | ae=dn->exponent+dn->digits-1; // adjusted exponent |
8030 | | emax=DECNUMMAXE; |
8031 | | emin=DECNUMMINE; |
8032 | | digits=DECNUMMAXP; |
8033 | | if (ae<emin-(digits-1)) { |
8034 | | #if DECTRACE || DECVERB |
8035 | | printf("Adjusted exponent underflow [%ld].\n", (LI)ae); |
8036 | | decNumberShow(dn); |
8037 | | #endif |
8038 | | return 1;} |
8039 | | if (ae>+emax) { |
8040 | | #if DECTRACE || DECVERB |
8041 | | printf("Adjusted exponent overflow [%ld].\n", (LI)ae); |
8042 | | decNumberShow(dn); |
8043 | | #endif |
8044 | | return 1;} |
8045 | | |
8046 | | return 0; // it's OK |
8047 | | } // decCheckNumber |
8048 | | |
8049 | | /* ------------------------------------------------------------------ */ |
8050 | | /* decCheckInexact -- check a normal finite inexact result has digits */ |
8051 | | /* dn is the number to check */ |
8052 | | /* set is the context (for status and precision) */ |
8053 | | /* sets Invalid operation, etc., if some digits are missing */ |
8054 | | /* [this check is not made for DECSUBSET compilation or when */ |
8055 | | /* subnormal is not set] */ |
8056 | | /* ------------------------------------------------------------------ */ |
8057 | | static void decCheckInexact(const decNumber *dn, decContext *set) { |
8058 | | #if !DECSUBSET && DECEXTFLAG |
8059 | | if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact |
8060 | | && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { |
8061 | | #if DECTRACE || DECVERB |
8062 | | printf("Insufficient digits [%ld] on normal Inexact result.\n", |
8063 | | (LI)dn->digits); |
8064 | | decNumberShow(dn); |
8065 | | #endif |
8066 | | decContextSetStatus(set, DEC_Invalid_operation); |
8067 | | } |
8068 | | #else |
8069 | | // next is a noop for quiet compiler |
8070 | | if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation; |
8071 | | #endif |
8072 | | return; |
8073 | | } // decCheckInexact |
8074 | | #endif |
8075 | | |
8076 | | #if DECALLOC |
8077 | | #undef malloc |
8078 | | #undef free |
8079 | | /* ------------------------------------------------------------------ */ |
8080 | | /* decMalloc -- accountable allocation routine */ |
8081 | | /* n is the number of bytes to allocate */ |
8082 | | /* */ |
8083 | | /* Semantics is the same as the stdlib malloc routine, but bytes */ |
8084 | | /* allocated are accounted for globally, and corruption fences are */ |
8085 | | /* added before and after the 'actual' storage. */ |
8086 | | /* ------------------------------------------------------------------ */ |
8087 | | /* This routine allocates storage with an extra twelve bytes; 8 are */ |
8088 | | /* at the start and hold: */ |
8089 | | /* 0-3 the original length requested */ |
8090 | | /* 4-7 buffer corruption detection fence (DECFENCE, x4) */ |
8091 | | /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ |
8092 | | /* ------------------------------------------------------------------ */ |
8093 | | static void *decMalloc(size_t n) { |
8094 | | uInt size=n+12; // true size |
8095 | | void *alloc; // -> allocated storage |
8096 | | uByte *b, *b0; // work |
8097 | | uInt uiwork; // for macros |
8098 | | |
8099 | | alloc=malloc(size); // -> allocated storage |
8100 | | if (alloc==NULL) return NULL; // out of strorage |
8101 | | b0=(uByte *)alloc; // as bytes |
8102 | | decAllocBytes+=n; // account for storage |
8103 | | UBFROMUI(alloc, n); // save n |
8104 | | // printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n); |
8105 | | for (b=b0+4; b<b0+8; b++) *b=DECFENCE; |
8106 | | for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE; |
8107 | | return b0+8; // -> play area |
8108 | | } // decMalloc |
8109 | | |
8110 | | /* ------------------------------------------------------------------ */ |
8111 | | /* decFree -- accountable free routine */ |
8112 | | /* alloc is the storage to free */ |
8113 | | /* */ |
8114 | | /* Semantics is the same as the stdlib malloc routine, except that */ |
8115 | | /* the global storage accounting is updated and the fences are */ |
8116 | | /* checked to ensure that no routine has written 'out of bounds'. */ |
8117 | | /* ------------------------------------------------------------------ */ |
8118 | | /* This routine first checks that the fences have not been corrupted. */ |
8119 | | /* It then frees the storage using the 'truw' storage address (that */ |
8120 | | /* is, offset by 8). */ |
8121 | | /* ------------------------------------------------------------------ */ |
8122 | | static void decFree(void *alloc) { |
8123 | | uInt n; // original length |
8124 | | uByte *b, *b0; // work |
8125 | | uInt uiwork; // for macros |
8126 | | |
8127 | | if (alloc==NULL) return; // allowed; it's a nop |
8128 | | b0=(uByte *)alloc; // as bytes |
8129 | | b0-=8; // -> true start of storage |
8130 | | n=UBTOUI(b0); // lift length |
8131 | | for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE) |
8132 | | printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b, |
8133 | | b-b0-8, (LI)b0); |
8134 | | for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE) |
8135 | | printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b, |
8136 | | b-b0-8, (LI)b0, (LI)n); |
8137 | | free(b0); // drop the storage |
8138 | | decAllocBytes-=n; // account for storage |
8139 | | // printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); |
8140 | | } // decFree |
8141 | | #define malloc(a) decMalloc(a) |
8142 | | #define free(a) decFree(a) |
8143 | | #endif |