Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/hypothesis/_settings.py: 63%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of Hypothesis, which may be found at
2# https://github.com/HypothesisWorks/hypothesis/
3#
4# Copyright the Hypothesis Authors.
5# Individual contributors are listed in AUTHORS.rst and the git log.
6#
7# This Source Code Form is subject to the terms of the Mozilla Public License,
8# v. 2.0. If a copy of the MPL was not distributed with this file, You can
9# obtain one at https://mozilla.org/MPL/2.0/.
11"""The settings module configures runtime options for Hypothesis.
13Either an explicit settings object can be used or the default object on
14this module can be modified.
15"""
17import contextlib
18import datetime
19import inspect
20import os
21import warnings
22from enum import Enum, EnumMeta, IntEnum, unique
23from typing import (
24 TYPE_CHECKING,
25 Any,
26 ClassVar,
27 Collection,
28 Dict,
29 List,
30 Optional,
31 TypeVar,
32 Union,
33)
35import attr
37from hypothesis.errors import (
38 HypothesisDeprecationWarning,
39 InvalidArgument,
40 InvalidState,
41)
42from hypothesis.internal.reflection import get_pretty_function_description
43from hypothesis.internal.validation import check_type, try_convert
44from hypothesis.utils.conventions import not_set
45from hypothesis.utils.dynamicvariables import DynamicVariable
47if TYPE_CHECKING:
48 from hypothesis.database import ExampleDatabase
50__all__ = ["settings"]
52all_settings: Dict[str, "Setting"] = {}
54T = TypeVar("T")
57class settingsProperty:
58 def __init__(self, name, show_default):
59 self.name = name
60 self.show_default = show_default
62 def __get__(self, obj, type=None):
63 if obj is None:
64 return self
65 else:
66 try:
67 result = obj.__dict__[self.name]
68 # This is a gross hack, but it preserves the old behaviour that
69 # you can change the storage directory and it will be reflected
70 # in the default database.
71 if self.name == "database" and result is not_set:
72 from hypothesis.database import ExampleDatabase
74 result = ExampleDatabase(not_set)
75 return result
76 except KeyError:
77 raise AttributeError(self.name) from None
79 def __set__(self, obj, value):
80 obj.__dict__[self.name] = value
82 def __delete__(self, obj):
83 raise AttributeError(f"Cannot delete attribute {self.name}")
85 @property
86 def __doc__(self):
87 description = all_settings[self.name].description
88 default = (
89 repr(getattr(settings.default, self.name))
90 if self.show_default
91 else "(dynamically calculated)"
92 )
93 return f"{description}\n\ndefault value: ``{default}``"
96default_variable = DynamicVariable(None)
99class settingsMeta(type):
100 def __init__(cls, *args, **kwargs):
101 super().__init__(*args, **kwargs)
103 @property
104 def default(cls):
105 v = default_variable.value
106 if v is not None:
107 return v
108 if hasattr(settings, "_current_profile"):
109 settings.load_profile(settings._current_profile)
110 assert default_variable.value is not None
111 return default_variable.value
113 def _assign_default_internal(cls, value):
114 default_variable.value = value
116 def __setattr__(cls, name, value):
117 if name == "default":
118 raise AttributeError(
119 "Cannot assign to the property settings.default - "
120 "consider using settings.load_profile instead."
121 )
122 elif not (isinstance(value, settingsProperty) or name.startswith("_")):
123 raise AttributeError(
124 f"Cannot assign hypothesis.settings.{name}={value!r} - the settings "
125 "class is immutable. You can change the global default "
126 "settings with settings.load_profile, or use @settings(...) "
127 "to decorate your test instead."
128 )
129 return super().__setattr__(name, value)
132class settings(metaclass=settingsMeta):
133 """A settings object configures options including verbosity, runtime controls,
134 persistence, determinism, and more.
136 Default values are picked up from the settings.default object and
137 changes made there will be picked up in newly created settings.
138 """
140 __definitions_are_locked = False
141 _profiles: ClassVar[Dict[str, "settings"]] = {}
142 __module__ = "hypothesis"
144 def __getattr__(self, name):
145 if name in all_settings:
146 return all_settings[name].default
147 else:
148 raise AttributeError(f"settings has no attribute {name}")
150 def __init__(
151 self,
152 parent: Optional["settings"] = None,
153 *,
154 # This looks pretty strange, but there's good reason: we want Mypy to detect
155 # bad calls downstream, but not to freak out about the `= not_set` part even
156 # though it's not semantically valid to pass that as an argument value.
157 # The intended use is "like **kwargs, but more tractable for tooling".
158 max_examples: int = not_set, # type: ignore
159 derandomize: bool = not_set, # type: ignore
160 database: Optional["ExampleDatabase"] = not_set, # type: ignore
161 verbosity: "Verbosity" = not_set, # type: ignore
162 phases: Collection["Phase"] = not_set, # type: ignore
163 stateful_step_count: int = not_set, # type: ignore
164 report_multiple_bugs: bool = not_set, # type: ignore
165 suppress_health_check: Collection["HealthCheck"] = not_set, # type: ignore
166 deadline: Union[int, float, datetime.timedelta, None] = not_set, # type: ignore
167 print_blob: bool = not_set, # type: ignore
168 backend: str = not_set, # type: ignore
169 ) -> None:
170 if parent is not None:
171 check_type(settings, parent, "parent")
172 if derandomize not in (not_set, False):
173 if database not in (not_set, None): # type: ignore
174 raise InvalidArgument(
175 "derandomize=True implies database=None, so passing "
176 f"{database=} too is invalid."
177 )
178 database = None
180 defaults = parent or settings.default
181 if defaults is not None:
182 for setting in all_settings.values():
183 value = locals()[setting.name]
184 if value is not_set:
185 object.__setattr__(
186 self, setting.name, getattr(defaults, setting.name)
187 )
188 else:
189 object.__setattr__(self, setting.name, setting.validator(value))
191 def __call__(self, test: T) -> T:
192 """Make the settings object (self) an attribute of the test.
194 The settings are later discovered by looking them up on the test itself.
195 """
196 # Aliasing as Any avoids mypy errors (attr-defined) when accessing and
197 # setting custom attributes on the decorated function or class.
198 _test: Any = test
200 # Using the alias here avoids a mypy error (return-value) later when
201 # ``test`` is returned, because this check results in type refinement.
202 if not callable(_test):
203 raise InvalidArgument(
204 "settings objects can be called as a decorator with @given, "
205 f"but decorated {test=} is not callable."
206 )
207 if inspect.isclass(test):
208 from hypothesis.stateful import RuleBasedStateMachine
210 if issubclass(_test, RuleBasedStateMachine):
211 attr_name = "_hypothesis_internal_settings_applied"
212 if getattr(test, attr_name, False):
213 raise InvalidArgument(
214 "Applying the @settings decorator twice would "
215 "overwrite the first version; merge their arguments "
216 "instead."
217 )
218 setattr(test, attr_name, True)
219 _test.TestCase.settings = self
220 return test # type: ignore
221 else:
222 raise InvalidArgument(
223 "@settings(...) can only be used as a decorator on "
224 "functions, or on subclasses of RuleBasedStateMachine."
225 )
226 if hasattr(_test, "_hypothesis_internal_settings_applied"):
227 # Can't use _hypothesis_internal_use_settings as an indicator that
228 # @settings was applied, because @given also assigns that attribute.
229 descr = get_pretty_function_description(test)
230 raise InvalidArgument(
231 f"{descr} has already been decorated with a settings object.\n"
232 f" Previous: {_test._hypothesis_internal_use_settings!r}\n"
233 f" This: {self!r}"
234 )
236 _test._hypothesis_internal_use_settings = self
237 _test._hypothesis_internal_settings_applied = True
238 return test
240 @classmethod
241 def _define_setting(
242 cls,
243 name,
244 description,
245 *,
246 default,
247 options=None,
248 validator=None,
249 show_default=True,
250 ):
251 """Add a new setting.
253 - name is the name of the property that will be used to access the
254 setting. This must be a valid python identifier.
255 - description will appear in the property's docstring
256 - default is the default value. This may be a zero argument
257 function in which case it is evaluated and its result is stored
258 the first time it is accessed on any given settings object.
259 """
260 if settings.__definitions_are_locked:
261 raise InvalidState(
262 "settings have been locked and may no longer be defined."
263 )
264 if options is not None:
265 options = tuple(options)
266 assert default in options
268 def validator(value):
269 if value not in options:
270 msg = f"Invalid {name}, {value!r}. Valid options: {options!r}"
271 raise InvalidArgument(msg)
272 return value
274 else:
275 assert validator is not None
277 all_settings[name] = Setting(
278 name=name,
279 description=description.strip(),
280 default=default,
281 validator=validator,
282 )
283 setattr(settings, name, settingsProperty(name, show_default))
285 @classmethod
286 def lock_further_definitions(cls):
287 settings.__definitions_are_locked = True
289 def __setattr__(self, name, value):
290 raise AttributeError("settings objects are immutable")
292 def __repr__(self):
293 from hypothesis.internal.conjecture.data import AVAILABLE_PROVIDERS
295 bits = sorted(
296 f"{name}={getattr(self, name)!r}"
297 for name in all_settings
298 if (name != "backend" or len(AVAILABLE_PROVIDERS) > 1) # experimental
299 )
300 return "settings({})".format(", ".join(bits))
302 def show_changed(self):
303 bits = []
304 for name, setting in all_settings.items():
305 value = getattr(self, name)
306 if value != setting.default:
307 bits.append(f"{name}={value!r}")
308 return ", ".join(sorted(bits, key=len))
310 @staticmethod
311 def register_profile(
312 name: str,
313 parent: Optional["settings"] = None,
314 **kwargs: Any,
315 ) -> None:
316 """Registers a collection of values to be used as a settings profile.
318 Settings profiles can be loaded by name - for example, you might
319 create a 'fast' profile which runs fewer examples, keep the 'default'
320 profile, and create a 'ci' profile that increases the number of
321 examples and uses a different database to store failures.
323 The arguments to this method are exactly as for
324 :class:`~hypothesis.settings`: optional ``parent`` settings, and
325 keyword arguments for each setting that will be set differently to
326 parent (or settings.default, if parent is None).
327 """
328 check_type(str, name, "name")
329 settings._profiles[name] = settings(parent=parent, **kwargs)
331 @staticmethod
332 def get_profile(name: str) -> "settings":
333 """Return the profile with the given name."""
334 check_type(str, name, "name")
335 try:
336 return settings._profiles[name]
337 except KeyError:
338 raise InvalidArgument(f"Profile {name!r} is not registered") from None
340 @staticmethod
341 def load_profile(name: str) -> None:
342 """Loads in the settings defined in the profile provided.
344 If the profile does not exist, InvalidArgument will be raised.
345 Any setting not defined in the profile will be the library
346 defined default for that setting.
347 """
348 check_type(str, name, "name")
349 settings._current_profile = name
350 settings._assign_default_internal(settings.get_profile(name))
353@contextlib.contextmanager
354def local_settings(s):
355 with default_variable.with_value(s):
356 yield s
359@attr.s()
360class Setting:
361 name = attr.ib()
362 description = attr.ib()
363 default = attr.ib()
364 validator = attr.ib()
367def _max_examples_validator(x):
368 check_type(int, x, name="max_examples")
369 if x < 1:
370 raise InvalidArgument(
371 f"max_examples={x!r} should be at least one. You can disable "
372 "example generation with the `phases` setting instead."
373 )
374 return x
377settings._define_setting(
378 "max_examples",
379 default=100,
380 validator=_max_examples_validator,
381 description="""
382Once this many satisfying examples have been considered without finding any
383counter-example, Hypothesis will stop looking.
385Note that we might call your test function fewer times if we find a bug early
386or can tell that we've exhausted the search space; or more if we discard some
387examples due to use of .filter(), assume(), or a few other things that can
388prevent the test case from completing successfully.
390The default value is chosen to suit a workflow where the test will be part of
391a suite that is regularly executed locally or on a CI server, balancing total
392running time against the chance of missing a bug.
394If you are writing one-off tests, running tens of thousands of examples is
395quite reasonable as Hypothesis may miss uncommon bugs with default settings.
396For very complex code, we have observed Hypothesis finding novel bugs after
397*several million* examples while testing :pypi:`SymPy`.
398If you are running more than 100k examples for a test, consider using our
399:ref:`integration for coverage-guided fuzzing <fuzz_one_input>` - it really
400shines when given minutes or hours to run.
401""",
402)
405settings._define_setting(
406 "derandomize",
407 default=False,
408 options=(True, False),
409 description="""
410If True, seed Hypothesis' random number generator using a hash of the test
411function, so that every run will test the same set of examples until you
412update Hypothesis, Python, or the test function.
414This allows you to `check for regressions and look for bugs
415<https://blog.nelhage.com/post/two-kinds-of-testing/>`__ using
416:ref:`separate settings profiles <settings_profiles>` - for example running
417quick deterministic tests on every commit, and a longer non-deterministic
418nightly testing run.
419""",
420)
423def _validate_database(db):
424 from hypothesis.database import ExampleDatabase
426 if db is None or isinstance(db, ExampleDatabase):
427 return db
428 raise InvalidArgument(
429 "Arguments to the database setting must be None or an instance of "
430 f"ExampleDatabase. Try passing database=ExampleDatabase({db!r}), or "
431 "construct and use one of the specific subclasses in "
432 "hypothesis.database"
433 )
436settings._define_setting(
437 "database",
438 default=not_set,
439 show_default=False,
440 description="""
441An instance of :class:`~hypothesis.database.ExampleDatabase` that will be
442used to save examples to and load previous examples from. May be ``None``
443in which case no storage will be used.
445See the :doc:`example database documentation <database>` for a list of built-in
446example database implementations, and how to define custom implementations.
447""",
448 validator=_validate_database,
449)
452@unique
453class Phase(IntEnum):
454 explicit = 0 #: controls whether explicit examples are run.
455 reuse = 1 #: controls whether previous examples will be reused.
456 generate = 2 #: controls whether new examples will be generated.
457 target = 3 #: controls whether examples will be mutated for targeting.
458 shrink = 4 #: controls whether examples will be shrunk.
459 explain = 5 #: controls whether Hypothesis attempts to explain test failures.
461 def __repr__(self):
462 return f"Phase.{self.name}"
465class HealthCheckMeta(EnumMeta):
466 def __iter__(self):
467 deprecated = (HealthCheck.return_value, HealthCheck.not_a_test_method)
468 return iter(x for x in super().__iter__() if x not in deprecated)
471@unique
472class HealthCheck(Enum, metaclass=HealthCheckMeta):
473 """Arguments for :attr:`~hypothesis.settings.suppress_health_check`.
475 Each member of this enum is a type of health check to suppress.
476 """
478 def __repr__(self):
479 return f"{self.__class__.__name__}.{self.name}"
481 @classmethod
482 def all(cls) -> List["HealthCheck"]:
483 # Skipping of deprecated attributes is handled in HealthCheckMeta.__iter__
484 note_deprecation(
485 "`Healthcheck.all()` is deprecated; use `list(HealthCheck)` instead.",
486 since="2023-04-16",
487 has_codemod=True,
488 stacklevel=1,
489 )
490 return list(HealthCheck)
492 data_too_large = 1
493 """Checks if too many examples are aborted for being too large.
495 This is measured by the number of random choices that Hypothesis makes
496 in order to generate something, not the size of the generated object.
497 For example, choosing a 100MB object from a predefined list would take
498 only a few bits, while generating 10KB of JSON from scratch might trigger
499 this health check.
500 """
502 filter_too_much = 2
503 """Check for when the test is filtering out too many examples, either
504 through use of :func:`~hypothesis.assume()` or :ref:`filter() <filtering>`,
505 or occasionally for Hypothesis internal reasons."""
507 too_slow = 3
508 """Check for when your data generation is extremely slow and likely to hurt
509 testing."""
511 return_value = 5
512 """Deprecated; we always error if a test returns a non-None value."""
514 large_base_example = 7
515 """Checks if the natural example to shrink towards is very large."""
517 not_a_test_method = 8
518 """Deprecated; we always error if :func:`@given <hypothesis.given>` is applied
519 to a method defined by :class:`python:unittest.TestCase` (i.e. not a test)."""
521 function_scoped_fixture = 9
522 """Checks if :func:`@given <hypothesis.given>` has been applied to a test
523 with a pytest function-scoped fixture. Function-scoped fixtures run once
524 for the whole function, not once per example, and this is usually not what
525 you want.
527 Because of this limitation, tests that need to set up or reset
528 state for every example need to do so manually within the test itself,
529 typically using an appropriate context manager.
531 Suppress this health check only in the rare case that you are using a
532 function-scoped fixture that does not need to be reset between individual
533 examples, but for some reason you cannot use a wider fixture scope
534 (e.g. session scope, module scope, class scope).
536 This check requires the :ref:`Hypothesis pytest plugin<pytest-plugin>`,
537 which is enabled by default when running Hypothesis inside pytest."""
539 differing_executors = 10
540 """Checks if :func:`@given <hypothesis.given>` has been applied to a test
541 which is executed by different :ref:`executors<custom-function-execution>`.
542 If your test function is defined as a method on a class, that class will be
543 your executor, and subclasses executing an inherited test is a common way
544 for things to go wrong.
546 The correct fix is often to bring the executor instance under the control
547 of hypothesis by explicit parametrization over, or sampling from,
548 subclasses, or to refactor so that :func:`@given <hypothesis.given>` is
549 specified on leaf subclasses."""
552@unique
553class Verbosity(IntEnum):
554 quiet = 0
555 normal = 1
556 verbose = 2
557 debug = 3
559 def __repr__(self):
560 return f"Verbosity.{self.name}"
563settings._define_setting(
564 "verbosity",
565 options=tuple(Verbosity),
566 default=Verbosity.normal,
567 description="Control the verbosity level of Hypothesis messages",
568)
571def _validate_phases(phases):
572 phases = tuple(phases)
573 for a in phases:
574 if not isinstance(a, Phase):
575 raise InvalidArgument(f"{a!r} is not a valid phase")
576 return tuple(p for p in list(Phase) if p in phases)
579settings._define_setting(
580 "phases",
581 default=tuple(Phase),
582 description=(
583 "Control which phases should be run. "
584 "See :ref:`the full documentation for more details <phases>`"
585 ),
586 validator=_validate_phases,
587)
590def _validate_stateful_step_count(x):
591 check_type(int, x, name="stateful_step_count")
592 if x < 1:
593 raise InvalidArgument(f"stateful_step_count={x!r} must be at least one.")
594 return x
597settings._define_setting(
598 name="stateful_step_count",
599 default=50,
600 validator=_validate_stateful_step_count,
601 description="""
602Number of steps to run a stateful program for before giving up on it breaking.
603""",
604)
606settings._define_setting(
607 name="report_multiple_bugs",
608 default=True,
609 options=(True, False),
610 description="""
611Because Hypothesis runs the test many times, it can sometimes find multiple
612bugs in a single run. Reporting all of them at once is usually very useful,
613but replacing the exceptions can occasionally clash with debuggers.
614If disabled, only the exception with the smallest minimal example is raised.
615""",
616)
619def validate_health_check_suppressions(suppressions):
620 suppressions = try_convert(list, suppressions, "suppress_health_check")
621 for s in suppressions:
622 if not isinstance(s, HealthCheck):
623 raise InvalidArgument(
624 f"Non-HealthCheck value {s!r} of type {type(s).__name__} "
625 "is invalid in suppress_health_check."
626 )
627 if s in (HealthCheck.return_value, HealthCheck.not_a_test_method):
628 note_deprecation(
629 f"The {s.name} health check is deprecated, because this is always an error.",
630 since="2023-03-15",
631 has_codemod=False,
632 stacklevel=2,
633 )
634 return suppressions
637settings._define_setting(
638 "suppress_health_check",
639 default=(),
640 description="""A list of :class:`~hypothesis.HealthCheck` items to disable.""",
641 validator=validate_health_check_suppressions,
642)
645class duration(datetime.timedelta):
646 """A timedelta specifically measured in milliseconds."""
648 def __repr__(self):
649 ms = self.total_seconds() * 1000
650 return f"timedelta(milliseconds={int(ms) if ms == int(ms) else ms!r})"
653def _validate_deadline(x):
654 if x is None:
655 return x
656 invalid_deadline_error = InvalidArgument(
657 f"deadline={x!r} (type {type(x).__name__}) must be a timedelta object, "
658 "an integer or float number of milliseconds, or None to disable the "
659 "per-test-case deadline."
660 )
661 if isinstance(x, (int, float)):
662 if isinstance(x, bool):
663 raise invalid_deadline_error
664 try:
665 x = duration(milliseconds=x)
666 except OverflowError:
667 raise InvalidArgument(
668 f"deadline={x!r} is invalid, because it is too large to represent "
669 "as a timedelta. Use deadline=None to disable deadlines."
670 ) from None
671 if isinstance(x, datetime.timedelta):
672 if x <= datetime.timedelta(0):
673 raise InvalidArgument(
674 f"deadline={x!r} is invalid, because it is impossible to meet a "
675 "deadline <= 0. Use deadline=None to disable deadlines."
676 )
677 return duration(seconds=x.total_seconds())
678 raise invalid_deadline_error
681settings._define_setting(
682 "deadline",
683 default=duration(milliseconds=200),
684 validator=_validate_deadline,
685 description="""
686If set, a duration (as timedelta, or integer or float number of milliseconds)
687that each individual example (i.e. each time your test
688function is called, not the whole decorated test) within a test is not
689allowed to exceed. Tests which take longer than that may be converted into
690errors (but will not necessarily be if close to the deadline, to allow some
691variability in test run time).
693Set this to ``None`` to disable this behaviour entirely.
694""",
695)
698def is_in_ci() -> bool:
699 # GitHub Actions, Travis CI and AppVeyor have "CI"
700 # Azure Pipelines has "TF_BUILD"
701 return "CI" in os.environ or "TF_BUILD" in os.environ
704settings._define_setting(
705 "print_blob",
706 default=is_in_ci(),
707 show_default=False,
708 options=(True, False),
709 description="""
710If set to ``True``, Hypothesis will print code for failing examples that can be used with
711:func:`@reproduce_failure <hypothesis.reproduce_failure>` to reproduce the failing example.
712The default is ``True`` if the ``CI`` or ``TF_BUILD`` env vars are set, ``False`` otherwise.
713""",
714)
717def _backend_validator(value):
718 from hypothesis.internal.conjecture.data import AVAILABLE_PROVIDERS
720 if value not in AVAILABLE_PROVIDERS:
721 if value == "crosshair": # pragma: no cover
722 install = '`pip install "hypothesis[crosshair]"` and try again.'
723 raise InvalidArgument(f"backend={value!r} is not available. {install}")
724 raise InvalidArgument(
725 f"backend={value!r} is not available - maybe you need to install a plugin?"
726 f"\n Installed backends: {sorted(AVAILABLE_PROVIDERS)!r}"
727 )
728 return value
731settings._define_setting(
732 "backend",
733 default="hypothesis",
734 show_default=False,
735 validator=_backend_validator,
736 description="""
737EXPERIMENTAL AND UNSTABLE - see :ref:`alternative-backends`.
738The importable name of a backend which Hypothesis should use to generate primitive
739types. We aim to support heuristic-random, solver-based, and fuzzing-based backends.
740""",
741)
743settings.lock_further_definitions()
746def note_deprecation(
747 message: str, *, since: str, has_codemod: bool, stacklevel: int = 0
748) -> None:
749 if since != "RELEASEDAY":
750 date = datetime.date.fromisoformat(since)
751 assert datetime.date(2021, 1, 1) <= date
752 if has_codemod:
753 message += (
754 "\n The `hypothesis codemod` command-line tool can automatically "
755 "refactor your code to fix this warning."
756 )
757 warnings.warn(HypothesisDeprecationWarning(message), stacklevel=2 + stacklevel)
760settings.register_profile("default", settings())
761settings.load_profile("default")
762assert settings.default is not None
765# Check that the kwonly args to settings.__init__ is the same as the set of
766# defined settings - in case we've added or remove something from one but
767# not the other.
768assert set(all_settings) == {
769 p.name
770 for p in inspect.signature(settings.__init__).parameters.values()
771 if p.kind == inspect.Parameter.KEYWORD_ONLY
772}