1# This file is part of Hypothesis, which may be found at
2# https://github.com/HypothesisWorks/hypothesis/
3#
4# Copyright the Hypothesis Authors.
5# Individual contributors are listed in AUTHORS.rst and the git log.
6#
7# This Source Code Form is subject to the terms of the Mozilla Public License,
8# v. 2.0. If a copy of the MPL was not distributed with this file, You can
9# obtain one at https://mozilla.org/MPL/2.0/.
10
11import importlib
12import inspect
13import math
14import textwrap
15import time
16from collections import defaultdict
17from collections.abc import Generator, Sequence
18from contextlib import contextmanager, suppress
19from dataclasses import dataclass, field
20from datetime import timedelta
21from enum import Enum
22from random import Random, getrandbits
23from typing import Callable, Final, List, Literal, NoReturn, Optional, Union, cast
24
25from hypothesis import HealthCheck, Phase, Verbosity, settings as Settings
26from hypothesis._settings import local_settings, note_deprecation
27from hypothesis.database import ExampleDatabase, choices_from_bytes, choices_to_bytes
28from hypothesis.errors import (
29 BackendCannotProceed,
30 FlakyReplay,
31 HypothesisException,
32 InvalidArgument,
33 StopTest,
34)
35from hypothesis.internal.cache import LRUReusedCache
36from hypothesis.internal.compat import NotRequired, TypeAlias, TypedDict, ceil, override
37from hypothesis.internal.conjecture.choice import (
38 ChoiceConstraintsT,
39 ChoiceKeyT,
40 ChoiceNode,
41 ChoiceT,
42 ChoiceTemplate,
43 choices_key,
44)
45from hypothesis.internal.conjecture.data import (
46 ConjectureData,
47 ConjectureResult,
48 DataObserver,
49 Overrun,
50 Status,
51 _Overrun,
52)
53from hypothesis.internal.conjecture.datatree import (
54 DataTree,
55 PreviouslyUnseenBehaviour,
56 TreeRecordingObserver,
57)
58from hypothesis.internal.conjecture.junkdrawer import (
59 ensure_free_stackframes,
60 startswith,
61)
62from hypothesis.internal.conjecture.pareto import NO_SCORE, ParetoFront, ParetoOptimiser
63from hypothesis.internal.conjecture.providers import (
64 AVAILABLE_PROVIDERS,
65 HypothesisProvider,
66 PrimitiveProvider,
67)
68from hypothesis.internal.conjecture.shrinker import Shrinker, ShrinkPredicateT, sort_key
69from hypothesis.internal.escalation import InterestingOrigin
70from hypothesis.internal.healthcheck import fail_health_check
71from hypothesis.reporting import base_report, report
72
73MAX_SHRINKS: Final[int] = 500
74CACHE_SIZE: Final[int] = 10000
75MUTATION_POOL_SIZE: Final[int] = 100
76MIN_TEST_CALLS: Final[int] = 10
77BUFFER_SIZE: Final[int] = 8 * 1024
78
79# If the shrinking phase takes more than five minutes, abort it early and print
80# a warning. Many CI systems will kill a build after around ten minutes with
81# no output, and appearing to hang isn't great for interactive use either -
82# showing partially-shrunk examples is better than quitting with no examples!
83# (but make it monkeypatchable, for the rare users who need to keep on shrinking)
84MAX_SHRINKING_SECONDS: Final[int] = 300
85
86Ls: TypeAlias = list["Ls | int"]
87
88
89def shortlex(s):
90 return (len(s), s)
91
92
93@dataclass
94class HealthCheckState:
95 valid_examples: int = field(default=0)
96 invalid_examples: int = field(default=0)
97 overrun_examples: int = field(default=0)
98 draw_times: "defaultdict[str, List[float]]" = field(
99 default_factory=lambda: defaultdict(list)
100 )
101
102 @property
103 def total_draw_time(self) -> float:
104 return math.fsum(sum(self.draw_times.values(), start=[]))
105
106 def timing_report(self) -> str:
107 """Return a terminal report describing what was slow."""
108 if not self.draw_times:
109 return ""
110 width = max(
111 len(k.removeprefix("generate:").removesuffix(": ")) for k in self.draw_times
112 )
113 out = [f"\n {'':^{width}} count | fraction | slowest draws (seconds)"]
114 args_in_order = sorted(self.draw_times.items(), key=lambda kv: -sum(kv[1]))
115 for i, (argname, times) in enumerate(args_in_order): # pragma: no branch
116 # If we have very many unique keys, which can happen due to interactive
117 # draws with computed labels, we'll skip uninformative rows.
118 if (
119 5 <= i < (len(self.draw_times) - 2)
120 and math.fsum(times) * 20 < self.total_draw_time
121 ):
122 out.append(f" (skipped {len(self.draw_times) - i} rows of fast draws)")
123 break
124 # Compute the row to report, omitting times <1ms to focus on slow draws
125 reprs = [f"{t:>6.3f}," for t in sorted(times)[-5:] if t > 5e-4]
126 desc = " ".join(([" -- "] * 5 + reprs)[-5:]).rstrip(",")
127 arg = argname.removeprefix("generate:").removesuffix(": ")
128 out.append(
129 f" {arg:^{width}} | {len(times):>4} | "
130 f"{math.fsum(times)/self.total_draw_time:>7.0%} | {desc}"
131 )
132 return "\n".join(out)
133
134
135class ExitReason(Enum):
136 max_examples = "settings.max_examples={s.max_examples}"
137 max_iterations = (
138 "settings.max_examples={s.max_examples}, "
139 "but < 10% of examples satisfied assumptions"
140 )
141 max_shrinks = f"shrunk example {MAX_SHRINKS} times"
142 finished = "nothing left to do"
143 flaky = "test was flaky"
144 very_slow_shrinking = "shrinking was very slow"
145
146 def describe(self, settings: Settings) -> str:
147 return self.value.format(s=settings)
148
149
150class RunIsComplete(Exception):
151 pass
152
153
154def _get_provider(backend: str) -> Union[type, PrimitiveProvider]:
155 mname, cname = AVAILABLE_PROVIDERS[backend].rsplit(".", 1)
156 provider_cls = getattr(importlib.import_module(mname), cname)
157 if provider_cls.lifetime == "test_function":
158 return provider_cls(None)
159 elif provider_cls.lifetime == "test_case":
160 return provider_cls
161 else:
162 raise InvalidArgument(
163 f"invalid lifetime {provider_cls.lifetime} for provider {provider_cls.__name__}. "
164 "Expected one of 'test_function', 'test_case'."
165 )
166
167
168class CallStats(TypedDict):
169 status: str
170 runtime: float
171 drawtime: float
172 gctime: float
173 events: list[str]
174
175
176PhaseStatistics = TypedDict(
177 "PhaseStatistics",
178 {
179 "duration-seconds": float,
180 "test-cases": list[CallStats],
181 "distinct-failures": int,
182 "shrinks-successful": int,
183 },
184)
185StatisticsDict = TypedDict(
186 "StatisticsDict",
187 {
188 "generate-phase": NotRequired[PhaseStatistics],
189 "reuse-phase": NotRequired[PhaseStatistics],
190 "shrink-phase": NotRequired[PhaseStatistics],
191 "stopped-because": NotRequired[str],
192 "targets": NotRequired[dict[str, float]],
193 "nodeid": NotRequired[str],
194 },
195)
196
197
198def choice_count(choices: Sequence[Union[ChoiceT, ChoiceTemplate]]) -> Optional[int]:
199 count = 0
200 for choice in choices:
201 if isinstance(choice, ChoiceTemplate):
202 if choice.count is None:
203 return None
204 count += choice.count
205 else:
206 count += 1
207 return count
208
209
210class DiscardObserver(DataObserver):
211 @override
212 def kill_branch(self) -> NoReturn:
213 raise ContainsDiscard
214
215
216def realize_choices(data: ConjectureData, *, for_failure: bool) -> None:
217 # backwards-compatibility with backends without for_failure, can remove
218 # in a few months
219 kwargs = {}
220 if for_failure:
221 if "for_failure" in inspect.signature(data.provider.realize).parameters:
222 kwargs["for_failure"] = True
223 else:
224 note_deprecation(
225 f"{type(data.provider).__qualname__}.realize does not have the "
226 "for_failure parameter. This will be an error in future versions "
227 "of Hypothesis. (If you installed this backend from a separate "
228 "package, upgrading that package may help).",
229 has_codemod=False,
230 since="2025-05-07",
231 )
232
233 for node in data.nodes:
234 value = data.provider.realize(node.value, **kwargs)
235 expected_type = {
236 "string": str,
237 "float": float,
238 "integer": int,
239 "boolean": bool,
240 "bytes": bytes,
241 }[node.type]
242 if type(value) is not expected_type:
243 raise HypothesisException(
244 f"expected {expected_type} from "
245 f"{data.provider.realize.__qualname__}, got {type(value)}"
246 )
247
248 constraints = cast(
249 ChoiceConstraintsT,
250 {
251 k: data.provider.realize(v, **kwargs)
252 for k, v in node.constraints.items()
253 },
254 )
255 node.value = value
256 node.constraints = constraints
257
258
259class ConjectureRunner:
260 def __init__(
261 self,
262 test_function: Callable[[ConjectureData], None],
263 *,
264 settings: Optional[Settings] = None,
265 random: Optional[Random] = None,
266 database_key: Optional[bytes] = None,
267 ignore_limits: bool = False,
268 ) -> None:
269 self._test_function: Callable[[ConjectureData], None] = test_function
270 self.settings: Settings = settings or Settings()
271 self.shrinks: int = 0
272 self.finish_shrinking_deadline: Optional[float] = None
273 self.call_count: int = 0
274 self.misaligned_count: int = 0
275 self.valid_examples: int = 0
276 self.invalid_examples: int = 0
277 self.overrun_examples: int = 0
278 self.random: Random = random or Random(getrandbits(128))
279 self.database_key: Optional[bytes] = database_key
280 self.ignore_limits: bool = ignore_limits
281
282 # Global dict of per-phase statistics, and a list of per-call stats
283 # which transfer to the global dict at the end of each phase.
284 self._current_phase: str = "(not a phase)"
285 self.statistics: StatisticsDict = {}
286 self.stats_per_test_case: list[CallStats] = []
287
288 # At runtime, the keys are only ever type `InterestingOrigin`, but can be `None` during tests.
289 self.interesting_examples: dict[
290 Optional[InterestingOrigin], ConjectureResult
291 ] = {}
292 # We use call_count because there may be few possible valid_examples.
293 self.first_bug_found_at: Optional[int] = None
294 self.last_bug_found_at: Optional[int] = None
295
296 # At runtime, the keys are only ever type `InterestingOrigin`, but can be `None` during tests.
297 self.shrunk_examples: set[Optional[InterestingOrigin]] = set()
298
299 self.health_check_state: Optional[HealthCheckState] = None
300
301 self.tree: DataTree = DataTree()
302
303 self.provider: Union[type, PrimitiveProvider] = _get_provider(
304 self.settings.backend
305 )
306
307 self.best_observed_targets: defaultdict[str, float] = defaultdict(
308 lambda: NO_SCORE
309 )
310 self.best_examples_of_observed_targets: dict[str, ConjectureResult] = {}
311
312 # We keep the pareto front in the example database if we have one. This
313 # is only marginally useful at present, but speeds up local development
314 # because it means that large targets will be quickly surfaced in your
315 # testing.
316 self.pareto_front: Optional[ParetoFront] = None
317 if self.database_key is not None and self.settings.database is not None:
318 self.pareto_front = ParetoFront(self.random)
319 self.pareto_front.on_evict(self.on_pareto_evict)
320
321 # We want to be able to get the ConjectureData object that results
322 # from running a buffer without recalculating, especially during
323 # shrinking where we need to know about the structure of the
324 # executed test case.
325 self.__data_cache = LRUReusedCache[
326 tuple[ChoiceKeyT, ...], Union[ConjectureResult, _Overrun]
327 ](CACHE_SIZE)
328
329 self.reused_previously_shrunk_test_case: bool = False
330
331 self.__pending_call_explanation: Optional[str] = None
332 self._backend_found_failure: bool = False
333 self._switch_to_hypothesis_provider: bool = False
334
335 self.__failed_realize_count: int = 0
336 # note unsound verification by alt backends
337 self._verified_by: Optional[str] = None
338
339 @property
340 def using_hypothesis_backend(self) -> bool:
341 return (
342 self.settings.backend == "hypothesis" or self._switch_to_hypothesis_provider
343 )
344
345 def explain_next_call_as(self, explanation: str) -> None:
346 self.__pending_call_explanation = explanation
347
348 def clear_call_explanation(self) -> None:
349 self.__pending_call_explanation = None
350
351 @contextmanager
352 def _log_phase_statistics(
353 self, phase: Literal["reuse", "generate", "shrink"]
354 ) -> Generator[None, None, None]:
355 self.stats_per_test_case.clear()
356 start_time = time.perf_counter()
357 try:
358 self._current_phase = phase
359 yield
360 finally:
361 # We ignore the mypy type error here. Because `phase` is a string literal and "-phase" is a string literal
362 # as well, the concatenation will always be valid key in the dictionary.
363 self.statistics[phase + "-phase"] = { # type: ignore
364 "duration-seconds": time.perf_counter() - start_time,
365 "test-cases": list(self.stats_per_test_case),
366 "distinct-failures": len(self.interesting_examples),
367 "shrinks-successful": self.shrinks,
368 }
369
370 @property
371 def should_optimise(self) -> bool:
372 return Phase.target in self.settings.phases
373
374 def __tree_is_exhausted(self) -> bool:
375 return self.tree.is_exhausted and self.using_hypothesis_backend
376
377 def __stoppable_test_function(self, data: ConjectureData) -> None:
378 """Run ``self._test_function``, but convert a ``StopTest`` exception
379 into a normal return and avoid raising anything flaky for RecursionErrors.
380 """
381 # We ensure that the test has this much stack space remaining, no
382 # matter the size of the stack when called, to de-flake RecursionErrors
383 # (#2494, #3671). Note, this covers the data generation part of the test;
384 # the actual test execution is additionally protected at the call site
385 # in hypothesis.core.execute_once.
386 with ensure_free_stackframes():
387 try:
388 self._test_function(data)
389 except StopTest as e:
390 if e.testcounter == data.testcounter:
391 # This StopTest has successfully stopped its test, and can now
392 # be discarded.
393 pass
394 else:
395 # This StopTest was raised by a different ConjectureData. We
396 # need to re-raise it so that it will eventually reach the
397 # correct engine.
398 raise
399
400 def _cache_key(self, choices: Sequence[ChoiceT]) -> tuple[ChoiceKeyT, ...]:
401 return choices_key(choices)
402
403 def _cache(self, data: ConjectureData) -> None:
404 result = data.as_result()
405 key = self._cache_key(data.choices)
406 self.__data_cache[key] = result
407
408 def cached_test_function(
409 self,
410 choices: Sequence[Union[ChoiceT, ChoiceTemplate]],
411 *,
412 error_on_discard: bool = False,
413 extend: Union[int, Literal["full"]] = 0,
414 ) -> Union[ConjectureResult, _Overrun]:
415 """
416 If ``error_on_discard`` is set to True this will raise ``ContainsDiscard``
417 in preference to running the actual test function. This is to allow us
418 to skip test cases we expect to be redundant in some cases. Note that
419 it may be the case that we don't raise ``ContainsDiscard`` even if the
420 result has discards if we cannot determine from previous runs whether
421 it will have a discard.
422 """
423 # node templates represent a not-yet-filled hole and therefore cannot
424 # be cached or retrieved from the cache.
425 if not any(isinstance(choice, ChoiceTemplate) for choice in choices):
426 # this type cast is validated by the isinstance check above (ie, there
427 # are no ChoiceTemplate elements).
428 choices = cast(Sequence[ChoiceT], choices)
429 key = self._cache_key(choices)
430 try:
431 cached = self.__data_cache[key]
432 # if we have a cached overrun for this key, but we're allowing extensions
433 # of the nodes, it could in fact run to a valid data if we try.
434 if extend == 0 or cached.status is not Status.OVERRUN:
435 return cached
436 except KeyError:
437 pass
438
439 if extend == "full":
440 max_length = None
441 elif (count := choice_count(choices)) is None:
442 max_length = None
443 else:
444 max_length = count + extend
445
446 # explicitly use a no-op DataObserver here instead of a TreeRecordingObserver.
447 # The reason is we don't expect simulate_test_function to explore new choices
448 # and write back to the tree, so we don't want the overhead of the
449 # TreeRecordingObserver tracking those calls.
450 trial_observer: Optional[DataObserver] = DataObserver()
451 if error_on_discard:
452 trial_observer = DiscardObserver()
453
454 try:
455 trial_data = self.new_conjecture_data(
456 choices, observer=trial_observer, max_choices=max_length
457 )
458 self.tree.simulate_test_function(trial_data)
459 except PreviouslyUnseenBehaviour:
460 pass
461 else:
462 trial_data.freeze()
463 key = self._cache_key(trial_data.choices)
464 if trial_data.status > Status.OVERRUN:
465 try:
466 return self.__data_cache[key]
467 except KeyError:
468 pass
469 else:
470 # if we simulated to an overrun, then we our result is certainly
471 # an overrun; no need to consult the cache. (and we store this result
472 # for simulation-less lookup later).
473 self.__data_cache[key] = Overrun
474 return Overrun
475 try:
476 return self.__data_cache[key]
477 except KeyError:
478 pass
479
480 data = self.new_conjecture_data(choices, max_choices=max_length)
481 # note that calling test_function caches `data` for us, for both an ir
482 # tree key and a buffer key.
483 self.test_function(data)
484 return data.as_result()
485
486 def test_function(self, data: ConjectureData) -> None:
487 if self.__pending_call_explanation is not None:
488 self.debug(self.__pending_call_explanation)
489 self.__pending_call_explanation = None
490
491 self.call_count += 1
492 interrupted = False
493
494 try:
495 self.__stoppable_test_function(data)
496 except KeyboardInterrupt:
497 interrupted = True
498 raise
499 except BackendCannotProceed as exc:
500 if exc.scope in ("verified", "exhausted"):
501 self._switch_to_hypothesis_provider = True
502 if exc.scope == "verified":
503 self._verified_by = self.settings.backend
504 elif exc.scope == "discard_test_case":
505 self.__failed_realize_count += 1
506 if (
507 self.__failed_realize_count > 10
508 and (self.__failed_realize_count / self.call_count) > 0.2
509 ):
510 self._switch_to_hypothesis_provider = True
511
512 # treat all BackendCannotProceed exceptions as invalid. This isn't
513 # great; "verified" should really be counted as self.valid_examples += 1.
514 # But we check self.valid_examples == 0 to determine whether to raise
515 # Unsatisfiable, and that would throw this check off.
516 self.invalid_examples += 1
517
518 # skip the post-test-case tracking; we're pretending this never happened
519 interrupted = True
520 data.cannot_proceed_scope = exc.scope
521 data.freeze()
522 return
523 except BaseException:
524 data.freeze()
525 if self.settings.backend != "hypothesis":
526 realize_choices(data, for_failure=True)
527 self.save_choices(data.choices)
528 raise
529 finally:
530 # No branch, because if we're interrupted we always raise
531 # the KeyboardInterrupt, never continue to the code below.
532 if not interrupted: # pragma: no branch
533 assert data.cannot_proceed_scope is None
534 data.freeze()
535 call_stats: CallStats = {
536 "status": data.status.name.lower(),
537 "runtime": data.finish_time - data.start_time,
538 "drawtime": math.fsum(data.draw_times.values()),
539 "gctime": data.gc_finish_time - data.gc_start_time,
540 "events": sorted(
541 k if v == "" else f"{k}: {v}" for k, v in data.events.items()
542 ),
543 }
544 self.stats_per_test_case.append(call_stats)
545 if self.settings.backend != "hypothesis":
546 realize_choices(data, for_failure=data.status is Status.INTERESTING)
547
548 self._cache(data)
549 if data.misaligned_at is not None: # pragma: no branch # coverage bug?
550 self.misaligned_count += 1
551
552 self.debug_data(data)
553
554 if (
555 data.target_observations
556 and self.pareto_front is not None
557 and self.pareto_front.add(data.as_result())
558 ):
559 self.save_choices(data.choices, sub_key=b"pareto")
560
561 if data.status >= Status.VALID:
562 for k, v in data.target_observations.items():
563 self.best_observed_targets[k] = max(self.best_observed_targets[k], v)
564
565 if k not in self.best_examples_of_observed_targets:
566 data_as_result = data.as_result()
567 assert not isinstance(data_as_result, _Overrun)
568 self.best_examples_of_observed_targets[k] = data_as_result
569 continue
570
571 existing_example = self.best_examples_of_observed_targets[k]
572 existing_score = existing_example.target_observations[k]
573
574 if v < existing_score:
575 continue
576
577 if v > existing_score or sort_key(data.nodes) < sort_key(
578 existing_example.nodes
579 ):
580 data_as_result = data.as_result()
581 assert not isinstance(data_as_result, _Overrun)
582 self.best_examples_of_observed_targets[k] = data_as_result
583
584 if data.status is Status.VALID:
585 self.valid_examples += 1
586 if data.status is Status.INVALID:
587 self.invalid_examples += 1
588 if data.status is Status.OVERRUN:
589 self.overrun_examples += 1
590
591 if data.status == Status.INTERESTING:
592 if not self.using_hypothesis_backend:
593 # replay this failure on the hypothesis backend to ensure it still
594 # finds a failure. otherwise, it is flaky.
595 initial_origin = data.interesting_origin
596 initial_traceback = data.expected_traceback
597 data = ConjectureData.for_choices(data.choices)
598 self.__stoppable_test_function(data)
599 data.freeze()
600 # TODO: Convert to FlakyFailure on the way out. Should same-origin
601 # also be checked?
602 if data.status != Status.INTERESTING:
603 desc_new_status = {
604 data.status.VALID: "passed",
605 data.status.INVALID: "failed filters",
606 data.status.OVERRUN: "overran",
607 }[data.status]
608 wrapped_tb = (
609 ""
610 if initial_traceback is None
611 else textwrap.indent(initial_traceback, " | ")
612 )
613 raise FlakyReplay(
614 f"Inconsistent results from replaying a failing test case!\n"
615 f"{wrapped_tb}on backend={self.settings.backend!r} but "
616 f"{desc_new_status} under backend='hypothesis'",
617 interesting_origins=[initial_origin],
618 )
619
620 self._cache(data)
621
622 key = data.interesting_origin
623 changed = False
624 try:
625 existing = self.interesting_examples[key]
626 except KeyError:
627 changed = True
628 self.last_bug_found_at = self.call_count
629 if self.first_bug_found_at is None:
630 self.first_bug_found_at = self.call_count
631 else:
632 if sort_key(data.nodes) < sort_key(existing.nodes):
633 self.shrinks += 1
634 self.downgrade_choices(existing.choices)
635 self.__data_cache.unpin(self._cache_key(existing.choices))
636 changed = True
637
638 if changed:
639 self.save_choices(data.choices)
640 self.interesting_examples[key] = data.as_result() # type: ignore
641 if not self.using_hypothesis_backend:
642 self._backend_found_failure = True
643 self.__data_cache.pin(self._cache_key(data.choices), data.as_result())
644 self.shrunk_examples.discard(key)
645
646 if self.shrinks >= MAX_SHRINKS:
647 self.exit_with(ExitReason.max_shrinks)
648
649 if (
650 not self.ignore_limits
651 and self.finish_shrinking_deadline is not None
652 and self.finish_shrinking_deadline < time.perf_counter()
653 ):
654 # See https://github.com/HypothesisWorks/hypothesis/issues/2340
655 report(
656 "WARNING: Hypothesis has spent more than five minutes working to shrink"
657 " a failing example, and stopped because it is making very slow"
658 " progress. When you re-run your tests, shrinking will resume and may"
659 " take this long before aborting again.\nPLEASE REPORT THIS if you can"
660 " provide a reproducing example, so that we can improve shrinking"
661 " performance for everyone."
662 )
663 self.exit_with(ExitReason.very_slow_shrinking)
664
665 if not self.interesting_examples:
666 # Note that this logic is reproduced to end the generation phase when
667 # we have interesting examples. Update that too if you change this!
668 # (The doubled implementation is because here we exit the engine entirely,
669 # while in the other case below we just want to move on to shrinking.)
670 if self.valid_examples >= self.settings.max_examples:
671 self.exit_with(ExitReason.max_examples)
672 if self.call_count >= max(
673 self.settings.max_examples * 10,
674 # We have a high-ish default max iterations, so that tests
675 # don't become flaky when max_examples is too low.
676 1000,
677 ):
678 self.exit_with(ExitReason.max_iterations)
679
680 if self.__tree_is_exhausted():
681 self.exit_with(ExitReason.finished)
682
683 self.record_for_health_check(data)
684
685 def on_pareto_evict(self, data: ConjectureResult) -> None:
686 self.settings.database.delete(self.pareto_key, choices_to_bytes(data.choices))
687
688 def generate_novel_prefix(self) -> tuple[ChoiceT, ...]:
689 """Uses the tree to proactively generate a starting choice sequence
690 that we haven't explored yet for this test.
691
692 When this method is called, we assume that there must be at
693 least one novel prefix left to find. If there were not, then the
694 test run should have already stopped due to tree exhaustion.
695 """
696 return self.tree.generate_novel_prefix(self.random)
697
698 def record_for_health_check(self, data: ConjectureData) -> None:
699 # Once we've actually found a bug, there's no point in trying to run
700 # health checks - they'll just mask the actually important information.
701 if data.status == Status.INTERESTING:
702 self.health_check_state = None
703
704 state = self.health_check_state
705
706 if state is None:
707 return
708
709 for k, v in data.draw_times.items():
710 state.draw_times[k].append(v)
711
712 if data.status == Status.VALID:
713 state.valid_examples += 1
714 elif data.status == Status.INVALID:
715 state.invalid_examples += 1
716 else:
717 assert data.status == Status.OVERRUN
718 state.overrun_examples += 1
719
720 max_valid_draws = 10
721 max_invalid_draws = 50
722 max_overrun_draws = 20
723
724 assert state.valid_examples <= max_valid_draws
725
726 if state.valid_examples == max_valid_draws:
727 self.health_check_state = None
728 return
729
730 if state.overrun_examples == max_overrun_draws:
731 fail_health_check(
732 self.settings,
733 "Examples routinely exceeded the max allowable size. "
734 f"({state.overrun_examples} examples overran while generating "
735 f"{state.valid_examples} valid ones). Generating examples this large "
736 "will usually lead to bad results. You could try setting max_size "
737 "parameters on your collections and turning max_leaves down on "
738 "recursive() calls.",
739 HealthCheck.data_too_large,
740 )
741 if state.invalid_examples == max_invalid_draws:
742 fail_health_check(
743 self.settings,
744 "It looks like your strategy is filtering out a lot of data. Health "
745 f"check found {state.invalid_examples} filtered examples but only "
746 f"{state.valid_examples} good ones. This will make your tests much "
747 "slower, and also will probably distort the data generation quite a "
748 "lot. You should adapt your strategy to filter less. This can also "
749 "be caused by a low max_leaves parameter in recursive() calls",
750 HealthCheck.filter_too_much,
751 )
752
753 draw_time = state.total_draw_time
754
755 # Allow at least the greater of one second or 5x the deadline. If deadline
756 # is None, allow 30s - the user can disable the healthcheck too if desired.
757 draw_time_limit = 5 * (self.settings.deadline or timedelta(seconds=6))
758 if draw_time > max(1.0, draw_time_limit.total_seconds()):
759 fail_health_check(
760 self.settings,
761 "Data generation is extremely slow: Only produced "
762 f"{state.valid_examples} valid examples in {draw_time:.2f} seconds "
763 f"({state.invalid_examples} invalid ones and {state.overrun_examples} "
764 "exceeded maximum size). Try decreasing size of the data you're "
765 "generating (with e.g. max_size or max_leaves parameters)."
766 + state.timing_report(),
767 HealthCheck.too_slow,
768 )
769
770 def save_choices(
771 self, choices: Sequence[ChoiceT], sub_key: Optional[bytes] = None
772 ) -> None:
773 if self.settings.database is not None:
774 key = self.sub_key(sub_key)
775 if key is None:
776 return
777 self.settings.database.save(key, choices_to_bytes(choices))
778
779 def downgrade_choices(self, choices: Sequence[ChoiceT]) -> None:
780 buffer = choices_to_bytes(choices)
781 if self.settings.database is not None and self.database_key is not None:
782 self.settings.database.move(self.database_key, self.secondary_key, buffer)
783
784 def sub_key(self, sub_key: Optional[bytes]) -> Optional[bytes]:
785 if self.database_key is None:
786 return None
787 if sub_key is None:
788 return self.database_key
789 return b".".join((self.database_key, sub_key))
790
791 @property
792 def secondary_key(self) -> Optional[bytes]:
793 return self.sub_key(b"secondary")
794
795 @property
796 def pareto_key(self) -> Optional[bytes]:
797 return self.sub_key(b"pareto")
798
799 def debug(self, message: str) -> None:
800 if self.settings.verbosity >= Verbosity.debug:
801 base_report(message)
802
803 @property
804 def report_debug_info(self) -> bool:
805 return self.settings.verbosity >= Verbosity.debug
806
807 def debug_data(self, data: Union[ConjectureData, ConjectureResult]) -> None:
808 if not self.report_debug_info:
809 return
810
811 status = repr(data.status)
812 if data.status == Status.INTERESTING:
813 status = f"{status} ({data.interesting_origin!r})"
814
815 self.debug(
816 f"{len(data.choices)} choices {data.choices} -> {status}"
817 f"{', ' + data.output if data.output else ''}"
818 )
819
820 def run(self) -> None:
821 with local_settings(self.settings):
822 try:
823 self._run()
824 except RunIsComplete:
825 pass
826 for v in self.interesting_examples.values():
827 self.debug_data(v)
828 self.debug(
829 "Run complete after %d examples (%d valid) and %d shrinks"
830 % (self.call_count, self.valid_examples, self.shrinks)
831 )
832
833 @property
834 def database(self) -> Optional[ExampleDatabase]:
835 if self.database_key is None:
836 return None
837 return self.settings.database
838
839 def has_existing_examples(self) -> bool:
840 return self.database is not None and Phase.reuse in self.settings.phases
841
842 def reuse_existing_examples(self) -> None:
843 """If appropriate (we have a database and have been told to use it),
844 try to reload existing examples from the database.
845
846 If there are a lot we don't try all of them. We always try the
847 smallest example in the database (which is guaranteed to be the
848 last failure) and the largest (which is usually the seed example
849 which the last failure came from but we don't enforce that). We
850 then take a random sampling of the remainder and try those. Any
851 examples that are no longer interesting are cleared out.
852 """
853 if self.has_existing_examples():
854 self.debug("Reusing examples from database")
855 # We have to do some careful juggling here. We have two database
856 # corpora: The primary and secondary. The primary corpus is a
857 # small set of minimized examples each of which has at one point
858 # demonstrated a distinct bug. We want to retry all of these.
859
860 # We also have a secondary corpus of examples that have at some
861 # point demonstrated interestingness (currently only ones that
862 # were previously non-minimal examples of a bug, but this will
863 # likely expand in future). These are a good source of potentially
864 # interesting examples, but there are a lot of them, so we down
865 # sample the secondary corpus to a more manageable size.
866
867 corpus = sorted(
868 self.settings.database.fetch(self.database_key), key=shortlex
869 )
870 factor = 0.1 if (Phase.generate in self.settings.phases) else 1
871 desired_size = max(2, ceil(factor * self.settings.max_examples))
872 primary_corpus_size = len(corpus)
873
874 if len(corpus) < desired_size:
875 extra_corpus = list(self.settings.database.fetch(self.secondary_key))
876
877 shortfall = desired_size - len(corpus)
878
879 if len(extra_corpus) <= shortfall:
880 extra = extra_corpus
881 else:
882 extra = self.random.sample(extra_corpus, shortfall)
883 extra.sort(key=shortlex)
884 corpus.extend(extra)
885
886 # We want a fast path where every primary entry in the database was
887 # interesting.
888 found_interesting_in_primary = False
889 all_interesting_in_primary_were_exact = True
890
891 for i, existing in enumerate(corpus):
892 if i >= primary_corpus_size and found_interesting_in_primary:
893 break
894 choices = choices_from_bytes(existing)
895 if choices is None:
896 # clear out any keys which fail deserialization
897 self.settings.database.delete(self.database_key, existing)
898 continue
899 data = self.cached_test_function(choices, extend="full")
900 if data.status != Status.INTERESTING:
901 self.settings.database.delete(self.database_key, existing)
902 self.settings.database.delete(self.secondary_key, existing)
903 else:
904 if i < primary_corpus_size:
905 found_interesting_in_primary = True
906 assert not isinstance(data, _Overrun)
907 if choices_key(choices) != choices_key(data.choices):
908 all_interesting_in_primary_were_exact = False
909 if not self.settings.report_multiple_bugs:
910 break
911 if found_interesting_in_primary:
912 if all_interesting_in_primary_were_exact:
913 self.reused_previously_shrunk_test_case = True
914
915 # Because self.database is not None (because self.has_existing_examples())
916 # and self.database_key is not None (because we fetched using it above),
917 # we can guarantee self.pareto_front is not None
918 assert self.pareto_front is not None
919
920 # If we've not found any interesting examples so far we try some of
921 # the pareto front from the last run.
922 if len(corpus) < desired_size and not self.interesting_examples:
923 desired_extra = desired_size - len(corpus)
924 pareto_corpus = list(self.settings.database.fetch(self.pareto_key))
925 if len(pareto_corpus) > desired_extra:
926 pareto_corpus = self.random.sample(pareto_corpus, desired_extra)
927 pareto_corpus.sort(key=shortlex)
928
929 for existing in pareto_corpus:
930 choices = choices_from_bytes(existing)
931 if choices is None:
932 self.settings.database.delete(self.pareto_key, existing)
933 continue
934 data = self.cached_test_function(choices, extend="full")
935 if data not in self.pareto_front:
936 self.settings.database.delete(self.pareto_key, existing)
937 if data.status == Status.INTERESTING:
938 break
939
940 def exit_with(self, reason: ExitReason) -> None:
941 if self.ignore_limits:
942 return
943 self.statistics["stopped-because"] = reason.describe(self.settings)
944 if self.best_observed_targets:
945 self.statistics["targets"] = dict(self.best_observed_targets)
946 self.debug(f"exit_with({reason.name})")
947 self.exit_reason = reason
948 raise RunIsComplete
949
950 def should_generate_more(self) -> bool:
951 # End the generation phase where we would have ended it if no bugs had
952 # been found. This reproduces the exit logic in `self.test_function`,
953 # but with the important distinction that this clause will move on to
954 # the shrinking phase having found one or more bugs, while the other
955 # will exit having found zero bugs.
956 if self.valid_examples >= self.settings.max_examples or self.call_count >= max(
957 self.settings.max_examples * 10, 1000
958 ): # pragma: no cover
959 return False
960
961 # If we haven't found a bug, keep looking - if we hit any limits on
962 # the number of tests to run that will raise an exception and stop
963 # the run.
964 if not self.interesting_examples:
965 return True
966 # Users who disable shrinking probably want to exit as fast as possible.
967 # If we've found a bug and won't report more than one, stop looking.
968 elif (
969 Phase.shrink not in self.settings.phases
970 or not self.settings.report_multiple_bugs
971 ):
972 return False
973 assert isinstance(self.first_bug_found_at, int)
974 assert isinstance(self.last_bug_found_at, int)
975 assert self.first_bug_found_at <= self.last_bug_found_at <= self.call_count
976 # Otherwise, keep searching for between ten and 'a heuristic' calls.
977 # We cap 'calls after first bug' so errors are reported reasonably
978 # soon even for tests that are allowed to run for a very long time,
979 # or sooner if the latest half of our test effort has been fruitless.
980 return self.call_count < MIN_TEST_CALLS or self.call_count < min(
981 self.first_bug_found_at + 1000, self.last_bug_found_at * 2
982 )
983
984 def generate_new_examples(self) -> None:
985 if Phase.generate not in self.settings.phases:
986 return
987 if self.interesting_examples:
988 # The example database has failing examples from a previous run,
989 # so we'd rather report that they're still failing ASAP than take
990 # the time to look for additional failures.
991 return
992
993 self.debug("Generating new examples")
994
995 assert self.should_generate_more()
996 self._switch_to_hypothesis_provider = True
997 zero_data = self.cached_test_function((ChoiceTemplate("simplest", count=None),))
998 if zero_data.status > Status.OVERRUN:
999 assert isinstance(zero_data, ConjectureResult)
1000 # if the crosshair backend cannot proceed, it does not (and cannot)
1001 # realize the symbolic values, with the intent that Hypothesis will
1002 # throw away this test case. We usually do, but if it's the zero data
1003 # then we try to pin it here, which requires realizing the symbolics.
1004 #
1005 # We don't (yet) rely on the zero data being pinned, and so
1006 # it's simply a very slight performance loss to simply not pin it
1007 # if doing so would error.
1008 if zero_data.cannot_proceed_scope is None: # pragma: no branch
1009 self.__data_cache.pin(
1010 self._cache_key(zero_data.choices), zero_data.as_result()
1011 ) # Pin forever
1012
1013 if zero_data.status == Status.OVERRUN or (
1014 zero_data.status == Status.VALID
1015 and isinstance(zero_data, ConjectureResult)
1016 and zero_data.length * 2 > BUFFER_SIZE
1017 ):
1018 fail_health_check(
1019 self.settings,
1020 "The smallest natural example for your test is extremely "
1021 "large. This makes it difficult for Hypothesis to generate "
1022 "good examples, especially when trying to reduce failing ones "
1023 "at the end. Consider reducing the size of your data if it is "
1024 "of a fixed size. You could also fix this by improving how "
1025 "your data shrinks (see https://hypothesis.readthedocs.io/en/"
1026 "latest/data.html#shrinking for details), or by introducing "
1027 "default values inside your strategy. e.g. could you replace "
1028 "some arguments with their defaults by using "
1029 "one_of(none(), some_complex_strategy)?",
1030 HealthCheck.large_base_example,
1031 )
1032
1033 self.health_check_state = HealthCheckState()
1034
1035 # We attempt to use the size of the minimal generated test case starting
1036 # from a given novel prefix as a guideline to generate smaller test
1037 # cases for an initial period, by restriscting ourselves to test cases
1038 # that are not much larger than it.
1039 #
1040 # Calculating the actual minimal generated test case is hard, so we
1041 # take a best guess that zero extending a prefix produces the minimal
1042 # test case starting with that prefix (this is true for our built in
1043 # strategies). This is only a reasonable thing to do if the resulting
1044 # test case is valid. If we regularly run into situations where it is
1045 # not valid then this strategy is a waste of time, so we want to
1046 # abandon it early. In order to do this we track how many times in a
1047 # row it has failed to work, and abort small test case generation when
1048 # it has failed too many times in a row.
1049 consecutive_zero_extend_is_invalid = 0
1050
1051 # We control growth during initial example generation, for two
1052 # reasons:
1053 #
1054 # * It gives us an opportunity to find small examples early, which
1055 # gives us a fast path for easy to find bugs.
1056 # * It avoids low probability events where we might end up
1057 # generating very large examples during health checks, which
1058 # on slower machines can trigger HealthCheck.too_slow.
1059 #
1060 # The heuristic we use is that we attempt to estimate the smallest
1061 # extension of this prefix, and limit the size to no more than
1062 # an order of magnitude larger than that. If we fail to estimate
1063 # the size accurately, we skip over this prefix and try again.
1064 #
1065 # We need to tune the example size based on the initial prefix,
1066 # because any fixed size might be too small, and any size based
1067 # on the strategy in general can fall afoul of strategies that
1068 # have very different sizes for different prefixes.
1069 #
1070 # We previously set a minimum value of 10 on small_example_cap, with the
1071 # reasoning of avoiding flaky health checks. However, some users set a
1072 # low max_examples for performance. A hard lower bound in this case biases
1073 # the distribution towards small (and less powerful) examples. Flaky
1074 # and loud health checks are better than silent performance degradation.
1075 small_example_cap = min(self.settings.max_examples // 10, 50)
1076 optimise_at = max(self.settings.max_examples // 2, small_example_cap + 1, 10)
1077 ran_optimisations = False
1078 self._switch_to_hypothesis_provider = False
1079
1080 while self.should_generate_more():
1081 # we don't yet integrate DataTree with backends. Instead of generating
1082 # a novel prefix, ask the backend for an input.
1083 if not self.using_hypothesis_backend:
1084 data = self.new_conjecture_data([])
1085 with suppress(BackendCannotProceed):
1086 self.test_function(data)
1087 continue
1088
1089 self._current_phase = "generate"
1090 prefix = self.generate_novel_prefix()
1091 if (
1092 self.valid_examples <= small_example_cap
1093 and self.call_count <= 5 * small_example_cap
1094 and not self.interesting_examples
1095 and consecutive_zero_extend_is_invalid < 5
1096 ):
1097 minimal_example = self.cached_test_function(
1098 prefix + (ChoiceTemplate("simplest", count=None),)
1099 )
1100
1101 if minimal_example.status < Status.VALID:
1102 consecutive_zero_extend_is_invalid += 1
1103 continue
1104 # Because the Status code is greater than Status.VALID, it cannot be
1105 # Status.OVERRUN, which guarantees that the minimal_example is a
1106 # ConjectureResult object.
1107 assert isinstance(minimal_example, ConjectureResult)
1108 consecutive_zero_extend_is_invalid = 0
1109 minimal_extension = len(minimal_example.choices) - len(prefix)
1110 max_length = len(prefix) + minimal_extension * 5
1111
1112 # We could end up in a situation where even though the prefix was
1113 # novel when we generated it, because we've now tried zero extending
1114 # it not all possible continuations of it will be novel. In order to
1115 # avoid making redundant test calls, we rerun it in simulation mode
1116 # first. If this has a predictable result, then we don't bother
1117 # running the test function for real here. If however we encounter
1118 # some novel behaviour, we try again with the real test function,
1119 # starting from the new novel prefix that has discovered.
1120 trial_data = self.new_conjecture_data(prefix, max_choices=max_length)
1121 try:
1122 self.tree.simulate_test_function(trial_data)
1123 continue
1124 except PreviouslyUnseenBehaviour:
1125 pass
1126
1127 # If the simulation entered part of the tree that has been killed,
1128 # we don't want to run this.
1129 assert isinstance(trial_data.observer, TreeRecordingObserver)
1130 if trial_data.observer.killed:
1131 continue
1132
1133 # We might have hit the cap on number of examples we should
1134 # run when calculating the minimal example.
1135 if not self.should_generate_more():
1136 break
1137
1138 prefix = trial_data.choices
1139 else:
1140 max_length = None
1141
1142 data = self.new_conjecture_data(prefix, max_choices=max_length)
1143 self.test_function(data)
1144
1145 if (
1146 data.status is Status.OVERRUN
1147 and max_length is not None
1148 and "invalid because" not in data.events
1149 ):
1150 data.events["invalid because"] = (
1151 "reduced max size for early examples (avoids flaky health checks)"
1152 )
1153
1154 self.generate_mutations_from(data)
1155
1156 # Although the optimisations are logically a distinct phase, we
1157 # actually normally run them as part of example generation. The
1158 # reason for this is that we cannot guarantee that optimisation
1159 # actually exhausts our budget: It might finish running and we
1160 # discover that actually we still could run a bunch more test cases
1161 # if we want.
1162 if (
1163 self.valid_examples >= max(small_example_cap, optimise_at)
1164 and not ran_optimisations
1165 ):
1166 ran_optimisations = True
1167 self._current_phase = "target"
1168 self.optimise_targets()
1169
1170 def generate_mutations_from(
1171 self, data: Union[ConjectureData, ConjectureResult]
1172 ) -> None:
1173 # A thing that is often useful but rarely happens by accident is
1174 # to generate the same value at multiple different points in the
1175 # test case.
1176 #
1177 # Rather than make this the responsibility of individual strategies
1178 # we implement a small mutator that just takes parts of the test
1179 # case with the same label and tries replacing one of them with a
1180 # copy of the other and tries running it. If we've made a good
1181 # guess about what to put where, this will run a similar generated
1182 # test case with more duplication.
1183 if (
1184 # An OVERRUN doesn't have enough information about the test
1185 # case to mutate, so we just skip those.
1186 data.status >= Status.INVALID
1187 # This has a tendency to trigger some weird edge cases during
1188 # generation so we don't let it run until we're done with the
1189 # health checks.
1190 and self.health_check_state is None
1191 ):
1192 initial_calls = self.call_count
1193 failed_mutations = 0
1194
1195 while (
1196 self.should_generate_more()
1197 # We implement fairly conservative checks for how long we
1198 # we should run mutation for, as it's generally not obvious
1199 # how helpful it is for any given test case.
1200 and self.call_count <= initial_calls + 5
1201 and failed_mutations <= 5
1202 ):
1203 groups = data.spans.mutator_groups
1204 if not groups:
1205 break
1206
1207 group = self.random.choice(groups)
1208 (start1, end1), (start2, end2) = self.random.sample(sorted(group), 2)
1209 if start1 > start2:
1210 (start1, end1), (start2, end2) = (start2, end2), (start1, end1)
1211
1212 if (
1213 start1 <= start2 <= end2 <= end1
1214 ): # pragma: no cover # flaky on conjecture-cover tests
1215 # One span entirely contains the other. The strategy is very
1216 # likely some kind of tree. e.g. we might have
1217 #
1218 # ┌─────┐
1219 # ┌─────┤ a ├──────┐
1220 # │ └─────┘ │
1221 # ┌──┴──┐ ┌──┴──┐
1222 # ┌──┤ b ├──┐ ┌──┤ c ├──┐
1223 # │ └──┬──┘ │ │ └──┬──┘ │
1224 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐
1225 # │ d │ │ e │ │ f │ │ g │ │ h │ │ i │
1226 # └───┘ └───┘ └───┘ └───┘ └───┘ └───┘
1227 #
1228 # where each node is drawn from the same strategy and so
1229 # has the same span label. We might have selected the spans
1230 # corresponding to the a and c nodes, which is the entire
1231 # tree and the subtree of (and including) c respectively.
1232 #
1233 # There are two possible mutations we could apply in this case:
1234 # 1. replace a with c (replace child with parent)
1235 # 2. replace c with a (replace parent with child)
1236 #
1237 # (1) results in multiple partial copies of the
1238 # parent:
1239 # ┌─────┐
1240 # ┌─────┤ a ├────────────┐
1241 # │ └─────┘ │
1242 # ┌──┴──┐ ┌─┴───┐
1243 # ┌──┤ b ├──┐ ┌─────┤ a ├──────┐
1244 # │ └──┬──┘ │ │ └─────┘ │
1245 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌──┴──┐ ┌──┴──┐
1246 # │ d │ │ e │ │ f │ ┌──┤ b ├──┐ ┌──┤ c ├──┐
1247 # └───┘ └───┘ └───┘ │ └──┬──┘ │ │ └──┬──┘ │
1248 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐
1249 # │ d │ │ e │ │ f │ │ g │ │ h │ │ i │
1250 # └───┘ └───┘ └───┘ └───┘ └───┘ └───┘
1251 #
1252 # While (2) results in truncating part of the parent:
1253 #
1254 # ┌─────┐
1255 # ┌──┤ c ├──┐
1256 # │ └──┬──┘ │
1257 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐
1258 # │ g │ │ h │ │ i │
1259 # └───┘ └───┘ └───┘
1260 #
1261 # (1) is the same as Example IV.4. in Nautilus (NDSS '19)
1262 # (https://wcventure.github.io/FuzzingPaper/Paper/NDSS19_Nautilus.pdf),
1263 # except we do not repeat the replacement additional times
1264 # (the paper repeats it once for a total of two copies).
1265 #
1266 # We currently only apply mutation (1), and ignore mutation
1267 # (2). The reason is that the attempt generated from (2) is
1268 # always something that Hypothesis could easily have generated
1269 # itself, by simply not making various choices. Whereas
1270 # duplicating the exact value + structure of particular choices
1271 # in (1) would have been hard for Hypothesis to generate by
1272 # chance.
1273 #
1274 # TODO: an extension of this mutation might repeat (1) on
1275 # a geometric distribution between 0 and ~10 times. We would
1276 # need to find the corresponding span to recurse on in the new
1277 # choices, probably just by using the choices index.
1278
1279 # case (1): duplicate the choices in start1:start2.
1280 attempt = data.choices[:start2] + data.choices[start1:]
1281 else:
1282 (start, end) = self.random.choice([(start1, end1), (start2, end2)])
1283 replacement = data.choices[start:end]
1284 # We attempt to replace both the examples with
1285 # whichever choice we made. Note that this might end
1286 # up messing up and getting the example boundaries
1287 # wrong - labels matching are only a best guess as to
1288 # whether the two are equivalent - but it doesn't
1289 # really matter. It may not achieve the desired result,
1290 # but it's still a perfectly acceptable choice sequence
1291 # to try.
1292 attempt = (
1293 data.choices[:start1]
1294 + replacement
1295 + data.choices[end1:start2]
1296 + replacement
1297 + data.choices[end2:]
1298 )
1299
1300 try:
1301 new_data = self.cached_test_function(
1302 attempt,
1303 # We set error_on_discard so that we don't end up
1304 # entering parts of the tree we consider redundant
1305 # and not worth exploring.
1306 error_on_discard=True,
1307 )
1308 except ContainsDiscard:
1309 failed_mutations += 1
1310 continue
1311
1312 if new_data is Overrun:
1313 failed_mutations += 1 # pragma: no cover # annoying case
1314 else:
1315 assert isinstance(new_data, ConjectureResult)
1316 if (
1317 new_data.status >= data.status
1318 and choices_key(data.choices) != choices_key(new_data.choices)
1319 and all(
1320 k in new_data.target_observations
1321 and new_data.target_observations[k] >= v
1322 for k, v in data.target_observations.items()
1323 )
1324 ):
1325 data = new_data
1326 failed_mutations = 0
1327 else:
1328 failed_mutations += 1
1329
1330 def optimise_targets(self) -> None:
1331 """If any target observations have been made, attempt to optimise them
1332 all."""
1333 if not self.should_optimise:
1334 return
1335 from hypothesis.internal.conjecture.optimiser import Optimiser
1336
1337 # We want to avoid running the optimiser for too long in case we hit
1338 # an unbounded target score. We start this off fairly conservatively
1339 # in case interesting examples are easy to find and then ramp it up
1340 # on an exponential schedule so we don't hamper the optimiser too much
1341 # if it needs a long time to find good enough improvements.
1342 max_improvements = 10
1343 while True:
1344 prev_calls = self.call_count
1345
1346 any_improvements = False
1347
1348 for target, data in list(self.best_examples_of_observed_targets.items()):
1349 optimiser = Optimiser(
1350 self, data, target, max_improvements=max_improvements
1351 )
1352 optimiser.run()
1353 if optimiser.improvements > 0:
1354 any_improvements = True
1355
1356 if self.interesting_examples:
1357 break
1358
1359 max_improvements *= 2
1360
1361 if any_improvements:
1362 continue
1363
1364 if self.best_observed_targets:
1365 self.pareto_optimise()
1366
1367 if prev_calls == self.call_count:
1368 break
1369
1370 def pareto_optimise(self) -> None:
1371 if self.pareto_front is not None:
1372 ParetoOptimiser(self).run()
1373
1374 def _run(self) -> None:
1375 # have to use the primitive provider to interpret database bits...
1376 self._switch_to_hypothesis_provider = True
1377 with self._log_phase_statistics("reuse"):
1378 self.reuse_existing_examples()
1379 # Fast path for development: If the database gave us interesting
1380 # examples from the previously stored primary key, don't try
1381 # shrinking it again as it's unlikely to work.
1382 if self.reused_previously_shrunk_test_case:
1383 self.exit_with(ExitReason.finished)
1384 # ...but we should use the supplied provider when generating...
1385 self._switch_to_hypothesis_provider = False
1386 with self._log_phase_statistics("generate"):
1387 self.generate_new_examples()
1388 # We normally run the targeting phase mixed in with the generate phase,
1389 # but if we've been asked to run it but not generation then we have to
1390 # run it explicitly on its own here.
1391 if Phase.generate not in self.settings.phases:
1392 self._current_phase = "target"
1393 self.optimise_targets()
1394 # ...and back to the primitive provider when shrinking.
1395 self._switch_to_hypothesis_provider = True
1396 with self._log_phase_statistics("shrink"):
1397 self.shrink_interesting_examples()
1398 self.exit_with(ExitReason.finished)
1399
1400 def new_conjecture_data(
1401 self,
1402 prefix: Sequence[Union[ChoiceT, ChoiceTemplate]],
1403 *,
1404 observer: Optional[DataObserver] = None,
1405 max_choices: Optional[int] = None,
1406 ) -> ConjectureData:
1407 provider = (
1408 HypothesisProvider if self._switch_to_hypothesis_provider else self.provider
1409 )
1410 observer = observer or self.tree.new_observer()
1411 if not self.using_hypothesis_backend:
1412 observer = DataObserver()
1413
1414 return ConjectureData(
1415 prefix=prefix,
1416 observer=observer,
1417 provider=provider,
1418 max_choices=max_choices,
1419 random=self.random,
1420 )
1421
1422 def shrink_interesting_examples(self) -> None:
1423 """If we've found interesting examples, try to replace each of them
1424 with a minimal interesting example with the same interesting_origin.
1425
1426 We may find one or more examples with a new interesting_origin
1427 during the shrink process. If so we shrink these too.
1428 """
1429 if Phase.shrink not in self.settings.phases or not self.interesting_examples:
1430 return
1431
1432 self.debug("Shrinking interesting examples")
1433 self.finish_shrinking_deadline = time.perf_counter() + MAX_SHRINKING_SECONDS
1434
1435 for prev_data in sorted(
1436 self.interesting_examples.values(), key=lambda d: sort_key(d.nodes)
1437 ):
1438 assert prev_data.status == Status.INTERESTING
1439 data = self.new_conjecture_data(prev_data.choices)
1440 self.test_function(data)
1441 if data.status != Status.INTERESTING:
1442 self.exit_with(ExitReason.flaky)
1443
1444 self.clear_secondary_key()
1445
1446 while len(self.shrunk_examples) < len(self.interesting_examples):
1447 target, example = min(
1448 (
1449 (k, v)
1450 for k, v in self.interesting_examples.items()
1451 if k not in self.shrunk_examples
1452 ),
1453 key=lambda kv: (sort_key(kv[1].nodes), shortlex(repr(kv[0]))),
1454 )
1455 self.debug(f"Shrinking {target!r}: {example.choices}")
1456
1457 if not self.settings.report_multiple_bugs:
1458 # If multi-bug reporting is disabled, we shrink our currently-minimal
1459 # failure, allowing 'slips' to any bug with a smaller minimal example.
1460 self.shrink(example, lambda d: d.status == Status.INTERESTING)
1461 return
1462
1463 def predicate(d: Union[ConjectureResult, _Overrun]) -> bool:
1464 if d.status < Status.INTERESTING:
1465 return False
1466 d = cast(ConjectureResult, d)
1467 return d.interesting_origin == target
1468
1469 self.shrink(example, predicate)
1470
1471 self.shrunk_examples.add(target)
1472
1473 def clear_secondary_key(self) -> None:
1474 if self.has_existing_examples():
1475 # If we have any smaller examples in the secondary corpus, now is
1476 # a good time to try them to see if they work as shrinks. They
1477 # probably won't, but it's worth a shot and gives us a good
1478 # opportunity to clear out the database.
1479
1480 # It's not worth trying the primary corpus because we already
1481 # tried all of those in the initial phase.
1482 corpus = sorted(
1483 self.settings.database.fetch(self.secondary_key), key=shortlex
1484 )
1485 for c in corpus:
1486 choices = choices_from_bytes(c)
1487 if choices is None:
1488 self.settings.database.delete(self.secondary_key, c)
1489 continue
1490 primary = {
1491 choices_to_bytes(v.choices)
1492 for v in self.interesting_examples.values()
1493 }
1494 if shortlex(c) > max(map(shortlex, primary)):
1495 break
1496
1497 self.cached_test_function(choices)
1498 # We unconditionally remove c from the secondary key as it
1499 # is either now primary or worse than our primary example
1500 # of this reason for interestingness.
1501 self.settings.database.delete(self.secondary_key, c)
1502
1503 def shrink(
1504 self,
1505 example: Union[ConjectureData, ConjectureResult],
1506 predicate: Optional[ShrinkPredicateT] = None,
1507 allow_transition: Optional[
1508 Callable[[Union[ConjectureData, ConjectureResult], ConjectureData], bool]
1509 ] = None,
1510 ) -> Union[ConjectureData, ConjectureResult]:
1511 s = self.new_shrinker(example, predicate, allow_transition)
1512 s.shrink()
1513 return s.shrink_target
1514
1515 def new_shrinker(
1516 self,
1517 example: Union[ConjectureData, ConjectureResult],
1518 predicate: Optional[ShrinkPredicateT] = None,
1519 allow_transition: Optional[
1520 Callable[[Union[ConjectureData, ConjectureResult], ConjectureData], bool]
1521 ] = None,
1522 ) -> Shrinker:
1523 return Shrinker(
1524 self,
1525 example,
1526 predicate,
1527 allow_transition=allow_transition,
1528 explain=Phase.explain in self.settings.phases,
1529 in_target_phase=self._current_phase == "target",
1530 )
1531
1532 def passing_choice_sequences(
1533 self, prefix: Sequence[ChoiceNode] = ()
1534 ) -> frozenset[tuple[ChoiceNode, ...]]:
1535 """Return a collection of choice sequence nodes which cause the test to pass.
1536 Optionally restrict this by a certain prefix, which is useful for explain mode.
1537 """
1538 return frozenset(
1539 cast(ConjectureResult, result).nodes
1540 for key in self.__data_cache
1541 if (result := self.__data_cache[key]).status is Status.VALID
1542 and startswith(cast(ConjectureResult, result).nodes, prefix)
1543 )
1544
1545
1546class ContainsDiscard(Exception):
1547 pass