RobustDeterminant.java

/*
 * Copyright (c) 2016 Vivid Solutions.
 *
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License 2.0
 * and Eclipse Distribution License v. 1.0 which accompanies this distribution.
 * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v20.html
 * and the Eclipse Distribution License is available at
 *
 * http://www.eclipse.org/org/documents/edl-v10.php.
 */
package org.locationtech.jts.algorithm;

import org.locationtech.jts.geom.Coordinate;

/**
 * @version 1.7
 */

/**
 * Implements an algorithm to compute the
 * sign of a 2x2 determinant for double precision values robustly.
 * It is a direct translation of code developed by Olivier Devillers.
 * <p>
 * The original code carries the following copyright notice:
 *
 * <pre>
 *************************************************************************
 * Author : Olivier Devillers
 * Olivier.Devillers@sophia.inria.fr
 * http:/www.inria.fr:/prisme/personnel/devillers/anglais/determinant.html
 *
 * Relicensed under EDL and EPL with Permission from Olivier Devillers
 * 
 **************************************************************************
 *
 **************************************************************************
 *              Copyright (c) 1995  by  INRIA Prisme Project
 *                  BP 93 06902 Sophia Antipolis Cedex, France.
 *                           All rights reserved
 **************************************************************************
 * </pre>
 *
 * @version 1.7
 */
public class RobustDeterminant {

  //public static int callCount = 0; // debugging only

  /*
  // test point to allow injecting test code
  public static int signOfDet2x2(double x1, double y1, double x2, double y2) 
  {
    int d1 = originalSignOfDet2x2(x1, y1, x2, y2); 
    int d2 = -originalSignOfDet2x2(y1, x1, x2, y2); 
    assert d1 == -d2;
    return d1;
  }
   */
  
  /*
   * Test code to force a standard ordering of input ordinates.
   * A possible fix for a rare problem where evaluation is order-dependent.
   */
  /*
  public static int signOfDet2x2(double x1, double y1, double x2, double y2) 
  {
    if (x1 > x2) {
      return -signOfDet2x2ordX(x2, y2, x1, y1);
    }
    return signOfDet2x2ordX(x1, y1, x2, y2);
  }
    
  private static int signOfDet2x2ordX(double x1, double y1, double x2, double y2) 
  {
    if (y1 > y2) {
      return -originalSignOfDet2x2(y1, x1, y2, x2);
    }
    return originalSignOfDet2x2(x1, y1, x2, y2);
  }
  //  */
  
  /**
   * Computes the sign of the determinant of the 2x2 matrix
   * with the given entries, in a robust way.
   * 
   * @return -1 if the determinant is negative,
   * @return  1 if the determinant is positive,
   * @return  0 if the determinant is 0.
   */
   //private static int originalSignOfDet2x2(double x1, double y1, double x2, double y2) {
   public static int signOfDet2x2(double x1, double y1, double x2, double y2) {
    // returns -1 if the determinant is negative,
    // returns  1 if the determinant is positive,
    // returns  0 if the determinant is null.
    int sign;
    double swap;
    double k;
    long count = 0;

    //callCount++; // debugging only

    sign = 1;

    /*
     *  testing null entries
     */
    if ((x1 == 0.0) || (y2 == 0.0)) {
      if ((y1 == 0.0) || (x2 == 0.0)) {
        return 0;
      }
      else if (y1 > 0) {
        if (x2 > 0) {
          return -sign;
        }
        else {
          return sign;
        }
      }
      else {
        if (x2 > 0) {
          return sign;
        }
        else {
          return -sign;
        }
      }
    }
    if ((y1 == 0.0) || (x2 == 0.0)) {
      if (y2 > 0) {
        if (x1 > 0) {
          return sign;
        }
        else {
          return -sign;
        }
      }
      else {
        if (x1 > 0) {
          return -sign;
        }
        else {
          return sign;
        }
      }
    }

    /*
     *  making y coordinates positive and permuting the entries
     */
    /*
     *  so that y2 is the biggest one
     */
    if (0.0 < y1) {
      if (0.0 < y2) {
        if (y1 <= y2) {
          ;
        }
        else {
          sign = -sign;
          swap = x1;
          x1 = x2;
          x2 = swap;
          swap = y1;
          y1 = y2;
          y2 = swap;
        }
      }
      else {
        if (y1 <= -y2) {
          sign = -sign;
          x2 = -x2;
          y2 = -y2;
        }
        else {
          swap = x1;
          x1 = -x2;
          x2 = swap;
          swap = y1;
          y1 = -y2;
          y2 = swap;
        }
      }
    }
    else {
      if (0.0 < y2) {
        if (-y1 <= y2) {
          sign = -sign;
          x1 = -x1;
          y1 = -y1;
        }
        else {
          swap = -x1;
          x1 = x2;
          x2 = swap;
          swap = -y1;
          y1 = y2;
          y2 = swap;
        }
      }
      else {
        if (y1 >= y2) {
          x1 = -x1;
          y1 = -y1;
          x2 = -x2;
          y2 = -y2;
          ;
        }
        else {
          sign = -sign;
          swap = -x1;
          x1 = -x2;
          x2 = swap;
          swap = -y1;
          y1 = -y2;
          y2 = swap;
        }
      }
    }

    /*
     *  making x coordinates positive
     */
    /*
     *  if |x2| < |x1| one can conclude
     */
    if (0.0 < x1) {
      if (0.0 < x2) {
        if (x1 <= x2) {
          ;
        }
        else {
          return sign;
        }
      }
      else {
        return sign;
      }
    }
    else {
      if (0.0 < x2) {
        return -sign;
      }
      else {
        if (x1 >= x2) {
          sign = -sign;
          x1 = -x1;
          x2 = -x2;
          ;
        }
        else {
          return -sign;
        }
      }
    }

    /*
     *  all entries strictly positive   x1 <= x2 and y1 <= y2
     */
    while (true) {
      count = count + 1;
      // MD - UNSAFE HACK for testing only!
//      k = (int) (x2 / x1);
      k = Math.floor(x2 / x1);
      x2 = x2 - k * x1;
      y2 = y2 - k * y1;

      /*
       *  testing if R (new U2) is in U1 rectangle
       */
      if (y2 < 0.0) {
        return -sign;
      }
      if (y2 > y1) {
        return sign;
      }

      /*
       *  finding R'
       */
      if (x1 > x2 + x2) {
        if (y1 < y2 + y2) {
          return sign;
        }
      }
      else {
        if (y1 > y2 + y2) {
          return -sign;
        }
        else {
          x2 = x1 - x2;
          y2 = y1 - y2;
          sign = -sign;
        }
      }
      if (y2 == 0.0) {
        if (x2 == 0.0) {
          return 0;
        }
        else {
          return -sign;
        }
      }
      if (x2 == 0.0) {
        return sign;
      }

      /*
       *  exchange 1 and 2 role.
       */
      // MD - UNSAFE HACK for testing only!
//      k = (int) (x1 / x2);
      k = Math.floor(x1 / x2);
      x1 = x1 - k * x2;
      y1 = y1 - k * y2;

      /*
       *  testing if R (new U1) is in U2 rectangle
       */
      if (y1 < 0.0) {
        return sign;
      }
      if (y1 > y2) {
        return -sign;
      }

      /*
       *  finding R'
       */
      if (x2 > x1 + x1) {
        if (y2 < y1 + y1) {
          return -sign;
        }
      }
      else {
        if (y2 > y1 + y1) {
          return sign;
        }
        else {
          x1 = x2 - x1;
          y1 = y2 - y1;
          sign = -sign;
        }
      }
      if (y1 == 0.0) {
        if (x1 == 0.0) {
          return 0;
        }
        else {
          return sign;
        }
      }
      if (x1 == 0.0) {
        return -sign;
      }
    }

  }

   /**
    * Returns the index of the direction of the point <code>q</code> relative to
    * a vector specified by <code>p1-p2</code>.
    * 
    * @param p1 the origin point of the vector
    * @param p2 the final point of the vector
    * @param q the point to compute the direction to
    * 
    * @return 1 if q is counter-clockwise (left) from p1-p2
    * @return -1 if q is clockwise (right) from p1-p2
    * @return 0 if q is collinear with p1-p2
    */
   public static int orientationIndex(Coordinate p1, Coordinate p2, Coordinate q)
   {
     /**
      * MD - 9 Aug 2010 It seems that the basic algorithm is slightly orientation
      * dependent, when computing the orientation of a point very close to a
      * line. This is possibly due to the arithmetic in the translation to the
      * origin.
      * 
      * For instance, the following situation produces identical results in spite
      * of the inverse orientation of the line segment:
      * 
      * Coordinate p0 = new Coordinate(219.3649559090992, 140.84159161824724);
      * Coordinate p1 = new Coordinate(168.9018919682399, -5.713787599646864);
      * 
      * Coordinate p = new Coordinate(186.80814046338352, 46.28973405831556); int
      * orient = orientationIndex(p0, p1, p); int orientInv =
      * orientationIndex(p1, p0, p);
      * 
      * 
      */
     
     double dx1 = p2.x - p1.x;
     double dy1 = p2.y - p1.y;
     double dx2 = q.x - p2.x;
     double dy2 = q.y - p2.y;
     return signOfDet2x2(dx1, dy1, dx2, dy2);
   }

}