AffineTransformation.java

/*
 * Copyright (c) 2016 Vivid Solutions.
 *
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License 2.0
 * and Eclipse Distribution License v. 1.0 which accompanies this distribution.
 * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v20.html
 * and the Eclipse Distribution License is available at
 *
 * http://www.eclipse.org/org/documents/edl-v10.php.
 */

package org.locationtech.jts.geom.util;

import org.locationtech.jts.geom.Coordinate;
import org.locationtech.jts.geom.CoordinateSequence;
import org.locationtech.jts.geom.CoordinateSequenceFilter;
import org.locationtech.jts.geom.Geometry;
import org.locationtech.jts.util.Assert;
/**
 * Represents an affine transformation on the 2D Cartesian plane. 
 * It can be used to transform a {@link Coordinate} or {@link Geometry}.
 * An affine transformation is a mapping of the 2D plane into itself
 * via a series of transformations of the following basic types:
 * <ul>
 * <li>reflection (through a line)
 * <li>rotation (around the origin)
 * <li>scaling (relative to the origin)
 * <li>shearing (in both the X and Y directions)
 * <li>translation 
 * </ul>
 * In general, affine transformations preserve straightness and parallel lines,
 * but do not preserve distance or shape.
 * <p>
 * An affine transformation can be represented by a 3x3 
 * matrix in the following form:
 * <blockquote><pre>
 * T = | m00 m01 m02 |
 *     | m10 m11 m12 |
 *     |  0   0   1  |
 * </pre></blockquote>
 * A coordinate P = (x, y) can be transformed to a new coordinate P' = (x', y')
 * by representing it as a 3x1 matrix and using matrix multiplication to compute:
 * <blockquote><pre>
 * | x' |  = T x | x |
 * | y' |        | y |
 * | 1  |        | 1 |
 * </pre></blockquote>
 * <h3>Transformation Composition</h3>
 * Affine transformations can be composed using the {@link #compose} method.
 * Composition is computed via multiplication of the 
 * transformation matrices, and is defined as:
 * <blockquote><code>
 * A.compose(B) = T<sub>B</sub> x T<sub>A</sub>
 * </code></blockquote>
 * This produces a transformation whose effect is that of A followed by B.
 * The methods {@link #reflect}, {@link #rotate}, 
 * {@link #scale}, {@link #shear}, and {@link #translate} 
 * have the effect of composing a transformation of that type with
 * the transformation they are invoked on.  
 * <p>
 * The composition of transformations is in general <i>not</i> commutative.
 * 
 * <h3>Transformation Inversion</h3>
 * Affine transformations may be invertible or non-invertible.  
 * If a transformation is invertible, then there exists 
 * an inverse transformation which when composed produces 
 * the identity transformation.  
 * The {@link #getInverse} method
 * computes the inverse of a transformation, if one exists.
 * 
 * @author Martin Davis
 *
 */
public class AffineTransformation
	implements Cloneable, CoordinateSequenceFilter
{
  
  /**
   * Creates a transformation for a reflection about the 
   * line (x0,y0) - (x1,y1).
   * 
   * @param x0 the x-ordinate of a point on the reflection line
   * @param y0 the y-ordinate of a point on the reflection line
   * @param x1 the x-ordinate of a another point on the reflection line
   * @param y1 the y-ordinate of a another point on the reflection line
   * @return a transformation for the reflection
   */
  public static AffineTransformation reflectionInstance(double x0, double y0, double x1, double y1)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.setToReflection(x0, y0, x1, y1);
    return trans;
  }
  
  /**
   * Creates a transformation for a reflection about the 
   * line (0,0) - (x,y).
   * 
   * @param x the x-ordinate of a point on the reflection line
   * @param y the y-ordinate of a point on the reflection line
   * @return a transformation for the reflection
   */
  public static AffineTransformation reflectionInstance(double x, double y)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.setToReflection(x, y);
    return trans;
  }
  
  /**
   * Creates a transformation for a rotation
   * about the origin 
   * by an angle <i>theta</i>.
   * Positive angles correspond to a rotation 
   * in the counter-clockwise direction.
   * 
   * @param theta the rotation angle, in radians
   * @return a transformation for the rotation
   */
  public static AffineTransformation rotationInstance(double theta)
  {
    return rotationInstance(Math.sin(theta), Math.cos(theta));
  }
  
  /**
   * Creates a transformation for a rotation 
   * by an angle <i>theta</i>,
   * specified by the sine and cosine of the angle.
   * This allows providing exact values for sin(theta) and cos(theta)
   * for the common case of rotations of multiples of quarter-circles. 
   * 
   * @param sinTheta the sine of the rotation angle
   * @param cosTheta the cosine of the rotation angle
   * @return a transformation for the rotation
   */
  public static AffineTransformation rotationInstance(double sinTheta, double cosTheta)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.setToRotation(sinTheta, cosTheta);
    return trans;
  }
  
  /**
   * Creates a transformation for a rotation
   * about the point (x,y) by an angle <i>theta</i>.
   * Positive angles correspond to a rotation 
   * in the counter-clockwise direction.
   * 
   * @param theta the rotation angle, in radians
   * @param x the x-ordinate of the rotation point
   * @param y the y-ordinate of the rotation point
   * @return a transformation for the rotation
   */
  public static AffineTransformation rotationInstance(double theta, double x, double y)
  {
    return rotationInstance(Math.sin(theta), Math.cos(theta), x, y);
  }
  
  /**
   * Creates a transformation for a rotation 
   * about the point (x,y) by an angle <i>theta</i>,
   * specified by the sine and cosine of the angle.
   * This allows providing exact values for sin(theta) and cos(theta)
   * for the common case of rotations of multiples of quarter-circles. 
   * 
   * @param sinTheta the sine of the rotation angle
   * @param cosTheta the cosine of the rotation angle
   * @param x the x-ordinate of the rotation point
   * @param y the y-ordinate of the rotation point
   * @return a transformation for the rotation
   */
  public static AffineTransformation rotationInstance(double sinTheta, double cosTheta, double x, double y)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.setToRotation(sinTheta, cosTheta, x, y);
    return trans;
  }
  
  /**
   * Creates a transformation for a scaling relative to the origin.
   * 
   * @param xScale the value to scale by in the x direction
   * @param yScale the value to scale by in the y direction
   * @return a transformation for the scaling
   */
  public static AffineTransformation scaleInstance(double xScale, double yScale)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.setToScale(xScale, yScale);
    return trans;
  }
  
  /**
   * Creates a transformation for a scaling relative to the point (x,y).
   * 
   * @param xScale the value to scale by in the x direction
   * @param yScale the value to scale by in the y direction
   * @param x the x-ordinate of the point to scale around
   * @param y the y-ordinate of the point to scale around
   * @return a transformation for the scaling
   */
  public static AffineTransformation scaleInstance(double xScale, double yScale, double x, double y)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.translate(-x, -y);
    trans.scale(xScale, yScale);
    trans.translate(x, y);
    return trans;
  }
  

  /**
   * Creates a transformation for a shear.
   * 
   * @param xShear the value to shear by in the x direction
   * @param yShear the value to shear by in the y direction
   * @return a transformation for the shear
   */
  public static AffineTransformation shearInstance(double xShear, double yShear)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.setToShear(xShear, yShear);
    return trans;
  }
  
  /**
   * Creates a transformation for a translation.
   * 
   * @param x the value to translate by in the x direction
   * @param y the value to translate by in the y direction
   * @return a transformation for the translation
   */  
  public static AffineTransformation translationInstance(double x, double y)
  {
    AffineTransformation trans = new AffineTransformation();
    trans.setToTranslation(x, y);
    return trans;
  }
  
  // affine matrix entries
  // (bottom row is always [ 0 0 1 ])
  private double m00;
  private double m01;
  private double m02;
  private double m10;
  private double m11;
  private double m12;
  
  /**
   * Constructs a new identity transformation
   */
  public AffineTransformation()
  {
    setToIdentity();
  }
  
  /**
   * Constructs a new transformation whose 
   * matrix has the specified values.
   * 
   * @param matrix an array containing the 6 values { m00, m01, m02, m10, m11, m12 }
   * @throws NullPointerException if matrix is null
   * @throws ArrayIndexOutOfBoundsException if matrix is too small 
   */
  public AffineTransformation(double[] matrix)
  {
    m00 = matrix[0];
    m01 = matrix[1];
    m02 = matrix[2];
    m10 = matrix[3];
    m11 = matrix[4];
    m12 = matrix[5];
  }
  
  /**
   * Constructs a new transformation whose 
   * matrix has the specified values.
   * 
   * @param m00 the entry for the [0, 0] element in the transformation matrix 
   * @param m01 the entry for the [0, 1] element in the transformation matrix
   * @param m02 the entry for the [0, 2] element in the transformation matrix
   * @param m10 the entry for the [1, 0] element in the transformation matrix
   * @param m11 the entry for the [1, 1] element in the transformation matrix
   * @param m12 the entry for the [1, 2] element in the transformation matrix
   */
  public AffineTransformation(double m00,
      double m01,
      double m02,
      double m10,
      double m11,
      double m12)
  {
    setTransformation(m00, m01, m02, m10, m11, m12);
  }
  
  /**
   * Constructs a transformation which is
   * a copy of the given one.
   * 
   * @param trans the transformation to copy
   */
  public AffineTransformation(AffineTransformation trans)
  {
    setTransformation(trans);
  }
  
  /**
   * Constructs a transformation
   * which maps the given source
   * points into the given destination points.
   * 
   * @param src0 source point 0
   * @param src1 source point 1
   * @param src2 source point 2
   * @param dest0 the mapped point for source point 0
   * @param dest1 the mapped point for source point 1
   * @param dest2 the mapped point for source point 2
   * 
   * @deprecated use AffineTransformationFactory
   */
  public AffineTransformation(Coordinate src0,
      Coordinate src1,
      Coordinate src2,
      Coordinate dest0,
      Coordinate dest1,
      Coordinate dest2)
  {
    throw new UnsupportedOperationException("Use AffineTransformationFactory instead");
  }
  
  /**
   * Sets this transformation to be the identity transformation.
   * The identity transformation has the matrix:
   * <blockquote><pre>
   * | 1 0 0 |
   * | 0 1 0 |
   * | 0 0 1 |
   * </pre></blockquote>
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToIdentity()
  {
    m00 = 1.0;    m01 = 0.0;  m02 = 0.0;
    m10 = 0.0;    m11 = 1.0;  m12 = 0.0;
    return this;
  }
  
  /**
   * Sets this transformation's matrix to have the given values.
   * 
   * @param m00 the entry for the [0, 0] element in the transformation matrix 
   * @param m01 the entry for the [0, 1] element in the transformation matrix
   * @param m02 the entry for the [0, 2] element in the transformation matrix
   * @param m10 the entry for the [1, 0] element in the transformation matrix
   * @param m11 the entry for the [1, 1] element in the transformation matrix
   * @param m12 the entry for the [1, 2] element in the transformation matrix
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setTransformation(double m00,
      double m01,
      double m02,
      double m10,
      double m11,
      double m12)
  {
    this.m00 = m00;
    this.m01 = m01;
    this.m02 = m02;
    this.m10 = m10;
    this.m11 = m11;
    this.m12 = m12;
    return this;
  }
  
  /**
   * Sets this transformation to be a copy of the given one
   * 
   * @param trans a transformation to copy
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setTransformation(AffineTransformation trans)
  {
    m00 = trans.m00;    m01 = trans.m01;  m02 = trans.m02;
    m10 = trans.m10;    m11 = trans.m11;  m12 = trans.m12; 
    return this;
  }
  
  /**
   * Gets an array containing the entries
   * of the transformation matrix.
   * Only the 6 non-trivial entries are returned,
   * in the sequence:
   * <pre>
   * m00, m01, m02, m10, m11, m12
   * </pre>
   * 
   * @return an array of length 6
   */
  public double[] getMatrixEntries()
  {
    return new double[] { m00, m01, m02, m10, m11, m12 };
  }
  
  /**
  * Computes the determinant of the transformation matrix. 
  * The determinant is computed as:
  * <blockquote><pre>
  * | m00 m01 m02 |
  * | m10 m11 m12 | = m00 * m11 - m01 * m10
  * |  0   0   1  |
  * </pre></blockquote>
  * If the determinant is zero, 
  * the transform is singular (not invertible), 
  * and operations which attempt to compute
  * an inverse will throw a <tt>NoninvertibleTransformException</tt>. 

  * @return the determinant of the transformation
  * @see #getInverse()
  */
  public double getDeterminant()
  {
    return m00 * m11 - m01 * m10;
  }

  /**
   * Computes the inverse of this transformation, if one
   * exists.
   * The inverse is the transformation which when 
   * composed with this one produces the identity 
   * transformation.
   * A transformation has an inverse if and only if it
   * is not singular (i.e. its
   * determinant is non-zero).
   * Geometrically, an transformation is non-invertible
   * if it maps the plane to a line or a point.
   * If no inverse exists this method
   * will throw a <tt>NoninvertibleTransformationException</tt>.
   * <p>
   * The matrix of the inverse is equal to the 
   * inverse of the matrix for the transformation.
   * It is computed as follows:
   * <blockquote><pre>  
   *                 1    
   * inverse(A)  =  ---   x  adjoint(A) 
   *                det 
   *
   *
   *             =   1       |  m11  -m01   m01*m12-m02*m11  |
   *                ---   x  | -m10   m00  -m00*m12+m10*m02  |
   *                det      |  0     0     m00*m11-m10*m01  |
   *
   *
   *
   *             = |  m11/det  -m01/det   m01*m12-m02*m11/det |
   *               | -m10/det   m00/det  -m00*m12+m10*m02/det |
   *               |   0           0          1               |
   *
   * </pre></blockquote>  
   *  
   * @return a new inverse transformation
   * @throws NoninvertibleTransformationException
   * @see #getDeterminant()
   */
  public AffineTransformation getInverse()
  	  throws NoninvertibleTransformationException
  {
    double det = getDeterminant();
    if (det == 0)
    	throw new NoninvertibleTransformationException("Transformation is non-invertible");
    
    double im00 = m11 / det;
    double im10 = -m10 / det;
    double im01 = -m01 / det;
    double im11 = m00 / det;
    double im02 = (m01 * m12 - m02 * m11) / det;
    double im12 = (-m00 * m12 + m10 * m02) / det;
    
    return new AffineTransformation(im00, im01, im02, im10, im11, im12);
  }
  
  /**
   * Explicitly computes the math for a reflection.  May not work.
   * @param x0 the X ordinate of one point on the reflection line
   * @param y0 the Y ordinate of one point on the reflection line
   * @param x1 the X ordinate of another point on the reflection line
   * @param y1 the Y ordinate of another point on the reflection line
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToReflectionBasic(double x0, double y0, double x1, double y1)
  {
    if (x0 == x1 && y0 == y1) {
      throw new IllegalArgumentException("Reflection line points must be distinct");
    }
    double dx = x1 - x0;
    double dy = y1 - y0;
    double d = Math.hypot(dx, dy);
    double sin = dy / d;
    double cos = dx / d;
    double cs2 = 2 * sin * cos;
    double c2s2 = cos * cos - sin * sin;
    m00 = c2s2;   m01 = cs2;    m02 = 0.0;
    m10 = cs2;    m11 = -c2s2;  m12 = 0.0;
    return this;
  }
  
  /**
   * Sets this transformation to be a reflection 
   * about the line defined by a line <tt>(x0,y0) - (x1,y1)</tt>.
   * 
   * @param x0 the X ordinate of one point on the reflection line
   * @param y0 the Y ordinate of one point on the reflection line
   * @param x1 the X ordinate of another point on the reflection line
   * @param y1 the Y ordinate of another point on the reflection line
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToReflection(double x0, double y0, double x1, double y1)
  {
    if (x0 == x1 && y0 == y1) {
      throw new IllegalArgumentException("Reflection line points must be distinct");
    }
    // translate line vector to origin
    setToTranslation(-x0, -y0);
    
    // rotate vector to positive x axis direction
    double dx = x1 - x0;
    double dy = y1 - y0;
    double d = Math.hypot(dx, dy);
    double sin = dy / d;
    double cos = dx / d;
    rotate(-sin, cos);
    // reflect about the x axis
    scale(1, -1);
    // rotate back
    rotate(sin, cos);
    // translate back
    translate(x0, y0);
    return this;
  }
  
  /**
   * Sets this transformation to be a reflection 
   * about the line defined by vector (x,y).
   * The transformation for a reflection
   * is computed by:
   * <blockquote><code>
   * d = sqrt(x<sup>2</sup> + y<sup>2</sup>) <br>
   * sin = y / d;<br>
   * cos = x / d;<br>
   * <br>
   * T<sub>ref</sub> = T<sub>rot(sin, cos)</sub> x T<sub>scale(1, -1)</sub> x T<sub>rot(-sin, cos)</sub><br>
   * </code></blockquote>
   * 
   * @param x the x-component of the reflection line vector
   * @param y the y-component of the reflection line vector
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToReflection(double x, double y)
  {
    if (x == 0.0 && y == 0.0) {
      throw new IllegalArgumentException("Reflection vector must be non-zero");
    }
    
    /**
     * Handle special case - x = y.
     * This case is specified explicitly to avoid roundoff error.
     */
    if (x == y) {
      m00 = 0.0;
      m01 = 1.0;
      m02 = 0.0;
      m10 = 1.0;
      m11 = 0.0;
      m12 = 0.0;
      return this;
    }
    
    // rotate vector to positive x axis direction
    double d = Math.hypot(x, y);
    double sin = y / d;
    double cos = x / d;
    rotate(-sin, cos);
    // reflect about the x-axis
    scale(1, -1);
    // rotate back
    rotate(sin, cos);
    return this;
  }
  
  /**
   * Sets this transformation to be a rotation around the origin.
   * A positive rotation angle corresponds 
   * to a counter-clockwise rotation.
   * The transformation matrix for a rotation
   * by an angle <tt>theta</tt>
   * has the value:
   * <blockquote><pre>  
   * |  cos(theta)  -sin(theta)   0 |
   * |  sin(theta)   cos(theta)   0 |
   * |           0            0   1 |
   * </pre></blockquote> 
   * 
   * @param theta the rotation angle, in radians
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToRotation(double theta)
  {
    setToRotation(Math.sin(theta), Math.cos(theta));
    return this;
  }
  
  /**
   * Sets this transformation to be a rotation around the origin
   * by specifying the sin and cos of the rotation angle directly.
   * The transformation matrix for the rotation
   * has the value:
   * <blockquote><pre>  
   * |  cosTheta  -sinTheta   0 |
   * |  sinTheta   cosTheta   0 |
   * |         0          0   1 |
   * </pre></blockquote> 
   * 
   * @param sinTheta the sine of the rotation angle
   * @param cosTheta the cosine of the rotation angle
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToRotation(double sinTheta, double cosTheta)
  {
    m00 = cosTheta;    m01 = -sinTheta;  m02 = 0.0;
    m10 = sinTheta;    m11 = cosTheta;   m12 = 0.0;
    return this;
  }
  
  /**
   * Sets this transformation to be a rotation
   * around a given point (x,y).
   * A positive rotation angle corresponds 
   * to a counter-clockwise rotation.
   * The transformation matrix for a rotation
   * by an angle <tt>theta</tt>
   * has the value:
   * <blockquote><pre>  
   * |  cosTheta  -sinTheta   x-x*cos+y*sin |
   * |  sinTheta   cosTheta   y-x*sin-y*cos |
   * |           0            0   1 |
   * </pre></blockquote> 
   * 
   * @param theta the rotation angle, in radians
   * @param x the x-ordinate of the rotation point
   * @param y the y-ordinate of the rotation point
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToRotation(double theta, double x, double y)
  {
    setToRotation(Math.sin(theta), Math.cos(theta), x, y);
    return this;
  }
  

  /**
   * Sets this transformation to be a rotation
   * around a given point (x,y)
   * by specifying the sin and cos of the rotation angle directly.
   * The transformation matrix for the rotation
   * has the value:
   * <blockquote><pre>  
   * |  cosTheta  -sinTheta   x-x*cos+y*sin |
   * |  sinTheta   cosTheta   y-x*sin-y*cos |
   * |         0          0         1       |
   * </pre></blockquote> 
   * 
   * @param sinTheta the sine of the rotation angle
   * @param cosTheta the cosine of the rotation angle
   * @param x the x-ordinate of the rotation point
   * @param y the y-ordinate of the rotation point
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToRotation(double sinTheta, double cosTheta, double x, double y)
  {
    m00 = cosTheta;    m01 = -sinTheta;  m02 = x - x * cosTheta + y * sinTheta;
    m10 = sinTheta;    m11 = cosTheta;   m12 = y - x * sinTheta - y * cosTheta;
    return this;
  }
  
  /**
   * Sets this transformation to be a scaling.
   * The transformation matrix for a scale
   * has the value:
   * <blockquote><pre>  
   * |  xScale      0  dx |
   * |  0      yScale  dy |
   * |  0           0   1 |
   * </pre></blockquote> 
   * 
   * @param xScale the amount to scale x-ordinates by
   * @param yScale the amount to scale y-ordinates by
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToScale(double xScale, double yScale)
  {
    m00 = xScale;   m01 = 0.0;      m02 = 0.0;
    m10 = 0.0;      m11 = yScale;   m12 = 0.0;
    return this;
  }
  
  /**
   * Sets this transformation to be a shear.
   * The transformation matrix for a shear 
   * has the value:
   * <blockquote><pre>  
   * |  1      xShear  0 |
   * |  yShear      1  0 |
   * |  0           0  1 |
   * </pre></blockquote> 
   * Note that a shear of (1, 1) is <i>not</i> 
   * equal to shear(1, 0) composed with shear(0, 1).
   * Instead, shear(1, 1) corresponds to a mapping onto the 
   * line x = y.
   * 
   * @param xShear the x component to shear by
   * @param yShear the y component to shear by
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToShear(double xShear, double yShear)
  {
    m00 = 1.0;      m01 = xShear;      m02 = 0.0;
    m10 = yShear;   m11 = 1.0;         m12 = 0.0;
    return this;
  }
  
  /**
   * Sets this transformation to be a translation.
   * For a translation by the vector (x, y)
   * the transformation matrix has the value:
   * <blockquote><pre>  
   * |  1  0  dx |
   * |  1  0  dy |
   * |  0  0   1 |
   * </pre></blockquote> 
   * @param dx the x component to translate by
   * @param dy the y component to translate by
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation setToTranslation(double dx, double dy)
  {
    m00 = 1.0;  m01 = 0.0; m02 = dx;
    m10 = 0.0;  m11 = 1.0; m12 = dy;
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a reflection transformation composed 
   * with the current value.
   * 
   * @param x0 the x-ordinate of a point on the line to reflect around
   * @param y0 the y-ordinate of a point on the line to reflect around
   * @param x1 the x-ordinate of a point on the line to reflect around
   * @param y1 the y-ordinate of a point on the line to reflect around
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation reflect(double x0, double y0, double x1, double y1)
  {
    compose(reflectionInstance(x0, y0, x1, y1));
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a reflection transformation composed 
   * with the current value.
   * 
   * @param x the x-ordinate of the line to reflect around
   * @param y the y-ordinate of the line to reflect around
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation reflect(double x, double y)
  {
    compose(reflectionInstance(x, y));
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a rotation transformation composed 
   * with the current value.
   * Positive angles correspond to a rotation 
   * in the counter-clockwise direction.
   * 
   * @param theta the angle to rotate by, in radians
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation rotate(double theta)
  {
    compose(rotationInstance(theta));
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a rotation around the origin composed 
   * with the current value,
   * with the sin and cos of the rotation angle specified directly.
   * 
   * @param sinTheta the sine of the angle to rotate by
   * @param cosTheta the cosine of the angle to rotate by
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation rotate(double sinTheta, double cosTheta)
  {
    compose(rotationInstance(sinTheta, cosTheta));
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a rotation around a given point composed 
   * with the current value.
   * Positive angles correspond to a rotation 
   * in the counter-clockwise direction.
   * 
   * @param theta the angle to rotate by, in radians
   * @param x the x-ordinate of the rotation point
   * @param y the y-ordinate of the rotation point
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation rotate(double theta, double x, double y)
  {
    compose(rotationInstance(theta, x, y));
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a rotation around a given point composed 
   * with the current value,
   * with the sin and cos of the rotation angle specified directly.
   * 
   * @param sinTheta the sine of the angle to rotate by
   * @param cosTheta the cosine of the angle to rotate by
   * @param x the x-ordinate of the rotation point
   * @param y the y-ordinate of the rotation point
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation rotate(double sinTheta, double cosTheta, double x, double y)
  {
    compose(rotationInstance(sinTheta, cosTheta, x, y));
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a scale transformation composed 
   * with the current value.
   * 
   * @param xScale the value to scale by in the x direction
   * @param yScale the value to scale by in the y direction
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation scale(double xScale, double yScale)
  {
    compose(scaleInstance(xScale, yScale));
    return this;
  }
  
  /**
   * Updates the value of this transformation
   * to that of a shear transformation composed 
   * with the current value.
   * 
   * @param xShear the value to shear by in the x direction
   * @param yShear the value to shear by in the y direction
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation shear(double xShear, double yShear)
  {
    compose(shearInstance(xShear, yShear));
    return this;
  }

  /**
   * Updates the value of this transformation
   * to that of a translation transformation composed 
   * with the current value.
   * 
   * @param x the value to translate by in the x direction
   * @param y the value to translate by in the y direction
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation translate(double x, double y)
  {
    compose(translationInstance(x, y));
    return this;
  }
  

  /**
   * Updates this transformation to be
   * the composition of this transformation with the given {@link AffineTransformation}. 
   * This produces a transformation whose effect 
   * is equal to applying this transformation 
   * followed by the argument transformation.
   * Mathematically,
   * <blockquote><code>
   * A.compose(B) = T<sub>B</sub> x T<sub>A</sub>
   * </code></blockquote>
   * 
   * @param trans an affine transformation
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation compose(AffineTransformation trans)
  {
    double mp00 = trans.m00 * m00 + trans.m01 * m10;
    double mp01 = trans.m00 * m01 + trans.m01 * m11;
    double mp02 = trans.m00 * m02 + trans.m01 * m12 + trans.m02;
    double mp10 = trans.m10 * m00 + trans.m11 * m10;
    double mp11 = trans.m10 * m01 + trans.m11 * m11;
    double mp12 = trans.m10 * m02 + trans.m11 * m12 + trans.m12;
    m00 = mp00;
    m01 = mp01;
    m02 = mp02;
    m10 = mp10;
    m11 = mp11;
    m12 = mp12;
    return this;
  }
  
  /**
   * Updates this transformation to be the composition 
   * of a given {@link AffineTransformation} with this transformation.
   * This produces a transformation whose effect 
   * is equal to applying the argument transformation 
   * followed by this transformation.
   * Mathematically,
   * <blockquote><code>
   * A.composeBefore(B) = T<sub>A</sub> x T<sub>B</sub>
   * </code></blockquote>
   * 
   * @param trans an affine transformation
   * @return this transformation, with an updated matrix
   */
  public AffineTransformation composeBefore(AffineTransformation trans)
  {
    double mp00 = m00 * trans.m00 + m01 * trans.m10;
    double mp01 = m00 * trans.m01 + m01 * trans.m11;
    double mp02 = m00 * trans.m02 + m01 * trans.m12 + m02;
    double mp10 = m10 * trans.m00 + m11 * trans.m10;
    double mp11 = m10 * trans.m01 + m11 * trans.m11;
    double mp12 = m10 * trans.m02 + m11 * trans.m12 + m12;
    m00 = mp00;
    m01 = mp01;
    m02 = mp02;
    m10 = mp10;
    m11 = mp11;
    m12 = mp12;
    return this;
  }
  
  /**
   * Applies this transformation to the <tt>src</tt> coordinate
   * and places the results in the <tt>dest</tt> coordinate
   * (which may be the same as the source).
   * 
   * @param src the coordinate to transform
   * @param dest the coordinate to accept the results 
   * @return the <tt>dest</tt> coordinate
   */
  public Coordinate transform(Coordinate src, Coordinate dest)
  {
    double xp = m00 * src.x + m01 * src.y + m02;
    double yp = m10 * src.x + m11 * src.y + m12;
    dest.x = xp;
    dest.y = yp;
    return dest;
  }
  
  /**
   * Creates a new {@link Geometry} which is the result
   * of this transformation applied to the input Geometry.
   * 
   *@param g  a <code>Geometry</code>
   *@return a transformed Geometry
   */
  public Geometry transform(Geometry g)
  {
    Geometry g2 = g.copy();
    g2.apply(this);
    return g2;    
  }
  
  /**
   * Applies this transformation to the i'th coordinate
   * in the given CoordinateSequence.
   * 
   *@param seq  a <code>CoordinateSequence</code>
   *@param i the index of the coordinate to transform
   */
  public void transform(CoordinateSequence seq, int i)
  {
    double xp = m00 * seq.getOrdinate(i, 0) + m01 * seq.getOrdinate(i, 1) + m02;
    double yp = m10 * seq.getOrdinate(i, 0) + m11 * seq.getOrdinate(i, 1) + m12;
    seq.setOrdinate(i, 0, xp);
    seq.setOrdinate(i, 1, yp);  
  }
  
  /**
   * Transforms the i'th coordinate in the input sequence
   * 
   *@param seq  a <code>CoordinateSequence</code>
   *@param i the index of the coordinate to transform
   */
  public void filter(CoordinateSequence seq, int i)
  {
    transform(seq, i);
  }
  
  public boolean isGeometryChanged()
  {
    return true;
  }
  
  /**
   * Reports that this filter should continue to be executed until 
   * all coordinates have been transformed.
   * 
   * @return false
   */
  public boolean isDone() 
  {
    return false;
  }
  
  /**
  * Tests if this transformation is the identity transformation.
  *
  * @return true if this is the identity transformation
  */
  public boolean isIdentity()
  {
    return (m00 == 1 && m01 == 0 && m02 == 0
          && m10 == 0 && m11 == 1 && m12 == 0);
  }
  
 /**
  * Tests if an object is an
  * <tt>AffineTransformation</tt>
  * and has the same matrix as 
  * this transformation.
  * 
  * @param obj an object to test
  * @return true if the given object is equal to this object
  */
  public boolean equals(Object obj)
  {
    if (obj == null) return false;
    if (! (obj instanceof AffineTransformation))
      return false;
    
    AffineTransformation trans = (AffineTransformation) obj;
    return m00 == trans.m00
    && m01 == trans.m01
    && m02 == trans.m02
    && m10 == trans.m10
    && m11 == trans.m11
    && m12 == trans.m12;
  }
  
  /* (non-Javadoc)
   * @see java.lang.Object#hashCode()
   */
  @Override
  public int hashCode() {
    final int prime = 31;
    int result = 1;
    long temp;
    temp = Double.doubleToLongBits(m00);
    result = prime * result + (int) (temp ^ (temp >>> 32));
    temp = Double.doubleToLongBits(m01);
    result = prime * result + (int) (temp ^ (temp >>> 32));
    temp = Double.doubleToLongBits(m02);
    result = prime * result + (int) (temp ^ (temp >>> 32));
    temp = Double.doubleToLongBits(m10);
    result = prime * result + (int) (temp ^ (temp >>> 32));
    temp = Double.doubleToLongBits(m11);
    result = prime * result + (int) (temp ^ (temp >>> 32));
    temp = Double.doubleToLongBits(m12);
    result = prime * result + (int) (temp ^ (temp >>> 32));
    return result;
  }
  
  /**
   * Gets a text representation of this transformation.
   * The string is of the form:
   * <pre>
   * AffineTransformation[[m00, m01, m02], [m10, m11, m12]]
   * </pre>
   * 
   * @return a string representing this transformation
   * 
   */
  public String toString()
  {
    return "AffineTransformation[[" + m00 + ", " + m01 + ", " + m02 
    + "], ["
    + m10 + ", " + m11 + ", " + m12 + "]]";
  }
  
  /**
   * Clones this transformation
   * 
   * @return a copy of this transformation
   */
  public Object clone()
  {
  	try {
  		return super.clone();
  	} catch(Exception ex) {
  		Assert.shouldNeverReachHere();
  	}
  	return null;
  }
}